
1

VISUALIZATION OF CELL DEVS

MODEL – 3D PIN BALL

Submitted To

Prof. Gabriel Wainer

SYSC-5104FALL(2016)

By

Prasanthi BobbiliYaminiNibhanupudi

Student ID 101057215 Student ID 101050830

 CARLETON UNIVERSITY CARLETON UNIVERSITY

2

ABSTRACT: Pinball is a computer game that everyone must have played at least once in their

childhood. The primary objective of this game is to score as many high points as a player can. Many

pinball games include a player earning high points when the ball strikes certain targets and preventing

the ball from falling down the drain. The game is over when the ball falls into the drain. Earlier versions

of pinball games were the actual machine and later on simulating the game was attempted. Simulating a

pinball game has been done several times in the past. Many simulations included accurate physics of

rolling steel balls, tilting and many other graphics. This paper is inspired by this pinball game. Pin Ball

game is simulated using CELL-DEVs and then, python and blender are used to create a 3D model of it.

There are two versions included in this paper, namely, PINBALL GAME WITH TWO BALLS and

PINBALL WITH AN EXIT.

1. INTRODUCTION

Cell Devs is highly used in complex systems to

make a model out of it and help make

simulations more user friendly. It is all about

modeling any real-time scenario to understand

their behavior and time taken to accomplish the

task at a cellular level. In CD++, the cell-DEVS

model is designed with some set of rules and

then simulated using Omar Hisham tool to check

the simulation in 2D. Then this simulation is

used to visualize in 3D using Blender. This gives

a real feel and is useful for making creative

animations of the cell-DEVS model which we

have on hand. This paper talks more about cell-

DEVS, it's formalism, applications, 3D

visualization and tools used to do it. It is an

improvement from the previous model as we had

only 1 ball in pinball game, where as in the new

version we have 2 balls and an another case with

3 balls with an exit

2. RELATED WORK

Since many years there had been a lot of

research being done on CELL-Devs. We have

used the basic principles of cell-Devsto design

the model which we decided to visualize in 3D.

The related work is presented in the subsequent

sections.

2.1 CELL DEVS

Cell Devs is a result of executing a global

transition function which updates the cell states

in the space. The total behavior of the transition

function depends on the result of each cell how

it locally executes that particular function. All

the cells in the cell space are computed at a time

synchronously and in parallel using the

existing cell and its neighbors’ state value. This

cell Devs helps in saving time efficiently by not

wasting computation time for computing each

cell. Below is the figure which represents the

cell neighborhood.

Figure 1: CELL DEVS – CELL NEIGHBOURHOOD

2.2 CELL DEVS FORMALISM

Cell-Devs formalism is based on cellular

model's DEVS. It has a space of cells, wherein

each cell has a value and it's current state along

with neighbor's values, defines the next value.

Each cell is defined as DEVS model and the

whole cell space is coupled model. A

computation function τ (tow) is used to compute

the future state of the current cell based on some

input values of the cell. Delay d is associated

with each cell like inertial delay and transport

delay which effects the time the output is sent

(this can be seen in Figure 3). Once each cell is

computed, whole cell space is built using a

coupled Cell-DEVS model.

3

Figure 2: cell-DEVS Atomic Models

Each DEVS model can be built as a behavioral

(atomic) or a structural (coupled) model. A

DEVS atomic model is described as:

Figure 3: Atomic DEVS model

M = <X, S, Y, δint, δext, λ, D >

In the absence of external events, the model will

remain in state s∈S during ta(s). Transitions that

occur due to the expiration of ta(s) are called

internal transitions. When an internal transition

takes place, the system outputs the value λ(s) ∈

Y, and changes to the state defined by δint(s).

Upon reception of an external event, δext(s, e, x)

is activated using the input value x belongs to X,

the current state s and the time elapsed since the

last transition e. Coupled models are defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} , select >

They consist of a set of basic models (Mi,

atomic or coupled) connected through their

interfaces. Component identifications are stored

into an index (D). A translation function (Zij) is

defined by using an index of influences created

for each model (Ii). The function defines which

outputs of model Mi are connected to inputs in

model Mj. The select function serves as

tiebreaker for two simultaneous models. A Cell-

DEVS model is represented as a cell space,

where each cell is represented as an atomic

DEVS model. Each cell is connected to the

4

neighboring cells. A delay mechanism in each

cell (transport delay or inertial delay) is used to

delay the propagation of state change events

through the cell space, providing the means for

defining complex temporal behavior.

An Atomic Cell-DEVS can be defined as

follows:

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

Where X is the set of external input events; Y is

the set of external output events; I represents the

definition of the model’s modular interface; S is

the set of possible states for a given cell; θ is the

definition of the cell’s state variables. N is the

set of values for the input events; d is the delay

of the cell; δint is the internal transition function;

δext is the external transition function; τ is the

local computing function; λ is the output

function, and D is the duration function. A

Coupled Cell-DEVS model is built by

connecting a number of Atomic Cell-DEVS

models together into a cell space (including 2D

and 3D cell spaces). The borders of the cell

space can be either wrapped, in which case the

cells at the border from one side of the cell space

are considered neighbors to the cells at the

border on the opposite side of the cell-space, or

non-wrapped, in which case the border cells

must have special rules defined by the modeler.

A formal definition of Coupled Cell-DEVS is:

GCC = <Xlist, Ylist, I, X, Y, n, {t1,..,tn}, N, C,

B, Z, select >

Where Xlist is the input coupling list; Ylist is

the output coupling list; I represents the

definition of the model’s modular interface; X is

the set of external input events; Y is the set of

external output events; n is the dimension of the

cell space; {t1,….,tn} is the number of cells in

each of the dimensions. N is the neighborhood

set; C is the cell space; B is the set of border

cells; Z is the translation function; and select is

the tie-breaking function.

3. VISUALIZATION

Visualization in 3D of a Cell-DEVS model gives

a real feel of the model that was done in CD++.

This paper talks about a software for 3D

visualization called "Blender". Blender is a

powerful application for threedimensional

modeling and animation. The software GUI is

very easy to understand and user friendly. Hence

these tools within blender are used to create 3D

environment for Cell-DEVS and DEVS models.

To do that, user must develop a python script to

interface the CD++ ma, log and val files to

blender. When the user developed python script

is run, it should automatically execute the files

and start animation. Below is the figure that

represents how the blender works with CD++

files.

Cell-DEVS is an extension to DEVS that uses

Cellular Automata. The entire cell space is

decomposed into a number of individual cells.

Although cell-DEVS is a form of visualization it

is only in 2D. Hence, in this project, to visualize

in 3D, we used Blender 2.6.

Figure 4: Architecture

Blender is a 2D and 3D visualization tool. It

supports Python scripting. A Blender software

can be used for 3D animations and graphics. For

this project, no changes were made to Blender

itself, but rather the Python scripting was used to

read and animate the cell-DEVS model. The

python software used in this project is Python

2.4.4. Python is a high-level object-oriented

programming language.

3.1 PYTHON SCRIPT

For the CD++ files to be blended with blender

tool, an interface APIs are required to this job.

That’s where a python script is required. Hence,

we have two scripts written to import the files

5

from CD++ and then dictate the blender tool on

how to place the objects based on ma, log and

val files in the working directory. Hence, we

need cdpp and filecontrol file.

3.1.1 FILE CONTROL FILE

This program is designed to provide the

interface to the MA, VAL and LOGfile

generated for/by the CD++ simulation tool.

This file is the file that is run as a script and will

dynamically import a selected file name

contained within the *.blend file directory.

This file will create a reference to the class

defined in the selectedfile called MyClass. If the

class is not present or renamed, this file willfail

to execute and generate errors. The file selection

'drop down' or combo box for the MA, VAL,

and LOG files are dynamically generated and

are regenerated each time the script is run or

when the script is moved to another directory. It

is required that valid ma, val and log files to be

present in the working directory of blender

where the .blend file is located. Else, the script is

written in such a way that it throws errors in

case the files not found in the working directory.

3.1.2 CDPP File

A cdpp script is unique for its application. A

cdpp file is used to extract the .MA, .VAL and

.LOG file of the cell-DEVS model from the

directory (the .py, .ma, .val and .log files should

be present in the same directory).

3.2 APPROACH AND RESULTS

Since, both blender and python are new to us,

we need to first understand the blender tool very

well by running old projects and creating simple

projects. We got hands-on on blender by

designing few new objects and linking and de-

linking them from scene to scene. Then, we have

gone through the python syntax and various

APIs included for python-blender. Understood

the previous projects where python scripts were

designed using those APIs. Then created a

sequence of jobs to be done to accomplish the

visualization of our project. Hence our approach

we followed was to take an existing PIN Ball

CELL-DEVS model, make modifications for it,

develop the test cases and then create

visualization model.

3.2.1 CD++ Tool

CD++ toolkit as workbench (Wainer 2009) was

used in this project to design a Cell Devs model.

CD++ implements DEVS and Cell-DEVS

theories. The defined models are built as a class

hierarchy, and each of them is related with a

simulation entity that is activated whenever the

model needs to be executed. New models can be

incorporated into this class hierarchy by writing

DEVS models in C++, overloading the basic

methods representing DEVS specifications:

external transitions, internal transitions and

output functions. The design of PIN ball was

done in CD++ using some rules which are

presented in the subsequent sections. They also

include devs formalism.

Figure 5: CD++ Screenshot

3.2.2 PIN BALL CELL DEVS

FORMALISM

The inputs, outputs and neighbors of the pin ball

cell devs model are as follows:

M : <Xlist, Ylist, I, X, Y, η, N, {r, c}, C, B, Z,

select >

Xlist : {0,1,2,3,4,5,6,7,8,9,10}

Ylist : {0,1,2,3,4,5,6,7,8}

6

I : <Px, Py>, Px= Null , Py = Null

X : Null

Y : Null

η : 9

N : { (-1,-1), (-1,0), (-1,1), (0,-1), (0,0),

(0,1), (1,-1), (1,0), (1,1) }

r : 19

c : 19

S : {0, 1}, i.e. either occupied or empty

B : nowrapped

Dimensions: 19 x 19 cells

Delay : transport

Border : nowrapped

3.2.3 MODIFICATIONS TO

EXISTING CELL DEVS MODEL

We modified the existing CELL-Devs model

where only one ball moves within the walls in

the pin ball game. We generated a val file which

was missing in the previous version of the

project as follows:

(0,5) = 9, (0,6) = 9, (0,7) = 9, (0,8) = 9,

(0,9) = 9, (0,10) = 9, (0,11) = 9, (0,12) = 9,

(0,13) = 9, (0,14) = 9, (1,4) = 9, (1,5) = 9,

(1,14) = 9, (1,15) = 9, (2,3) = 9, (2,4) = 9,

(2,15) = 9, (2,16) = 9, (3,2) = 9, (3,3) = 9,

(3,16) = 9, (3,17) = 9, (4,1) = 9, (4,2) = 9,

(4,17) = 9, (4,18) = 9, (5,0) = 9, (5,1) = 9,

(5,9) = 9, (5,10) = 9, (5,11) = 9, (5,12) = 9,

(5,17) = 9, (5,18) = 9, (6,0) = 9, (6,10) = 9,

(6,11) = 9, (6,12) = 9, (6,13) = 9, (6,18) = 9,

(7,0) = 9, (7,11) = 9, (7,12)=9, (7,13)=9,

(7,14)=9, (7,18)=9, (8,0)=9, (8,4)=9,

(8,18)=9, (9,0)=9, (9,4)=9, (9,5)=9,

(9,14)=9, (9,15)=9, (9,18)=9, (10,0)=9,

(10,5)=9, (10,14)=9, (10,15)=9, (10,16)=9,

(10,18)=9, (11,0)=9, (11,14)=9, (11,15)=9,

(11,18)=9, (12,0)=9, (12,9)=9, (12,10)=9,

(12,11)=9, (12,12)=9, (12,18)=9, (13,0)=9,

(13,8)=9, (13,19)=9, (13,10)=9, (13,11)=9,

(13,12)=9, (13,18)=9, (14,0)=9, (14,1)=9,

(14,10)=9, (14,11)=9, (14,12)=9, (14,18)=9,

(15,1)=9, (15,2)=9, (15,17)=9, (15,18)=9,

(16,2)=9,(16,3)=9 (16,16)=9 (16,17)=9

(17,3)=9 (17,4)=9 (17,8)=2 (17,9)=9

(17,10)=9 (17,14)=9 (17,15)=9 (17,16)=9

(18,4)=9 (18,5)=9 (18,6)=9 (18,7)=9

(18,8)=9 (18,9)=9 (18,10)=9(18,11)=9

(18,12)=9 (18,13)=9 (18,14)=9 (18,15)=9

The position of the ball is defined as : (7,5) = 4,

We created 2 other versions of game apart from

the original version. One case is where we

created 3 balls instead of only one ball and they

run without hitting each other for given time of

simulation. The other case is 3 balls with one

exit/drain. After a giving simulation time, the

one of the balls cannot sustain any more in the

field and go out of the field through an exit.

7

3.2.4 MOORE NEIGHBOURHOOD

The ball can be moved in top, bottom, left, right

and all the four diagonal directions. For this

reason, considered neighborhood is the 9-cell:

pinball(-1,-1), pinball(-1,0), pinball(- 1, 1),

pinball(0,-1), pinball(0,0), pinball(0,1),

pinball(1,-1), pinball(1,0), pinball(1,1).

3.2.5 RULES DEFINED

The ball can move in any of the 8 directions

from (0,0). The cube (i.e. the wall) stays in one

place.

There are 11 possible types of values for a cell:

0 = There is nothing (neither ball nor wall)

1 = There is a little ball in the NE direction

2 = There is a little ball in direction N

3 = There is a little ball in the direction NW

4 = There is a little ball in the direction W

5 = There is a little ball in direction SW

6 = There is a little ball in the direction S

7 = There is a little ball in the direction SE

8 = There is a little ball in the direction E

9 = There is a wall

10 = There is an exit

The rule for the wall is:

rule: 9 100 { (0,0) = 9 }

This rules checks if a cube is present in the

current cell. If so, the cube remains there.

The rule for an exit is:

rule: 0 100 { (0,0) = 1 and (-1,0) = 10 and (0,-1)

= 9 and (0,1) = 9 } %exit up

This rule checks if the ball moving in the NE

direction is near an exit. If so, the ball is sent out

of the cell space through the exit.

This rule is applied to a ball moving in any

direction and if the exit is anywhere in its

neighborhood.

The above rule is added later on in order to

create an exit for pinball 3D visualization that

contains a drain.

A few more examples for this rule are:

rule: 0 100 { (0,0) = 2 and (1,0) = 10 and (0,-1)

= 9 and (0,1) = 9 } %exit down

rule: 0 100 { (0,0) = 7 and (0,-1) = 10 and (0,-1)

= 9 and (0,1) = 9 } %exit left

rule: 0 100 { (0,0) = 8 and (-1,0) = 10 and (0,-1)

= 9 and (0,1) = 9 } %exit right

A few rules for rolling a ball are given in the

algorithm as follows:

- If an empty cell has a ball in its neighborhood

that is moving in the NEdirection (cell value =

1), then a ball in that cell will also move in the

NE direction.

rule: 1 100 { (0,0) = 0 and (1,1) = 1 }

-If an empty cell has a ball in its neighborhood

that is rolling in the NE direction (cell value = 1)

but also there is a wall (cell value = 9) in its

path, the ball will hit the wall and the switch to

rolling in the west direction (cell value = 4).

rule: 4 100 { (0,0) = 0 and (0,-1) = 9 and (1,0) =

1}

Similar test cases are made for all possibilities.

Therefore, there are a total of 69 rules for this

cell-DEVS model.

The required files to be generated are:

-.MA file : This file includes the declaration of

the environment, neighborhood and the rules for

the cell-DEVS model.

-.VAL file : This file contains the initial state of

the cell space. This is seen in the figure below

(this is obtained as the cell-DEVS model is run

in

http://www.omarhesham.com/arslab/webviewer/

)

8

Figure 6: Pinball CELL-DEVS model Simulation

-.LOG file : This file shows how the model

runs. This file is very important in order to

visualize a given cell-DEVS model in blender.

-.PAL file : This is the color palate. As seen in

figure 1, the colors violet for walls and red for

balls are done using this .pal file.

3.2.6 Visualization of Pin Ball

In this project we used, Blender 2.6 version and

python 2.4.4. Python comes with Blender as a

package when we download. All the log, val and

ma files generated using Cell Devs model, have

to be imported into Blender tool. For this

implementation, we need to develop a python

script which can read the files, place the objects

per the log file and help in rendering the scenes

in blender. All the settings in blender are saved

as .blend file which includes the initial objects

required for the visualization. All these are

accomplished by two python scripts. In the

subsequent sections, these python scripts are

explained in detail along with blender 2.6.

3.2.7 BLENDER 2.6

Blender 2.6 is the latest version of blender which

we used. It is more flexible than the older

versions to create animations and visualization.

That is due to following unique features

1. 3D audio and speaker objects were

added, along with various enhancements

to the already existing sound features.

It's now possible to include sound

effects to animations and include audio

files.

Figure 7: Audio and Video Performance of

Blender 2.6

2. Animation system improvements were

done, specifically related to the usability

and the interface. Includes changes to

the graph editor, drop sheet editor, etc.

Figure 8: Smooth Animation in Blender 2.6

9

Below is the screen shot of the Blender tool in

figure 9.

Figure 9: Blender 2.6

When the tool is opened, ctrl+O opens the .blend

file from the specified directory. It is shown

below in figure 10. pinball.blend is our file.

Figure 10: Opening of .blend file

Once the .blend file is loaded, the filecontrol.py

script is executed as in the figure 11.

Figure 11: File Loading

3.2.8 CREATION OF BLEND FILE

WITH OBJECTS

Blender has some inbuilt objects which can be

pulled in when required into the scene. If we

need any new objects, we can generate them

using the basic objects given by default in the

tool. For our project, we need a cube and a

sphere. We tried to get hands-on on the tool by

creating some objects using the already existing

objects. For example, we designed a chair using

a cube and some other animation tools. But,

since we need only a cube and a sphere, we

imported them from the list available. We need

to click space button on the keyboard by placing

the current cursor on the 3D view pane and then

type in "add cube" to add a cube. The cube was

re-sized by clicking 's' on the keyboard. The

color of the cube can be selected from the

materials tab in the pane available in blender.

Similarly a ball was created from "UV Sphere"

available in the default objects provided. Size

and color of the ball object was modified for our

requirement as mentioned above. Then the initial

scene was rotated for a better view and saved the

settings in a .blend file. Hence when a blend file

is opened for visualization, the objects created

with the default settings are opened.

10

3.2.9 PYTHON SCRIPT

Python script is needed to interface CD++ with

Blender software. It converts the ma, val and log

files generated by CD++ into a language blender

can understand. We already have a filecontrol

script from previous projects, where as we

designed a new cdpp file for our project. The

brief explanation of these scripts are explained

in the subsequent sections.

3.2.9.1 Filecontrol script

Primary motive of filecontrol script is to allow

the blender tool to read the files required from

the directory where the .blend file resides. This

scrip provides a dynamic import of the files

from blender. This file will create an reference

to the class defined in the selectedfile called

MyClass. If the class is not present or renamed,

this file will fail to execute and generate errors.

The file selection 'drop down' or combo box for

the MA, VAL, and LOG files are dynamically

generated and are regenerated each time the

script is run or when the script is moved to

another directory. The valid ma, val and log files

should be saved in the same directory where the

blend file is there, so that the visualization is

successful in Blender. A snapshot of reading the

variables in script as below:

Figure 12: Code Snippet from filecontrol.py

3.2.9.2 CDPP File

cdpp script is designed for our application. The

script reads the val, log and ma file. val file is

not mandatory as the initialization can be done

in the ma file itself. The previous project's code

has been used to implement the code for our

application. The log file is read word by word,

and checks the cell value at the given time

instance as shown in the figure below

Figure 13: Snippet of code reading coordinates

The 3D code was modified to 2D by defining the

logic in the given snapshot above. The 2D

coordinate is like (2,3). A for loop is used to

detect the braces and store the coordinates in a

temporary variable. Once the coordinate is

found, the log value is again stored in another

temporary variable. For our project, since it is a

pin ball game, we need some boundaries and a

ball. To build a boundary, a cube is designed and

a ball is designed. Once an output 9 is seen in

the val file, a cube is placed at the given cell

address. When it starts reading the log file, if a

log value 2 to 8 is seen, a ball is placed, else if a

0 is found it is left empty. And if a 4 is seen, an

empty space in the wall is made. The snippet of

code for this shown the figure below

11

Figure 14: Code Snippet for placing objects

3.3 RESULTS

We first took the simple pinball which is already

existing, and did the required modifications to

missing data like .valfile which was mentioned

in the previous section. The simplepin ball

simulation looks like below figure.

Figure 15: Screenshot of simple pin ball

simulation

Then we added 3 balls to make it little more

complicated and did the simulation to find the

result as in the below figure

Figure 16: Screenshot of 3 balls in pin ball

simulation

Once the 3 ball pin ball game is done, we tried a

new one to see if a ball can go out of the court

after a while. We created an exit at one place

and watched to check if the ball goes it out.

After a given simulation time, one of the balls

goes out.

Figure 17: Screenshot of 3 balls with exit in pin

ball game

12

After we have all the ma, val and log file in all

three different cases, we proceeded with blender

tool. Blender needs a blend file where all the

objects are saved. Hence the blend file was

designed with a cube, ball and a plane in a

project folder where the ma, log and val files are

present. We tried to create a glowing cube and a

sphere

Figure 18: Screenshot of making an object

glow1

Figure 19: Screenshot of making an object

glow2

Once the blend file is opened, we just need to

click the execute button on the screen in blender

2.6. In the figures shown, 3D visualization of all

two scenarios below:

Figure 20: Picture of a 3 ball pin ball game

In the figure 21, the screenshot shows an exit in

the wall on the right side. That is an empty cell

created in the val file with a value 10. When a

python script sees a 10, there is a an empty cell

created in the wall. Then the rules are created in

ma file to help the ball exit from the wall after

certain time of duration.

13

Figure 21: Picture of a 3 ball with exit in a pin

ball game

4. VALIDATION

We validated our design by modifying the

existing CELL-Devs model with different test

cases and tried them in Blender with various ma,

val and log files. And all are working perfect

without any fault. All the results are explained in

the previous sections.

5. CONCLUSION

Cell Devs models can be visualized in 3D using

blender. Visualization of any cell devs models

needs a log file to place the objects in the

defined cell coordinate. A val file is needed to

place the objects during initialization. Hence a

blender is a ideal tool to develop any 3D models

for Cell devs and devs models.

6. REFERENCES

[1] Wainer, G. and Giambiasi, N. "Application

of the Cell-

DEVS Paradigm for Cell Spaces Modeling and

Simulation".

Simulation, vol. 71, No. 1, pp. 22-39, January

2001.

[2] Wainer, G. “Discrete-Event Modeling and

Simulation: a

Practitioner’s approach”. Taylor and Francis.

2009.

[3] Wainer, G. "CD++: a toolkit to define

discrete-event

models". Software, Practice and Experience.

32(3), 1261-1306.

November 2002.

[4] Wainer, G. and Liu, Q. "Tools for Graphical

Specification

and Visualization of DEVS Models". Accepted

for publication

in Simulation, Transactions of the SCS. 2009.

[5] Blender Foundation, http://www.blender.org/

[6] Wainer, G., Poliakov, E., Hayes, J. and

Jemtrud, M. "A Busy

Day at the SAT Building". Proceedings of the

International

Modeling and Simulation Multiconference,

Buenos Aires. 2007.

[8] Amos, M. & Woods, A. "Effect of Door

Delay on Aircraft

Evacuation time".

http://arxiv.org/abs/cs/0509050. 2005.

[9] Blender (software). Wikipedia, the free

encyclopedia.

http://en.wikipedia.org/wiki/Blender_(software).

(Accessed 14 Dec 2011)

[10] Blender 3D: Blending Into Python/2.5

quickstart.Wikibooks.org.

http://en.wikibooks.org/wiki/Blender_3D:_Blen

ding_Into_Python/2.5_quickstart. (Accessed 14

Dec 2011)

[11] Doc:2.6/Manual/Introduction. Blender

Foundation.

http://wiki.blender.org/index.php/Doc:2.6/Manu

al/Introduction. (Accessed 14 Dec 2011)

[12] Gotcha’s. Blender v2.59.0 - API

documentation. Blender Foundation.

http://www.blender.org/documentation/blender_

14

python_api_2_59_0/info_gotcha.html.

(Accessed 14 Dec 2011)

[13] Keyframing and Ipo Curves.

Doc:2.4/Manual/Animation/Editors/Ipo/Curves.

Blender Foundation.

http://wiki.blender.org/index.php/Doc:2.4/Manu

al/Animation/Editors/Ipo/Curves. (Accessed 14

Dec 2011)

[14] Bézier curve. Wikipedia, the free

encyclopedia.

http://en.wikipedia.org/wiki/B%C3%A9zier_cur

ve. (Accessed 14 Dec 2011)

[15] Plugins Upload [#28802] Breakpoint.

Blender Foundation.

http://projects.blender.org/tracker/index.php?fun

c=detail&aid=28802&group_id=153&atid=472.

(Accessed 14 Dec 2011)

