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Abstract—Agent-based modeling (ABM) is quickly becoming a
choice tool for researchers, as it is very adept at modeling natural
phenomena. Spatial data has the ability to further increase the
usefulness of an ABM. One way that this can be achieved is
through the inclusion of geographical information system (GIS)
data. Such integration between ABM and GIS may sound trivial,
but it is difficult to do effectively, particularly as the complexity
of GIS data and the amount of agents increase. Here, we present
methods and recommendations on including GIS data in a
complex simulation model. We demonstrate our techniques on
an advanced epidemiological model.

Index Terms—performance, scientific simulation, raster data,
vector data, epidemiological modeling

1. INTRODUCTION

SIMULATIONS of real-world phenomena have the po-
tential to be valuable to researchers. Rather than rely-

ing on complex, approximate equations, agent-based models
(ABMs) rely on more natural behavioral rules [16]. This leads
to a more direct translation from natural phenomena to a
simulation model. It is logical to integrate spatial data into
the simulation environment; however, as Gilbert [14] pointed
out, utilizing geographical information system (GIS) data for
dynamic agents is a difficult challenge that has not yet been
adequately solved. Although GIS data has successfully been
integrated into ABMs for several years, the ability to run
complex simulations with thousands of GIS aware agents is
computationally challenging. In this article, we present several
methods of integrating GIS data into a simulation environment.
We describe an epidemiological model that utilizes GIS data
and offer insight on how to efficiently integrate GIS data into
a model, depending on the model’s complexity and needs.

The organization of this paper is as follows. In section 2,
we discuss the integration of ABMs and GIS data. Section
3 details our simulation model and section 4 provides a
discussion. We finish with conclusions in section 5, followed
by an acknowledgment and references.

2. GEOGRAPHICINFORMATION SYSTEM DATA AND

AGENT-BASED SIMULATIONS

GIS data has a variety of applications and spans many fields.
Simply, a GIS is a system in which real-world environmental
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data is represented. Examples include rivers, governmental
boundaries, rainfall, temperature, population distribution, and
disease prevalence, among many others. GIS data is typically
stored in raster or vector format. Raster data is characterized
as a collection of pixels, or cells. These cells typically make up
a grid-like structure, with each cell having its own attributes
and properties. Vector data is coordinate-based; namely, data is
represented by points, lines, and polygons. These features also
have associated characteristics. While raster data lends itself
directly to the grid-like frameworks of ABMs, it is subject to
spatial resolution issues and requires large amounts of storage
space. Vector data is more realistic, as it suffers less resolution
loss, and is more easily stored. However, querying vector
data can be very computationally expensive. For example,
querying a set of complex polygons representing forests in
an environment would require multiple, expensive queries to
each polygon for each agent, unless some sort of indexing was
performed. Figure 1 visually compares raster and vector data.
A means to combine the benefits of raster and vector data to
create GIS aware agents would be an important step in the
advancement of ABMs with GIS data.

While previous studies have described ABMs coupled with
GIS data, most existing models do not have agents that
intelligently move based on their current environment. Castle,
et al. [5] mention numerous toolkits and applications for this
yet fail to go beyond the incorporation of GIS data into a
model and into the realm of its effective use. Crooks [6]
more deeply describes the realm of space within ABM and
offers example applications but does not specifically address
the underlying issue of how agents can most efficiently access
GIS data. Anwar, et al. [1] describe a model built upon GIS
data, but one that does not directly query it. Some models
imply space, such as NOSOSIM [27], but few dynamically
interact with GIS data. Gimblett [15], Keeling, et al. [18], and
Brown et al. [4] describe aspects of the integration of ABMs
and GIS data, but do not go into detail regarding approaches to
efficiently create GIS aware agents. Moreover, standard means
of linking agents with GIS data are computationally expensive
and therefore not feasible for complex, large-scale simulation
models. In many cases, only particular parts of a GIS are
necessary for an ABM; utilizing a feature-rich GIS toolkit at
simulation runtime is not typically advisable. We next describe
the problem at hand and offer increasingly better solutions.

2.1. GIS Data in Agent-based Models

In traditional ABMs, agents typically move about a grid-like
structure. GIS aware agents move about the same structure,
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(a) Raster Data (b) Vector Data

Fig. 1. Panels (a) and (b) show the northwest corner of Bali, Indonesia as represented by a raster and a vector file. Vector data is generally more precise
than raster data.

but in a manner such that each move is influenced by the
surrounding environment, including nearby agents. A simple
example would be allowing agents to move preferentially into
one landscape over another. When an ABM environment is
built upon GIS data, queries can be expensive, particularly
with complex data or movement. As a general rule, the more
complex the GIS data, the more difficult it is to efficiently
utilize it within an ABM. Additionally, the more GIS data
that is available, such as multiple landscape features, the
more time-consuming it will be for agents to query. Put
simply, at each timestep, an agent needs to query its unknown
surroundings and make a decision regarding its next move.
The more GIS data there is, the longer this will take. A
common solution is to approximate GIS data to the level of
granularity required for a given model. As such, the amount of
GIS data is decreased while the integrity of the data required
is maintained. We next describe several ways to access GIS
data from a simulation, offering advantages and disadvantages
for each.

2.1.1) Raster Queries:Raster-based spatial queries made
through a spatial package can be costly, as the mechanisms
by which agents access this data are typically not optimized
for use in simulations. Additionally, storing and loading poten-
tially large raster data files is inefficient at simulation runtime,
particularly when not all of the data is necessary. Raster files
are also not ideal for representing complex GIS data where
fine-scale granularity is required. An advantage of utilizing
raster data in an ABM is that it easily maps to traditional
ABM grid spaces.

2.1.2) Spatial Queries:Spatial queries on vector-based GIS
data are the most accurate way an agent can interact with
GIS data. Here, an agent simply performs mathematical-based
queries on the loaded GIS data to determine its surroundings.
While very accurate, the cost of performing a spatial query
increases as the complexity of the data increases. For example,
it may be mathematically simple to query a rectangle to see
whether an agent is contained within it; however, it is very
mathematically expensive to do the same query on a large

polygon. Repeatedly performing such queries is expensive, and
this problem is exaggerated as the number of agents and the
amount of spatial data increases. While indexing spatial data
alleviates some redundancy, queries are still expensive.

2.1.3) Simplified Spatial Queries:The performance of spa-
tial queries can be improved if the vector data is approximated
in a manner such that the number of vertices in a line or
polygon is decreased, while maintaining an appropriate level
of data integrity. The Douglas-Peucker algorithm [8] is com-
monly used to perform such simplifications. This technique
offers a speedup over traditional spatial queries, but at a cost
of less accurate spatial data. However, repeatedly performing
similar or identical spatial queries is redundant and can be
remedied. Figure 2 shows a near 100% data simplification
that maintains considerable data integrity.

2.1.4) Precalculated Query Matrix:Recognizing the draw-
backs of earlier techniques, we developed a technique we call
the precalculated query matrix. This technique relies on the
advantages of raster data while utilizing the accuracy of vector
data. Here, vector files are used in conjunction with spatial
queries to build arrays of spatial data. Specifically, we iterate
through the vector data, at a specified granularity, and perform
spatial queries at each point, saving the results. This process is
shown in Algorithm 1 and is performed for all available spatial
data. The runtime for Algorithm 1 isO(xyl), wherex andy are
the number of latitude and longitude values andl is the number
of matrices. While time consuming, the expensive queries only
need to be performed once for a given granularity, prior to
simulation runtime. We utilize serialization to load the arrays
into the simulation and agents can access the data in constant
time. The main disadvantage to this method is that arrays of
finer granularities will take longer to build, resulting in larger
arrays and slightly longer query times. The advantages include
agents that can more quickly query their environment and a
simulation that scales well, both in terms of the amount of GIS
data available and in the number of agents. Researchers also
have the advantage of choosing a granularity to fit their needs.
Currently, we use multiple precalculated query matrices.
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(a) 10,000 Data Points (b) 100 Data Points

Fig. 2. Panels (a) and (b) represent Bali, Indonesia with approximately 10,000 and 100 data points, respectively. Here, we reduce the number of points by
almost 100%, but still retain considerable data integrity.

Algorithm 1 BUILDPRECALCULATEDQUERYMATRIX

Let X be the set of latitude values
Let Y be the set of longitude values
Let L be the set of GIS layers
Let M be the Precalculated Query Matrix for a layer
for all x ∈ X do

for all y ∈ Y do
for all l ∈ L do

Ml(x, y)←SPATIALQUERY(l, x, y)
end for

end for
end for

2.2. GIS Aware Agents

Previously, we listed ways by which agents can query their
environment. Once agents are able to adequately and effi-
ciently survey their surroundings, they must be able to make
use of that data to become spatially aware. Our agents make
use of precalculated query matrices for movement decisions.
To display this movement on the native vector data, we use
hash tables to “map” the native GIS latitude and longitude
points to our matrices, and vice versa. This mapping avoids
repetitive calculations, while allowing agents to find their real-
world coordinates with ease. This also assists in enabling
agents to move with complex rules, which we next describe.

2.2.1) Movement:Adding movement to agents in a GIS-
based environment is challenging. With raster data, agents
must perform tedious queries through the GIS system to deter-
mine the surrounding landscape. Spatial queries are inefficient
too, as the queries can be redundant and take considerable
time. Utilizing precalculated query matrices enables us to
create many agents with complex and realistic movements in
rapid time.

In traditional ABM cellular automata spaces, agent behavior
is based on a von Neumann or Moore neighborhood. Specif-
ically, von Neumann neighborhoods describe the four cells
immediately adjacent to the current cell in a traditional square
grid. A Moore neighborhood extends this to the surround-

ing eight adjacent cells, including those diagonally adjacent.
Performing spatial queries on such spaces would be tedious
and inefficient, particularly if the neighborhood was extended
beyond a Moore neighborhood.

In our model, spatial movement is based on a Moore
neighborhood, with allowance for larger neighborhoods. To
move intelligently, agents must know the landscape they are
currently in as well as the surrounding landscape. To represent
possible transitions from one cell to another, we use a matrix of
probabilistic movement values. This table consists of values
representing the likelihood that an agent would move from
a given landscape to another. Calculations are performed for
each of the cells in the Moore neighborhood. A directional
bias is also added to the agents so they are more likely to
continue in the same general direction. Once the values for the
surrounding cells have been calculated, they are normalized.
We then use probabilities to determine the next location for
the agent, if it moves at all. These calculations are performed
quickly, as the lookups for the surrounding cells can be
performed in constant time, allowing for realistic movement
among agents. Figure 3 shows a simplified version of our
movement on an example grid and Algorithm 2 describes
dispersed movement algorithmically (time-dependent on the
number of possible new locations).

Intelligent agents can be classified as simple reflex, model-
based reflex, goal-based reflex, utility-bases, or as learning
[26]. Based on the movement decisions described previously,
our agents could be classified as utility-based, but with a
stochastic-based utility functions and decisions. This classi-
fication fits our agents because they make decisions based
upon utility - they are more content in certain landscapes, and
their contentment is determined by their previous location and
current landscape. We next describe the simulation model we
have developed in more detail.

3. A SIMULATION MODEL OF PATHOGEN TRANSMISSION

We have created a model, named LiNK and further de-
scribed in Lane [22], to aid in the understanding of pathogen
transmission patterns. This model was designed to simulate
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Fig. 3. Macaque Movement. The graphic above shows how a macaqueM
determines where to move in a landscape consisting of forests (green) and
a river (blue). There are movement probabilities associated with landscape
features. For example, a macaque would be more likely to enter a forest than
a river. Here, we base movement on the immediate surrounding cells; however,
it can be based on an arbitrary number of cells in an outward direction.

Algorithm 2 DISPERSEDMOVEMENT

Let P be the probability a macaque moves to a given
location l
Let Lt+1 be the set of possible locations for the next
timestep
Let lt+1 be the new location
Let b1 be the directional bias
Let b2 be the landscape bias
for each timestept do

for all l ∈ Lt+1 do
l← b1 + b2

end for
lt+1 ←WEIGHTEDSELECTONADJUST(l ∈ Lt+1)

end for

the spread of infection amongst long-tailed macaques (Macaca
fascicularis, Figure 4) on the Indonesian island of Bali. We
have coupled detailed GIS data with a deep knowledge of the
macaque population to create a rich simulation.

3.1. Background

Several zoonotic diseases have recently emerged on the
Asian landscape; macaques have been implicated as both
hosts and reservoirs in these disease emergences in humans.
Increasing anthropogenic landscape changes have increased
the incidence of human to non-human primate interaction,
potentially leading to bi-directional pathogen transmission
events [7], [10], [22]. In our model, we evaluate how landscape
changes might influence pathogen transmission patterns, based
on the behavior and dispersal patterns of long-tailed macaques
across the island of Bali. We specifically aim to address the
following research questions:

Fig. 4. Female Macaque (Macaca fascicularis) and Infant. Photo courtesy
of A. Fuentes.

1) What are potential rates and routes of pathogen trans-
mission in macaques across the island?

2) How do pathogen life history parameters impact this
transmission?

3) Do the answers change with the inclusion of humans as
a component of the landscape?

Landscape plays a very important role in these questions,
necessitating the use of GIS data in our simulation. This article
does not attempt to answer these questions; rather, these are
the ultimate goals of the project that LiNK is designed to help
answer.

A unique system of temples has existed on Bali for cen-
turies; these temples and their associated forests act as refugia
for the large populations of long-tailed macaques [12]. Each
temple population consists of between 30 and 400 individuals.
Existing behavioral and preliminary genetic evidence has
documented the matrifocal society of the macaques, resulting
in strong female philopatry [11], [12], [22]. Females remain
at their birth temples and dominance is inherited maternally.
Typically, subdominant and subadult males disperse from their
natal temple (birth temple) around age seven, traveling to non-
natal temple populations. Currently, actual dispersal distances
and rates are unknown.

The ability of long-tailed macaques to coexist with humans
has enabled a number of macaque populations to thrive in
areas where other primate species have become extinct [12].
On Bali, human land-use patterns have resulted in a mosaic
of riparian forest, small forest patches, agricultural lands, and
urban areas across much of the island. The broad distribution
of macaque populations on Bali suggests that the macaques
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Fig. 5. Life cycle Transition Diagram. Macaques are always born in
temple sites. Female macaques spend their entire lives within their natal
temple. Mature male macaques disperse throughout the island through varying
landscape with the ability to join other, non-natal, temples.

are utilizing the human modified landscape as it currently
exists. Due to the protection and resource availability at tem-
ples, macaques are able to exist in moderately high densities
alongside high density human populations. This co-existence,
particularly surrounding the temples, has created an ideal study
setting for evaluating how primate behavior and anthropogenic
landscape changes influence pathogen transmission [10].

3.2. Conceptual Model

The conceptual model was developed by author Lane, with
support from authors Fuentes and Hollocher. This group has
closely studied macaques and an array of pathogens for a
number of years. The basic model consists of a display of Bali
with temple sites and macaques. We also display the contents
of a given temple and provide the user with multiple model and
pathogen parameter options. More detail on the components
of the model follow.

Agents:Our agents are macaques, each with their own prop-
erties, such as location, sex, age, natal temple, and infection
status. Macaques move in accordance to their surrounding
environment, and males have the ability to enter and leave
temples. Our model can support thousands of agents. We
show a simplified transition diagram for the life cycle of our
macaques in Figure 5.

Behavior:Macaques have the ability to move through their
environment, interact with other macaques, reproduce, and
die. Movement is dictated by their surrounding environment;
macaques query their neighborhood and move appropriately.
Macaques within a temple move randomly, with no GIS
influence. All macaques have the ability to carry pathogens

Fig. 6. LiNK Display. Here, we show Bali, Indonesia with all GIS landscape
layers enabled, including the 42 temple sites. Macaques are shown as circles
and temple sites as squares. Bali measures approximately 130km× 80km.

and can transmit pathogens when within a specified distance
of one another. Reproduction is handled by allowing female
macaques to produce offspring, with inherited traits, after they
reach a specified age. As macaques age, they have a higher
probability of dying.

Interface: Researchers interact with the model through a
simple control panel that allows them to tweak simulation
parameters. Once the parameters are set, the user can begin
running the simulation. The simulation is displayed via Open-
Map, shown in Figure 6. Users can also see within temples.

Pathogens:LiNK has the ability to simulate a wide array
of pathogens through the incorporation of several important
pathogen parameters. Theinfectivity parameter refers to how
infectious the pathogen being modeled is, whilevirulence is
the proximity a macaque must be to another macaque to have
the ability to transmit a pathogen.Latency represents how
long a macaque takes to become symptomatic after becoming
infected. Acquired immunityrefers to the amount of time a
macaque is immune to contracting a pathogen after having
been previously infected.Clearance timeis the amount of
time a macaque takes to be cleared of a pathogen. Finally,
natural resistancerepresents the proportion of macaques that
are immune to a given pathogen. Selected pathogen-related
variables and their temporal relationships are shown in Fig-
ure 7. A transition diagram for these variables is shown in
Figure 8. Currently, LiNK has the ability to model one unique
pathogen during a given simulation run.

Space:The macaques move about on 2D grids that represent
temples sites and the island. The island grids are extrapolated
from GIS data, at a customized granularity. For our purposes, a
grid cell has sides of roughly 100m, leading to over one million
possible locations. Each grid is called a layer; we have a total
of eight layers: cities, forests, lakes, rice fields, rivers, roads,
temples, and the actual island (called coast). These eight layers
are melded together and use the same coordinate system. The
coast and temple layers are required, while the rest can be
turned on or off.
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Fig. 7. Temporal Relationship of Pathogen Parameters and Related Events.
The diagram above shows the relationship of the pathogen parameters in
our simulation. Depending on the parameters used, macaques can become
permanently immune to the modeled pathogen.

Fig. 8. Pathogen Transition Diagram. Macaques generally begin assus-
ceptible and then transition to other states after being infected. Macaques
with a symptomatic infection can become reinfected and macaques can
reinfect themselves (autoinfection). An acquired immunity is gained after most
infections, but may be lost after a given amount of time.

Time: One timestep in our simulation correlates to 12 real-
world hours. Coupling this with 100m grid cells, we obtain
the desired accuracy.

3.3. Implementation

There are several tools and technologies that made this
study possible. The model is coded in Java with the Repast
simulation toolkit [24]. We utilize Repast and OpenMap [23]
to display the model and GeoTools [13] and JTS Topology
Suite [17] to interact with the spatial information. The choice
of tools used in this study was primarily driven by the
necessity to process and visualize GIS data and to be cross-
platform and open-source.

3.4. Verification and Validation

Simulations are useful only once they have passed some
form of verification and validation. Verification refers to
solving the model right, meaning that the simulation model
matches the abstract model. Validation refers to solving the
problem right, meaning the correct abstract model was chosen.
ABMs must undergo and pass several subjective and quanti-
tative verification and validation techniques to be considered
valuable models [2], [3], [21], [28]. Figure 9 shows common
techniques for ABMs, adapted from Kennedy, et al. [19].

Fig. 9. Verification and Validation Techniques. Here, we show techniques
we used and plan to use for the verification and validation of LiNK.

The LiNK model was developed in conjunction with domain
experts from multiple fields and has undergone extensive
face validation, both through its display and evaluation of its
output. We have also checked for internal validity and traced
entities of the model. Much of this work has been performed
through the use of LiNKStat, which we next describe. We are
currently collecting more real-world data that we will use in
conjunction with the current data to continue docking LiNK.
LiNK’s predictive power has also been considered, and we are
planning real-world experiments to evaluate this.

3.5. LiNKStat

LiNK is a complex model; as such, it creates enormous
amounts of output. To glean scientific insight and validation,
LiNK tracks of a wide array of events, including infections,
births, deaths, and when a macaque enters or leaves a temple.
When simulations are run over a long period of time, it is
not uncommon to have tens of millions of events, or more.
We have created an interactive graphical tool, LiNKStat, to
analyze output from LiNK. LiNKStat parses through output
files and builds graphs to gather statistics about the model. For
example, LiNKStat allows users to track the route of infection
from a given macaque, obtaining statistics such as number of
macaques directly or indirectly infected. Such statistics help
subject matter experts collect insight from LiNK. A screen
capture of LiNKStat is shown in Figure 10 and an example
graph from its output is shown in Figure 11. LiNKStat is
efficient, with a runtime mainly dependent on the number of
infection events and their degree of proliferation.

3.6. Performance

The model has utilized the aforementioned techniques to
interact with GIS data. We started with hefty raster-based
queries and refined our method until we achieved the balance
of specificity and speed we desired. Table I shows the initial
GUI load time for the model for each technique, and Table II
and Figure 12 show the number of timesteps simulated per
second for each query mechanism. These tables and figure
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Fig. 10. LiNKStat. This screen capture shows one of the analysis tabs
of LiNKStat. The left column displays an interactive list of macaques in the
simulation that updates the middle right panel with specific infection statistics.
These statistics form graphs, an example of which is shown in Figure 11.
LiNKStat has been and will continue to be very helpful in the verification
and validation of LiNK.

show averages with either the coast and lakes or the coast,
lakes, and forests layers enabled, all with the same number
of initial agents. Spatial queries were predictably slowest, as
the raw vector files contain an enormous amount of realism,
making calculations expensive. Utilizing raster data offers a
significant improvement but with the drawback of the long ini-
tial startup time. Our simplified spatial query greatly improves
upon the traditional spatial query, but performance drops
significantly as more layers are added. Utilizing precalculated
query matrices produces the fastest simulation, with even
greater gains when the display is disabled. Table III and its
corresponding Figure 13 show the scalability, in terms of
number of agents, for the raster and precalculated query matrix
method. The precalculated query matrix method scales very
well as the amount of GIS data increases and adequately as
the number of agents increases. The precalculated query matrix
method offers the best, scalable results. All performance tests
were run on a single core as a single thread on a Core 2 Duo
2.0 GHz laptop, highlighting further potential in scalability.
Numbers listed in the figures are averages of 10 simulation

TABLE I
PERFORMANCECOMPARISON

GUI Load Time (s)

Coast, Lakes Coast, Lakes, Forests

Spatial Query 3.5 3.5
Raster Query 35 42
Simplified Spatial Query 1.8 2.5
Precalculated Query Matrix 1.6 2

TABLE II
PERFORMANCECOMPARISON

Timesteps/sec

Coast, Lakes Coast, Lakes, Forests

Spatial Query 1.6 0.15
Raster Query 18.5 (11x faster) 19 (126x)
Simplified Spatial Query 39.5 (25x) 15.8 (105x)
Precalculated Query Matrix 126.2 (79x) 124.1 (827x)
Precalculated Query Matrix,

non-GUI 669.6 (419x) 650.2 (4335x)

runs. Additionally, LiNK has been ported to run on a high-
performance computing cluster, making it easy to automate,
greatly increasing its utility.

3.7. Results

LiNK has demonstrated the importance of landscape in
the scope of epidemiological modeling [22]. The model has
been improved in terms of speed and scalability through an
abstraction of typical GIS data representation. We have shown
the ability to have many agents interact with complex spatial
data in a time frame adequate for a simulation. Additionally,
we have begun to show the impact of landscape on pathogen
transmission, which is thus far in accordance with real-world
data from Roberts and Janovy [25]. Further sensitivity analysis
and more verification and validation needs to be performed.

4. DISCUSSION

When designing an ABM with GIS aware agents, there are
a number of factors that should be considered. Scalability
in terms of the number of agents is probably the most
important factor to consider. Other important issues include
the complexity of the GIS data and the amount of GIS data
that the model will rely upon. An adept modeler will utilize the
GIS data at a granularity appropriate for the model at hand. In

TABLE III
SCALABILITY COMPARISON

Timesteps/s

Number of Initial Dispersed Macaques 10 100 1000

Raster Query (3 Layers) 51.3 29 19.9
Raster Query (7 Layers) 33.6 27.6 11
Precalculated Query Matrix (3 Layers) 140.7 131.4 83.8
Precalculated Query Matrix (3 Layers) 137.5 129.5 82.9
Precalculated Query Matrix,

non-GUI (3 Layers) 669.8 487.8 154
Precalculated Query Matrix,

non-GUI (7 Layers) 680.4 529.6 158.2
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terms of speed, raster data scales reasonably with increasing
GIS complexity, but not as well with an increase in the number
of agents. Spatial queries scale poorly with an increase in the
amount of GIS data and complexity, as well as with an increase
in the number of agents. Regarding accuracy, utilizing vector
data via spatial queries offers the highest accuracy, but at the
highest performance cost. Raster data and our precalculated
query matrix method offer varying levels of accuracy, while
offering faster speed. Table IV summarizes general ratings
for each approach. Possible ratings are 1-5, fromPoor to
Excellent. Accuracy of GIS data refers to the faithfulness to the
original GIS data, while the amount of GIS data refers to the
ability of each technique to handle multiple layers of GIS data.
The remaining metrics are self-explanatory. Our precalculated
query matrix method scales best in terms of number of agents
and particularly in the amount of GIS data present.

5. CONCLUSION

We have presented a complex model of pathogen trans-
mission that utilizes GIS data. This model has begun to
demonstrate the importance of integrating spatial data into
models of pathogen transmission. We have created an efficient
and effective mechanism to allow our agents to become GIS
aware. Future extensions to the model include adding the
ability to model different pathogens simultaneously, deploying
a web-based front end to the model, and allowing for the use
of custom GIS data. We would also like to explore running
our simulation on graphics processing units, as described in
D’Souza, et al. [9]. Finally, we plan to further verify and
validate the LiNK model through real-world data.
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Fig. 11. LiNKStat Pathogen Transmission Graph. The graph above allows us to visually track pathogen transmission, helping with validation and interpretation
of output. Nodes refer to macaques, with the naming convention being natal temple number concatenated with an id concatenated with a sex identifier. For
example, the topmost node would be parsed as a female macaque with temple 27 as its natal temple and 2969 as its id. Transitions are infection events, listed
with the timestep and location where the infection occurred. Starting at the top, macaque 27.2969.0, infected macaque 27.2775.0 at timestep 1, in temple 27.
Macaque 27.2775.0 went on to infect four other macaques, and was also reinfected by macaque 27.2870.1. Autoinfection is possible as indicated by nodes
27.2863.0 and 27.2805.1.

TABLE IV
ADVANTAGES AND DISADVANTAGES (1- POOR; 5- EXCELLENT)

Raster Spatial Simplified Precalculated
Query Query Spatial Query Query Matrix

Accuracy of GIS Data 3 5 4 4
Amount of GIS Data 3 1 2 5

Complexity of GIS Data 2 5 4 4
Load Time 1 4 4 5

Memory Requirement 2 4 4 5
Number of Agents 4 1 2 4

Timesteps/s 4 1 2 5
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Fig. 12. Performance comparison of varying query methods. The figure shows that we obtained nearly an order of magnitude in terms of speed in going
from spatial to raster to simplified spatial queries, and then almost another order of magnitude from raster to simplified spatial queries. Finally, disabling the
GUI offers nearly another order of magnitude improvement. It is also notable that enabling more layers in non-GUI mode adds almost no performance hit.
We show the figure above with a logarithmic scale.
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Fig. 13. Scalability with respect to initial number of dispersed macaques and amount of GIS data. Here, we show simulations starting with 10, 100, and
1000 dispersed macaques across different querying mechanisms. The precalculated query matrix method performs best in all cases, even better with 1000
agents than other methods with 10 agents. The figure is shown on a logarithmic scale.
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