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Abstract: Nowadays, services of computer network have 

experienced a dramatic increase. However, the availability of 

these brand-new services also increases the vulnerability to 

malwares. In fact, malwares have put a serious threat on 

networks and computers in it. Malware is a general topic which 

includes several types of programs such as Worm and Trojan. 

Besides, hackers have played a more important role in the 

spread of malwares. In this paper, two models of malwares and 

their spread will be simulated. To characterize the propagation 

dynamics of malwares, we propose two modelling schemes 

using a two-dimensional cellular automata in a new version 

CD++, which supports multiple ports and multiple state 

variables in a cell. The first model mainly focuses on a 

relatively static model of malware, while the second model 

introduces three characters to make simulations more dynamic 

and approximate to the real world. The effectiveness and 

rationality of the proposed models have been validated through 

a series of simulations. 
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I.  INTRODUCTION  

Nowadays, the use of personal computers and the computer 
network makes it possible that people from all over the world 
can communicate and share their information in seconds. 
However, this increasingly developed field also raises a 
significant worry in terms of security issues. Various malwares 
have been produced and spread on the Internet, which threatens 
the security of Internet and makes losses on Internet users. There 
is not a satisfactory definition of a computer virus because this 
notion has been overloaded with many definitions over the years 
[1]. However, typically a computer virus is a hidden and 
malicious program that infects a computer by copying itself to 
other programs or files. 

Among kinds of malwares, worm is a serious kind in recent 
years.  Worms are self-replicating computer viruses, which can 
propagate through computer networks without any human 
intervention. They have been rampant in the Internet for more 
than two decades. The dramatic developments of Internet and its 
services as well as the features of worm virus make hackers more 
appalled to write worms and use them to make illegal profit. 

Thus worms have threatened the network for years and are still 
challenging to Internet users and network administrators. 

Mathematical epidemiology has existed for over a hundred 
years. Epidemic modeling is used to imitate the spreading of 
infectious diseases for a given population, such as H1N1, SARS, 
and influenza [2]. Infected individuals spread the virus to 
healthy individuals that they contact with. Because worms are 
very similar to biological viruses in their self-replicating and 
spread behaviors, epidemiological models has been used to 
model the propagation of Internet worms over the past decades. 
The study of computer worms in general, and Internet worms in 
particular, is a very popular topic of research. 

In this paper, we use cellular automata as an efficient to 
characterize malware propagation. In fact, cellular automata can 
model the computation capability characterizing physical, 
biological or environmental complex phenomena, such as 
growth processes, reaction-diffusion systems, epidemic models, 
and the spread of forest fire. In our simulations, every cell in a 
two-dimensional plane is regarded as a computer in the network. 
Two different models will be proposed. The first model is a 
simplified modelling, which mainly focuses on the propagation 
of a worm that is brought to a LAN. The worm cannot get 
updated and it can be eliminated by every cell in the network 
initially. In this simple simulation, we just want to demonstrate 
how a worm can be modeled in cellular automata properly and 
how we can analysis the outcome of this simulation. By 
modifying and rewriting the model in a new version CD++ 
(lopez), we then implement the second modelling. The second 
modelling is complicated, which assigns different characters to 
each cell. The worm is now generated by an attacker in the 
network instead of being brought to. Moreover, worms can be 
updated by the attacker at random time interval. Another new 
character is introduced as policeman in the simulation. This 
simulation can be called a simulated network battle in the 
network, which may be more approximate to the real world and 
network in some cases. 

The remainder of this paper is structured as follows: In 
Section 2, we provide an overview of related work. In Section 3, 
we will present the initial modelling of worm. In Section 4, we 
will have a discussion on how to improve the modelling in new 
version CD++ (lopze). We present the new simulation in Section 



5, and analysis the outcome in Section 6.Finally, we draw a 
conclusion in section 7.  

II. RELATED WORK 

Since malwares have raised attentions largely in the world, 
many works have been done to simulate malwares and their 
different types of propagations in different network. A number 
of studies have demonstrated the threat of malware in the 
network. 

Among these related work, most epidemic models have 
focused almost entirely on the technology of the differential 
equations and the Markov chain. Although most previous work 
can provide some valuable insight into the characteristics and 
dynamics of worm propagation, the models based on differential 
equations fail to capture the local characteristics of spreading 
processes, nor do they include interaction behaviors among 
individuals. Furthermore, the models based on the Markov chain 
are difficult to describe the spatial–temporal process of worm 
propagation. 

In recent years, cellular automata have been used as an 
alternative to model epidemics as well as worm propagation in 
networks. Several papers have been published to demonstrate 
that cellular automata is a powerful tool to model this sort of 
issues. Some papers [1] [3] think that a cell representing 
computer in a network has three states, S (susceptible), which 
means computers are those that have not been infected by the 
computer virus; E (exposed), Exposed computers have been 
infected by the virus but it is non-activated; or I (Infected), 
infected computers are those that are infectious, and the virus is 
activated and it is able to propagate to another computer. In a 
modelling of worm propagation in smartphones [2], five states 
of cell are proposed. Susceptible state: nodes have not been 
infected by any worm in the network but are prone to infection. 
Exposed state: nodes have been infected by the worm but have 
not spread the worm to the susceptible smartphone while 
transmitting data or controlling the messages sent to the phones 
for the time being. Infectious state: nodes have been infected by 
worms in the network and they may infect some nodes in state 
S. Diagnosed state: nodes have been diagnosed to be infected by 
some kind of specific worm. Another paper “Simulation of 
Worm Viruses Spread in Network Based on Cellular Automata” 
[4] lists five states of a cell may belong to as “Susceptible”, 
“Questionable”, “Destroyed”, “Infected” and “Immune”.  

Though there may be different states in papers, some 
common states can be concluded as “susceptible”, “immune”, 
“and infected”. In our simplified simulation (first modelling), we 
propose a four-states model to show the spread of worm, which 
is composed by S (susceptible), Q (questionable), I (Infected), R 
(Recovered). Further details are provided later. And in our 
complicated simulation (second modelling),  each cell can have 
five different states as “unprotected”, which means the cell has 
a potential to be infected later; “Immune”, in which the cell has 
been loaded with anti-malware, “Isolated”, which means the cell 
has isolated itself from the network and “Eliminated” 
representing the attacker has been wiped out.                                     

Through simulations demonstrated later, it can be proved 
that this type of states is reasonable and similar to the real world. 

 

III. STATIC WORM MODELLING 

In this section, we propose a static worm modelling in Cell-
DEVS. The worm modelled here is assumed being brought to 
the LAN, and cannot get updated. Every cell in this network has 
the ability to check out it has been infected and can wipe out the 
malware by itself. We call it static worm because the worm 
cannot be updated in this simulation. Later, in the second 
modeling, we will propose a model in which worm or malware 
is generated in the network and gets updated constantly, which 
can be regarded as a dynamic modelling of malware and its 
propagation. 

In this simulation, we introduce several states and 
parameters to make it more realistic. However, parameters may 
depend on the functionality of a worm and the level of awareness 
of users. Even the pattern of communication in this LAN may 
play an important role in the process of spread. Thus, in this 
simulation, we do not expect to achieve a precise process of 
spread. Instead, we provide a framework that can adjust to 
different type of worms and LANs by setting different 
parameters. And in the following demonstration, several 
examples will be explained to show this idea. 

A. Cellular definitions 

The following is the formal definition for the CELL-DEVS 
model. 

Fig. 1. Cell-DEVS definition for the static worm modelling 

B. States and transitions 

To balance the accuracy and complexity, we will use a four-
state model to show the spread of worm, which is composed by 
S (susceptible), Q (questionable), I (Infected), R (Recovered). 

The four states and their descriptions are shown below: 

Table 1- States of cell. 

Values States Descriptions 
0 S(Susceptible) Not infected and 

immunized, may be 

infected in the future, 
or turn into 

questionable. 

-1 R(Recovered) Recovered from an 

infected state 
Computers will not 

be infected again. 

1 Q(Questionable) computer is 
questioned 

2 I(Infected) computer is infected 

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
X = Ø 

Y = Ø 

S = {-1, 0, 1, 2} 
N = { (-1, 0), (0, -1), (0, 1), (1, 0), (0,0), (-1, -1), (-1, 1), (1, 

-1), (1, 1),(-2, -2), (-2, -1), (-2, 0), (-2, 1), (-2, 2), (-1, -2), (-

1, 2), (0, -2), (0, 2), (1, -2), (1, 2), (2, -2), (2, -1), (2, 0), (2, 
1), (2, 2) } 

d = 100 ms 

δint: based on the rules explained later. 

 



   

Fig. 2. States transitions of cells. 

C.  Two kinds of neighbor 

To distinguish influences among different neighbors, we 
introduce two kinds of neighbor. The first sort is called “adjacent 
category” which is next to the central cell. Another one called 
“remote category” which is a little farther. In my model, the 
“adjacent category” includes cells of { (-1, 0), (0, -1), (0, 1), (1, 
0), (0,0), (-1, -1), (-1, 1), (1, -1), (1, 1) }, while the “remote 
category” includes { (-2, -2), (-2, -1), (-2, 0), (-2, 1), (-2, 2), (-1, 
-2), (-1, 2), (0, -2), (0, 2), (1, -2), (1, 2), (2, -2), (2, -1), (2, 0), (2, 
1), (2, 2) }. 

   

 

 

 

 

 

 

 

 

Fig. 3. Two kinds of neighbors. 

In this model, we consider a LAN containing 2500 
computers. These computers do not have access to outer network 
(e.g Internet). The worm is initially rooted in one or several 
computers, assuming that it is produced deliberately or brought 
in incautiously. Computers in this LAN have 24 contacts at most, 
which can be used to spread the worm. 16 of them are in “remote 
category”, while others are in “adjacent category”. Cells in 
“adjacent category” have more influences than ones in “remote 
category”. In this model, this feature is implemented by two 
macros “Inner_Factor” and “Outer_Factor”. 

D. Simulations 

 

Fig. 4.  Initial scene of simulation 

In this graph, red cell is in the state of infected, while yellow 
one is in state of susceptible and green one is in the state of 
recovered. Later, a blue cell indicates that the cell is in the state 
of questionable. Initially, we put one infected cell and three 
recovered cells which will not get infected in the whole process 
of simulation. 

         

Fig. 5. Intermediate scene 

 

Fig. 6. Final scene 

In the final scene, red cells are still in the state of infected. 
But because of the large number of recovered cells, it cannot 
spread the worm any more. The infected cells are then isolated 
to patches. The yellow cells are in the state of susceptible. 
Similarly, due to the block of recovered cells, it cannot be 

     

     

     

     

     



infected. The green cells which account most of the 2500 cells 
are recovered, and this decisively contributes to the end of 
spread. 

 

IV. IMPROVEMENTS  

A. New situation 

In the previous section, we have witnessed a static worm and 
its propagation in a network. The worm in that simulation is 
assumed been brought to the network. That means, it has no 
likelihood to get updated. And finally, as we expected, the 
propagation only experienced a short time and almost every cell 
in the network is secured at the end of the simulation. 

However, in a real world, situations may be more 
complicated. First, a malware cannot always be static as we 
assumed in last section. While hackers and worm writers pay 
more attentions to the network attack, malwares may be updated 
frequently to avoid being killed by anti-malwares.  Moreover, in 
recent years, an increasing number of malwares have features of 
both Trojan horses and Backdoor, which makes hackers or worm 
writers easier to update their worms. 

Therefore, in the second modelling, we update our model by 
making worms have ability to be updated. Correspondingly, 
cells now are not identical absolutely.  We assign cells with three 
roles, “attacker”, “civilian”, “policeman” to make this model 
more like to a real world.  Attacker is supposed to generate the 
malware and updates it at a random time interval; Civilian is 
average cell, which can be infected by malware or get immune 
by anti-malware. Policeman is supposed to respond to malware 
by producing anti-malware to fight against it. The anti-malware 
can also spread in the network cell by cell to wipe out the 
malware. The final scene may be in two situations. The first 
situation is that the malware and attacker are wiped out from this 
network, while in the second situation, malware is still rampant 
in the network. 

B. New requirements 

Based on the discussion, the modelling is getting more 
complicated, compared with the first simulation. Inevitably, the 
new model demands a more complex structure and definitions 
to implement. 

First, in the previous simulation, every cell can be seen as 
identical to each other. But in this new model, we assign cells 
with different roles. That means a cell should keep its identity in 
the entire simulation. Second, malwares are not static any more, 
which involves the information of version in this modelling. 
Finally, policeman can also update its anti-malware, which also 
requires extra structure to implement. 

In the standalone version CD++ which we used for the first 
modelling, it is hard to implement these new features. An 
alternative method is to transform the two-dimensional model to 
three-dimensional model, and use new layers to keep extra 
information and implement the adding functionality. To be 
honest, we have tried this method and found it is a limited 
alternative which is hard to design and modify. Fortunately, a 
new version CD++ that can satisfy these requirements fairly. 

C. New version CD++ (lopez) 

The Cell-DEVS formalism [5] extended the DEVS 
formalism allowing the simulation of discrete-event cellular 
models. CD++ [5] is a DEVS/Cell-DEVS modeling and 
simulation toolkit. It is a standalone version running on a local 
PC, which simulation results can be seen in 2D scenes using 
CD++. RISE (RESTful Interoperability Simulation 
Environment) [6] is a simulation middleware to support 
RESTful-CD++ web services for the remote simulation, which 
aims to support  interoperability and mash-ups  of  distributed  
simulations regardless of the model formalisms,  model 
languages or simulation engines [7]. 

In the second modelling and its simulation, we use a new 
version called “lopez”. This new version CD++ supports 
multiple ports and multiple state variables, which is powerful to 
simulate a complicated modelling. The details of 
implementation is going to be provided in the later sections. 

 

V. MODELLING DEFINITIONS AND TESTS 

In this section, we will model the complicated and advanced 
simulation by each functionality. And tests attaching to them 
will be implemented and analyzed to make sure it works 
properly. 

A. Attacker generates malware and update it 

In this section, the process of generating and updating 
malwares will be described. And the scene in a new version 
CD++ will be shown as well. 

The role who generates malwares and updating them is 
attacker. The aim of attacker is to make malwares and spread 
them to other computers who have not anti-virus software or just 
have an obsolete version of anti-virus software that cannot check 
the malwares out and kill them. The attacker can then control 
these infected computers to do what he wants. 

The time interval of updating malwares is not fixed. In this 
case, we introduce a timer which randomly increases its value 
every 100ms. When the value of timer exceeds a fixed number, 
then a new malware will be generated and the timer is set to be 
0 and counts again. 

Besides the timer, we need to introduce another variable to 
keep and update the version number of the current malware. 
When a new malware is generated, the version number is added 
by two. A port will output the new version number of the 
variable.  

With powerful multiple input and output ports and multiple 
state variables of the new version of CD++, we can properly 
implement the process of generating malwares. Based on the 
description of attacker and its behaviors, we can introduce 
several ports and state variables to implement it. The attacker is 
a cell in a 2-D plate. To distinguish it from other cells, we 
introduce a state variable “$identity” to represent it identity of 
being an attacker. And it also requires a port to output the current 
version of malware to inform other cells. We then introduce a 
port called “~virusvers” to implement this feature. Besides, it 
also need a state variable to record the current version of 
malware. Thus a state variable called “$virusvers” is introduced 



to realize it. The cell of attacker also requires a state variable as 
a timer to implement a random time interval between issuing 
malwares and the state variable “$timer” is to be used in this case.  

The rule for generating and updating malwares is shown as 
below: 

As you can see, the attacker’s identity is marked as 100 and 
it updates the malware among every 1000ms to 1500ms. Every 
update will make the version number increase 2 to a new value. 

There may be a doubt that why not we use a random delay 
time in rules instead of an introduction of state variable timer. 
This is because in the entirely completed simulation we design 
that the attacker will be eliminated finally by anti-virus software. 
If we use a random delay time here, the attacker may “revive” 
even it has been eliminated. This phenomenon is due to the 
mechanism of DEVS. Therefore, we use a fixed delay and 
implement a random function by using a timer. 

The graph below shows the simulation scene of generating 
and updating malwares. 

 

Fig. 7. Scene of cells at 00:00:00:00 

This graph shows that at the very beginning, there is no 
malware among these cells. But an attacker has been put among 
these cells. We will witness its generating and updating 
malwares in following graphs. 

 

Fig. 8. Scene of cells at 00:00:01:50 

This graph shows that at the 1500ms from the beginning of 
simulation, the attacker begins to generate malwares. The 
current version number is 6 and marked blue. 

 

Fig. 9. Scene of cells at 00:00:02:90 

This graph shows that at the 2900ms from the beginning of 
simulation, the attacker updates the malware. The current 
version number is 8 and marked green. 

 

Fig. 10. Scene of cells at 00:00:04:10 

This graph shows that at the 4100ms from the beginning of 
simulation, the attacker updates the malware. The current 
version number is 10 and marked yellow. 

From the graphs shown above, we witness the process of 
generating and updating the malware. The version of malware 
is increasing during a random time interval. Notice that the 
value of 6 lasts 1400ms, while the value of 8 lasts 1200ms.  

In this section, the function of generating and updating 
malware by attacker is proved correct. In next section, the 
process of malware spread will be demonstrated.  

B. Spread of malware 

In last section, we introduced the process of generating and 
updating malware by the attacker in a network. The goal of 
attacker is to spread it as widely as possible. Then it can intrude 
and even control these infected computer.  

This process can be divided to two stages. In the first stage, 
an unprotected cell is infected by the malware. Then its state 
changes from “unprotected” to “infected”. In the second stage, 
a new version malware with higher value of “$virusvers” will 

rule : { ~virusvers := $virusvers ; } { $timer := $timer + 
uniform(4, 6) ; } 100 { $identity = 100 and $timer < 60 } 

rule : { ~virusvers := $virusvers ;} { $timer := 0 ; 

$virusvers := $virusvers + 2 ;} 100 { $identity = 100 and 
$timer > 60 } 



replace the current version of malware in the cell. The state of 
cell is still “infected”, but the cell has been infected again by an 
advanced malware with higher version value. 

Here we assume that every cell can be affected by at most 8 
cells directly in the simulation. That means a cell has 8 
neighbors. An infection or malware update in a cell will notice 
its 8 neighbor cells. Neighbors then checks if the version of 
malware is higher than their current versions. If so, then 
neighbors are also infected or update their version of malware 
to make it as same as the cell which informs them.  

These features in spread of a malware require several ports 
and state variables. First, we need the state variable “$identity” 
to declare cells as average computers in network, which means 
that these computers are not attacker or police and they can be 
infected. Besides, these cells also need a port to inform other 
cells their new version of malware. Therefore a port called 
“~virusvers” is introduced here as well as a state variable 
“$virusvers” which is used to record the current version number 
of the cell. Finally, a port called “~state” is introduced to output 
the state of cell to its neighbors. 

Rules for the spread of malware are shown as below: 

Here we use a macro “virusspreading” to find out the 
highest version number among a cell’s 8 neighbors. The macro 
is defined as below: 

A simulation of spread of malware is implemented. And the 
scenes are shown in the following graphs. 

 

Fig. 11. scene of cells at 00:00:00:15 

This figure shows that at the beginning, the attacker 
generates a malware. But it has not spread yet. The blue cell 
represents the attacker and white cells represent unprotected 
computers without infection. 

 

Fig. 12. scene of cells at 00:00:00:50 

This scene shows that at the 500ms from the beginning of 
simulation, the malware has spread to cells near the attacker. 
The infected cells are marked blue indicating the current virus 
version is 4. 

 

Fig. 13. scene of cells at 00:00:03:40 

This scene shows that at the 3400ms from the beginning of 
simulation, almost every cell in network has been infected. 
Moreover, that attacker also has updated its malware and spread 
it. The infected cells with a new version of malware are marked 
green whereas the cells with an old version are marked as blue. 

 

Fig. 14. scene of cells at 00:00:04:40 

This scene shows that at the 4400ms from the beginning of 
simulation, there are three versions of malware in the network. 
The nearer the cells from the attacker, the newer version of 

rule : { ~virusvers := #Macro(virusspreading) ; ~state := -

1 ; } { $virusvers := #Macro(virusspreading) ; } 100 

{ #Macro(virusspreading) > $virusvers and $identity = 0 } 

max( max( max((0,-1)~virusvers,(-

1,0)~virusvers),max((1,1)~virusvers,(0,1)~virusvers)),max(

 max((1,0)~virusvers,(1,-1)~virusvers),max((-
1,1)~virusvers,(-1,-1)~virusvers))) 



malware is harbored. It indicates that the new version of 
malware can replace the old one and then spread again. 

These four graphs depict the scenes of spread of malware. 
However, in these cases, unprotected cells are infected 
unconditionally. The realm of infected cells shown in these 
graph are always square, which reflects this feature. It may not 
be realistic if we want to make the simulation approximate to a 
real case. 

In an advanced rule of spread, we take a factor of possibility 
into account. Cells are not infected unconditionally. Instead, it 
has a possibility to be infected. The advanced rule is: 

The scenes of running this advanced rule are shown below: 

 

Fig. 15. scene of cells at 00:00:00:30 

 

Fig. 16. scene of cells at 00:00:03:20 

 

Fig. 17. scene of cells at 00:00:04:40 

These graphs show that the realm of infected cells shown in 
these graph are not square any more, which indicates that a cell 
has a possibility to be infected by its neighbors instead of being 
infected unconditionally. It is more similar to the real network. 

In the later section, we will also assign different weigh to a 
cell’s eight neighbors. The possibility of a cell to be infected is 
also depending on the distance from the infected neighbor. This 
will add more reality to the simulation. We will give the details 
in the later sections. 

C. The producing of anti-malware software 

In this section, we will talk about the process of producing 
of anti-malware software and simulate it in the new version 
CD++. 

In the simulation of a network, we also put several 
policemen in the cells. The policemen cells have a technique 
that exempts them of being infected by malware. That means 
the policemen are always isolated from the cells of being 
infected.  

But the police forces are not ignoring what is happening in 
the network. Actually, they will monitor their eight neighbors 
and check out if they are infected. An infected neighbor will 
stimulate the police cells to produce an anti-malware software 
against the current version of malware. The anti-malware 
software also has a number to indicate its current version. 
Moreover, the version number of an anti-malware software is 
always higher than the version of malware it can eliminate. For 
example, a malware with a version number of 8 may incent the 
police forces to produce an anti-malware with a version number 
of 9, and then it may be eliminated by this anti-malware.  

It is should be admitted that the action of policemen is 
always later than the counterpart of attacker. That means a 
policeman in the network cannot produce an anti-malware 
software that can eliminate the malware that is going to be 
generated by the attacker. Thus, the police forces should 
respond to a new version of malware rapidly and positively. In 
this simulation, the police forces generate the anti-malware 
software unconditionally when they encounter a new version of 
malware.  

Another situation may also happen. What if a policeman 
encounter a malware which has a lower version number 
compared with the newest anti-malware software’s. Here, the 

rule : { ~virusvers := #Macro(virusspreading) ; ~state := -

1 ; } { $virusvers := #Macro(virusspreading) ; } 100 
{ #Macro(virusspreading) > $virusvers and 

#Macro(virusspreading) > $anvirusvers and $identity = 0 

and random <  ( #Macro(vPossibility_Of_Spreading)) } 



policeman will ignore this situation because an anti-malware 
software has been deployed to eliminate this malware in the 
network. 

Based on the discussion we made above, some ports and 
state variables are demanded to implement the function of 
producing and updating anti-malware software. First, a 
policeman should output the current version number of anti-
malware to its neighbor. That is required in the spread of anti-
malware software, whose process will be talked about in the 
later section. Thus a new port called “~anvirusvers” is 
introduced to implement this feature. Also, a state variable 
“$anvirusvers” is used to record the current version number of 
anti-malware software. Besides, the police forces also need an 
identity marker to exempt them from being infected. The state 
variable “$identity” is used again to indicate the police cells. By 
the way, a port called “~state” is added to inform the neighbors 
of policeman that here is a policeman. 

The rule of producing and updating new version of anti-
malware software is shown as below: 

In this rule, every time the policeman encounters a new 
version malware, it updates the anti-malware software. The new 
version number of anti-malware software is the version number 
of malware plus 1. This ensures that the malware can be wiped 
out by the anti-malware software. 

Several scenes below demonstrate the process of producing 
anti-malware and updating it. 

The following graphs show the process of two policemen in 
the network producing anti-malware and updating it according 
to a new version of malware. This time, we need combine 
graphs of spread of malware and graphs of policeman 
producing anti-malware together to get a story about what 
happens.  

 

 

Fig. 18. Versions of malware and anti-malware at 00:00:00:60 

This figure depicts the scene at 600ms from the beginning 
of simulation. In the upper graph, it can be seen that the 
malware has begun to spread. Several cells have been infected. 
But in the lower graph, a fact can be drawn that the policeman 
has not responded to the malware and its spread yet. 

 

 

Fig. 19. Versions of malware and anti-malware at 00:00:02:40 

This figure depicts the scene at 2400ms from the beginning 
of simulation. In the upper graph, it can be seen that the 
malware has updated its version number to 6. And in the lower 
graph, a fact that the policeman marked yellow has also 
detected this malware and updated its version of anti-malware 
to 7 to fight against the malware. 

The rule of producing and updating new version of anti-

malware software is shown as below: 

rule : { ~anvirusvers := #Macro(virusspreading) + 1 ; 
~virusvers := 0 ; ~state := 2 ; } { $virusvers := 0 ; 

$anvirusvers := #Macro(virusspreading) + 1 ; } 100 

{ ( #Macro(virusspreading) > $anvirusvers or 
#Macro(anvirusspreading) > $anvirusvers ) and $identity = 

200 } 



 

 

Fig. 20. versions of malware and anti-malware at 00:00:04:90 

 

 

Fig. 21. versions of malware and anti-malware at 00:00:09:20 

These graph shows the process of policemen producing and 
generating the version of anti-malware software to fight against 
the malware in the network. The functionality has been proved 
correct through a bunch of simulation in the new version CD++. 

Only generating and updating the anti-malware cannot 
secure the network and eventually eliminate the attacker. We 
will talk about the spread of anti-malware software in the next 
section.f malware and anti-malware at 00:00:09:20 

D. Spread of anti-malware in the network. 

In this section, the process of spread of anti-malware in the 
network will be described. 

Last section has disclosed the mechanism of producing and 
updating anti-malware software by a policeman in the network. 
As we said early, only producing and updating anti-malware 
cannot secure the network and eliminate the attacker finally. A 
policeman needs to spread its anti-malware software to its 
neighbors and eventually the whole networks to fight against 
the malware made by attacker. 

Typical anti-malware software cannot spread in the network 
automatically. Therefore, compared with the spread of malware, 
the spread of anti-malware software is more passive, which 
leads to a poor efficiency to fight against the malware in the 
network. 

Take this feature into account, we decide to design a pattern 
of anti-malware which can also spread from one computer to 
others automatically. This process is similar to the process of 
spread of malware. In other words, anti-malware now is 
regarded as a “malware” as well in terms of spread. The 
difference between anti-malware and malware is that the anti-
malware will not do harm to the computer, and it will wipe out 
the malware in the computer if it has a higher version number. 

As depicted in the previous section, the producing and 
updating anti-malware is triggered by intrusion happened in a 
neighbor cell of the policeman. After generating a 
corresponding anti-malware software, from the cell of 
policeman, this anti-malware begins to spread neighbor by 
neighbor. In this course, three situations may happen. The first 
situation is that the cell has a malware in it, but the version of 
malware is lower than the advancing anti-malware. Then the 
malware will be wiped out and the anti-malware is loaded. In 
the second situation, the cell has a malware with a higher 
version number compared with the advancing anti-malware. In 
this case, the anti-malware is unable to eliminate the malware 
in this cell because it is obsolete. In the final situation, the cell 
is already secured by having a previous version of anti-malware. 
The new anti-malware with a higher version number will 
replace the obsolete version of anti-malware, otherwise, the cell 
keeps its current anti-malware. This situation can be regarded 
as an update of anti-malware in cells. 

Based on the discussion above, we can find that the spread 
of anti-malware is also triggered by the spread of malware. We 
need take the process of spread of malware into simulation of 
anti-malware as well. 

Before we get into the simulation, we should figure out the 
required ports and state variables to implement the spread of 
anti-malware. Here, a cell needs a port “$anvirusvers” to output 



the current version number of the anti-malware software the cell 
owns. Besides, a state variable “$anvirusvers” is demanded to 
record the current version number of anti-malware. A port 
called “state” is used to output value of 2 when the cell is loaded 
with the new anti-malware. Finally, a state variable “$indentity” 
is used to mark the cell as a “civilian” which can be infected by 
both malware and anti-malware. The rule of spread of anti-
malware is as below: 

The macro “anvirusspreading” is introduced to find the 
newest version of anti-malware in a cell’s 8 neighbors. The anti-
malware will get updated when the version number of anti-
malware in the cell’s neighbors are higher than the cell’s current 
version number of anti-malware, or the cell is infected and the 
coming anti-malware has a higher version number than the 
malware, which means the anti-malware is able to defeat the 
malware. 

After being loaded the new version of anti-malware, the cell 
will output the current version number of its anti-malware as 
well as a value of “2” to indicate that it has been immune 
without any malware in it. 

The graphs below show the simulation of spread of anti-
malware. Notice that in spreads of both malware and anti-
malware, the cell will output “-1” or “2” to indicate that it has 
been infected or loaded with anti-malware. Thus, in this 
simulation outcome, we just look at the value of port “~state” 
and ignore the concrete version numbers. 

 

Fig. 22. states of cells at 00:00:00:80 

This graph depicts the spread of malware and the producing 
of anti-malware at 800ms from the beginning of this simulation. 
The cells marked red are infected and the blue one is the 
policeman in the network who has produced an anti-malware 
and is ready to spread it. 

 

Fig. 23. states of cells at 00:00:01:00 

This graph depicts the spread of malware and the spread of 
anti-malware at 1000ms from the beginning of this simulation. 
The anti-malware has occupied some cells which were 
unprotected or infected before. However, the malware is still 
spreading in other directions. 

 

Fig. 24. Figure states of cells at 00:00:01:60 

This graph depicts the battle between malware and anti-
malware at 1600ms from the beginning of this simulation. The 
new version of malware is retaking cells which were occupied 
by previous anti-malware. The policeman may capture the new 
version of malware and be producing a new version of anti-
malware. 

 
Fig. 25. Figure states of cells at 00:00:06:70 

rule:{~anvirusvers:=#Macro(anvirusspreading);~virusvers:
=0;~state:=2;} 

{$anvirusvers:=#Macro(anvirusspreading);$virusvers:=0;} 
100 {#Macro(anvirusspreading)>$anvirusvers and 

#Macro(anvirusspreading)>$virusvers and  $identity =0} 



This graph depicts the battle between malware and anti-
malware at 6700ms from the beginning of this simulation. The 
battle is still ongoing. Both malware and anti-malware take half 
of the whole cells in the network. The battle may last and finish 
at the moment the attacker is being wiped out, or has no ending 
because of the frequent update of malware made by attacker. 

In this section, the spread of anti-malware has been proved 
correct in this simulation. At this time, most important 
functionalities in this simulation have been introduced and 
verified. 

E. Improvements in spread of malware and anti-malware. 

In this section, we will make some modifications and 
improvements to the rule of spread of malware and anti-
malware. 

In reality, effects that neighbors put on a cell may not be 
identical. For example, a computer may frequently interact with 
some computers, but only has little interaction with others. Thus, 
the possibilities of being infected through different neighbors 
are different as well.  

In this simulation, we divide the 8 neighbors of a cell to two 
different group. The first group has a fewer weigh while the 
second one has more weigh when interacting with the central 
cell. The neighbors (1,-1), (-1,1), (1,1), (-1,-1) are in the “lighter” 
group, which have weak effects on the cell (0,0). Other 
neighbors (1,0), (-1,0), (0,-1), (0,1) are in the “heavier” group, 
which have strong effects on the cell (0,0). This setting 
represents the reality we discussed above. We assign one 
weight to the “lighter” neighbors, and assign three weights to 
the “heavier” neighbors. This assignments are set in the macros 
“vFactor_Outer” and “vFactor_Inner”.  

Another improvement involves states of a cell. In the 
discussion above, average cell ($identity=0) only has three 
states, “unprotected”, “infected” and “immune”. However, 
some computers’ owners may have a high vigilance. When they 
find some neighbors have been infected, they may isolate their 
computer from the network for a while to prevent potential 
infection. In this course, the cell changes its identity from 
civilian ($identity = 0) to “hermit” ($identity = 150). And it 
cannot be exploited to spread the malware and anti-malware. 
We assign an output at port “~state” with the value of 3 to 
indicate a cell is isolating itself from the network. The rule is 
shown as below: 

By this rule, when a cell finds that more than one of its 
neighbors have been infected, it will have a possibility (0.6) to 
isolate itself from the network by changing its identity value to 
150. Besides, “hermit” can also return to the state of 
“unprotected”. This reflects the possible scene that a computer 
owner reconnects his computer to the network after considering 
the network may be safe even he had isolated it before. The rule 
is designed as below: 

 

By this rule, when a cell finds that more than one of its 
neighbors have been infected, it will have a possibility (0.6) to 

isolate itself from the network by changing its identity value to 
150. Besides, “hermit” can also return to the state of 
“unprotected”. This reflects the possible scene that a computer 
owner reconnects his computer to the network after considering 
the network may be safe even he had isolated it before. The rule 
is designed as below: 

 

This scene happens in a low possibility (0.2). And if it 
happens, the cell changes its value of “$identity” from 150 to 0, 
indicating that now it is unprotected and may be infected in the 
future. 

In the improvements and modifications we did above, 
possibilities are introduced to make this simulation more 
realistic and more flexible. If we want to change the model 
slightly, we may only need to adjust the possibility in rules, 
which is easy and direct. 

F. Cell-DEVS model 

By now, we have completed the modelling and simulations 
of every functionality. And we will do a series of simulations 
with different parameters in next section. Before simulations, 
we summarize the modelling by listing its parameters and states 
in DEVS form. 

States(~state) values descriptions 

unprotected 0 or 1 Cell can be 

infected 

Immune 2 Cell has been 

loaded with anti-

malware 

Infected -1 Cell has been 

infected. 

Isolated 3 Cell has isolated 

itself from the 

network 

Eliminated 9 Mark the 

attacker who has 

been wiped out 

Table 2- States of cell. 

rule : { ~state := 3 ; } { $identity := 150 ; } 100 
{ ( #Macro(vFactor_Outer)/2 + 

#Macro(vFactor_Inner) ) > 2 and (0, 0)~state != -1 

and (0, 0)~state != 2 and random < 0.6} 

rule : { ~state := 1 ; ~anvirusvers := 0 ; ~virusvers := 

0 ; } { $identity := 0 ; $anvirusvers := 0 ; } 100 { (0, 
0)~state = 3 and random < 0.2 } 



 

Fig. 26. State transitions 

Ports values descriptions 

~virusvers 2,4,6,8…(even) Output the 

current version of 

malware 

~anvirusvers 3,5,7,9…(odd) Output the 

current version of 

anti-malware 

~state 0,1,2,-1,9 Describe the state 

of cells 

Table 3- Multiple ports of a cell. 

Variables values descriptions 
$virusvers 2,4,6,8…(even) Keep the current 

version of malware 

$anvirusvers 3,5,7,9…(odd) Keep the current 

version of anti-

malware 

$identity 0, 100, 200,150 Represents the 

identity of cell 

$timer Less than 60 Generate random 

time intervals 

Table 4- Multiple state variables of a cell. 

VI. SIMULATIONS 

We then do a series of simulations in different parameter 
settings. These simulations have different scenes which are 
interesting and meaningful, and they comply with different 
occasions in the real world. 

A. Crazy attacker 

In this scene, the attacker in the network updates his 
malware frequently. This makes policeman in the network has 
to update his anti-malware frequently as well and has little 
chance to wipe out the attacker finally. 

We can make the timer faster to satisfy this setting. The 
timer adds a larger number every 100ms and it makes the value 
of timer easier to exceed the threshold 60, which triggers an 
update of malware. 

The scenes of simulation are shown as below: 

 

Fig. 27. state scene of cells at 00:00:01:70 

At this time, the policeman detects there is a malware in his 
neighbors, and produces an anti-malware to fight against the 
malware. 

 

Fig. 28. state scene of cells at 00:00:02:10 

After 2100ms from the beginning of simulation, the 
malware spreads fast and the anti-malware can only secure a 
small part of computers in the upper-left corner of this scene. 

 

Fig. 29. state scene of cells at 00:00:04:00 

After 4000ms from the beginning of simulation, every cell 
in the network has been involved to this battle. But the malware 
still controls most of the cells. 
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Fig. 30. state scene of cells at 00:00:18:00 

This is the final scene of this simulation. The malware still 
controls most cells in the network. The policeman has no 
chance to eliminate the attacker because of the frequent update 
of malware. 

This simulation demonstrates that a crazy attacker who 
frequently updates its malware may make the battle between 
attacker and policeman last for a long time and even there is no 
victory for policeman. 

B. Lazy attacker 

In this scene, the attacker in the network updates his 
malware infrequently. This makes policeman and his anti-
malware wipe out the attacker eventually before it updates its 
malware. 

We can make the timer slower to satisfy this setting. The 
timer adds a little number every 100ms. 

The scenes of simulation are shown as below: 

 

Fig. 31. state scene of cells at 00:00:01:00 

 

Fig. 32. state scene of cells at 00:00:01:30 

At the 1300ms from the beginning of simulation, the anti-
malware has strongly spread in the network, compared with the 
previous case of “crazy attacker”. 

 

Fig. 33. state scene of cells at 00:00:01:50 

At the 1500ms from the beginning of simulation, the anti-
malware successfully wipes out the attacker before it updates a 
new version of malware. 

 

Fig. 34. state scene of cells at 00:00:03:30 

At the 3300ms from the beginning of simulation, the anti-
malware successfully secures or protects all the cells in the 
network from malware. It is an amazing moment that the 
malware is eliminated completely.  

This simulation shows the fact that if attacker updates its 
malware infrequently, the policeman may have chance to wipe 



out the attacker and eliminate malware at all in the network, 
though the mechanism of producing anti-malware is passive. 

C. Strong vigilance 

In the third simulation, we assume that every owner in the 
network has a strong vigilance that will make the spread of 
malware more difficult and the spread of anti-malware easier.  

As introduced before, we only need to adjust the 
possibilities to implement this setting of simulation. We lower 
the possibility of spread of malware whereas we increase the 
possibility of anti-malware. And all other settings are identical 
to the test case “crazy attacker”. The scenes of simulation are 
shown below: 

 

Fig. 35. state scene of cells at 00:00:01:90 

 

Fig. 36. state scene of cells at 00:00:02:70 

 

Fig. 37. state scene of cells at 00:00:13:00 

At 1300ms after the beginning of simulation, the attacker is 
wiped out. It is truly a dramatic moment. In the first simulation 
of “crazy attacker”, there is no ending of battle, which means 
the police has no chance to wipe out the attacker. But in this 
simulation, the police succeeds to achieve this goal. This is due 
to a stronger vigilance among the cells, which prevents the 
spread of malware and encourages the spread of malware to 
some extents. 

D. More policemen 

The final simulation focus on the how the number of 
policemen in the network matters. 9 policemen are settled in the 
network with random positions. Other settings are identical 
with the previous case “crazy attacker”. 

 

Fig. 38. state scene of cells at 00:00:00:60 

 

Fig. 39. state scene of cells at 00:00:00:90 

At 1300ms after the beginning of simulation, the attacker is 
wiped out, and the malware is hardly spread in the network. 

This scene shows that more policemen in the network may 
contribute to a faster response to the malware. It makes police 
forces more able to wipe out the attacker. 

The four simulations with respect to different parameters 
disclose the fact that a slight change in the parameters of 
simulation may lead to an absolutely different scene. 

VII. CONCLUSION 

In this paper, we propose two types of malware propagation 
in networks by using standalone CD++ and new version CD++ 
(lopez) [6].With the powerful new version CD++, we simulate 



a virtual battle between hackers or worm writers and network 
security forces. And several analysis have been made and 
drawn to conclusions in this paper.  

In the first modelling and simulation, we present a static 
worm and its spread in a network. This simulation takes the 
level of interaction between cells and possibilities into account. 
The outcome complies with our expectation, in which the worm 
will be isolated or eliminated finally. 

In the second modelling and simulation, we present a 
dynamic and complicated malware and its propagation in a 
network. There are also other features being introduced, such as 
identity of cell, multiple ports and state variables.  

These modelling and simulations can be proved rational and 
meaningful. Thus, besides, this model can be a framework to 
simulate epidemics and other types of malware. People can 
adjust or modify some parameters in this modelling or do some 
improvements to it.  
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