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Abstract. This article demonstrates how the User Requirements Notation (URN) 
can be used to model business processes. URN combines goals and scenarios in 
order to help capture and reason about user requirements prior to detailed design. 
In terms of application areas, this emerging standard targets reactive systems in 
general, with a particular focus on telecommunications systems and services. This 
article argues that the URN can also be applied to business process modeling. To 
this end, it illustrates the notation, its use, and its benefits with a supply chain 
management case study. It then briefly compares this approach to related model-
ing approaches, namely, use case-driven design, service-oriented architecture 
analysis, and conceptual value modeling. The authors hope that a URN-based ap-
proach will provide usable and useful tools to assist researchers and practitioners 
with the modeling, analysis, integration, and evolution of existing and emerging 
business processes. 
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INTRODUCTION 

Business process modeling (BPM) is a structured method for describing and analyzing oppor-
tunities of improving the business objectives of stakeholders, including providers and cus-
tomers. BPM usually involves identifying the roles of users involved in the process, and the 
definition of activities (often described as workflows or services) that contribute to the satis-
faction of well-defined business goals. Approaches for BPM are business-centric rather than 
technology-centric, although connections to designs and implementations (for example, via 
mappings to workflow engines or Web services) are also desirable.  

BPM approaches need to address the well-known “W5 questions”: Why do this activity? 
What should this activity be precisely? Who is involved in this activity? Where and when 
should this activity be performed? Additionally, a business process model should enable 
ways of (formally) analyzing the processes and goal satisfaction. Finally, business process 
models should be understandable to various stakeholders, including customers. 

Several years ago, the standardization sector of the International Telecommunications 
Union initiated work towards the creation of a User Requirements Notation (URN) in the 
Z.150 series of Recommendations (ITU-T, 2003). The purpose of URN is to support, prior to 



detailed design, the modeling and analysis of user requirements in the form of goals and sce-
narios, in a formal way. URN is generally suitable for describing most types of reactive and 
distributed systems, with a particular focus on telecommunications systems and services. The 
applications range from goal modeling and requirements description to high-level design. An 
overview of URN with a tutorial example from the wireless communication domain is pre-
sented in (Amyot, 2003). Annex A also includes a summary of the notation. 

URN has concepts for the specification of behavior, structure, goals, and non-functional 
requirements, which are all relevant for business process modeling. URN is in fact composed 
of two complementary notations, which build on previous work. The first one is GRL, the 
Goal-oriented Requirement Language (URN Focus Group, 2003a). For the last decade, goal-
oriented modeling has been a very active field in the requirements engineering community 
(Yu and Mylopoulos, 1998). One well-established language is the NFR (Non-Functional Re-
quirements) framework, published in (Chung et al., 2000). GRL includes some of the most 
interesting concepts found in the NFR framework and complements them with agent model-
ing concepts from the i* framework (Yu, 1997). GRL captures business or system goals, al-
ternative means of achieving goals, and the rationale for goals and alternatives. The notation 
is applicable to non-functional as well as functional requirements. 

The second part of URN is the Use Case Map (UCM) notation, described in (URN Focus 
Group, 2003b). The UCM notation was first defined by Buhr and his colleagues (Buhr and 
Casselman, 1996; Buhr, 1998) to depict emerging behavioral scenarios during the high-level 
design of distributed object-oriented reactive systems. It was later considered appropriate as a 
notation for describing operational requirements and services. A UCM model depicts scenar-
ios as causal flows of responsibilities that can be superimposed on underlying structures of 
components. UCM responsibilities are scenario activities representing something to be per-
formed (operation, action, task, function, etc.). Responsibilities can potentially be allocated to 
components, which are generic enough to represent software entities (e.g., objects, processes, 
databases, or servers) as well as non-software entities (e.g., actors or hardware resources). 

Through an illustrative example, we will argue that URN presents suitable and useful fea-
tures for modeling and analyzing business processes, and that it satisfies the goals of a BPM 
language. Our example is based on a WS-I (Web Services Interoperability) case study (WS-I, 
2003a). This document describes usage scenarios defining the use of Web services in struc-
tured interactions and identifying basic interoperability requirements. It is sufficiently rich in 
order to exercise the various features of URN, but, at the same time, it is a simplified model 
of a supply chain management system which can be understood in its entirety. 

In this article, we first give an overview of the supply chain management case study as 
well as of the corresponding UCM model we constructed. Then, we discuss how URN mod-
els can be used to analyze architectural changes. Service provisioning relationships for map-
ping the business process model to Web services are then explored, before looking at paths to 
detailed service design and validation. We finally discuss related work and present our con-
clusions. 

SUPPLY CHAIN MANAGEMENT: OVERVIEW AND UCM MODEL 

In this section we describe how a UCM model can be constructed based on given use cases. 
We first give an overview of the high-level requirements, followed by a subsection for each 
use case. It should be noted that we are not mapping each use case to a separate map in the 
UCM model. Instead, we create a single, so-called root map that incorporates the other maps 
through a hierarchical abstraction mechanism. The UCM model presented here was created 
with the UCMNAV tool (UCM User Group, 2003). 



Overview of High-Level Requirements 

The WS-I case study (WS-I, 2003a) provides a high-level definition of a supply chain man-
agement system for consumer electronic goods. The requirements are specified in the form of 
a use case model integrating high-level functional requirements, a set of simplifying assump-
tions, and a set of use cases and activity diagrams. Non-functional requirements of the nature 
considered by URN are not specified.  

There are five high-level functional requirements in this system:  
 

— Retailer offers consumer electronic goods to Consumers. 
— Retailer needs to manage stock levels in Warehouses. 
— Retailer must restock a good from the respective Manufacturer’s inventory, if its stock 

level falls below a certain threshold. 
— Manufacturer must execute a production run to build the finished goods, if a good is not in 

stock. (Ordering from suppliers is not modeled). 
— Use cases contain logging calls to a MonitoringSystem to monitor services from a single 

monitoring service. 
 
These requirements already explicitly specify a set of five actors (in sans serif). We there-

fore take these actors as given, although we can still reason about whether some of those ac-
tors can be made internal actors (e.g., the warehouses could be considered a part of the re-
tailer).  However, in a typical application of URN, one of the tasks would be to identify this 
set of actors from informal requirements or from the UCM model, i.e., by considering how 
the responsibilities we have discovered should be allocated to components.  

This system is interesting because it incorporates features of B2C (e.g., between retailer 
and the consumers) and B2B (e.g., between the retailer and the manufacturer). These two 
business models also imply different communication needs (e.g., asynchronous communica-
tion in B2B vs. typically synchronous communication in B2C). 

The WS-I case study specifies eight use cases, and we will map six of them to URN: 
#1) Purchase Goods, #2) Source Goods, #3) Replenish Stock, #4) Supply Finished Goods, 
#5) Manufacture Finished Goods, and #7) Log Events. The Run and Configure Demo use 
case (#6, not mapped) addresses one of the goals of the WS-I case study, namely, to demon-
strate the interoperability of different vendors’ Web services implementations. However, our 
objective here is to model the business process in a representative supply chain management 
system, and the demonstration aspects are outside of our scope. The View Events use case 
(#8, not mapped) describes a management functionality that has been removed for space rea-
son. 

Use Case 1: Purchase Goods 

This use case gives a high-level overview of the business process as a whole, which includes 
submitting and fulfilling orders. This corresponds to the root UCM shown in Fig. 1. A con-
sumer visiting the retailer Web site expresses her intent to purchase goods by submitting an 
order. The retailer system replies by fulfilling the order. There are two possible outcomes: 
RejectOrder, and ShipmentConfirmed. The [NoSuchProductOrCannotBeShipped] path is taken 
if any of the products in the order do not exist (in this case the whole order is rejected), or 
none of the items can be shipped. In the [OrderSuccessful] path, a shipping confirmation is 
returned with a list of items shipped, indicating the quantity shipped for each. 



Fig. 1. BusinessProcess root map. 

 
In the UCM notation (see Fig. 19), scenarios are initiated at start points, represented as 

filled circles, and terminate at end points, shown as bars. Paths show the causal relationships 
between start and end points. Generic components are shown as rectangles, and they are re-
sponsible for the various activities (called responsibilities and indicated by X’s on a path) 
allocated to them. Labels for guarding conditions are shown between square brackets. Dia-
monds are used to represent stubs, which are containers for submaps called plug-ins. Stubs 
have named input and output segments (e.g., IN1 and OUT1 in Fig. 1) that are bound to start 
and end points in a plug-in, hence ensuring the continuation of a scenario from a parent map 
to a submap, and to the parent map again. 

The BusinessProcess root map contains two stubs, each of which with one submap: Sub-
mitOrder and FulfillOrder. In SubmitOrder the consumer navigates to the shopping site, and the 
system responds with the product catalog. The consumer then enters the order information 
and submits the order. This submap is shown in Fig. 2. In FulfillOrder, shown in Fig. 3, the 
retailer checks with its warehouses whether they can supply the items in the order (assuming 
the requested product exists), and asks them to ship the items. This use case incorporates the 
Source Goods use case, described in the next section.  

Consumer Retailer

PurchaseGoods IN1

RejectOrder

OUT1

IN1OUT1

OUT2

ShipmentConfirmed [OrderSuccessful]

[NoSuchProductOrCannotBeShipped]

FulfillOrderSubmitOrder

Fig. 2. SubmitOrder submap. 

Consumer Retailer

in1

out1

NavigateToSite PresentCatalog

EnterOrderInfo ReceiveOrder



Fig. 3. FulfillOrder submap. 

Retailer

in2

out3

OUT1

[OrderSuccessful]

GenListItemsShipped

ValidateOrder
[ValidOrder]

[NoSuchProduct]

out2

OUT2

[NoItemCanBeShipped]

IN1
SourceGoods

Use Case 2: Source Goods 

In this use case, the retailer tries to locate the ordered goods in its warehouses. If the re-
quested quantity of a given item is available, the retailer requests its shipment. Otherwise, it 
will record that the item could not be shipped. (As stated in the requirements, requests can 
only be fulfilled in full. Stocks from multiple warehouses cannot be combined.) The use case 
results in a list of the line items that each warehouse will ship, and accordingly adjusted in-
ventory levels. 

The submap corresponding to this use case is shown in Fig. 4. It is important to note that 
in the UCM model we do not need to map each use case separately, but we can integrate sev-
eral of them in the same diagram. The complexity of the resulting model can be reduced 
through hierarchical abstraction, as provided by stubs and plug-ins.  

Fig. 4. SourceGoods submap. 

The CheckAvailability submap in Fig. 5 shows the iteration through the list of items pre-
sented to an individual warehouse. Whenever an item is available, the ordered quantity is 
decremented from the warehouse inventory.  

Retailer
Warehouse

in1

out1

OUT1

[SomeItemsShipped]

[NoItemCanBeShipped]out2

PresentToFirstWH

PresentToNextWH

IN1

RecordShippedItems

[AllShippedOrNoMoreWH]

[NeedToCheckNextWH]

CheckAvailability



Fig. 5. CheckAvailability submap. 

In the next section, we will “attach” the UCM for the Replenish Stock use case (discussed 
in the next subsection) to this submap in order to express that stock replenishment is triggered 
asynchronously whenever the stock level for a particular item gets below a given threshold 
after decrementing the stock. We will also discuss an alternative approach and compare both 
approaches using architectural change analysis. 

Warehouse

in1 out1[Done]

[MoreItems]

[InsufficientStock]

GetNextItem DecrementStock

[SufficientStock]

Use Case 3: Replenish Stock 

The warehouse orders goods from manufacturers to replenish its own stock for a given prod-
uct. The submap for this use case is shown in Fig. 6. This map is interesting as it demon-
strates the use of parallelism with a UCM AND-fork. Upon receiving and validating the or-
der, the selected manufacturer immediately acknowledges the receipt of the order before it 
starts processing the request (first of two parallel branches, which ends in AckToWH). The 
reason for this is that the manufacturer may need to produce the requested goods before it can 
supply them, if it has insufficient inventory of the product (second parallel branch).  

 

Fig. 6. ReplenishStock submap. 

As soon as the manufacturer has shipped the finished product, it sends a shipping notice 
to the warehouse (Shipping). In response the warehouse updates its inventory, and acknowl-
edges the receipt of the shipping notice to the manufacturer (AckToManu). Again, an AND-
fork is used to indicate that these responsibilities are performed in parallel. 

Warehouse
Manufacturer

in1

Shipping

IN1

updateStock

BuildOrder

SelectManufacturer

PlaceOrder ValidateWHorder

AckToWH

[ValidOrder][InvalidOrder]reject

OUT1

AckToManu

SupplyFinishedGoods

Use Case 4: Supply Finished Goods 

The manufacturer receives a purchase order from a warehouse. The manufacturer may either 
be able to satisfy the request with the inventory at hand, or may need to manufacture the re-
quested goods. (As stated, these orders only contain a single line item.) The submap for this 
use case is shown in Fig. 7. It makes use of a dynamic stub to represent the optional step of 



manufacturing finished goods, with two plug-ins as detailed in the submaps for Manufacture-
FinishedGoods (Fig. 8 and Fig. 9).  

Fig. 7. SupplyFinishedGoods submap. 

From the context (the ReplenishStock submap), it is clear that we do not need to validate 
the order again at the beginning of this submap. However, if SupplyFinishedGoods was turned 
into a service at a later stage, we would also need to check the input, and reject purchase or-
ders as necessary. As a general principle, services should, therefore, not make any assump-
tions about the context in which they will be invoked, e.g., whether their input is correct. 

Manufacturer

in1 out1

CheckInventory

IN1

ShipOrder

OUT1

UpdateInventory

ManufactureFinishedGoods

Use Case 5: Manufacture Finished Goods 

For this use case, two plug-ins (used in the stub of Fig. 7) are required. The first one is a sim-
ple pass through, and is selected when the manufacturer holds sufficient inventory of the 
product (Fig. 8). With no component specified, this plug-in can be reused more easily in 
other stubs. The second plug-in describes how the finished goods are produced when the in-
ventory is insufficient. First, the required parts and quantities are determined, then the good 
is assembled, and the manufacturer’s inventory is updated (Fig. 9). The dynamic stub defines 
the condition under which each plug-in will be selected (also known as selection policy). 
These conditions will be formalized in the subsection presenting scenario definitions. 

Fig. 8. Default submap. 

out1in1

Fig. 9. ManufactureFinishedGoods submap. 

Note that the manufacturer has its own warehouse where it stores its inventory. The in-
ventory is considered insufficient when its level falls below a minimum threshold, or the 
quantity ordered is larger than the current level. A manufacturer is assumed to be able to pro-
duce any items requested, but not beyond a maximum inventory level. 

Manufacturer

Warehouse:M

in1 out1
DeterminePartsQuantities

ProduceGoods

UpdateInventory

Use Case 7: Log Events 

This use case is concerned with logging events relating to the execution of the other use 
cases. Events can be logged for any number of reasons, including debugging, maintenance, 
or non-repudiation. The corresponding UCM in found in Fig. 10. One shortcoming of any 



scenario-based notation is that logging the execution of a scenario is difficult to model. Of 
course, one could insert a LogEvents stub after each responsibility that we want to log, but 
that would make the diagrams clumsy. Logging is best modeled as an aspect of a responsibil-
ity that is executed whenever the responsibility is performed. Other examples of aspects are 
encryption (e.g., to model that messages are sent in encrypted form), and billing.  

Fig. 10. LogEvents submap. 

When Fig. 10 shows a submap, it needs to be interpreted as a plug-in that is (logically) in-
serted after each responsibility that we want to log in any of the other maps (LogRequest 
would be triggered in passing). In this use case, the event may actually not be logged, if the 
request is invalid or if the repository is unavailable.  

MonitoringSystem

LogRequest

EventLogged

LogRequestDenied

[RepositoryAvailable]

[RepositoryUnavailable]

[InvalidRequest]

RepoUnavailable

ValLogRequest
LogToRepository

[ValidRequest]

LogInvalidRequest

[RepositoryIsUnavailable]

[RepositoryIsAvaibable]

ARCHITECTURAL CHANGE ANALYSIS 

One of the benefits of URN is the ability to reason about architectural changes. In this sec-
tion, we will look at several examples where URN allows us to consider different types of 
trade-offs: functional, non-functional, and structural. 

Triggered vs. Periodic Replenishment of Stock 

In the presentation of the UCMs, we have not discussed under which circumstances the Re-
plenishStock scenario (Fig. 6) is executed. We consider two architectural alternatives: the 
scenario can be triggered as a result of decrementing the stock level in the CheckAvailability 
submap (Fig. 5), or it can be executed periodically. This is a functional trade-off, since the 
alternatives realize two functionally different ways of implementing the same requirement. 

To implement the first alternative, we can extend the CheckAvailability submap by “touch-
ing” it with a path leading to a Replenishment stub. This means that the path is to be executed 
asynchronously (i.e., in parallel) once the DecrementStock responsibility has been performed. 
By making Replenishment a dynamic stub, we can specify a selection policy to decide 
whether the stock needs to be replenished or not. The necessary changes are indicated in 
Fig. 11. 



Fig. 11. Alternative 1: Triggered replenishment. 

The architectural alternative to triggered replenishment is to replenish the stock periodi-
cally. This does not require any changes to CheckAvailability, and can be accomplished by a 
new root map for periodic replenishment shown in Fig. 12. This map contains a timer, repre-
sented with a clock symbol. ReplenishTimer is reset when the StopPeriodicRep scenario 
reaches it in time, otherwise this timer expires and the time-out path (squiggly line) is taken. 

Warehouse

in1 out1[Done]

[MoreItems]

GetNextItem DecrementStock

[SufficientStock]

UpdateStockOUT1

OUT2
NoStockUpdate

Replenishment

IN1

Fig. 12. Alternative 2: Periodic replenishment. 

The choice between these alternatives involves a trade-off between availability and main-
tainability and manageability. The GRL model in Fig. 13 provides details of the trade-off. It 
represents the two architectural alternatives as tasks (hexagons), and the three non-functional 
requirements as softgoals (clouds) to be achieved. In GRL, model elements can contribute to 
each other, and this is shown with arrows. Contributions can be positive or negative, as well 
as sufficient or insufficient (see the legend in Fig. 18). 

Our definitions of the non-functional requirements used in this model and subsequent 
ones are provided in Table 1. 

Warehouse

StartPeriodicRep PeriodicRepStoppedReplenishTimer

OUT1

StopPeriodicRep

IN1

OUT2

[NoUpdate]

[UpdateStock]

Replenishment

Table 1. Definition of non-functional requirements in the BPM context. 

NFR Definition 
Availability Ability to handle requests (e.g., in terms of the number of fulfilled orders) 
Maintainability Ability to evolve the system, and to fix errors 
Manageability Ability to monitor system performance and adjust parameters 
Performance Speed of performing business functions  
Scalability Ability to grow the system (e.g., number of users) 
Security Identification, secrecy, integrity, access control, and audit  

 
The model in Fig. 13 states that, using triggered replenishment, a warehouse can detect 

more quickly that inventory levels are getting low than when using periodic replenishment. 



Consequently, we will be able to keep up with higher than anticipated demand (up to the limit 
of the manufacturer’s capacity to produce, of course). When using periodic replenishment, 
we check inventory levels only when triggered by a timer, and the length of the period affects 
how soon we can respond to changes in demand beyond what we had anticipated when set-
ting the length of the period. 
 
 

 
Fig. 13. GRL model to compare between triggered and periodic replenishment. 

On the other hand, the first alternative leads to a more complex design, because we need 
to distribute the checks for inventory levels wherever the level can change. In the second al-
ternative, the checking logic is centralized, and we do not need know at what points in the 
business process the inventory level changes. Although setting the length of the period ap-
propriately makes the configuration of the system slightly more difficult, this disadvantage is 
more than offset by the greater ease with which the system can be managed in the second 
alternative, which allows us to monitor the inventory levels, and adjust the length of the pe-
riod as necessary.  

The reasons we just provided for giving a contribution link a particular weight can also be 
expressed directly in the diagram in the form of beliefs, shown as ellipses. For example, we 
have justified why Periodic Replenishment makes inventory levels Easy to Monitor in Fig. 13. 
Another stakeholder could have a different opinion on this contribution, and her belief could 
also be added to the model, hence documenting arguments and rationales until agreement is 
reached. It is often a judgment call on what level of detail to present in the diagram, as its 
main reason is to summarize the reasoning succinctly, and to enable trade-offs in a given con-
text. We therefore do not want to overload the diagram with additional annotations. 

Note that the decision regarding triggered or periodic replenishment is not done in the ab-
solute for either one of the alternatives. Which alternative is chosen depends on the context, 
i.e., the priorities of the user (which NFRs are most important). For instance, if our goal was a 
more maintainable design, periodic replenishment would be the preferred solution, albeit at 
lower availability. Diagrammatically, we can include the context in the GRL model via a goal 
such as “total satisfaction”, and indicate the importance of each existing top-level softgoal 
through an appropriate contribution link (e.g., make or some-). 

Local Logging vs. Using a Centralized Logging Service 

The requirements specified the use of a centralized logging service. However, whether to log 
locally or centrally is often a (non-functional) trade-off faced by an architect. There are bene-
fits and liabilities to either architecture, and they are summarized in Fig. 14. In this case, a 
trade-off is made between performance, on one hand, and manageability and maintainability, 



on the other. Logging, independently of how it is implemented, improves traceability, and, 
therefore, maintainability. However, local logging results in multiple logs, and filtering those 
logs for errors or unusual behavior will be harder than if a central logging service is used. 
Thus, on one hand, central logging leads to a more manageable system. On the other hand, 
however, central logging will lower performance because of the network overhead. 
  

 
Fig. 14.  GRL model to compare between local and central logging. 

In addition to the contributions of each architectural alternative, this diagram also shows 
the results of propagating the effect of choosing one of the alternatives. Evaluations of GRL 
graphs show the impact of qualitative decisions on high level softgoals. A tool like OME (Yu 
and Liu, 2000) can automatically propagate the labels assigned to leaf nodes of the graph. 
The GRL propagation algorithm discussed in (URN User Group, 2003a) and supported by 
OME is inspired from (Chung et al. 2000). Propagation is usually bottom-up and takes into 
consideration three parameters, whose notations are presented in Fig. 18: 
— Contributions and correlations (positive or negative, sufficient or not) 
— Degrees of satisfaction (satisfied or denied, weakly or fully) 
— Composition operators (AND, OR) 

 
Evaluating GRL models usually provides more complete answers than using simple bene-
fits/drawbacks tables or criteria evaluation matrices. One could also use numerical values and 
functions instead of qualitative (fuzzy) values, although the latter one are often more appro-
priate in the early development stages. 

As we can see in Fig. 14, choosing central logging positively affects manageability, and 
maintainability (weakly satisfied), and negatively affects performance (weakly denied). A 
similar model for the other alternative would lead to opposite results. In general, many com-
binations of tasks and softgoals can be evaluated, and the results are not always so clear. 

Modeling Warehouses as Internal Components 

Our final example illustrates a structural trade-off. In addition to allocating responsibilities to 
UCM components in different ways, we can also nest components within other components. 
Such nesting then implies that those components are tightly coupled and that the nested com-
ponent is not visible to top-level components. An example of this in the supply chain man-
agement case study is how we model warehouses. 

Both alternatives have already been illustrated previously. While the submap in Fig. 4 
models the retailer’s warehouses as top-level components, the manufacturer’s warehouse is 
modeled as a nested component in Fig. 9. The trade-offs between these alternatives are sum-



marized in Fig. 15. As shown, modeling warehouses as top-level actors trades off maintain-
ability, scalability, and availability for performance and manageability. 

 

 
Fig. 15. GRL model to compare between top-level and internal actors 

This alternative improves maintainability, because of its support for legacy solutions 
(e.g., warehouses developed within different business units), and autonomy, as it allows for 
the warehouse service to be provided by a third party (e.g., FedEx). If internalized, the ware-
houses would need to adopt a common operating platform and/or database schema. It in-
creases scalability as it allows the system’s capacity to grow by adding more warehouses. In 
the other alternative a single retailer database may quickly become a bottleneck. 

Availability is higher when representing warehouses as independent entities, since there is 
no single point of failure. If one of the warehouses fails, the others can continue operating. 
However, since all requests to warehouses will be remote, there is a messaging overhead that 
reduces performance. Manageability is also decreased since each warehouse needs to be con-
figured separately. As a side-effect (represented with dashed arrows called correlations) of 
improved maintainability, scalability, availability, and at the expense of reduced manageabil-
ity, the overall (minimized) cost is positively affected. 

Such a structural change also has an impact on the organization of the business. When 
warehouses are treated as top-level components, the functionality of the warehouse could be 
outsourced to a fulfillment partner such as FedEx or UPS. These companies have evolved the 
services they provide beyond just fulfillment and delivery services, but can also manage the 
warehouses of their customers, and even aggregate suppliers’ components in transit. The use 
of URN for reasoning about such organizational issues is further explored in (Weiss and 
Amyot, 2005). 

SERVICE PROVISIONING RELATIONSHIPS 

In this section we are concerned with deriving service provisioning relationships between 
components from the UCM model. The goal of this step is to map the business process model 
to a Web services architecture. We define a service as a collection of related operations im-
plemented by a component. The component that implements a service is known as service 
provider, and components that invoke the service as service users. An analysis of the UCM 



model provides us with potential operations which can then be grouped into services. Note 
that our definition of the term service abstracts from the issue of how a service is accessed, 
that is, network addresses, protocols, and data formats. As we refine service relationships 
into WSDL Web service definitions, these aspects need to be specified. 

Each service operation comprises a set of messages exchanged between a service user and 
a service provider. In line with the WSDL specification (W3C, 2001) we differentiate be-
tween one-way, request-response, solicit-response, and notification operations. Both one-way 
and notification operations consist of a single message sent, respectively, by the service user, 
and the service provider. In the case of request-response and solicit-response operations, two 
correlated messages are exchanged, the difference being who initiates the dialog (the service 
user in the former, and the service provider in the latter).  

In the process of identifying potential service operations we therefore look for causal 
paths in the UCM model that cut across component boundaries. The path segments consisting 
of the last responsibility or condition along those paths in the source component, and the first 
responsibility or condition in the destination component can be identified with a message. 
Their names can be concatenated to serve as a unique handle for the message. This informa-
tion can be automatically extracted from a UCM by using the UCMNAV tool. The next sec-
tion provides further details on extracting messages from a UCM model. 

However, whether responsibilities or conditions will actually be exposed as service opera-
tions also depends on other considerations. In general, only some of the interactions at the 
business process level will result in Web service interactions. In our case, since we are work-
ing here within the scope of the WS-I case study, our target will be a service-oriented imple-
mentation. It should also be pointed out that one important feature of UCM models is that the 
mapping from a UCM model to an implementation architecture is not one-to-one, and that the 
same causal dependency between components can be realized using multiple protocols and 
communication mechanisms, or not map into implementation-level concepts at all. In this 
section, we are suggesting one way in which UCM models can be mapped to Web service 
interactions. The process and template described below are intended to provide the founda-
tion for an automatic mapping from UCM models into Web services.  

Having identified path segments that represent messages between components, we need 
to decide which service operations they belong to. At present this decision needs to be made 
manually, although one could expect to use pattern matching to classify messages into opera-
tions given the structure of the UCM model. Subsequently, we need to group those operations 
into services. As a simple illustration of this process, consider the interactions between con-
sumer and retailer. 

From the UCM model, we can extract the following path segments that correspond to 
messages exchanged between the consumer and retailer components:  

 
c.NavigateToSite-r.PresentCatalog (Navigate) 
r.PresentCatalog-c.EnterOrderInfo (Catalog) 
c.EnterOrderInfo-r.ReceiveOrder (OrderInfo) 
r.OrderSuccessful-c.ShipmentConfirmed (ShipmentConfirmed) 
r.NoSuchProduct-c.RejectOrder (RejectOrder) 
r.NoItemCanBeShipped-c.RejectOrder (RejectOrder) 
 
To ensure uniqueness, we prefix the name of the responsibility or condition with the cor-

responding component identifier (c, r, m, or w). In parenthesis we also show the name that is 
manually assigned to the message during detailed service design (to be discussed in the next 
section) in order to provide traceability to the MSC model. The message exchange above can 
be interpreted as two request-response operations, both provided by the retailer component. 
We can give them more expressive names such as getCatalog() and submitOrder(). Note that 
submitOrder() has two possible responses: either the order is rejected, or shipment is con-
firmed. 



Our approach suggests grouping related operations into services. In some cases, a compo-
nent may therefore offer multiple services if they bundle different functionalities. In the ex-
ample, however, getCatalog() and submitOrder() are both operations related to the ordering 
process, and we decide to group them into a single Retailer service. In this example, the name 
of the service is simply derived from the name of the component that provides it. 

We propose the following template for documenting the assignment of operations to ser-
vices. For a given service user and given service provider, we list the messages exchanged, 
and label them according to their role in an operation (request, response, solicitation, or noti-
fication). Finally, we group the messages into operations. The interaction between the con-
sumer and the retailer actors can now be documented as follows: 

 
Consumer-Retailer 
Operation: getCatalog() 
      Request: c.NavigateToSite-r.PresentCatalog (Navigate) 
      Response: r.PresentCatalog-c.EnterOrderInfo (Catalog) 
Operation: submitOrder() 
      Request: c.EnterOrderInfo-r.ReceiveOrder (OrderInfo) 
      Response: r.OrderSuccessful-c.ShipmentConfirmed (ShipmentConfirmed) 
      OR Response: r.NoSuchProduct-c.RejectOrder (RejectOrder) 
      OR Response: r.NoItemCanBeShipped-c.RejectOrder (RejectOrder) 
 
Similarly, a request-response operation shipGoods() belonging to a Warehouse service can 

be derived from the interaction between the retailer and its warehouses. However, the interac-
tion between warehouses and manufacturers leads to a different type of operation. The mes-
sages exchanged between a warehouse and a manufacturer are as follows: 

 
Warehouse-Manufacturer 
Operation: submitPurchaseOrder() 
      Request: w.PlaceOrder-m.ValidateWHorder (PlaceOrder) 
      Response: m.ValidOrder-w.AckToWH (Ack) 
      OR Response: m.InvalidOrder-w.reject (reject) 
 
Manufacturer-Warehouse 
Operation: submitShippingNotice() 
      Notification: m.UpdateInventory-w.ShippingNotice (ShippedItems) 
 
The first message exchange can be mapped to a request-response operation in the Manu-

facturer service submitPurchaseOrder(). The reply is in fact a partial acknowledgement of the 
request, and the actual reply is sent with the next message. The second message exchange 
corresponds to a notification, resulting in a callback of the Warehouse service. We can, there-
fore, add a submitShippingNotice() operation to the Warehouse service. 

Finally, the interactions with the MonitoringSystem can be exposed as a Logging service. 
It provides the operations logEvent() and getEvents(). The service provisioning relationships 
between the components can be visualized as a UML deployment diagram (see Fig. 16). In 
this diagram we use a convention introduced by (Carlson, 2001) to show both service de-
ployment, as well as service invocations in a way similar to a collaboration diagram. 

 



Fig. 16. Service provisioning relationships. 

TOWARDS DETAILED SERVICE DESIGN AND VALIDATION 

The previous section already motivated the need for messages between components in the 
context of operations for Web services. This section presents a tool-supported technique, 
based on scenario definitions and a UCM path traversal algorithm, for automating part of the 
process of generating messages. This technique has application in the understanding, visuali-
zation, simulation, and analysis of UCM models, as well as the generation of design-level 
scenarios and test goals for validating designs and implementations. 

Scenario Definitions 

The UCM notation supports a very simple path data model that can be used to traverse paths 
in a deterministic way. Global Boolean control variables can be used to formalize conditions. 
Responsibilities can also modify the content of these variables with new values resulting 
from the evaluation of Boolean expressions.  

In our case study, several such variables are needed, and Annex B defines them. Using 
these variables, formal conditions can be attached to branching points in a model, i.e., to OR-



forks (for selecting alternative branches), dynamic stubs (for selection policies), and timers 
(to decide whether or not a timeout occurs).  

For instance, the selection policy of the ManufactureFinishedGoods dynamic stub in Fig. 7 
is: 

   SufficientInventory → Select plug-in Default 
   ¬SufficientInventory → Select plug-in ManufactureFinishedGoods 
 

For the OR-fork in the SourceGoods UCM (Fig. 4), the guarding conditions on the two 
branches are formalized as follows: 

   [NeedToCheckNextWH] = WarehouseLeft ∧ (¬ItemListEmpty) 
   [AllShippedOrNoMoreWH] = (¬WarehouseLeft) ∨ ItemListEmpty 
 

A UCM model may include several groups of scenario definitions. Each such definition con-
sists of initial values for the variables, a set of start points initially triggered, an optional post-
condition expected to be satisfied at the end of the execution of the scenario, and a descrip-
tion. Here are two examples (note that T means True and F means False):  

 
Scenario: PrimaryScenario 
Description: The warehouse has the desired item. 
Starting Point: PurchaseGoods (in map BusinessProcessRoot) 
Variable Initializations:   

ProductExists = T 
SufficientStock = T 
WarehouseLeft = F 
MoreItems = F 
ItemListEmpty = T 
StockStillSufficient = T 

 
Scenario: CheckButStocksSufficient 
Description: The periodic replenishment is checked but stocks are sufficient. 
Starting Point: StartPeriodicRep (in map PeriodicReplenishment) 
Variable Initializations:  

ReplenishTimer_timeout = T 
SufficientStock = T 

 
In our model, we created 20 such scenarios definitions categorized in 5 groups. Together, 
these scenarios cover all the paths from all the root maps and submaps used in our case study. 
The scenarios resulting from the above two definitions will be illustrated with Message Se-
quence Charts in the next subsection. 

Generation of Message Sequence Charts (MSCs) 

The use of scenario definitions for UCM analysis and transformations was pioneered by 
(Miga et al., 2001), who proposed a UCM path traversal analysis that took as input a UCM 
model and scenario definitions and produced as output a Message Sequence Chart (ITU-T, 
2004) for each scenario. This functionality was prototyped in UCMNAV. The same mecha-
nism was used to highlight the path traversed in the UCM model according to the scenario 
definitions, hence helping with the understanding of complex or lengthy individual scenarios. 
The algorithm was generalized in (URN Focus Group, 2003b), and then re-implemented in 
UCMNav, this time to generate the output of the traversal in XML (Amyot et al., 2003). In a 
nutshell, the new algorithm uses a depth-first traversal of the graph that captures the UCMs’ 



structure and generates scenarios where sequences and concurrency are preserved, but where 
alternatives are resolved using the Boolean variables. If conditions cannot be satisfied or 
evaluated, then the algorithm reports an error. Another tool, UCMEXPORTER (Amyot, Echi-
habi, and He, 2004), takes these scenarios in XML and converts them to Message Sequence 
Charts and UML sequence diagrams (OMG, 2003). 

MSCs give a linear view of scenarios that traverse multiple UCMs, a situation that occurs 
frequently when plug-in maps are used. They are composed of component instances, shown 
as vertical lines, and of messages, shown as arrows. Fig. 17(c) gives a brief summary of a 
subset of the notation, which includes actions, conditions, timers, and concurrent behavior. 
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Fig. 17. Two more MSC examples, illustrating typical MSC features. 

Fig. 17 provides two examples of MSCs automatically generated from the two scenarios 
defined in the previous section. UCMEXPORTER generates these MSCs in Z.120 textual form, 
which can then be rendered graphically by tools such as Tau (Telelogic, 2004). To preserve 
the semantics of UCMs and traceability to the original model, UCM components are shown 



as MSC instances, start and end points as messages, condition labels and selected plug-in 
names as conditions, and responsibilities as actions. 

In the first scenario (Fig. 17a), we can observe that a Navigate message shows up in the 
MSC while it is absent from the UCM model. This message is synthesized automatically by 
UCMEXPORTER in order to preserve the causal flow between a responsibility in the Consumer 
component and another responsibility in the Retailer component (see  Fig. 2). Message names 
between pairs of components are provided in a configuration file and can be refined by con-
crete message exchanges, e.g., in a way consistent with the message names used in the Web 
service operations defined in the previous section. Consequently, MSCs can be re-generated 
as the UCM model evolves, or when different architectures are being evaluated. 

Fig. 17(a) illustrates the primary scenario for the business process (Fig. 1) with triggered 
replenishment (Fig. 11). The linear nature of MSCs makes it easy to follow and inspect this 
scenario, which otherwise would require the stakeholders to flip back and forth through six 
different UCMs in order to get the same understanding. This scenario is also interesting be-
cause it preserves the concurrency specified at the UCM level (e.g., with AND-forks). The 
MSC in Fig. 17(b) describes a situation where a timer is used (shown in the PeriodicReplen-
ishment submap in Fig. 12). The ReplenishTimer is set when first traversed, times out, is set 
again in a second iteration of the looping UCM path, and is finally reset when StopPeriodi-
cRep occurs. 

The MSC notation is more interesting than UML 1.5 sequence diagrams because of its 
support for concurrency and timers. However, the new UML 2.0 sequence diagrams, being 
based on the MSC standard, now support the same concepts. Hence, generating UML 2.0 
sequence diagrams from UCMs is a valid alternative to generating MSCs. 

The generation of detailed scenarios from higher-level UCM descriptions respects the 
spirit of model-driven development. In OMG’s Model Driven Architecture (OMG, 2004), 
platform-independent models are refined into models containing platform-specific informa-
tion. Indeed, as seen in this section, platform-specific communication information can be 
added to the scenarios generated from a UCM model. 

It should also be noted that the MSCs generated here are comparable in content to the se-
quence diagrams found in (WS-I 2003b), with the addition of concurrency and timer informa-
tion. The MSCs are also defined at the same level of granularity and abstraction, they are 
traceable to the UCM model, and they are consistent with each other. These aspects cannot be 
taken for granted when sequence diagrams are created manually. 

Application to Validation 

Scenario definitions based on path control variables, together with path traversal algorithms, 
and transformations to other formalisms, contribute greatly to many validation activities: 
— The UCM model itself can be “simulated”. For instance, this section presented several 

scenario definitions (based on variables described in Appendix B) used to generate end-
to-end scenarios, that is, executions of the model in a given context. Scenario definitions 
can be seen at test cases that can be used to ensure nothing is broken as the UCM services 
or architecture evolve, in a way somewhat compatible with the test-development ap-
proach proposed by the agile development community (Beck, 2003). Errors are reported 
when the traversal stops (because of non-determinism, unsatisfied conditions, or a start 
point that is not triggered) or when scenario post-conditions are not met.  

— Different stakeholders can review, inspect, and validate individual MSC scenarios ex-
tracted from a UCM model, in order to create a shared understanding or reach agreement 
on issues identified in GRL models. MSCs provide a projection of a UCM model for a 
specific context (a scenario definition) whose existence can be motivated by a GRL 
model (Amyot, 2003). Additionally, an MSC provides a view to the UCM model that 



may be more familiar to stakeholders that are closer to the implementation of the system 
or that have previous knowledge of UML sequence diagrams. 

— Test goals can be generated from these scenarios. For instance, Amyot, Weiss, and 
Logrippo (2004) illustrate the benefits of using UCMNav to automate the generation of 
test goals from UCM models when compared to approaches based on testing patterns or 
transformations to formal executable specification languages. These test goals, whether 
represented as MSCs, in XML, or with some other format, can be refined into concrete 
test cases for the implementation or for the design, if specified in an executable formal-
ism. The traceable correspondence between the names of the messages used in the MSCs 
of the previous subsection and those used to implement the operation of the Web services 
improves the reusability of the scenarios in a testing context, e.g., for Web service testing. 

— Performance annotations can be added to UCM models in order to generate analyzable 
performance models in languages such as Layered Queueing Networks. Such a transfor-
mation was automated and integrated to UCMNAV by (Petriu et al., 2003). This approach 
has been successfully applied to several examples from on-line bookstores to video serv-
ers and telephony systems (Petriu and Woodside, 2002). Performance tradeoffs that are 
difficult to resolve qualitatively at the level of a GRL model can hence benefit from quan-
titative results (e.g., throughput, bottlenecks, service times and demands, resource utiliza-
tion) generated by these performance models. In our case study, although we have not 
done it here, one could derive performance models to determine the best value for the re-
plenishment period, or the messaging overhead of central logging, that is, models that al-
low us to substantiate the existing models (GRL, UCM) with greater level of detail and 
precision. 

RELATED WORK 

This section discusses related work, with a particular emphasis on use case-driven design, 
service-oriented architectures, and conceptual value modeling. 

Use-Case Driven Design 

Use cases can be supplemented or, to some extent, replaced by URN models. The use case 
approach has a number of well-known disadvantages that can be averted by using UCMs to 
model the early requirements of a business process. Using extends and includes relationships 
if often difficult, whereas the same functionality is achievable in a simpler way with UCM 
stubs and plug-ins. UCM models provide a more systematic way of modeling concurrent 
behavior, and analyzing the interaction of multiple scenarios. Use-case driven approaches 
rarely provide notions of modeling design goals and linking them to other design artifacts. 

The modeling exercise described in this article using URN to describe the WS-I example 
uncovered a number of inconsistencies, and redundancies in the use case model (WS-I 
2003a). These are due to a number of factors, but in particular to the lack of support for 
showing scenarios belonging to different use cases in the same model, and a lack of an ab-
straction mechanism similar to that provided by stubs and plug-ins. Activity diagrams, which 
lack the equivalent of dynamic stubs, 2D component layouts, and scenario definitions, tend to 
be less readable and harder to use than UCMs for documenting individual scenarios. 

Service-Oriented Architecture 

The Service-Oriented Architecture (SOA) approach proposed by (Endrei et al., 2004) aims to 
align services with business goals. In this approach, services are large-grained activities at 



the use-case level that a business exposes to be incorporated into other business processes. 
SOA aims to support many design activities, including domain decomposition, goal-service 
model creation, and subsystem analysis. During domain decomposition a value chain model 
of the business domain showing the main functional areas and their interaction is created. 
The functional areas are further decomposed into business processes, and business use cases.  

During goal-service model creation, high-level business goals are decomposed into 
lower-level subgoals that can be realized by services. This is done to ensure traceability be-
tween business needs and implementation using services. During subsystem analysis, busi-
ness use cases are refined into system use cases, which are then associated with subsystems. 
Components within each subsystem realize system use cases. For example, a business use 
case Purchase Goods could be refined into the system use cases Get Catalog and Submit Or-
der. Both would be realized by a RetailerService component.  

URN provides support for these three parts, as well as better guidance on what should do 
be done at each step, and better modeling of scenario interactions. 

Conceptual Value Modeling 

Conceptual value modeling or e3-value (Gordijn, 2002; Gordijn and Akkermanns, 2003) is an 
approach for precisely describing and evaluating innovative e-business ideas. It provides 
means to evaluate the feasibility of an e-business model focusing on the creation, exchange, 
and consumption of objects (i.e., the revenue streams) in a multi-actor network. Value mod-
els are different from business process models in that the former show how objects of eco-
nomic value are created and handled by actors, whereas the latter focus on how exchanges of 
value objects are put into operation from a business process perspective.  

e3-value is similar to our approach in terms of its use of scenarios to model causal flows. 
It also provides a means for performing value-based trade-offs. However, unlike in URN, 
value is mainly expressed in monetary terms; other non-functional goals cannot be modeled 
directly, but need to be mapped to how they generate revenues for an actor. On one hand, e3-
value is much more specific in scope than URN. On the other hand, we can think of e3-value 
as an intermediary view between general GRL models and operational UCM models. Both 
approaches could therefore be integrated for modeling e-commerce systems. 

Other Related Approaches  

The User Requirements Notation and similar languages have been exploited in various con-
texts, some of which are related to the one presented here:  
— UCMs are used by (de Bruin and van Vliet, 2001) for describing and selecting appropri-

ate architectures. An architecture generator produces a candidate software architecture 
based on feature-solution graphs (which could be expressed to some extent in GRL) con-
necting quality requirements and solutions (expressed as potential UCM plug-ins for a 
reference architecture). The architecture is then evaluated, mainly by inspection, against 
functional and non-functional requirements.  

— Both UCM and GRL are used by (Liu and Yu, 2003) to model information systems in a 
social context specified in terms of dependency relationships among agents and roles. 
Their approach includes an iterative process where the use of GRL and UCM is inter-
twined: scenarios refine solutions to goals (tasks), and the elaboration of scenarios can 
lead to the discovery of new goals. It is illustrated with a Web-based training system. 

— Many GRL concepts are formalized in the TROPOS agent-oriented methodology. (Lau and 
Mylopoulos, 2004) explore the use of TROPOS in the context of Web service design, with 
a greater emphasis on actors and their dependencies (also supported by GRL) than what 
was presented here. They provide a Customer Relationship Management system example. 



It is suggested to use the Agent-based Unified Modeling Language to refine the goal and 
actor models, especially with activity and sequence diagrams, prior to defining Web ser-
vices in WSDL. However, this step is not illustrated at all in their example. 

— (Bleistein et al., 2004) use GRL to link requirements for strategic-level e-business sys-
tems to business strategy, as well as to document patterns of best business practices. They 
explore goal modeling for providing traceability and alignment between strategic levels 
(business model and business strategy) and tactical and operational ones (business proc-
ess model and system requirements). This work is still preliminary, but it provides en-
couraging insights regarding the scalability of GRL for strategic business issues. 

— (Weiss and Esfandiari, 2004) use both GRL and UCMs to model Web services and their 
interactions. However, their focus is not on modeling business processes per se, but on 
detecting undesirable interactions among services. We see this work as complementary to 
ours. It could be used to discover architectural alternatives where they are not apparent, 
and to strategize about ways of restructuring a business process to meet business goals. 

CONCLUSIONS AND FUTURE WORK 

In this section, we summarize our contributions, and identify areas of future work. 

Contributions 

We have made a case for using URN as an approach for business process modeling, and il-
lustrated the approach and its benefits using a supply chain management case study. In the 
following, our goal is to evaluate the approach by reviewing how URN addresses the re-
quirements for a BPM approach identified in the introduction:  
— How does URN address the “W5 questions” (why, what, who, when, and where)? 
— How does it support the analysis of the business model? 
— How does it allow multiple stakeholders to participate in the modeling process?  

 
As described, URN comprises two notations: GRL for goal-oriented modeling, and UCM for 
modeling scenarios. Together, these notations help address the W5 questions: 
— Why do this activity? GRL models allow the analyst to link business or system goals to 

architectural alternatives, and thus to document the rationale for a particular activity. 
— What should this activity be precisely? Starting from high-level business goals, GRL sup-

ports their iterative refinement into high-level tasks. Further refinement of these tasks into 
concrete low-level responsibilities, plug-ins, or scenario definitions can be achieved via a 
UCM model. In particular, its hierarchical abstraction capability allows us to scale our 
models to large business processes. 

— Who is involved in this activity? A UCM model does not only provide a refinement of 
high-level tasks into low-level responsibilities, but can also capture the structure of the 
organization supporting the business process. Components can be defined for each role in 
the business process. Furthermore, component visibility can be restricted as required by 
nesting them. 

— Where and when should this activity be performed? A UCM model also allows us to de-
fine how responsibilities are allocated to components, as well as their temporal ordering 
via constructs for expressing sequence, choices, concurrency, and synchronization. 
 

Additionally, a business process model should enable ways of (formally) analyzing the proc-
esses and goal satisfaction. Analysis of the business process is supported in two ways. The 
level propagation mechanism in GRL lets us analyze the impact of architectural alternatives 
(e.g., centralized logging) on high-level goals (of both functional and non-functional nature), 



as illustrated in the section on architectural change analysis By capturing architectural rea-
soning in a GRL model, we can compare alternatives as they apply to a particular context. 
Unlike use cases, UCM models are not based on an informal textual representation, and can 
therefore also provide input to various validation activities such as testing and performance 
analysis. Thus, UCM provides mechanisms for ensuring the validity and traceability of the 
model, and supports more detailed analysis. 

Business process models should be understandable to various stakeholders, including cus-
tomers. With URN we can model a business process at different levels of formality support-
ing all development stages from early requirements to early design. A GRL model can de-
scribe “soft” aspects of a business process, e.g., high-level business goals such as customer 
satisfaction, and their refinement into operational goals (e.g., the number of orders handled 
successfully). The hierarchical abstraction mechanism of UCM models (via stubs and plug-
ins) allows us to hide lower-level details in defining a business process, while preserving a 
sense of its overall operation. In a UCM model we can simulate scenarios by defining various 
conditions on the operation of the system, and walking through their execution. The interac-
tion of scenarios and the concurrency properties of a UCM model can be analyzed informally 
or formally by mapping the UCM model into a suitable target language. In this article, we 
have illustrated the usefulness of representing UCM scenarios as Message Sequence Charts to 
support visualization, shared understanding, and analysis. Mappings to other languages exist, 
as discussed in (Amyot, 2003; Amyot, Weiss, and Logrippo 2004).  

Finally, as suggested in the previous section, URN can be integrated partially or entirely 
into an existing business process modeling approach. It does not have to replace current ways 
of creating and analyzing models to be useful. 

Hence, URN satisfies the requirements of a business modeling language, independently 
of the application area. 

Future Work 

In the near-term we expect to work on three research objectives related to the extraction of 
test goals and test case generation, extraction of service operations, and performance analysis 
of business processes described in a UCM model:   
— Deriving test goals and test cases for the case study. This work will be done in relation to 

our work on validation described elsewhere (Amyot, Weiss, and Logrippo, 2004).  
— Add support to the UCMNAV tool for recognizing messages that are part of the same ser-

vice operation (e.g., messages that form request/response pairs, or are notification opera-
tions in response to an earlier request/response operation). 

— Create a performance model for architectural trade-off scenarios. 
 

A longer-term objective is to map UCM models to a Web services implementation. Here we 
envision work on two research objectives: 
— Generate WSDL descriptions from Web services templates.  
— Map UCM scenarios to the Business Process Execution Language (BPEL) for Web Ser-

vices (Andrews, 2003) that can be directly executed by a BPEL execution engine. 
 

Another topic for future research is the possibility of using URN for organizational design 
and the analysis of business models. One important feature of a UCM model is that the same 
scenarios can be mapped to a different set of components. For example, we could explore the 
architectural impact of different business models, such as replacing the retail business model 
with a direct-to-customer business model, by defining a set of components that excludes the 
retailer, but reusing the scenarios we have already documented. This topic of research is ex-
plored in more detail in (Weiss and Amyot, 2005). 
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ANNEX A: SUMMARY OF THE USER REQUIREMENTS NOTATION 
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Fig. 18.  Summary of the GRL notation. 
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Fig. 19.  Summary of (a subset of) the UCM notation. 



ANNEX B: PATH CONTROL VARIABLES FOR SCENARIO DEFINITIONS  

The following are the global Boolean path control variables used in the supply chain man-
agement UCM model : 
— CanAccessLog: Is the requester allowed to access the event logs? 
— ItemListEmpty: Is the list of remaining items to order empty? 
— LogRequestValid: Is the log access request valid? 
— MoreItems: Are there more items that can be provided by the current warehouse? 
— ProductExists: Does the requested product exist? 
— ReplenishTimer_timeout: Will the replenishment timer time out? 
— RepositoryAvailable: Is the log repository available? 
— SomeItemsShipped: Are there any items being shipped to the consumer? 
— StockStillSufficient: Will the stocks be sufficient for the next product (for simulation)? 
— SufficientInventory: Is the inventory sufficient? (If not, goods need to be manufactured) 
— SufficientStock: Are the stocks sufficient for the current product? 
— ValidOrder: Is the order valid? 
— WarehouseLeft: Any warehouse left to which the remaining items could be ordered? 
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