
1

3D Visualization of Predator Prey Cell-DEVs Model

Saima Hidayat / Leili Parishani

Department of Electrical and Computer Engineering

Carleton University

1125 Colonel By Drive

Ottawa, ON. K1S-5B6 Canada

shida046@uottawa.ca

parishani.leili@gmail.com

ABSTRACT

The project is about the 3D visualization of an existing project Predator Prey, developed by the past

students. The idea is to reuse the template developed by the students and create enhanced graphical user

experience by manipulating the template as per the requirement and behavior of the Predator Prey

project. The project is selected, keeping in view the level of complexity for learning the 3D visualization

as beginner. It is developed using the Blender version 2.60 tool with the extension of an embedded

Python 3.2. The paper will discuss different aspects of the project including the model and design

considerations for 3D rendering of the Cell-DEVS space and the dynamic objects.

1. Introduction

The project is based on the visualization

enhancement of the Predator Prey project which

is based on a Cell-DEVS model. The DEVS

formalism has been used as modeling and

simulation technique for different natural and

artificial systems. Cell-DEVS is an extension of

DEVS that allows for executing cellular automata

models with the advantage of evaluating the cells

asynchronously with different timing delays. Both

techniques have shown success in simulating

space-shaped models.

Furthermore, for the 3D visualization of the

above, we have used the Blender-Python

combination. The Blender is an advanced open-

source three-dimensional modeling software,

used to create high quality animations. In this

project, the Blender is integrated with Python as a

scripting language allowing modeling, texturing,

rendering, lighting, and post-processing. Using a

Blender, one can render the 3D model of the

simulation logs captured by CD++ tool. We will

be discussing the Blender-Python integration and

implementation of 3D visualization of Predator

Prey project in this paper.

2. Background

The basic structure of the project uses the

template provided by the past students which

allows the user to execute a predefined interface

to map the Cell-DEVS model, value and log files

dynamically. It supports the format of logs

generated by the CD++ tool. The design and the

simulation is performed in the Blender tool once

the files are parsed properly by the python script.

The initialization and other modifications can be

implemented in the customized python script

which executes after the file selection.

The main mapping for the Cell-DEVS model files

is performed by the Python script named as

file_control.py by the original authors of the file.

This file is used to control the simulation and

allows the user to select the appropriate CD++

generated and compiled files for the model,

initialization and the logs of the simulation as a

result. Using this template, the time for the file

mapping can be saved since it requires minimal

mailto:shida046@uottawa.ca

2

value changes in the scripting environment and

an initial one time setup for use.

Moreover, Python is a multi-paradigm language,

which allows C, C++, or Cython built-in modules

to be implemented, it becomes highly extensible

as a scripting language. Because of its nature of

readability and ease of use, the Blender

Application Programming Interface (API) allows

a graphics designer or an animator to quickly

implement complex animation routines or

simulations through its graphical user interface

and relatively simple API calls also improve

timing constraints.

Although, Blender 2.5x has a completely

different API calling syntax than previous

versions. Also, Python similarly has evolved a lot

in terms of syntax and libraries. These changes

demanded the installation of latest Blender

versions. It indirectly impacted the Python

scripts, written using the old API. The Blender

has a new API for the Python integration.

Unfortunately, since the release of Python version

3.0, Python has broken its own “backward

compatibility” rule thus necessitating refactoring

of developed scripts for future work and research

in the DCD modeling.

 In Blender, Python is used primarily for

scripting, prototyping, gaming logic,

importing/exporting to other rendering formats,

task automation and custom tools. The Blender

tool itself is composed of obfuscated key board

shortcuts that lately have been simplified by the

addition of comprehensive contextual panel

menus in order to make the tool appear more

streamlined and logical.

As an open-source tool, Blender is presently

comparable to mid range commercial products,

but like most open-source software, it is also

criticized for having poor documentation on its

API and on the examples for the logical steps to

create and deploy rendered animation. [1]

Organization of data by Blender is accomplished

through objects, meshes, lamps, scenes, materials

where objects are composed of meshes, materials

and lamps and can be supported or stored within

multiple scenes. Because of this, it would seem

very important to understand the API changes to

select and modify the data. Through the use of the

menus and hotkey selection, the objects can be

selected and modified. However, the main panels

only work on an activation event such as a mouse

click and otherwise are unavailable for direct

manipulation through the Python interpreter.

With the introduction of Blender 2.5, a new

module bpy.ops was implemented. This

implementation provided the programmer the

ability to register their operation script and when

activate provided a tooltip capability indicating

the class, location and the tooltip documentation

if provided. [2]

3. Predator Prey Cell-DEVS Model

The objective is to model the behavior of an

animal trying to escape a space in the form of a

maze, before being trapped by a predator. The

labyrinth could represent an environment similar

to a forest. The prey, which could be a rabbit or

deer, is leaving its scent as a trail. The predator, a

wolf or other carnivorous animal, moves faster

than the prey. The predator tries to approach a

prey by its odor or smell. If the predator reaches

the prey, then it eats it up. The above behavior

has been modeled using CD++ tool and DEVS

formalisms. The space defined for the simulation

is like a maze structure. The predator and prey are

the dynamic objects around the space, having

different values based on their position relative to

each other. The prey has a trail of its smell, that

attracts the predator towards itself.

Below is the brief description of the objective

behind the game:

a. Walls

Labyrinth of connected walls with one or

more exits.

b. Prey

Movement 1000 msec.

3

Time to rotate 500 msec.

The odor lasts for 4000 msec.

It dissipates every 1000 msec reaching

four levels until disappearing (from strong

or recent smell to weak odor).

c. Predator

Movement 800 msec.

Time to rotate 300 msec.

Figure 1. Labyrinth, Predator and Prey

1- Cell Space Configuration:

The model consists the following cell

space configurations as given below:

Dimensions: 20 x 20 cells

Delay: inertial

Border: nowrapped

The initial Labyrinth values are defined in

the predprey1.val file. The val file is used

to initialize the values of the walls which

creates a maze.

2- Neighborhood:

Both the prey and the predator cannot

move diagonally, but to the cells on the

sides, to the front or back. However,

because of the motion strategy, it is

required to ask for certain opportunities

by the cells diagonally to the (0,0). For

this reason, the neighborhood considered

is that of 9 cells as stated below:

Devlab (-1, -1) devlab (-1,0) devlab (-1,1)

Devlab (0, -1) devlab (0,0) devlab (0,1)

Devlab (1, -1) devlab (1,0) devlab (1,1)

3- Rules:

The model consists of separate rules for

the Labyrinth, the Predator and the Prey.

The preview of the rules for the above are

provided from the original project as

under:

a. Labyrinth Rule

The labyrinth cells, determined in the

predprey1.val file, take the value 400,

with a delay of 100000, since they

must not change their initial value.

Rule: {(0,0)} 100000 {(0,0) = 400}

b. Prey Rule

It was decided as a strategy to get out

of the Labyrinth, so the animal travel

with its right side always in contact

with the wall. The rules are divided

into Seeking Wall and Following

Wall.

For the movement, the following were

determined:

- Delay 1000 msec

- Time to rotate 500 msec

- Values of Following wall 201 to

204

- Search Wall Values 211 to 214

By convention, it is considered:

4

- 1 to move up

- 2 to move to the left

- 3 to move to the right

- 4 to move down

The prey leaves a trace of smell that

lasts for 4000 msec. For this, the cell

immediately above that was occupied

by the prey, takes the value of 104

with a delay of 1000. Then reduces its

value in one (from 104 to 101) until

finally it disappears.

Rule: {(0,0) - 1} 1000 {(0,0)> 101 and

(0,0) <105}

Rule: 0 1000 {(0,0) <= 101}

Figure 2. The trail of smell of the prey

The prey advances by trying to ensure

that its right side is always in contact

with the wall. You cannot advance on:

wall, predator or its smell when it is

recent (both levels of strong odor). It

only rotates when it hits the maze or

when the right is empty.

Initially, the prey advances trying to

find a wall. When it collides, it turns

to the left. Once this is done, it is

moved to space following the wall.

Example for searching the wall, we

see the case of going up. The other

three cases (right, left and down) are

similar.

- Go ahead and leave your trace of

smell. It cannot pass if there is a

wall, predator or smell at high

values (104 and 103)

- Rule: 104 1000 {(0,0) = 211 and (-

1,0) <103}

- Rule: 211 1000 {(1,0) = 211 and

(0,0) <103 and (0,1) <103}

- If you find a wall to your right, it

becomes a wall

- Rule: 201 1000 {(1,0) = 211 and

(0,0) <103 and (0,1)> = 103}

- If it hits the wall, turn to the left

and it turns into following wall

- Rule: 202 500 {(0,0) = 211 and (-

1,0)> = 103}

Example for following the wall, we

see the case of going up. The other

three cases (right, left and down) are

similar.

- If the cell on the right is occupied

(wall, predator, strong odor), move

in the direction it came and leave

its smell trail.

- Rule: 104 1000 {(0,0) = 201 and

(0,1)> = 103 and (-1,0) <103}

- Rule: 201 1000 {(1,0) = 201 and

(0,0) <103 and (1,1)> = 103}

- If the right is empty, it rotates.

- Rule: 213 500 {(0,0) = 201 and

(0,1) <103}

- If the cell on the right is occupied

and also the one on the top, turn

left.

- Rule: 202 500 {(0,0) = 201 and (-

1,0)> = 103 and (0,1)> = 103}

- If the cells on the right, up and left

are occupied, then turn down.

5

- Rule: 204 500 {(0,0) = 201 and (-

1,0)> = 103 and (0,1)> = 103 and

(0, -1)> = 103}

c. Predator Rules

The predator tries to leave the

labyrinth, but if it detects the smell of

prey in the next cells (up, down, right

and left), it follows the prey. And if he

attains it, he eats it.

For the movement, the following

meanings were determined:

- Delay 800 msec

- Time to rotate 300 msec

- Values of Following Wall 301 to

304

- Search Wall Values 311 to 314

By convention, it is considered:

- 1 to move up

- 2 to move to the left

- 3 to move to the right

- 4 to move down

The predator can advance over any

cell, except the wall. Similar to the

prey, the predator tries to get out of

the labyrinth.

- If, in the next cells (up, down,

right and left), it detects the odor

and follow the trail.

- Rule: 311 300 (0,0)> 300 and (0,0)

<350 and (0,0)! = 311 and (-1,0)>

= 100 and (-1,0)

- Rule: 300 and (0,0) <350 and

(0,0)! = 313 and (0,1)> = 100 and

(0,1)

- Rule: 314 300 ((0,0)> 300 and

(0,0) <350 and (0,0)! = 314 and

(1,0)> = 100 and (1,0)

- Rule: 312 300 ((0,0)> 300 and

(0,0) <350 and (0,0)! = 312 and (0,

-1)> = 100 and (0, -1)

- If predator and prey confront, the

predator advances to the prey cell

and makes it disappear.

- Rule: 0 800 {(-1,0)> 100 and (-

1,0) <250 and ((0,0) = 311 or (0,0)

= 301)}

- Rule: 311 800 {(0,0)> 100 and

(0,0) <250 and ((1,0) = 311 or

(1,0) = 301)}

- Rule: 0 800 {(0,1)> 100 and (0,1)

<250 and ((0,0) = 313 or (0,0) =

303)}

- Rule: 313 800 {(0,0)> 100 and

(0,0) <250 and ((0, -1) = 311 or (0,

-1) = 301)}

- Rule: 0 800 {(1,0)> 100 and (1,0)

<250 and ((0,0) = 314 or (0,0) =

304)}

- Rule: 311 800 {(0,0)> 100 and

(0,0) <250 and ((-1,0) = 314 or (-

1,0) = 304)}

- Rule: 0 800 {(0, -1)> 100 and (0, -

1) <250 and ((0,0) = 312 or (0,0) =

302)}

- Rule: 311 800 {(0,0)> 100 and

(0,0) <250 and ((0,1) = 312 or

(0,1) = 302)}

The above description of the model gives a

background knowledge of the project which is

necessary for an individual to understand the

working of the Cell-DEVS model so that the

python script required for the 3D visualization of

the simulation can be coded. The

predpreycdpp.py is the python script file for the

logic of the rules and initial values implemented

in the model above.

6

4. File Control Interface

We have reused the interface provided by the

students as a project. The overview of the script

to select and map the Cell-DEVS files is given

below as per the original paper [3]:

The File Control I/O module provides the

following capabilities:

d. File I/O control separation from the DCD

rendering requirement;

e. Menu Generation at the location of the

mouse;

f. File enumeration and selection

capabilities of the current blend file

directory;

g. Logging and exception handling of the

I/O;

h. Execution control of the DCD Python

module; and

i. User simulation and execution display

notification. [3]

Figure 3. File Control I/O

The Python scripts for file IO is based on the C

language open file function that required a file

pointer to the file to be opened. Failure of the

function either through the file being open

already or a non-existent file would generate an

exception and was not handled by the Python

interface. It is believed that exception handling

should be handled at all times, regardless of the

exception handling expense, and especially for

non-standardized applications or scripts. [3]

It also creates the logs for the instantiation of the

simulation through File Control python script.

The preview for the same is given under:

Figure 4. Logging sequence for the File Control

module

5. Predator Prey - Python Module

The script for game initialization and simulation

is selected in the File Control module. The File

Control script automatically takes the first

encountered python file in the same folder and

directory path. It auto-selects the file in the file

browser. Although if any other file is present, it

will show them in the dropdown as well if any

change is required before the execution of the

script. The customized script for the Predator

Prey project has been added to the same path as

File Control script. This file helps the Blender to

parse the logs generated from the CD++ tool. It

also takes into account the parsing of the model

and val files.

Furthermore, it has all the basic functions

required for the linking and delinking of the

object. This script is responsible for the mapping

7

of the Blender objects to the logs of the

simulation.

Below is a brief description of all the functions in

the predpreycdpp.py file:

a. class MyClass(),

1. __init__(self, cell="", myTime="",

logValueWord=""),

2. convertStr(self, myString),

3. createGrp(self, grpName),

4. deleteGrp(self, grpName),

5. linkGrpObjs(self, name,

grpName),

6. unlinkGrpObjs(self, name,

grpName),

7. deleteObj(self, name),

8. deleteReplication(self, name),

9. apply_log(self, cell="", myTime"",

logValueWorld="", destModel="",

port="")

b. CreateLogger(),

c. returnObjectByName(passedName = ""),

and

d. SelectAndDuplicate(cell, name).

The logs are captured for the python script errors

or instances created in the Blender scene through

a log file generation method. All the activities of

the simulation are logged in the MyClass.log file.

A preview of the log file is given below:

Figure 5. Logging sequence for the

predpreycdpp.py file

The apply_log() function is the main method for

the mapping of the simulation logs. The objects

are mapped as under:

1- Predator

Figure 6. The mapping for the Predator values

2- Wall

Figure 7. The mapping of the Wall values

3- Prey

Figure 8. The mapping for Prey values

8

4- Delinking Objects

Figure 9. The delinking of the objects

from the scene

6. Design and Graphics of the Objects

in Blender 2.60

The objects can be designed in the Blender tool

by the variety of properties and built in meshes,

circles, cones and many structures which can be

edited and modified as per the design required.

Below is the preview of these objects palette:

The Blender has many wide range of properties

and toolbox for each type of mesh or any parent

object type. The windows for tools and properties

can be enabled under settings and different

properties can be set or altered to meet the

desired output as shown below:

For the design of the Predator and the Prey, we

have used the toolbox for surface subdivision

which creates the sub surfaces for the cells

modified or selected and thus we can highlight or

change the color of the cells with the material

window as shown in the figures below:

9

Figure 10. The palette for adding a modifier to

the object in the Blender 2.60

Figure 11. The material change palette

We have used these properties and created the

curves for the eyes, nose and the mouth of the

Predator and the Prey. The two objects are also

differentiated based on their expressions to show

their role in the game.

Below are the objects used in the game for the 3D

visualization of the game:

Figure 12. The Prey Design

Figure 13. The Predator Design

Each object is carefully designed by the edges

and curves properties. It is basic design which

allowed us to learn how to use the properties and

create more high quality graphics for the

simulations or games in future. [4]

The game setup and cell space is designed by the

combination of cubes, which is a built-in

structure provided by the Blender toolbox as

shown below:

10

Figure 14. The scene for the game

The blender file attached to the simulation is

made generic so it requires just to change the

model and the log files to simulate different kinds

of initializations and the same objects can be used

for the animation as well. [5]

The simulation continues with the different log

values and the objects moved along the cell space

with the speed and time mentioned in the model

file as shown below:

Figure 15. The simulation results

7. Conclusion

The project implementation was a great learning

experience and it will definitely help us to

implement some great graphics and animation in

the world of gaming and simulation. The Blender

2.7 is already here with a vast toolbox of new

elements, properties and API for the Python

versions. Even the Python has been evolving

along with the Blender API changes. The

graphics can be further enhanced by using the

latest versions of both.

The game is designed for the basic animation and

the case in the project Predator Prey. This can be

extended to the next levels with minimal changes

to the same python script and the graphics

designed. The Blender tool is a plus when you

need the quick high quality user interfaces and

can be animated in the animations window as

well. Due to the logs of the simulation in CD++

format, we have to follow the python way of

doing the animation of the simulation but it can

always be animated using the Blender animation

toolbox for the objects. The future enhancements

can be implemented in terms of both graphics and

cases for this game.

11

8. References

[1] Blender (software). Wikipedia, the free

encyclopedia.

http://en.wikipedia.org/wiki/Blender_(softwar

e). (Accessed 14 Dec 2011)

[2] Blender 3D: Blending into Python/2.5

quickstart. Wikibooks.org.

http://en.wikibooks.org/wiki/Blender_3D:_Bl

ending_Into_Python/2.5_quickstart.

(Accessed 14 Dec 2011)

[3] 3D Visualization of DEVS/Cell-DEVS

(DCD) Models by Colin Timmons

[4] how to make a pacman in blender 3d v 2.76:

spoken tutorial (beginner)

https://www.youtube.com/watch?v=UVlc6U3

O0Bg

[5] Blender Tutorial for Beginners – How to

make a mushroom

https://www.raywenderlich.com/49955/blend

er-tutorial-for-beginners-how-to-make-a-

mushroom

http://en.wikipedia.org/wiki/Blender_(software)
http://en.wikipedia.org/wiki/Blender_(software)
http://en.wikibooks.org/wiki/Blender_3D:_Blending_Into_Python/2.5_quickstart
http://en.wikibooks.org/wiki/Blender_3D:_Blending_Into_Python/2.5_quickstart
https://www.youtube.com/watch?v=UVlc6U3O0Bg
https://www.youtube.com/watch?v=UVlc6U3O0Bg
https://www.raywenderlich.com/49955/blender-tutorial-for-beginners-how-to-make-a-mushroom
https://www.raywenderlich.com/49955/blender-tutorial-for-beginners-how-to-make-a-mushroom
https://www.raywenderlich.com/49955/blender-tutorial-for-beginners-how-to-make-a-mushroom

