
Patterns for Web Applications∗

Michael Weiss
Carleton University, Ottawa, Canada

weiss@scs.carleton.ca

Introduction

This paper contains work in progress on a pattern language for “small” webA conceptual framework for
“small” web applicationsapplications. Its goal is to outline a conceptual framework for developing

web applications. The pattern language has reached a certain stage where
I would like to get the feedback of the pattern community.

Why a conceptual framework? Many web applications may not need a
comprehensive application server framework, only micro-frameworks for
specific tasks such as template processing. The main application can be de-
veloped on top of a standard open-source platform such as LAMP (Linux,
Apache, MySQL, and Perl/PHP/Python) [11].

There is a trade-off between the complexity of a comprehensive frame-
work, and the needs of your application. Frameworks often have a large
feature set, and thus a steep learning curve, and can be difficult to deploy.
For example, while some web applications may warrant a content manage-
ment system, a template processor may be all that is required for most.

A conceptual framework, on the other hand, gives you a model for
how to build a custom application server, and and tells you when to use
task-specific micro-frameworks. The conceptual framework introduced in
this paper is documented as a pattern language. These patterns are geared
towards non-trivial, small to medium sized web applications. Our goal is
to document common practices for typical design issues encountered.

∗Copyright c© 2003, Michael Weiss. Permission is granted to copy for PLoP 2003.

1

These design issues include the flow of interaction of the applicationCommon design issues
with the user, processing user requests, and saving the state of the appli-
cation between invocations. Other common problems covered are how to
generate output for different types of browsers, interact with external data
sources (including web sites), and make applications more interactive.

Web site and navigation design, on the other hand, are outside the scope
of this pattern language. For example, the patterns documented by Welie
[22], van Duyne et al [20], Lyardet and Rossi [17], Rossi et al [18], and
Fernandez et al [12] address this area. Following Welie, these patterns can
be classified into site, experience, task, and basic interaction patterns.

An example of a site pattern is aCOMMERCE SITE, and an example
of a task pattern isBUY /SELL. One of the patterns to support the buy/sell
task isSHOPPING CART. Managing a shopping cart is an special instance
of another task pattern,FAVORITES, which, in turn, is a special case of the
basic interaction patternLIST BUILDER. Another basic pattern isWIZARD,
which suggests to step the user through the checkout process [22].

The overall context for these patterns is that the web site and navigationOverall context of this
pattern languagedesign have been completed. Suppose we are building an e-commerce site,

and have chosen to structure the basic user interaction around theSHOP-
PING CART andWIZARD patterns, how do we proceed with the design at
the programming level? Scoping the pattern language in this way just re-
flects the typical division between web designers and programmers.

Synopsis of the Pattern Language

This section summarizes the pattern language in an annotated roadmap
(Figure 1). Arrows indicate how patterns refine or complement each other,An annotated roadmap

summarizes the rationale for
using each pattern

and annotations on the arrows summarize the rationale for choosing to ap-
ply a particular pattern in the context of the pattern or patterns that precede
it. The rationale is given as a major force that the pattern helps resolve.

Maintainability is a driving force for many of the patterns:TRAN-
SITION TABLE (5), CENTRAL DISPATCHER (10), SEPARATE CONTENT

FROM PRESENTATION(19), DATA SOURCE ADAPTER (33), andCHAIN

OF APPLICATIONS(33). Other patterns are motivated by security, and pri-

2

Patterns for Web Applications

Transition Table

Central Dispatcher
Separate Content
from Presentation

Session

Access Controller

Data Source
Adapter

Chain of
Applications

Expose Application
as Service

Offload Work to
the Client

maintainability

maintainability
maintainability

identity management

maintainability
maintainability

performance

Unique Id

keep sessions private

Wrapper

extract data from web site
allow programatic access

security

Continuation

embed next action

Encapsulation

Security and Privacy Performance

Maintainability

Figure 1: Roadmap to the patterns in this language

vacy concerns:ACCESS CONTROLLER(33), SESSION(24), andUNIQUE

ID (29). Still other patterns focus on encapsulation:CONTINUATION (14),
WRAPPER (33), andEXPOSE APPLICATION AS SERVICE(33). Finally,
performance is addressed byOFFLOAD WORK TO CLIENT(30).

Here is the suggested order of applying these patterns. You begin theSuggested order of applying
the patternsdesign of your web application by defining the flow of interaction with the

user in aTRANSITION TABLE (5). The flow of interaction is expressed
in terms of the pages presented to the user, and the actions the user can
perform on them. You then define how the application responds to user ac-

3

tions within aCENTRAL DISPATCHER(10). If you need to support multiple
output formats, useSEPARATE CONTENT FROM PRESENTATION(19).

Most web applications will need to track user profiles, and session in-
formation —SESSION(24). DATA SOURCE ADAPTER(33) describes how
your application can interact with external data sources (databases, and
web sites). While advanced security techniques are outside the scope of
this paper, basic protection of web site assets, as well as user privacy can
be achieved usingACCESS CONTROLLER(33), andUNIQUE ID (29).

Eventually, you will find it convenient to separate your web application
into multiple subapplications that can be composed to form new applica-
tions. CHAIN OF APPLICATIONS (33) describes the general approach, and
EXPOSE APPLICATION AS SERVICE(33) describes a particular instance
using web services. For reasons of performance and responsiveness, you
may also be wanting toOFFLOAD WORK TO CLIENT(30).

We will illustrate these patterns with a running code example, an ap-A running example
illustrates the patterns:
BookFinder.com

plication for comparing the prices of books at online stores. This example
will be gradually introduced with each pattern. We also show excerpts of
the implemention in Perl, but try to stay away from its idiosyncracies which
would make porting to another environment (PHP, Java) difficult.

A final note on the format used to document the patterns. The patterns
are described using the Alexandrian form [1]. That is, for each pattern
we document its context, problem, problem details, solution, and resulting
context. Problem and solution are highlighted by emphasis. For each pat-
tern, a diagram summarizes the solution. The diagrams use the Use Case
Map notation to indicate both structure and behavior of a solution [4].

Because the pattern language is quite long, it will be published in sev-
eral parts. The following patterns will be presented in this paper:
TRANSITION TABLE (5), CENTRAL DISPATCHER (10), CONTINUA-
TION (14), SEPARATE CONTENT FROM PRESENTATION(19), SES-
SION (24), UNIQUE ID (29), andOFFLOAD WORK TO CLIENT (30).
Thumbnails for the remaining patterns are provided in an appendix.

4

Transition Table

You are designing a web application. The navigation design of your web
site is described by storyboards, a site map, and some wireframes for indi-
vidual pages. Storyboards document likely interaction scenarios, and giveStoryboards document likely

interaction scenariosa general sense of how the application will work [23]. However, they are
only rough sketches of how users will interact with the site.

A site map documents the organization of your site, and may indicateSite map shows the major
pages and their linksother important information such as pages that are dynamically generated,

and areas of the site that are access protected [23]. However, a site map
does not indicate every single link between pages. Links hat break the
hierarchy of the site map (such as shortcuts) are typically excluded.

5

Wireframes document important page elements such as search boxes,Wireframes provide details
on invididual pagesand the layout of specific pages [23]. They may also indicate links be-

tween pages at a level of detail not shown in the site map, such as links to
related pages, or backlinks. For instance, this wireframe shows details of
the search result page for a price comparison site.

Search Results

About Us Saved Results

Search

Bookstore Price Availability
Amazon.ca
Chapters.ca 39.95

31.96 2-4 weeks
24 hours

Add
Add

Go

Logo

➌

Go to about page➊
➋

➍

➎

➊
➋ Go to saved search results

➌ Search – next page is list of
books (by author, title, keyword),
or comparison table (by ISBN)

➍ Display comparison table with
bookstore, price, and availability

➎ Add search result to list of
saved search results

Author

You need to specify the detailed navigation logic without getting lost in
too many links, and without forgetting important navigation paths.

A smooth flow of interaction creates a positive user experience. Before
you design the details of your application logic you need to plan in what
sequence the pages of your application should follow each other.

While a site map documents the organization of your site, it only showsA site map only shows key
links between pagesthe key relationships that exist between its pages. A fully connected site

map would not meet the goal of documenting thetypical navigation paths
through a site. When making the transition to the design of your web ap-
plication, you need to make the navigation logic unambiguous.

Example: Consider the design of a site for comparing the prices ofBookFinder.com
books at different online stores. The user should be able to search for a
book by author, title, keyword, or ISBN. The result of a search should be a
table with the price for the book at each store and its availability. The user
should also be able to save the results of different searches on the site. Key

6

functions (about us, search, and saved results) should be accessible from
every page. The navigation design produces the site map above.

This site map is still ambiguous. It does not contain two important tran-
sitions: one from Comparison Table to Saved Results for adding a search
result, and another from Saved Results to itself for deleting a search result.
Note that these have not been forgotten, but were not included because they
would break the hierarchy. Such linkscanbe indicated in a wireframe as
shown in the example above, but are typically not shown in a site map.

Resolving ambiguities in the site map up front is essential to avoidUnspecified navigation
details may lead to
inconsistencies in the
implementation

inconsistencies in the implementation of the navigation logic. Detailed de-
sign decisions on navigation should not be left to the code that handles user
requests, because the same part of a sitemap may be interpreted differently
by different developers, as it is not fully specified.

Without a specification of the detailed navigation logic, the only docu-It can be difficult to extend
the code without a
specification of the detailed
navigation logic

mentation of how to get from the site map to the implemented navigation
logic would be in the code. Anyone implementing an extension would
have to find out about navigation design decisions from the code itself,
potentially a very time consuming and error prone process. On the other
hand, well-structured code can be more accurate than a specification, if theCode and specification must

be properly synchronizedspecification is not kept in synch with the actual implementation

This pattern suggests to define the acceptable succession of pages in
a set of transition rules. Each page corresponds to a user action. The left
side of each transition rule is the name of the user action. The right side
contains the set of user actions that can legally be performed next.

<action> => <next action 1> | <next action 2> | ...

Example: The following transition rules provide a detailed naviga-BookFinder.com
tion design for the price comparison site. From thestart page, the user
can perform these actions next:about , search , andmemo-view . The
about action causes information about the application to be displayed.
The search action will result in a list of matching books (booklist)
— from which the user has to select a book — for a query by anything
else than the ISBN, and a comparison table (compare) otherwise. The
memo-add andmemo-delete actions update the list of saved results.

7

start => menu

search => booklist? | compare? | menu

booklist => compare? | menu

compare => memo-add! | menu

memo => memo-delete! | menu

about => menu

menu == about? | search? | memo-view?

We also indicate whether an an action has side effects. Side-effect free
query actions are decorated with a?, and update actions with a! .

Therefore:

Define rules for the legal transitions between pages. Each page corre-
sponds to a user action, and a transition rule defines what actions can
be performed next.

8

Defining the transition rules up front ensures that the details of the navi-Consistent navigation logic
enhances maintainabilitygation logic left open by the information architecture are not up to inter-

pretation later in the design. This helps ensure that the navigation logic is
implemented consistently. Another benefit of this solution is that the tran-Transition rules can be used

to test the applicationsition rules can also be used to derive test cases for the web application.

Transition rules provide a point of reference for maintaining and ex-
tending the code, since the navigation logic is no longer only documentedSeparating the specification

from the code makes the
application easier to extend

in the code. However, this requires that changes to the navigation logic
during implementation must be reflected in the specification. A good way
of achieving this is to use the transition rules for testing, as suggested.

Also note that the application still needs to implement proper errorHowever, this does not
ensure requests are made in
the specified order

handling for out-of-order requests. Requests can be received in any order,
for example, if the request is submitted out of context from a bookmark,
using the browser’s back button, or due to caching.

The handling of user actions should be coded into the logic of aCEN-
TRAL DISPATCHER (10). The next actions should be encapsulated using
CONTINUATION (14). This pattern was inspired by the Tennis Shoppe case
study in [14], and its discussion of design issues in session management.

9

Central Dispatcher

You have defined the detailed navigation logic in aTRANSITION TABLE

(5). You now need to define how the application handles user requests.
Some pages may also require special pre- and postprocessing (such as log-
ging, authentication, and output transformation).

Unstructured evolution of your application, as code to handle new user
actions is added, often results in application logic that is hard to un-
derstand and extend. Specifically, it is a challenge to ensure that pre-
and postprocessing is done in a consistent manner.

One way of handling user requests is to write separate scripts for each typeSeparate scripts for each
type of request can result in
duplicated common code
and inconsistent navigation

of request, and rely on the web server to dispatch the request to the ap-
propriate script based on script names. While this solution is simple to
implement, it can result in duplicated code for common functions (such as
logging, authentication, and output transformation), and inconsistent im-
plementation of the navigation logic. The reason is that the scripts imple-
ment both the navigationandthe presentation logic.

Another option is to centralize request handling, and to separate nav-Centralized request
handling can enhance
maintainability at the cost of
added complexity

igation from presentation. In this approach, requests are processed by a
single script that dispatches the request to the appropriate request handler.
The request handlers can be implemented in the same script as the dis-
patcher, or in separate scripts, however, ones that are “invoked” by the dis-
patcher through redirection via the web server. A variation of same-script
implementation is to factor out the code for request handlers into command
objects (which can be implemented as separate packages/files in Perl).

In the centralized approach, the “entry” script acts as a central dis-Common pre- and
postprocesing also makes
the application more robust
against changes

patcher. Besides dispatching the request appropriately, it is also a place
for uniform pre- and postprocessing of the requests. Authentication is an
example of preprocessing. Here, a central dispatcher can go beyond the
simple capabilities offered by a web server. For instance, web servers pro-
vide a simple form of authentication to restrict access to specific areas of

10

your site, however, the user interface is rather primitive (a popup dialog),
and logins and passwords are submitted in cleartext. There is also no way
of remembering user passwords beyond a single client session.

The basic idea is to test for the type of action in a user request, and
then branch off to the appropriate part of the application. However, if the
handling code is intermingled with the dispatching code, this can result in
convoluted application logic. There must be a clear separation between
the part of the application that determines the action to handle, and the
handling of the request. The solution is to separate the dispatching block
from the request handlers in the structure of your code.

Example: Assuming that the requested user action is passed via a formBookFinder.com
parameter (action), the following code excerpt will dispatch the action
to the correct request handler for our price comparison site. Note that this
example also illustrates a simple case of preprocessing (logging).

my $q = new CGI;

my $action = $q->param("action") || "start";

pre-processing

log($q);

dispatching block

if ($action eq "start") {

start($q, ...);

} elsif ($action eq "about") {

about($q, ...);

11

} elsif ...

.

.

} else {

error("don’t understand");

}

All request handlers are passed a reference to the invocation context
$q. Other data (eg a session id) may have to be passed to the handlers as
well, as we combine this pattern with other patterns. Invokinglog() is
only a simple example of centralized pre- and postprocessing. More com-
plex examples are discussed inACCESS CONTROLLER(33), andSEPARATE

CONTENT FROM PRESENTATION(19), respectively.

Therefore:

Centralize the processing of user requests. Handle all user requests in
a single “entry” script that dispatches them to the appropriate handler.
Locate code for pre- and postprocessing (such as logging, authentica-
tion, and output transformation) in this central dispatcher.

12

Using a central dispatcher is more complex than using individual scriptsApplications with more
complex navigation logic
are easier to maintain using
a centralized dispatcher

for each user action. While the individual script approach is more familiar
to developers, there are certain advantages to be gained from using a cen-
tral dispatcher. Centralizing request handling makes an application with
more complex navigation logic easier to maintain. It cleanly decouples
navigation from presentation. The central dispatcher receives requests, and
dispatches them to the corresponding request handler.

Locating code for pre- and postprocessing in the central dispatcher en-Centralizing common code
ensures consistencysures consistency of common behavior across the different parts of your

application. For instance, when used in combination withACCESS CON-
TROLLER (33), this pattern enforces that all requests to access-restricted
areas of your site are checked for their admissability in asinglelocation.

This pattern is most often used in combination withCONTINUATION

(14), andSEPARATE CONTENT FROM PRESENTATION(19). The request
handler creates its reply page usingCONTINUATION (14) to embed context
information required to process each user action that can be performed
next. It is also responsible for rendering the page.SEPARATE CONTENT

FROM PRESENTATION(19) helps with generating the output in the required
format, in particular, if you need to support multiple types of browsers.

This pattern is widely used in the design of web applications. Exam-
ples of its use are documented in the Tennis Shoppe case study in [14], and
in the design of the original Wiki [9]. TheFRONT CONTROLLER(344) pat-
tern in [13] has the same intent. A single object handles all user requests,
and delegates them to the appropriate handler. Common code for logging,
authentication, or output transformation can be added through filters.

13

Continuation

As suggested byCENTRAL DISPATCHER(10), you use request handlers to
generate the next page in response to a user action.

Context information for processing a user request (an action, plus any
required parameters) needs to be passed from one page to the next.

When a request handler in theCENTRAL DISPATCHER (10) generates a
page in response to a user action, this page needs to contain all the infor-
mation required to perform the next action (or set of actions) identified in
the TRANSITION TABLE (5) for this action. The reason for this is that the
HTTP protocol underlying the communication between web clients and
the application is stateless. It does not preserve the application context
between requests. This is something you need to do yourself.

In designing a solution for this problem you need to consider a number
of trade-offs. On the one hand you want the solution to be simple. OftenDesign for simplicity
you can assume that for the duration of a short transaction (for example, the
registration of a new user) the pages of your application will be accessed
consecutively, that is, it is in synch with the designed navigation flow. Such
a solution does not require cookies, which the user may have disabled,
and will therefore work with all browser configurations. You also want toGoal is to encapsulate the

context of user actionsencapsulate the context so that adding code to embed the context for a new
action does not affect the code for existing actions.

On the other hand, relying on receiving a series of consecutive page
requests restricts the use ofCONTINUATION (14) to short interaction se- Restricted to a series of

consecutive pagesquences, and is brittle against any interruptions of the navigation flow, for
example, caused by the user hitting the back button. Context information
that is passed in unencrypted form can be read by a client, and thus beSending context data

unencrypted raises privacy
and security concerns

manipulated. (Allowing the user to read the data is a potential privacy con-
cern, while allowing them to manipulate the data raises security concerns.)

This pattern suggests to encode each next action and its parameters
within form parameters. Form parameters are generally associated with a

14

<form> tag, but it does not have to be that way. For example, they can
be embedded in an URL. Within a form, they can also be stored in hidden
fields, or embedded within theaction attribute of the form.

This suggests three approaches to encoding context information, each
with their advantages and disadvantages. First, the context can be encodedEncode the context of an

action in URL parametersin the parameters of an URL. Specifically, fixed parameters (such as the
language to be used) are often embedded into a page in this way. The
following URL encodes the context for theabout action:

About Us

This is a simple way of encoding a static context in a page. (At least, if
you are creating an HTML page; WML pages can also contain variables,
which you can use to embed dynamic context information in an URL.)
However, you should avoid creating complex URLs in this manner, as they
tend to be hard to read. Also, this approach is restricted to query actions.

Second, if more than one action can be taken, the context for eachEncode the context for each
action in a separate formaction can be encoded in a separate form within the same page. The form

below contains the context for processing amemo-add request. The action
is embedded into the formaction attribute. The action parameters (isbn ,
bookstore , etc.) are stored in hidden fields.

<form action="bookfinder.cgi?action=memo-add" method="POST">

<input type="hidden" name="isbn" value="0802117244">

<input type="hidden" name="bookstore" value="Chapters.ca">

<input type="hidden" name="price" value="39.95">

<input type="hidden" name="availability" value="24 hours">

<input type="submit" value="Save">

</form>

Using hidden fields is far more readable than embedding all form pa-
rameters into an URL. Some pieces of context information (for example,
the action name), however, can still be URL-encoded within theaction

attribute of the form. This will more clearly indicate which context param-
eters have static values, and which values are dynamically generated by
the application. Since “hidden” fields are, of course, quite visible to web

15

clients, fields with sensitive information should also be encrypted to ensure
that their content cannot be read, or manipulated.

Third, when using a single form, the different actions and their asso-Encode the context for each
action using decorated input
fields when using one form

ciated data can be distinguished by decorating the input field names with
unique identifiers. The following form for thememo-delete action illus-
trates the approach. Each search result on the Saved Results page is given
a unique name, reflected in the name of the corresponding submit button.

<form action="bookfinder.cgi" method="POST">

<table border="0">

<tr> ...

<td><input type="submit" name="memo-delete.0802117244"/></td>

</tr>

<tr> ...

<td><input type="submit" name="memo-delete.0393041530"/></td>

</tr>

</table>

</form>

This approach is often used when there is a single action (in this case,
memo-delete) that can be performed on a list of items. It will result in a
more compact representation of the page, since the preamble of the form
(action and method) is not repeated multiple times. On the other hand,
decorating input fields (including submit buttons) with unique identifiers
is more complex than using multipe forms with a parameter that identifies
the item each form applies to. If you want to ensure that the item id cannot
be manipulated, it should also be encrypted as suggested earlier.

Example: In response to thecompare action, the price comparison site BookFinder.com
extracts price and availability information for a given book from the sites
of online bookstores. From this it generates a price comparison table that
can be represented as a nested associative array like the following:

my $searchResult = {

title => "Lucky Pierre",

authors => [

"Robert Coover"

],

16

isbn => "0802117244",

quotes => [

{

bookstore => "Amazon.ca",

price => "31.96",

availability => "2-4 weeks"

},

{

bookstore => "Chapters.ca",

price => "39.95",

availability => "24 hours"

}

]

};

This code excerpt shows how the request handler generates a separate
form for each context in which thememo-add action can be invoked:

sub compare {

...

foreach $quote (@{$searchResult->{quotes}}) {

print <<END_OF_HTML;

<form method="POST" action="bookfinder.cgi?action=memo-add">

<input type="hidden" name="isbn" value="$searchResult->{isbn}">

<input type="hidden" name="bookstore" value="$quote->{bookstore}">

<input type="hidden" name="price" value="$quote->{price}">

<input type="hidden" name="availability" value="$quote->{availability}">

<input type="submit" value="Save">

</form>

END_OF_HTML

}

...

}

Therefore:

Pass context information for processing a user request by encoding
each next action and its parameters within form parameters. These
can be stored in either URLs, hidden fields, or submit buttons.

17

Due to the way it encapsulates context, a solution in which the whole con-Encapsulating context data
makes it easier to passtext of an action is passed within the returned page is easier to understand

than one where session information is managed at the server side. On
the other hand, such a solution may violate security and privacy concerns,Passing context may violate

security and privacysince the context information could be passed in cleartext, and the applica-
tion cannot be sure that the information has not been manipulated.

For longer transactions, relying only onCONTINUATION (14) can also Makes applications brittle
against interruptionsmake an application brittle against interruptions of the flow. In this case,

useSESSION(24) to store context information on the server. Only session
ids need to be encoded usingCONTINUATION (14), or, alternatively, client-
side cookies. Often both forms of encoding session ids are used together,
as we cannot always assume that clients have cookies enabled.

This approach is used by the Tennis Shoppe case study in [14]. The
ASYNCHRONOUS COMPLETION TOKEN(65) pattern [6] is similar in in-
tent. An asynchronous completion token is sent with a client request, and
identifies how the response from the server should be processed. Similarly,
a continuation provides context information for processing the next user
action, but as a reminder for the server, instead of the client.

18

Separate Content From Presentation

The request handlers inCENTRAL DISPATCHER (10) are responsible for
rendering the returned pages. The task is made more difficult since you
need to support multiple types of web clients with very different presenta-
tion requirements (eg the screen resolution of a high-end LCD display vs
that of a Internet TV), or accommodate frequent changes to the presenta-
tion that are independent of the functionality of your site.

By hardwiring the output of your application in the application logic,
you will be faced with rewriting large parts of the application when
changing its appearance, or duplicating code when adding support for
new types of web clients. You need to reduce the effort required to ac-
comodate changes to the target output format.

Separating the user interface from your application logic is accepted wis-
dom for conventional applications, but when it comes to writing web ap-
plications, it seems that we need to learn the drill all over again. There
appear to be several reasons for this. One is that the initial version of aSupport for multiple clients

is often an afterthoughtweb application is often written for a specific browser on a single platform
(eg Internet Explorer 5 on Windows 2000). Support for other types of web
clients is thus an afterthought, and usually results in code cloat because of
a duplication of application code, once for each output format.

Another reason is an unclear division of roles between web designersApplication and
presentation logic are often
intertwined

and application programmers. It should be possible to change the pre-
sentation of a web site independently from its functionality. However, in
practice, application and presentation logic are often intertwined. Changes
to the presentation may affect many parts of the application logic.

The separation between application and presentation logic can be ac-
complished in different ways. Probably the simplest approach is to useCascading Stylesheets
Cascading Stylesheets (CSS). Certain presentation decsisions such as the
fonts to use with particular HTML tags, text color, or margin settings, can

19

be separated from the page content by defining stylesheet rules. The con-
tent can now be marked up in a formatting-free subset of HTML.

However, stylesheet rules are limited to defining how your content
should be formatted, and cannot be used to reorganize it, filter it against
certain criteria (eg show only quotes below a certain price, and have them
sorted in ascending order), or to map it into another type of markup.

The next two approaches can deal with these limitations of CSS. Both
templates and XSLT stylesheets involve the definition of an intermediate
representation for the content of a web page, from which the desired output
format can be generated. Templates are written in the target output format,Templates
and contain placeholders where values from the application should be in-
serted by the template processor. Changes to a template can be made with-
out touching the code that populates the template with application data.

However, templates are still tightly coupled to the application code,
and the scripting language. Passing values between the application and the
template processor is often limited to key-value pairs. Nested data struc-
tures can only be expressed in a manner specific to the scripting language.
For example, HTML::Template supports hashes, arrays of hashes, etc.

A more general approach is for the application logic to produce itsXSLT
results as XML, and to use XSLT stylesheets to translate the data to the
desired output format. XSLT stylesheets can be processed on both server
and client. Server-side stylesheets are often preferable, as they allow more
powerful transformations without revealing the underlying data to the client.
When using client-side stylesheets, the data is sent to the client.

By encoding content as XML, we use XML as an interface betweenXML as an interface
between presentation and
application logic

presentation and application logic. The XML representation preserves the
meaning of the content in the markup. The tags used to mark up the content
reflect the names of underlying business objects and properties, database
tables and columns. The presentation logic now resides in stylesheets, and
can be changed without touching the application logic.

However, while XSLT stylesheets provide a more general way of map-
ping from the content to the target output format, processing stylesheets
is often more time-consuming than using templates. However, as XSLT
processing technology becomes more efficient, XSLT processors may well

20

soon be comparable in performance to template processors [10]. On the
other hand, an XML representation of the content has the additional advan-
tage that it is independent of the scripting language, and can be exchanged
with other applications — seeCHAIN OF APPLICATIONS(33).

Example: The internal representation of the price comparison tableBookFinder.com
introduced in the discussion of theCONTINUATION (14) pattern can be
mapped to XML in a straightforward manner. The hierarchical structure of
the nested associative array translates one-to-one into XML.

<searchResult>

<title>The Adventure of Lucky Pierre</title>

<authors>

<author>Robert Coover</author>

</authors>

<isbn>0802117244</isbn>

<quotes>

<quote>

<bookstore>Amazon.ca</bookstore>

<price>31.96</price>

<availability>2-4 weeks</availability>

</quote>

<quote>

<bookstore>Chapters.ca</bookstore>

<price>39.95</price>

<availability>24 hours</availability>

</quote>

</quotes>

</searchResult>

An XSLT stylesheet consists of templates that match against different
parts of the input document. For example, the following template defines
that a quote representing the price and availabilty for a specific store should
be shown as a row in a table. This stylesheet template generates the same
output that was hardcoded in the discussion ofCONTINUATION (14).

<xsl:template match="quote">

<tr>

<td><xsl:value-of select="store"/></td>

21

<td>$<xsl:value-of select="price"/></td>

<td><xsl:value-of select="availability"/></td>

<td>

<form action="bookfinder.cgi?action=memo-add" method="POST">

<input type="hidden" name="isbn" value="{../../isbn}"/>

<input type="hidden" name="bookstore" value="{store}"/>

<input type="hidden" name="price" value="{price}"/>

<input type="hidden" name="availability" value="{availability}"/>

<input type="submit" value="Save"/>

</form>

</td>

</tr>

</xsl:template>

Therefore:

Define an intermediate content representation as an interface between
presentation and application logic of your application. Use CSS, tem-
plates, or XSLT to convert the content to the target output format.

22

This pattern proposes three solutions to separating application and pre-
sentation logic, each with their own benefits and liabilities. In summary,
CSS supports a separation of content and formatting, but not changes to
the structure of the content. In particular, it is impossible, using CSS, to
map content from one markup format to another (eg from XML to WML).
Templates and XSLT support the generation ofanytarget output format.

The XML representation of the content can be mapped to the output
format required by the browser, even if it is structurally different, for ex-
ample, to WML for use on a mobile browsers, or to VoiceXML for use on
a voice browser. Although the specifics of mapping to these markup lan-
guages are different, the basic approach is the same as generating HTML
output. The main difference, not addressed here, is that mobile and voice
browsers each require other dialog models than desktop web browsers.

Defining an intermediate representation adds some initial overhead.
Choosing an internal data structure to be used with a template processor
makes the solution specific to the scripting language and the template pro-
cessor. A representation based on XML, on the other hand, is independent
of the scripting language, and can be processed by either CSS or XSLT.

Using an intermediate representation also adds some performance over-
head, which needs to be traded off for the flexibility when adding support
for new web clients. Between templates and XSLT, templates are consid-
ered to be faster to process. However, more efficient implementations of
XSLT processors have closed the performance gap to template processors.

The use of this pattern is documented in [7] as the basis of a portal
architecture, and in [5] as a strategy for supporting multiple devices in web
applications. Its application to decoupling the roles of application develop-
ers and web designers is extensively explored in [21]. Content management
frameworks such as Cocoon [2] and AxKit [3] directly support the pattern.

23

Session

You need to maintain the state of the web application between user re-
quests. However, passing context information between pages, as suggested
by CONTINUATION (14), is not always adequate. The user may have ar-
rived at a page by using the back button, or a bookmark so that their next
action is no longer in synch with the designed navigation flow.

Passing context information between server and client for each request
raises a number of issues. The context can be lost when the designed
navigation flow is interrupted. The ability of clients to read the context
data may also pose a considerable privacy and security risk.

A design that maintains application state by passing context informationPassing the full context for
each request is not robust, if
navigation is interrupted

between server and client for each request is not robust against interrup-
tions of the navigation flow. This can be as simple as users switching to an-
other web site while they are using your application, ending their browser
session, or as a result of using the back button. In each case, the context
information required to process the next user action is lost.

For example, users often don’t immediately proceed to the checkout
when ordering products online. They expect the contents of the shopping
cart to be stored for a certain duration even though they may interrupt their
shopping process temporarily to perform other tasks. (Amazon.com adver-
tise that they keep the content of a shopping cart for 90 days.)

You may also want to collect information about a user that persistsNeed to persist the context
across browser sessionsacross multiple uses of the same application. This can be information that

you gather implicitly from the user’s interaction with the application (eg
a history of recently viewed products), or data entered by the user to cus-
tomize the application (eg a list of stock symbols to monitor).

As these examples show, the state of the application is something thatContexts with different
lifespanswe will want to maintain over time intervals of different length. Some

information only needs to be kept for the short term, such as a user name

24

entered into a registration form. Such information does not need to persist
across browser sessions, and only needs to be passed between contiguous
forms. This can be achieved by usingCONTINUATION (14).

Some information we want to keep for the medium term (eg the con-
tents of a shopping cart), and some for the long term (eg a user profile).
Medium term coincides with a single, possibly interrupted, transaction (the
contents of a shopping cart are no longer relevant, once the user has com-
pleted the checkout stage), while long term implies that the information
should be accumulated over repeated interactions with the application.

Medium or long term application state that persists across browser ses-Need for cookies
sions can only be stored using client-side cookies. If the state informa-
tion is small (eg the last time the user accessed the application), it can be
stored directly in the cookie. In the general case, however, only an identi-
fier uniquely associated with the user session (session id) should be stored
in the cookie. The actual application state (session information) should be
stored at the server, either in a database or a file.

Storing context information thus involves a number of trade-offs. Pass-
ing the full context with each request and reply simplifies the design, but
may violate privacy and security concerns. Sensitive information such as
passwords, or credit card numbers should not be passed in the context. It
is visible to the user. Unauthorized users may also gain access to the infor-
mation due to browser caching. Finally, somebody monitoring the network
may capture the HTTP requests and replies, and extract the information.

You also need to be concerned about users manipulating the context. A
well-known example is that of a user who submits a forged request to add
more products to a shopping cartafter having paid. Also, interruptions of
the navigation flow cause the context to be lost. While in some cases this is
of no concern (you don’t really need to remember which article a user last
read on a news site), in others it does matter (you do need to remember the
contents of a user’s shopping cart beyond browser sessions).

This pattern suggests to split the context into a session id to be sharedSplit context into session id
and session datawith the client, and session data to be kept on the server. The session infor-

mation is stored in a database, using the session id as a database key. When
a user first accesses the application, no session id is sent with the request.

25

The server therefore creates a new session id, and a corresponding record
in the database. On subsequent requests, the client includes the session id,
and the server retrieves the session information from the database.

There are different approaches for storing the session id, and passing
it to the server. One approach is to embed the session id in an URL. TheEmbed the session id in an

URL or a hidden fieldapproach requires that the session id is added to all URLs in the content
of a reply. While some web servers already provide rewrite engines to
automate this task, their use is rather complex. Another restriction of this
approach is that it only works with a series of contiguous pages. Using
hidden fields to store the session id shares that same drawback.

Another approach is to store the session id in a cookie. Cookies areStore the session id in a
cookieautomatically sent by the browser to the server that set them. Thus they are

the only way that we can implement contexts that persist across browser
sessions. However, cookies also have their drawbacks. Users may choose
to disable cookies for privacy reasons, and cookies can be accidentally
deleted. In order to make the application as robust as possible, you may
thus want to opt to combine both solutions by encoding the session id in a
form parameter, and storing the session id in a cookie.

In both approaches, the session id should be encrypted to ensure thatEncrypt the session id
it cannot be manipulated, whereby one user could “hijack” the session of
another by guessing the session id. This involves computing a tamper-
proof hash of the session id — seeUNIQUE ID (29) for more details.

Another consideration is that a session should be terminated after aTimeout sessions on
inactivitycertain amount of inactivity, and the session id become invalid. This avoids

that a session is kept open indefinitely, if the connection is prematurely
closed. If the site is access controlled, this also ensures that the application
is still used by the authenticated user, and not by somebody else.

Example: The price comparison site allows the user to save compari-
son results from multiple searches. This information needs to persist across
browser sessions. We thus decide to use sessions, and store the saved re-
sults in the session information. In the code below, the functiongetSid()

checks for the cookie namedsid , and generates a new session id if neces-
sary. We then return a new cookie to the client with an updated expiration
date of 30 days from the current date.

26

my $q = new CGI;

my $action = $q->param("action") || "start";

my $sid = getSid($q);

my $cookie = $q->cookie(-name => "sid", -value => $sid,

-expires => "+30d");

print $q->header(-cookie => $cookie, ...);

if ($action eq "start") {

start($q, $sid, ...);

} elsif ($action eq "about") {

about($q, $sid, ...);

} elsif ...

.

.

} else {

error("don’t understand");

}

sub getSid {

my $q = shift;

my $sid = $q->cookie("sid");

unless ($sid) { $sid = newSid(); }

return $sid;

}

Therefore:

For maintaining medium or long term context, or if your site uses ses-
sions to restrict access, store a session id at the client, and the asso-
ciated session information at the server. The session information is
stored in a database, using the session id as a database key.

27

Storing session information on the server rather than embedding it in a web
page has several benefits. One is that he solution is more robust against
interruptions of the navigation flow. However, out-of-order requests still
need to be handled appropriately. UsingDIRECTED SESSION[16] you can
enforce that users visit the pages of your site in a certain order.

Also, keeping the session information on the server ensures the privacy
of sensitive information. However, the input provided by a client still needs
to be validated. Otherwise input can include embedded scripts that end up
tricking other users of the application into releasing potentially sensitive
information (cross-site attack). One pattern to use for validating input from
an untrusted client isCLIENT INPUT FILTER [16].

The encryption of session ids is discussed inUNIQUE ID (29). The use
of sessions to control access to web sites is further explored inACCESS

CONTROLLER (33). The use of this pattern has been documented in the
TennisShoppe case study [14], and in Karkkhainen’s tutorial [15]. Two
related patterns that discuss HTTP session handling areAUTHENTICATED

SESSION [16], andFRONT DOOR(17) [19].

28

Unique Id

You are usingSESSION(24) to maintain the state of your web application
between user requests. You need to encrypt session ids to ensure that they
cannot be manipulated, preventing users from “hijacking” other sessions.

If session ids are sent in unencrypted form, users can gain access to
another user’s session (session stealing). You need a way of ensuring
that a session id has not been tempered with.

TBD

Therefore:

Create sufficiently unique session ids using a cryptographic hash (eg
MD5) to ensure that sessions ids cannot be easily guessed. The hash
should include some identification of the request source (eg source ad-
dress, source port, or user agent) for validating the session id.

TBD

29

Offload Work to Client

You want to provide immediate feedback to the user for certain functions
without the delay caused by requesting a new page from the server.

In the standard thin client approach, forms simply accept input and
pass it to the server for processing. Validation requires a roundtrip to
the server. You would like to make the application more responsive.

TBD

Therefore:

Offload functions such as input validation, or change propagation to
client-side scripts. You still need to validate the input at the server, but
the validation logic no longer needs to provide user feedback.

The solution suggested by this pattern is to provide feedback to the client
without actually submitting the data to the server. However, the server-
side application still needs to validate that the data is correct, regardless of
what the client code does. On the other hand, the application logic will be
simpler, because it does not need to give sophisticated error messages.

Conallen [8] documents a similar pattern calledTHICK CLIENT.

30

Acknowledgements

Thanks to my shepherd Peter Sommerlad for his fruitful feedback.

References

[1] Alexander, C., A Pattern Language, Oxford University Press, 1977

[2] Apache Software Foundation, Cocoon,cocoon.apache.org/2.0, last
accessed in May 2003

[3] Apache Software Foundation, AxKit,axkit.org, last accessed in May
2003

[4] Buhr, R., Use Case Maps as Architectural Entities for Complex Sys-
tems, IEEE Transactions on Software Engineering, 1131-1155, 1998

[5] Burke, E., Java and XSLT, O’Reilly, 2001

[6] Buschmann, F., and Henney, K., A Distributed Computing Pattern
Language, European Conference on Pattern Languages of Program-
ming (EuroPLoP), 2002

[7] Carlson, D., Modeling XML Applications Using UML: Practical e-
Business Applications, Addison-Wesley, 2001

[8] Conallen, J., Building Web Applications with UML, Addison-
Wesley, 2003

[9] Cunningham, W., Wiki in HyperPerl,c2.com/cgi/hp?WikiInHyper
Perl, 1995

[10] Daum, B., and Mertens, U., System Architecture with XML, Morgan
Kaufmann, 2003

[11] Dougherty, D., LAMP: The Open Source Platform, O’Reilly,
www.onlamp.com, 2001

31

[12] Fernandez, E., Liu, Y., Pan, R., Patterns for Internet Shops, Confer-
ence on Pattern Languages of Programming (PLoP), 2001

[13] Fowler, M., Patterns of Enterprise Application Architecture,
Addison-Wesley, 2003

[14] Guelich, S., Gundavaram, S., and Birznicks, G., CGI Programming
with Perl, O’Reilly, 2000

[15] Kärkkäinen, S., Unix Web Application Architectures,
http://webapparch.sourceforge.net/#23, 2000

[16] Kienzle, D., Elder, M., et al, Security Patterns Repository, Networks
Associate Technologi,http://www.securitypatterns.com, 2002

[17] Lyardet, F., and Rossi, G., Patterns for Dynamic Websites, Confer-
ence on Pattern Languages of Programming (PLoP), 1998

[18] Rossi, G., Lyardet, F., and Schwabe, D., Patterns for e-Commerce
Applications, European Conference on Pattern Languages of Pro-
gramming (EuroPLoP), 2000

[19] Sommerlad, P., Reverse Proxy Patterns, European Conference on Pat-
tern Languages of Programming (EuroPLoP), 2003

[20] van Duyne, D., Landay, J., and Hong, J., The Design of Sites: Pat-
terns, Principles, and Processes for Crafting a Customer-Centered
Web Experience, Addison-Wesley. 2003

[21] Wallace, D., Ragget, I., and Aufgang, J., Extreme Programming for
Web Projects, The XP Series, Addison-Wesley, 2003

[22] Welie, M., Interaction Design Patterns,www.welie.com/patterns/
index.html, last accessed June 2003

[23] Wodtke, C., Information Architecture: Blueprints for the Web, New
Riders, 2003

32

Appendix: Pattern Thumbnails

DATA SOURCE ADAPTER

Create a uniform interface for accessing data sources of the same type.
Access a data source only through this interface. Changes to how the data
source’s implements the interface will not impact the code that accesses it.

WRAPPER

When extracting data from a web site, augment the data with metadata that
indicates not only the type of each data element, but also its relationship to
other elements. The added verbosity results in a processing overhead, but
leads to a more reusable and extensible data representation.

ACCESS CONTROLLER

If you need to restrict access to some areas of your web site, authenticate
the user in the central dispatcher. This ensures that authentication is imple-
mented consistently, and eliminates potential “loopholes” allowing access
to your application by other users than authenticated ones.

CHAIN OF APPLICATIONS

Instead of creating a complex application consider building smaller, more
manageable applications that can be chained together in a pipe-and-filter
fashion to provide the same functionality in a more flexible manner.

EXPOSE APPLICATION AS SERVICE

Factor out reusable functionality as a web service. This enables direct
integration with other applications. Using this web service as input to your
own application you can continue to provide a browser-based interface.

33

