
Pre-publication version. To appear in International Journal of E-Business Research, Vol. 1, No. 3

Business Process Modeling with URN

Michael Weiss

School of Computer Science
Carleton University

Ottawa, ON, K1S 5B6 (Canada)

phone: +1 (613) 520-2600 ext. 1642

fax: +1 (613) 520-4334
weiss@scs.carleton.ca

http://www.scs.carleton.ca/~weiss/

Daniel Amyot

SITE, University of Ottawa
800 King Edward

Ottawa, ON, K1N 6N5 (Canada)

phone: +1 (613) 562-5800 ext 6947
fax: +1 (613) 562-5664
damyot@site.uottawa.ca

http://www.site.uottawa.ca/~damyot/

Abstract. This article demonstrates how the User Requirements Notation (URN)
can be used to model business processes. URN combines goals and scenarios in
order to help capture and reason about user requirements prior to detailed design.
In terms of application areas, this emerging standard targets reactive systems in
general, with a particular focus on telecommunications systems and services. This
article argues that the URN can also be applied to business process modeling. To
this end, it illustrates the notation, its use, and its benefits with a supply chain
management case study. It then briefly compares this approach to related model-
ing approaches, namely, use case-driven design, service-oriented architecture
analysis, and conceptual value modeling. The authors hope that a URN-based ap-
proach will provide usable and useful tools to assist researchers and practitioners
with the modeling, analysis, integration, and evolution of existing and emerging
business processes.

Keywords. Business process modeling, goal-oriented analysis, scenario model-
ing, service-oriented architecture, use cases, User Requirements Notation

INTRODUCTION

Business process modeling (BPM) is a structured method for describing and analyzing oppor-
tunities of improving the business objectives of stakeholders, including providers and cus-
tomers. BPM usually involves identifying the roles of users involved in the process, and the
definition of activities (often described as workflows or services) that contribute to the satis-
faction of well-defined business goals. Approaches for BPM are business-centric rather than
technology-centric, although connections to designs and implementations (for example, via
mappings to workflow engines or Web services) are also desirable.

BPM approaches need to address the well-known “W5 questions”: Why do this activity?
What should this activity be precisely? Who is involved in this activity? Where and when
should this activity be performed? Additionally, a business process model should enable
ways of (formally) analyzing the processes and goal satisfaction. Finally, business process
models should be understandable to various stakeholders, including customers.

Several years ago, the standardization sector of the International Telecommunications
Union initiated work towards the creation of a User Requirements Notation (URN) in the
Z.150 series of Recommendations (ITU-T, 2003). The purpose of URN is to support, prior to

detailed design, the modeling and analysis of user requirements in the form of goals and sce-
narios, in a formal way. URN is generally suitable for describing most types of reactive and
distributed systems, with a particular focus on telecommunications systems and services. The
applications range from goal modeling and requirements description to high-level design. An
overview of URN with a tutorial example from the wireless communication domain is pre-
sented in (Amyot, 2003). Annex A also includes a summary of the notation.

URN has concepts for the specification of behavior, structure, goals, and non-functional
requirements, which are all relevant for business process modeling. URN is in fact composed
of two complementary notations, which build on previous work. The first one is GRL, the
Goal-oriented Requirement Language (URN Focus Group, 2003a). For the last decade, goal-
oriented modeling has been a very active field in the requirements engineering community
(Yu and Mylopoulos, 1998). One well-established language is the NFR (Non-Functional Re-
quirements) framework, published in (Chung et al., 2000). GRL includes some of the most
interesting concepts found in the NFR framework and complements them with agent model-
ing concepts from the i* framework (Yu, 1997). GRL captures business or system goals, al-
ternative means of achieving goals, and the rationale for goals and alternatives. The notation
is applicable to non-functional as well as functional requirements.

The second part of URN is the Use Case Map (UCM) notation, described in (URN Focus
Group, 2003b). The UCM notation was first defined by Buhr and his colleagues (Buhr and
Casselman, 1996; Buhr, 1998) to depict emerging behavioral scenarios during the high-level
design of distributed object-oriented reactive systems. It was later considered appropriate as a
notation for describing operational requirements and services. A UCM model depicts scenar-
ios as causal flows of responsibilities that can be superimposed on underlying structures of
components. UCM responsibilities are scenario activities representing something to be per-
formed (operation, action, task, function, etc.). Responsibilities can potentially be allocated to
components, which are generic enough to represent software entities (e.g., objects, processes,
databases, or servers) as well as non-software entities (e.g., actors or hardware resources).

Through an illustrative example, we will argue that URN presents suitable and useful fea-
tures for modeling and analyzing business processes, and that it satisfies the goals of a BPM
language. Our example is based on a WS-I (Web Services Interoperability) case study (WS-I,
2003a). This document describes usage scenarios defining the use of Web services in struc-
tured interactions and identifying basic interoperability requirements. It is sufficiently rich in
order to exercise the various features of URN, but, at the same time, it is a simplified model
of a supply chain management system which can be understood in its entirety.

In this article, we first give an overview of the supply chain management case study as
well as of the corresponding UCM model we constructed. Then, we discuss how URN mod-
els can be used to analyze architectural changes. Service provisioning relationships for map-
ping the business process model to Web services are then explored, before looking at paths to
detailed service design and validation. We finally discuss related work and present our con-
clusions.

SUPPLY CHAIN MANAGEMENT: OVERVIEW AND UCM MODEL

In this section we describe how a UCM model can be constructed based on given use cases.
We first give an overview of the high-level requirements, followed by a subsection for each
use case. It should be noted that we are not mapping each use case to a separate map in the
UCM model. Instead, we create a single, so-called root map that incorporates the other maps
through a hierarchical abstraction mechanism. The UCM model presented here was created
with the UCMNAV tool (UCM User Group, 2003).

Overview of High-Level Requirements

The WS-I case study (WS-I, 2003a) provides a high-level definition of a supply chain man-
agement system for consumer electronic goods. The requirements are specified in the form of
a use case model integrating high-level functional requirements, a set of simplifying assump-
tions, and a set of use cases and activity diagrams. Non-functional requirements of the nature
considered by URN are not specified.

There are five high-level functional requirements in this system:

— Retailer offers consumer electronic goods to Consumers.
— Retailer needs to manage stock levels in Warehouses.
— Retailer must restock a good from the respective Manufacturer’s inventory, if its stock

level falls below a certain threshold.
— Manufacturer must execute a production run to build the finished goods, if a good is not in

stock. (Ordering from suppliers is not modeled).
— Use cases contain logging calls to a MonitoringSystem to monitor services from a single

monitoring service.

These requirements already explicitly specify a set of five actors (in sans serif). We there-

fore take these actors as given, although we can still reason about whether some of those ac-
tors can be made internal actors (e.g., the warehouses could be considered a part of the re-
tailer). However, in a typical application of URN, one of the tasks would be to identify this
set of actors from informal requirements or from the UCM model, i.e., by considering how
the responsibilities we have discovered should be allocated to components.

This system is interesting because it incorporates features of B2C (e.g., between retailer
and the consumers) and B2B (e.g., between the retailer and the manufacturer). These two
business models also imply different communication needs (e.g., asynchronous communica-
tion in B2B vs. typically synchronous communication in B2C).

The WS-I case study specifies eight use cases, and we will map six of them to URN:
#1) Purchase Goods, #2) Source Goods, #3) Replenish Stock, #4) Supply Finished Goods,
#5) Manufacture Finished Goods, and #7) Log Events. The Run and Configure Demo use
case (#6, not mapped) addresses one of the goals of the WS-I case study, namely, to demon-
strate the interoperability of different vendors’ Web services implementations. However, our
objective here is to model the business process in a representative supply chain management
system, and the demonstration aspects are outside of our scope. The View Events use case
(#8, not mapped) describes a management functionality that has been removed for space rea-
son.

Use Case 1: Purchase Goods

This use case gives a high-level overview of the business process as a whole, which includes
submitting and fulfilling orders. This corresponds to the root UCM shown in Fig. 1. A con-
sumer visiting the retailer Web site expresses her intent to purchase goods by submitting an
order. The retailer system replies by fulfilling the order. There are two possible outcomes:
RejectOrder, and ShipmentConfirmed. The [NoSuchProductOrCannotBeShipped] path is taken
if any of the products in the order do not exist (in this case the whole order is rejected), or
none of the items can be shipped. In the [OrderSuccessful] path, a shipping confirmation is
returned with a list of items shipped, indicating the quantity shipped for each.

Fig. 1. BusinessProcess root map.

In the UCM notation (see Fig. 19), scenarios are initiated at start points, represented as

filled circles, and terminate at end points, shown as bars. Paths show the causal relationships
between start and end points. Generic components are shown as rectangles, and they are re-
sponsible for the various activities (called responsibilities and indicated by X’s on a path)
allocated to them. Labels for guarding conditions are shown between square brackets. Dia-
monds are used to represent stubs, which are containers for submaps called plug-ins. Stubs
have named input and output segments (e.g., IN1 and OUT1 in Fig. 1) that are bound to start
and end points in a plug-in, hence ensuring the continuation of a scenario from a parent map
to a submap, and to the parent map again.

The BusinessProcess root map contains two stubs, each of which with one submap: Sub-
mitOrder and FulfillOrder. In SubmitOrder the consumer navigates to the shopping site, and the
system responds with the product catalog. The consumer then enters the order information
and submits the order. This submap is shown in Fig. 2. In FulfillOrder, shown in Fig. 3, the
retailer checks with its warehouses whether they can supply the items in the order (assuming
the requested product exists), and asks them to ship the items. This use case incorporates the
Source Goods use case, described in the next section.

Consumer Retailer

PurchaseGoods IN1

RejectOrder

OUT1

IN1OUT1

OUT2

ShipmentConfirmed [OrderSuccessful]

[NoSuchProductOrCannotBeShipped]

FulfillOrderSubmitOrder

Fig. 2. SubmitOrder submap.

Consumer Retailer

in1

out1

NavigateToSite PresentCatalog

EnterOrderInfo ReceiveOrder

Fig. 3. FulfillOrder submap.

Retailer

in2

out3

OUT1

[OrderSuccessful]

GenListItemsShipped

ValidateOrder
[ValidOrder]

[NoSuchProduct]

out2

OUT2

[NoItemCanBeShipped]

IN1
SourceGoods

Use Case 2: Source Goods

In this use case, the retailer tries to locate the ordered goods in its warehouses. If the re-
quested quantity of a given item is available, the retailer requests its shipment. Otherwise, it
will record that the item could not be shipped. (As stated in the requirements, requests can
only be fulfilled in full. Stocks from multiple warehouses cannot be combined.) The use case
results in a list of the line items that each warehouse will ship, and accordingly adjusted in-
ventory levels.

The submap corresponding to this use case is shown in Fig. 4. It is important to note that
in the UCM model we do not need to map each use case separately, but we can integrate sev-
eral of them in the same diagram. The complexity of the resulting model can be reduced
through hierarchical abstraction, as provided by stubs and plug-ins.

Fig. 4. SourceGoods submap.

The CheckAvailability submap in Fig. 5 shows the iteration through the list of items pre-
sented to an individual warehouse. Whenever an item is available, the ordered quantity is
decremented from the warehouse inventory.

Retailer
Warehouse

in1

out1

OUT1

[SomeItemsShipped]

[NoItemCanBeShipped]out2

PresentToFirstWH

PresentToNextWH

IN1

RecordShippedItems

[AllShippedOrNoMoreWH]

[NeedToCheckNextWH]

CheckAvailability

Fig. 5. CheckAvailability submap.

In the next section, we will “attach” the UCM for the Replenish Stock use case (discussed
in the next subsection) to this submap in order to express that stock replenishment is triggered
asynchronously whenever the stock level for a particular item gets below a given threshold
after decrementing the stock. We will also discuss an alternative approach and compare both
approaches using architectural change analysis.

Warehouse

in1 out1[Done]

[MoreItems]

[InsufficientStock]

GetNextItem DecrementStock

[SufficientStock]

Use Case 3: Replenish Stock

The warehouse orders goods from manufacturers to replenish its own stock for a given prod-
uct. The submap for this use case is shown in Fig. 6. This map is interesting as it demon-
strates the use of parallelism with a UCM AND-fork. Upon receiving and validating the or-
der, the selected manufacturer immediately acknowledges the receipt of the order before it
starts processing the request (first of two parallel branches, which ends in AckToWH). The
reason for this is that the manufacturer may need to produce the requested goods before it can
supply them, if it has insufficient inventory of the product (second parallel branch).

Fig. 6. ReplenishStock submap.

As soon as the manufacturer has shipped the finished product, it sends a shipping notice
to the warehouse (Shipping). In response the warehouse updates its inventory, and acknowl-
edges the receipt of the shipping notice to the manufacturer (AckToManu). Again, an AND-
fork is used to indicate that these responsibilities are performed in parallel.

Warehouse
Manufacturer

in1

Shipping

IN1

updateStock

BuildOrder

SelectManufacturer

PlaceOrder ValidateWHorder

AckToWH

[ValidOrder][InvalidOrder]reject

OUT1

AckToManu

SupplyFinishedGoods

Use Case 4: Supply Finished Goods

The manufacturer receives a purchase order from a warehouse. The manufacturer may either
be able to satisfy the request with the inventory at hand, or may need to manufacture the re-
quested goods. (As stated, these orders only contain a single line item.) The submap for this
use case is shown in Fig. 7. It makes use of a dynamic stub to represent the optional step of

manufacturing finished goods, with two plug-ins as detailed in the submaps for Manufacture-
FinishedGoods (Fig. 8 and Fig. 9).

Fig. 7. SupplyFinishedGoods submap.

From the context (the ReplenishStock submap), it is clear that we do not need to validate
the order again at the beginning of this submap. However, if SupplyFinishedGoods was turned
into a service at a later stage, we would also need to check the input, and reject purchase or-
ders as necessary. As a general principle, services should, therefore, not make any assump-
tions about the context in which they will be invoked, e.g., whether their input is correct.

Manufacturer

in1 out1

CheckInventory

IN1

ShipOrder

OUT1

UpdateInventory

ManufactureFinishedGoods

Use Case 5: Manufacture Finished Goods

For this use case, two plug-ins (used in the stub of Fig. 7) are required. The first one is a sim-
ple pass through, and is selected when the manufacturer holds sufficient inventory of the
product (Fig. 8). With no component specified, this plug-in can be reused more easily in
other stubs. The second plug-in describes how the finished goods are produced when the in-
ventory is insufficient. First, the required parts and quantities are determined, then the good
is assembled, and the manufacturer’s inventory is updated (Fig. 9). The dynamic stub defines
the condition under which each plug-in will be selected (also known as selection policy).
These conditions will be formalized in the subsection presenting scenario definitions.

Fig. 8. Default submap.

out1in1

Fig. 9. ManufactureFinishedGoods submap.

Note that the manufacturer has its own warehouse where it stores its inventory. The in-
ventory is considered insufficient when its level falls below a minimum threshold, or the
quantity ordered is larger than the current level. A manufacturer is assumed to be able to pro-
duce any items requested, but not beyond a maximum inventory level.

Manufacturer

Warehouse:M

in1 out1
DeterminePartsQuantities

ProduceGoods

UpdateInventory

Use Case 7: Log Events

This use case is concerned with logging events relating to the execution of the other use
cases. Events can be logged for any number of reasons, including debugging, maintenance,
or non-repudiation. The corresponding UCM in found in Fig. 10. One shortcoming of any

scenario-based notation is that logging the execution of a scenario is difficult to model. Of
course, one could insert a LogEvents stub after each responsibility that we want to log, but
that would make the diagrams clumsy. Logging is best modeled as an aspect of a responsibil-
ity that is executed whenever the responsibility is performed. Other examples of aspects are
encryption (e.g., to model that messages are sent in encrypted form), and billing.

Fig. 10. LogEvents submap.

When Fig. 10 shows a submap, it needs to be interpreted as a plug-in that is (logically) in-
serted after each responsibility that we want to log in any of the other maps (LogRequest
would be triggered in passing). In this use case, the event may actually not be logged, if the
request is invalid or if the repository is unavailable.

MonitoringSystem

LogRequest

EventLogged

LogRequestDenied

[RepositoryAvailable]

[RepositoryUnavailable]

[InvalidRequest]

RepoUnavailable

ValLogRequest
LogToRepository

[ValidRequest]

LogInvalidRequest

[RepositoryIsUnavailable]

[RepositoryIsAvaibable]

ARCHITECTURAL CHANGE ANALYSIS

One of the benefits of URN is the ability to reason about architectural changes. In this sec-
tion, we will look at several examples where URN allows us to consider different types of
trade-offs: functional, non-functional, and structural.

Triggered vs. Periodic Replenishment of Stock

In the presentation of the UCMs, we have not discussed under which circumstances the Re-
plenishStock scenario (Fig. 6) is executed. We consider two architectural alternatives: the
scenario can be triggered as a result of decrementing the stock level in the CheckAvailability
submap (Fig. 5), or it can be executed periodically. This is a functional trade-off, since the
alternatives realize two functionally different ways of implementing the same requirement.

To implement the first alternative, we can extend the CheckAvailability submap by “touch-
ing” it with a path leading to a Replenishment stub. This means that the path is to be executed
asynchronously (i.e., in parallel) once the DecrementStock responsibility has been performed.
By making Replenishment a dynamic stub, we can specify a selection policy to decide
whether the stock needs to be replenished or not. The necessary changes are indicated in
Fig. 11.

Fig. 11. Alternative 1: Triggered replenishment.

The architectural alternative to triggered replenishment is to replenish the stock periodi-
cally. This does not require any changes to CheckAvailability, and can be accomplished by a
new root map for periodic replenishment shown in Fig. 12. This map contains a timer, repre-
sented with a clock symbol. ReplenishTimer is reset when the StopPeriodicRep scenario
reaches it in time, otherwise this timer expires and the time-out path (squiggly line) is taken.

Warehouse

in1 out1[Done]

[MoreItems]

GetNextItem DecrementStock

[SufficientStock]

UpdateStockOUT1

OUT2
NoStockUpdate

Replenishment

IN1

Fig. 12. Alternative 2: Periodic replenishment.

The choice between these alternatives involves a trade-off between availability and main-
tainability and manageability. The GRL model in Fig. 13 provides details of the trade-off. It
represents the two architectural alternatives as tasks (hexagons), and the three non-functional
requirements as softgoals (clouds) to be achieved. In GRL, model elements can contribute to
each other, and this is shown with arrows. Contributions can be positive or negative, as well
as sufficient or insufficient (see the legend in Fig. 18).

Our definitions of the non-functional requirements used in this model and subsequent
ones are provided in Table 1.

Warehouse

StartPeriodicRep PeriodicRepStoppedReplenishTimer

OUT1

StopPeriodicRep

IN1

OUT2

[NoUpdate]

[UpdateStock]

Replenishment

Table 1. Definition of non-functional requirements in the BPM context.

NFR Definition
Availability Ability to handle requests (e.g., in terms of the number of fulfilled orders)
Maintainability Ability to evolve the system, and to fix errors
Manageability Ability to monitor system performance and adjust parameters
Performance Speed of performing business functions
Scalability Ability to grow the system (e.g., number of users)
Security Identification, secrecy, integrity, access control, and audit

The model in Fig. 13 states that, using triggered replenishment, a warehouse can detect

more quickly that inventory levels are getting low than when using periodic replenishment.

Consequently, we will be able to keep up with higher than anticipated demand (up to the limit
of the manufacturer’s capacity to produce, of course). When using periodic replenishment,
we check inventory levels only when triggered by a timer, and the length of the period affects
how soon we can respond to changes in demand beyond what we had anticipated when set-
ting the length of the period.

Fig. 13. GRL model to compare between triggered and periodic replenishment.

On the other hand, the first alternative leads to a more complex design, because we need
to distribute the checks for inventory levels wherever the level can change. In the second al-
ternative, the checking logic is centralized, and we do not need know at what points in the
business process the inventory level changes. Although setting the length of the period ap-
propriately makes the configuration of the system slightly more difficult, this disadvantage is
more than offset by the greater ease with which the system can be managed in the second
alternative, which allows us to monitor the inventory levels, and adjust the length of the pe-
riod as necessary.

The reasons we just provided for giving a contribution link a particular weight can also be
expressed directly in the diagram in the form of beliefs, shown as ellipses. For example, we
have justified why Periodic Replenishment makes inventory levels Easy to Monitor in Fig. 13.
Another stakeholder could have a different opinion on this contribution, and her belief could
also be added to the model, hence documenting arguments and rationales until agreement is
reached. It is often a judgment call on what level of detail to present in the diagram, as its
main reason is to summarize the reasoning succinctly, and to enable trade-offs in a given con-
text. We therefore do not want to overload the diagram with additional annotations.

Note that the decision regarding triggered or periodic replenishment is not done in the ab-
solute for either one of the alternatives. Which alternative is chosen depends on the context,
i.e., the priorities of the user (which NFRs are most important). For instance, if our goal was a
more maintainable design, periodic replenishment would be the preferred solution, albeit at
lower availability. Diagrammatically, we can include the context in the GRL model via a goal
such as “total satisfaction”, and indicate the importance of each existing top-level softgoal
through an appropriate contribution link (e.g., make or some-).

Local Logging vs. Using a Centralized Logging Service

The requirements specified the use of a centralized logging service. However, whether to log
locally or centrally is often a (non-functional) trade-off faced by an architect. There are bene-
fits and liabilities to either architecture, and they are summarized in Fig. 14. In this case, a
trade-off is made between performance, on one hand, and manageability and maintainability,

on the other. Logging, independently of how it is implemented, improves traceability, and,
therefore, maintainability. However, local logging results in multiple logs, and filtering those
logs for errors or unusual behavior will be harder than if a central logging service is used.
Thus, on one hand, central logging leads to a more manageable system. On the other hand,
however, central logging will lower performance because of the network overhead.

Fig. 14. GRL model to compare between local and central logging.

In addition to the contributions of each architectural alternative, this diagram also shows
the results of propagating the effect of choosing one of the alternatives. Evaluations of GRL
graphs show the impact of qualitative decisions on high level softgoals. A tool like OME (Yu
and Liu, 2000) can automatically propagate the labels assigned to leaf nodes of the graph.
The GRL propagation algorithm discussed in (URN User Group, 2003a) and supported by
OME is inspired from (Chung et al. 2000). Propagation is usually bottom-up and takes into
consideration three parameters, whose notations are presented in Fig. 18:
— Contributions and correlations (positive or negative, sufficient or not)
— Degrees of satisfaction (satisfied or denied, weakly or fully)
— Composition operators (AND, OR)

Evaluating GRL models usually provides more complete answers than using simple bene-
fits/drawbacks tables or criteria evaluation matrices. One could also use numerical values and
functions instead of qualitative (fuzzy) values, although the latter one are often more appro-
priate in the early development stages.

As we can see in Fig. 14, choosing central logging positively affects manageability, and
maintainability (weakly satisfied), and negatively affects performance (weakly denied). A
similar model for the other alternative would lead to opposite results. In general, many com-
binations of tasks and softgoals can be evaluated, and the results are not always so clear.

Modeling Warehouses as Internal Components

Our final example illustrates a structural trade-off. In addition to allocating responsibilities to
UCM components in different ways, we can also nest components within other components.
Such nesting then implies that those components are tightly coupled and that the nested com-
ponent is not visible to top-level components. An example of this in the supply chain man-
agement case study is how we model warehouses.

Both alternatives have already been illustrated previously. While the submap in Fig. 4
models the retailer’s warehouses as top-level components, the manufacturer’s warehouse is
modeled as a nested component in Fig. 9. The trade-offs between these alternatives are sum-

marized in Fig. 15. As shown, modeling warehouses as top-level actors trades off maintain-
ability, scalability, and availability for performance and manageability.

Fig. 15. GRL model to compare between top-level and internal actors

This alternative improves maintainability, because of its support for legacy solutions
(e.g., warehouses developed within different business units), and autonomy, as it allows for
the warehouse service to be provided by a third party (e.g., FedEx). If internalized, the ware-
houses would need to adopt a common operating platform and/or database schema. It in-
creases scalability as it allows the system’s capacity to grow by adding more warehouses. In
the other alternative a single retailer database may quickly become a bottleneck.

Availability is higher when representing warehouses as independent entities, since there is
no single point of failure. If one of the warehouses fails, the others can continue operating.
However, since all requests to warehouses will be remote, there is a messaging overhead that
reduces performance. Manageability is also decreased since each warehouse needs to be con-
figured separately. As a side-effect (represented with dashed arrows called correlations) of
improved maintainability, scalability, availability, and at the expense of reduced manageabil-
ity, the overall (minimized) cost is positively affected.

Such a structural change also has an impact on the organization of the business. When
warehouses are treated as top-level components, the functionality of the warehouse could be
outsourced to a fulfillment partner such as FedEx or UPS. These companies have evolved the
services they provide beyond just fulfillment and delivery services, but can also manage the
warehouses of their customers, and even aggregate suppliers’ components in transit. The use
of URN for reasoning about such organizational issues is further explored in (Weiss and
Amyot, 2005).

SERVICE PROVISIONING RELATIONSHIPS

In this section we are concerned with deriving service provisioning relationships between
components from the UCM model. The goal of this step is to map the business process model
to a Web services architecture. We define a service as a collection of related operations im-
plemented by a component. The component that implements a service is known as service
provider, and components that invoke the service as service users. An analysis of the UCM

model provides us with potential operations which can then be grouped into services. Note
that our definition of the term service abstracts from the issue of how a service is accessed,
that is, network addresses, protocols, and data formats. As we refine service relationships
into WSDL Web service definitions, these aspects need to be specified.

Each service operation comprises a set of messages exchanged between a service user and
a service provider. In line with the WSDL specification (W3C, 2001) we differentiate be-
tween one-way, request-response, solicit-response, and notification operations. Both one-way
and notification operations consist of a single message sent, respectively, by the service user,
and the service provider. In the case of request-response and solicit-response operations, two
correlated messages are exchanged, the difference being who initiates the dialog (the service
user in the former, and the service provider in the latter).

In the process of identifying potential service operations we therefore look for causal
paths in the UCM model that cut across component boundaries. The path segments consisting
of the last responsibility or condition along those paths in the source component, and the first
responsibility or condition in the destination component can be identified with a message.
Their names can be concatenated to serve as a unique handle for the message. This informa-
tion can be automatically extracted from a UCM by using the UCMNAV tool. The next sec-
tion provides further details on extracting messages from a UCM model.

However, whether responsibilities or conditions will actually be exposed as service opera-
tions also depends on other considerations. In general, only some of the interactions at the
business process level will result in Web service interactions. In our case, since we are work-
ing here within the scope of the WS-I case study, our target will be a service-oriented imple-
mentation. It should also be pointed out that one important feature of UCM models is that the
mapping from a UCM model to an implementation architecture is not one-to-one, and that the
same causal dependency between components can be realized using multiple protocols and
communication mechanisms, or not map into implementation-level concepts at all. In this
section, we are suggesting one way in which UCM models can be mapped to Web service
interactions. The process and template described below are intended to provide the founda-
tion for an automatic mapping from UCM models into Web services.

Having identified path segments that represent messages between components, we need
to decide which service operations they belong to. At present this decision needs to be made
manually, although one could expect to use pattern matching to classify messages into opera-
tions given the structure of the UCM model. Subsequently, we need to group those operations
into services. As a simple illustration of this process, consider the interactions between con-
sumer and retailer.

From the UCM model, we can extract the following path segments that correspond to
messages exchanged between the consumer and retailer components:

c.NavigateToSite-r.PresentCatalog (Navigate)
r.PresentCatalog-c.EnterOrderInfo (Catalog)
c.EnterOrderInfo-r.ReceiveOrder (OrderInfo)
r.OrderSuccessful-c.ShipmentConfirmed (ShipmentConfirmed)
r.NoSuchProduct-c.RejectOrder (RejectOrder)
r.NoItemCanBeShipped-c.RejectOrder (RejectOrder)

To ensure uniqueness, we prefix the name of the responsibility or condition with the cor-

responding component identifier (c, r, m, or w). In parenthesis we also show the name that is
manually assigned to the message during detailed service design (to be discussed in the next
section) in order to provide traceability to the MSC model. The message exchange above can
be interpreted as two request-response operations, both provided by the retailer component.
We can give them more expressive names such as getCatalog() and submitOrder(). Note that
submitOrder() has two possible responses: either the order is rejected, or shipment is con-
firmed.

Our approach suggests grouping related operations into services. In some cases, a compo-
nent may therefore offer multiple services if they bundle different functionalities. In the ex-
ample, however, getCatalog() and submitOrder() are both operations related to the ordering
process, and we decide to group them into a single Retailer service. In this example, the name
of the service is simply derived from the name of the component that provides it.

We propose the following template for documenting the assignment of operations to ser-
vices. For a given service user and given service provider, we list the messages exchanged,
and label them according to their role in an operation (request, response, solicitation, or noti-
fication). Finally, we group the messages into operations. The interaction between the con-
sumer and the retailer actors can now be documented as follows:

Consumer-Retailer
Operation: getCatalog()
 Request: c.NavigateToSite-r.PresentCatalog (Navigate)
 Response: r.PresentCatalog-c.EnterOrderInfo (Catalog)
Operation: submitOrder()
 Request: c.EnterOrderInfo-r.ReceiveOrder (OrderInfo)
 Response: r.OrderSuccessful-c.ShipmentConfirmed (ShipmentConfirmed)
 OR Response: r.NoSuchProduct-c.RejectOrder (RejectOrder)
 OR Response: r.NoItemCanBeShipped-c.RejectOrder (RejectOrder)

Similarly, a request-response operation shipGoods() belonging to a Warehouse service can

be derived from the interaction between the retailer and its warehouses. However, the interac-
tion between warehouses and manufacturers leads to a different type of operation. The mes-
sages exchanged between a warehouse and a manufacturer are as follows:

Warehouse-Manufacturer
Operation: submitPurchaseOrder()
 Request: w.PlaceOrder-m.ValidateWHorder (PlaceOrder)
 Response: m.ValidOrder-w.AckToWH (Ack)
 OR Response: m.InvalidOrder-w.reject (reject)

Manufacturer-Warehouse
Operation: submitShippingNotice()
 Notification: m.UpdateInventory-w.ShippingNotice (ShippedItems)

The first message exchange can be mapped to a request-response operation in the Manu-

facturer service submitPurchaseOrder(). The reply is in fact a partial acknowledgement of the
request, and the actual reply is sent with the next message. The second message exchange
corresponds to a notification, resulting in a callback of the Warehouse service. We can, there-
fore, add a submitShippingNotice() operation to the Warehouse service.

Finally, the interactions with the MonitoringSystem can be exposed as a Logging service.
It provides the operations logEvent() and getEvents(). The service provisioning relationships
between the components can be visualized as a UML deployment diagram (see Fig. 16). In
this diagram we use a convention introduced by (Carlson, 2001) to show both service de-
ployment, as well as service invocations in a way similar to a collaboration diagram.

Fig. 16. Service provisioning relationships.

TOWARDS DETAILED SERVICE DESIGN AND VALIDATION

The previous section already motivated the need for messages between components in the
context of operations for Web services. This section presents a tool-supported technique,
based on scenario definitions and a UCM path traversal algorithm, for automating part of the
process of generating messages. This technique has application in the understanding, visuali-
zation, simulation, and analysis of UCM models, as well as the generation of design-level
scenarios and test goals for validating designs and implementations.

Scenario Definitions

The UCM notation supports a very simple path data model that can be used to traverse paths
in a deterministic way. Global Boolean control variables can be used to formalize conditions.
Responsibilities can also modify the content of these variables with new values resulting
from the evaluation of Boolean expressions.

In our case study, several such variables are needed, and Annex B defines them. Using
these variables, formal conditions can be attached to branching points in a model, i.e., to OR-

forks (for selecting alternative branches), dynamic stubs (for selection policies), and timers
(to decide whether or not a timeout occurs).

For instance, the selection policy of the ManufactureFinishedGoods dynamic stub in Fig. 7
is:

 SufficientInventory → Select plug-in Default
 ¬SufficientInventory → Select plug-in ManufactureFinishedGoods

For the OR-fork in the SourceGoods UCM (Fig. 4), the guarding conditions on the two
branches are formalized as follows:

 [NeedToCheckNextWH] = WarehouseLeft ∧ (¬ItemListEmpty)
 [AllShippedOrNoMoreWH] = (¬WarehouseLeft) ∨ ItemListEmpty

A UCM model may include several groups of scenario definitions. Each such definition con-
sists of initial values for the variables, a set of start points initially triggered, an optional post-
condition expected to be satisfied at the end of the execution of the scenario, and a descrip-
tion. Here are two examples (note that T means True and F means False):

Scenario: PrimaryScenario
Description: The warehouse has the desired item.
Starting Point: PurchaseGoods (in map BusinessProcessRoot)
Variable Initializations:

ProductExists = T
SufficientStock = T
WarehouseLeft = F
MoreItems = F
ItemListEmpty = T
StockStillSufficient = T

Scenario: CheckButStocksSufficient
Description: The periodic replenishment is checked but stocks are sufficient.
Starting Point: StartPeriodicRep (in map PeriodicReplenishment)
Variable Initializations:

ReplenishTimer_timeout = T
SufficientStock = T

In our model, we created 20 such scenarios definitions categorized in 5 groups. Together,
these scenarios cover all the paths from all the root maps and submaps used in our case study.
The scenarios resulting from the above two definitions will be illustrated with Message Se-
quence Charts in the next subsection.

Generation of Message Sequence Charts (MSCs)

The use of scenario definitions for UCM analysis and transformations was pioneered by
(Miga et al., 2001), who proposed a UCM path traversal analysis that took as input a UCM
model and scenario definitions and produced as output a Message Sequence Chart (ITU-T,
2004) for each scenario. This functionality was prototyped in UCMNAV. The same mecha-
nism was used to highlight the path traversed in the UCM model according to the scenario
definitions, hence helping with the understanding of complex or lengthy individual scenarios.
The algorithm was generalized in (URN Focus Group, 2003b), and then re-implemented in
UCMNav, this time to generate the output of the traversal in XML (Amyot et al., 2003). In a
nutshell, the new algorithm uses a depth-first traversal of the graph that captures the UCMs’

structure and generates scenarios where sequences and concurrency are preserved, but where
alternatives are resolved using the Boolean variables. If conditions cannot be satisfied or
evaluated, then the algorithm reports an error. Another tool, UCMEXPORTER (Amyot, Echi-
habi, and He, 2004), takes these scenarios in XML and converts them to Message Sequence
Charts and UML sequence diagrams (OMG, 2003).

MSCs give a linear view of scenarios that traverse multiple UCMs, a situation that occurs
frequently when plug-in maps are used. They are composed of component instances, shown
as vertical lines, and of messages, shown as arrows. Fig. 17(c) gives a brief summary of a
subset of the notation, which includes actions, conditions, timers, and concurrent behavior.

ConditionAction

par
Parallel block 1

Parallel block 2

parpar
Parallel block 1

Parallel block 2

Instance
Message

Timer set

Timeout
Timer set

Timer
reset

Instance
Message

Timer set

Timeout
Timer set

Timer
reset

WarehouseRetailerConsumer

1

1

1par

Default

GenListItemsShipped

SomeItemsShipped

AllShippedOrNoMoreWH

RecordShippedItems

Done

DecrementStock

SufficientStock

GetNextItem

PresentToFirstWH

ValidOrder

ValidateOrder

ReceiveOrder

EnterOrderInfo

PresentCatalog

NavigateToSite

MSC PrimaryScenario

UpdateStock

ShipmentConfirmed

ShippedItems

PresentOrder

OrderInfo

Catalog

Navigate

PurchaseGoods

Warehouse

1

1

1par

Default

MSC CheckButStocksSufficient

PeriodicRepStopped

ReplenishTimer

StopPeriodicRep

ReplenishTimer

StartPeriodicRep

(c) MSC Notation Summary(a) MSC with Concurrency

(b) MSC with Timers

Fig. 17. Two more MSC examples, illustrating typical MSC features.

Fig. 17 provides two examples of MSCs automatically generated from the two scenarios
defined in the previous section. UCMEXPORTER generates these MSCs in Z.120 textual form,
which can then be rendered graphically by tools such as Tau (Telelogic, 2004). To preserve
the semantics of UCMs and traceability to the original model, UCM components are shown

as MSC instances, start and end points as messages, condition labels and selected plug-in
names as conditions, and responsibilities as actions.

In the first scenario (Fig. 17a), we can observe that a Navigate message shows up in the
MSC while it is absent from the UCM model. This message is synthesized automatically by
UCMEXPORTER in order to preserve the causal flow between a responsibility in the Consumer
component and another responsibility in the Retailer component (see Fig. 2). Message names
between pairs of components are provided in a configuration file and can be refined by con-
crete message exchanges, e.g., in a way consistent with the message names used in the Web
service operations defined in the previous section. Consequently, MSCs can be re-generated
as the UCM model evolves, or when different architectures are being evaluated.

Fig. 17(a) illustrates the primary scenario for the business process (Fig. 1) with triggered
replenishment (Fig. 11). The linear nature of MSCs makes it easy to follow and inspect this
scenario, which otherwise would require the stakeholders to flip back and forth through six
different UCMs in order to get the same understanding. This scenario is also interesting be-
cause it preserves the concurrency specified at the UCM level (e.g., with AND-forks). The
MSC in Fig. 17(b) describes a situation where a timer is used (shown in the PeriodicReplen-
ishment submap in Fig. 12). The ReplenishTimer is set when first traversed, times out, is set
again in a second iteration of the looping UCM path, and is finally reset when StopPeriodi-
cRep occurs.

The MSC notation is more interesting than UML 1.5 sequence diagrams because of its
support for concurrency and timers. However, the new UML 2.0 sequence diagrams, being
based on the MSC standard, now support the same concepts. Hence, generating UML 2.0
sequence diagrams from UCMs is a valid alternative to generating MSCs.

The generation of detailed scenarios from higher-level UCM descriptions respects the
spirit of model-driven development. In OMG’s Model Driven Architecture (OMG, 2004),
platform-independent models are refined into models containing platform-specific informa-
tion. Indeed, as seen in this section, platform-specific communication information can be
added to the scenarios generated from a UCM model.

It should also be noted that the MSCs generated here are comparable in content to the se-
quence diagrams found in (WS-I 2003b), with the addition of concurrency and timer informa-
tion. The MSCs are also defined at the same level of granularity and abstraction, they are
traceable to the UCM model, and they are consistent with each other. These aspects cannot be
taken for granted when sequence diagrams are created manually.

Application to Validation

Scenario definitions based on path control variables, together with path traversal algorithms,
and transformations to other formalisms, contribute greatly to many validation activities:
— The UCM model itself can be “simulated”. For instance, this section presented several

scenario definitions (based on variables described in Appendix B) used to generate end-
to-end scenarios, that is, executions of the model in a given context. Scenario definitions
can be seen at test cases that can be used to ensure nothing is broken as the UCM services
or architecture evolve, in a way somewhat compatible with the test-development ap-
proach proposed by the agile development community (Beck, 2003). Errors are reported
when the traversal stops (because of non-determinism, unsatisfied conditions, or a start
point that is not triggered) or when scenario post-conditions are not met.

— Different stakeholders can review, inspect, and validate individual MSC scenarios ex-
tracted from a UCM model, in order to create a shared understanding or reach agreement
on issues identified in GRL models. MSCs provide a projection of a UCM model for a
specific context (a scenario definition) whose existence can be motivated by a GRL
model (Amyot, 2003). Additionally, an MSC provides a view to the UCM model that

may be more familiar to stakeholders that are closer to the implementation of the system
or that have previous knowledge of UML sequence diagrams.

— Test goals can be generated from these scenarios. For instance, Amyot, Weiss, and
Logrippo (2004) illustrate the benefits of using UCMNav to automate the generation of
test goals from UCM models when compared to approaches based on testing patterns or
transformations to formal executable specification languages. These test goals, whether
represented as MSCs, in XML, or with some other format, can be refined into concrete
test cases for the implementation or for the design, if specified in an executable formal-
ism. The traceable correspondence between the names of the messages used in the MSCs
of the previous subsection and those used to implement the operation of the Web services
improves the reusability of the scenarios in a testing context, e.g., for Web service testing.

— Performance annotations can be added to UCM models in order to generate analyzable
performance models in languages such as Layered Queueing Networks. Such a transfor-
mation was automated and integrated to UCMNAV by (Petriu et al., 2003). This approach
has been successfully applied to several examples from on-line bookstores to video serv-
ers and telephony systems (Petriu and Woodside, 2002). Performance tradeoffs that are
difficult to resolve qualitatively at the level of a GRL model can hence benefit from quan-
titative results (e.g., throughput, bottlenecks, service times and demands, resource utiliza-
tion) generated by these performance models. In our case study, although we have not
done it here, one could derive performance models to determine the best value for the re-
plenishment period, or the messaging overhead of central logging, that is, models that al-
low us to substantiate the existing models (GRL, UCM) with greater level of detail and
precision.

RELATED WORK

This section discusses related work, with a particular emphasis on use case-driven design,
service-oriented architectures, and conceptual value modeling.

Use-Case Driven Design

Use cases can be supplemented or, to some extent, replaced by URN models. The use case
approach has a number of well-known disadvantages that can be averted by using UCMs to
model the early requirements of a business process. Using extends and includes relationships
if often difficult, whereas the same functionality is achievable in a simpler way with UCM
stubs and plug-ins. UCM models provide a more systematic way of modeling concurrent
behavior, and analyzing the interaction of multiple scenarios. Use-case driven approaches
rarely provide notions of modeling design goals and linking them to other design artifacts.

The modeling exercise described in this article using URN to describe the WS-I example
uncovered a number of inconsistencies, and redundancies in the use case model (WS-I
2003a). These are due to a number of factors, but in particular to the lack of support for
showing scenarios belonging to different use cases in the same model, and a lack of an ab-
straction mechanism similar to that provided by stubs and plug-ins. Activity diagrams, which
lack the equivalent of dynamic stubs, 2D component layouts, and scenario definitions, tend to
be less readable and harder to use than UCMs for documenting individual scenarios.

Service-Oriented Architecture

The Service-Oriented Architecture (SOA) approach proposed by (Endrei et al., 2004) aims to
align services with business goals. In this approach, services are large-grained activities at

the use-case level that a business exposes to be incorporated into other business processes.
SOA aims to support many design activities, including domain decomposition, goal-service
model creation, and subsystem analysis. During domain decomposition a value chain model
of the business domain showing the main functional areas and their interaction is created.
The functional areas are further decomposed into business processes, and business use cases.

During goal-service model creation, high-level business goals are decomposed into
lower-level subgoals that can be realized by services. This is done to ensure traceability be-
tween business needs and implementation using services. During subsystem analysis, busi-
ness use cases are refined into system use cases, which are then associated with subsystems.
Components within each subsystem realize system use cases. For example, a business use
case Purchase Goods could be refined into the system use cases Get Catalog and Submit Or-
der. Both would be realized by a RetailerService component.

URN provides support for these three parts, as well as better guidance on what should do
be done at each step, and better modeling of scenario interactions.

Conceptual Value Modeling

Conceptual value modeling or e3-value (Gordijn, 2002; Gordijn and Akkermanns, 2003) is an
approach for precisely describing and evaluating innovative e-business ideas. It provides
means to evaluate the feasibility of an e-business model focusing on the creation, exchange,
and consumption of objects (i.e., the revenue streams) in a multi-actor network. Value mod-
els are different from business process models in that the former show how objects of eco-
nomic value are created and handled by actors, whereas the latter focus on how exchanges of
value objects are put into operation from a business process perspective.

e3-value is similar to our approach in terms of its use of scenarios to model causal flows.
It also provides a means for performing value-based trade-offs. However, unlike in URN,
value is mainly expressed in monetary terms; other non-functional goals cannot be modeled
directly, but need to be mapped to how they generate revenues for an actor. On one hand, e3-
value is much more specific in scope than URN. On the other hand, we can think of e3-value
as an intermediary view between general GRL models and operational UCM models. Both
approaches could therefore be integrated for modeling e-commerce systems.

Other Related Approaches

The User Requirements Notation and similar languages have been exploited in various con-
texts, some of which are related to the one presented here:
— UCMs are used by (de Bruin and van Vliet, 2001) for describing and selecting appropri-

ate architectures. An architecture generator produces a candidate software architecture
based on feature-solution graphs (which could be expressed to some extent in GRL) con-
necting quality requirements and solutions (expressed as potential UCM plug-ins for a
reference architecture). The architecture is then evaluated, mainly by inspection, against
functional and non-functional requirements.

— Both UCM and GRL are used by (Liu and Yu, 2003) to model information systems in a
social context specified in terms of dependency relationships among agents and roles.
Their approach includes an iterative process where the use of GRL and UCM is inter-
twined: scenarios refine solutions to goals (tasks), and the elaboration of scenarios can
lead to the discovery of new goals. It is illustrated with a Web-based training system.

— Many GRL concepts are formalized in the TROPOS agent-oriented methodology. (Lau and
Mylopoulos, 2004) explore the use of TROPOS in the context of Web service design, with
a greater emphasis on actors and their dependencies (also supported by GRL) than what
was presented here. They provide a Customer Relationship Management system example.

It is suggested to use the Agent-based Unified Modeling Language to refine the goal and
actor models, especially with activity and sequence diagrams, prior to defining Web ser-
vices in WSDL. However, this step is not illustrated at all in their example.

— (Bleistein et al., 2004) use GRL to link requirements for strategic-level e-business sys-
tems to business strategy, as well as to document patterns of best business practices. They
explore goal modeling for providing traceability and alignment between strategic levels
(business model and business strategy) and tactical and operational ones (business proc-
ess model and system requirements). This work is still preliminary, but it provides en-
couraging insights regarding the scalability of GRL for strategic business issues.

— (Weiss and Esfandiari, 2004) use both GRL and UCMs to model Web services and their
interactions. However, their focus is not on modeling business processes per se, but on
detecting undesirable interactions among services. We see this work as complementary to
ours. It could be used to discover architectural alternatives where they are not apparent,
and to strategize about ways of restructuring a business process to meet business goals.

CONCLUSIONS AND FUTURE WORK

In this section, we summarize our contributions, and identify areas of future work.

Contributions

We have made a case for using URN as an approach for business process modeling, and il-
lustrated the approach and its benefits using a supply chain management case study. In the
following, our goal is to evaluate the approach by reviewing how URN addresses the re-
quirements for a BPM approach identified in the introduction:
— How does URN address the “W5 questions” (why, what, who, when, and where)?
— How does it support the analysis of the business model?
— How does it allow multiple stakeholders to participate in the modeling process?

As described, URN comprises two notations: GRL for goal-oriented modeling, and UCM for
modeling scenarios. Together, these notations help address the W5 questions:
— Why do this activity? GRL models allow the analyst to link business or system goals to

architectural alternatives, and thus to document the rationale for a particular activity.
— What should this activity be precisely? Starting from high-level business goals, GRL sup-

ports their iterative refinement into high-level tasks. Further refinement of these tasks into
concrete low-level responsibilities, plug-ins, or scenario definitions can be achieved via a
UCM model. In particular, its hierarchical abstraction capability allows us to scale our
models to large business processes.

— Who is involved in this activity? A UCM model does not only provide a refinement of
high-level tasks into low-level responsibilities, but can also capture the structure of the
organization supporting the business process. Components can be defined for each role in
the business process. Furthermore, component visibility can be restricted as required by
nesting them.

— Where and when should this activity be performed? A UCM model also allows us to de-
fine how responsibilities are allocated to components, as well as their temporal ordering
via constructs for expressing sequence, choices, concurrency, and synchronization.

Additionally, a business process model should enable ways of (formally) analyzing the proc-
esses and goal satisfaction. Analysis of the business process is supported in two ways. The
level propagation mechanism in GRL lets us analyze the impact of architectural alternatives
(e.g., centralized logging) on high-level goals (of both functional and non-functional nature),

as illustrated in the section on architectural change analysis By capturing architectural rea-
soning in a GRL model, we can compare alternatives as they apply to a particular context.
Unlike use cases, UCM models are not based on an informal textual representation, and can
therefore also provide input to various validation activities such as testing and performance
analysis. Thus, UCM provides mechanisms for ensuring the validity and traceability of the
model, and supports more detailed analysis.

Business process models should be understandable to various stakeholders, including cus-
tomers. With URN we can model a business process at different levels of formality support-
ing all development stages from early requirements to early design. A GRL model can de-
scribe “soft” aspects of a business process, e.g., high-level business goals such as customer
satisfaction, and their refinement into operational goals (e.g., the number of orders handled
successfully). The hierarchical abstraction mechanism of UCM models (via stubs and plug-
ins) allows us to hide lower-level details in defining a business process, while preserving a
sense of its overall operation. In a UCM model we can simulate scenarios by defining various
conditions on the operation of the system, and walking through their execution. The interac-
tion of scenarios and the concurrency properties of a UCM model can be analyzed informally
or formally by mapping the UCM model into a suitable target language. In this article, we
have illustrated the usefulness of representing UCM scenarios as Message Sequence Charts to
support visualization, shared understanding, and analysis. Mappings to other languages exist,
as discussed in (Amyot, 2003; Amyot, Weiss, and Logrippo 2004).

Finally, as suggested in the previous section, URN can be integrated partially or entirely
into an existing business process modeling approach. It does not have to replace current ways
of creating and analyzing models to be useful.

Hence, URN satisfies the requirements of a business modeling language, independently
of the application area.

Future Work

In the near-term we expect to work on three research objectives related to the extraction of
test goals and test case generation, extraction of service operations, and performance analysis
of business processes described in a UCM model:
— Deriving test goals and test cases for the case study. This work will be done in relation to

our work on validation described elsewhere (Amyot, Weiss, and Logrippo, 2004).
— Add support to the UCMNAV tool for recognizing messages that are part of the same ser-

vice operation (e.g., messages that form request/response pairs, or are notification opera-
tions in response to an earlier request/response operation).

— Create a performance model for architectural trade-off scenarios.

A longer-term objective is to map UCM models to a Web services implementation. Here we
envision work on two research objectives:
— Generate WSDL descriptions from Web services templates.
— Map UCM scenarios to the Business Process Execution Language (BPEL) for Web Ser-

vices (Andrews, 2003) that can be directly executed by a BPEL execution engine.

Another topic for future research is the possibility of using URN for organizational design
and the analysis of business models. One important feature of a UCM model is that the same
scenarios can be mapped to a different set of components. For example, we could explore the
architectural impact of different business models, such as replacing the retail business model
with a direct-to-customer business model, by defining a set of components that excludes the
retailer, but reusing the scenarios we have already documented. This topic of research is ex-
plored in more detail in (Weiss and Amyot, 2005).

Acknowledgements. This work has been supported financially by the Natural Science and
Engineering Research Council of Canada, through its Strategic Grants and Discovery Grants
programs.

REFERENCES

Amyot, D. (2003). Introduction to the User Requirements Notation: Learning by Example. Computer
Networks, 42(3), 285-301, 21 June. http://www.usecasemaps.org/pub/ComNet03.pdf
Amyot, D., Cho, D.Y., He, X., & He, Y. (2003). Generating Scenarios from Use Case Map Speci-
fications. Third International Conference on Quality Software (QSIC'03), Dallas, USA, November.
http://www.usecasemaps.org/pub/QSIC03.pdf
Amyot, D., Echihabi, A., & He, Y. (2004). UCMEXPORTER: Supporting Scenario Transformations
from Use Case Maps. Proc. of NOTERE’04, Saïdia, Morocco, June, 390-405.
Amyot, D., Weiss, M., & Logrippo, L. (2004). UCM-Based Generation of Test Goals. ISSRE'04
Workshop on Integrated-reliability with Telecommunications and UML Languages (WITUL), Rennes,
France, November 2004.
Andrews, T., Curbera, F., et al. (2003). Business Process Execution Language for Web Services, Ver-
sion 1.1, http://www-106.ibm.com/developerworks/library/ws-bpel
Beck, K. (2003). Test-Driven Development: By Example, Addison-Wesley
Bleistein, S.J., Aurum, A., Cox, K., & Ray, P.K. (2003). Linking Requirements Goal Modeling Tech-
niques to Strategic e-Business Patterns and Best Practice. 8th Australian Workshop on Requirements
Engineering (AWRE'03), Eds. Didar Zowghi & Ban Al-Ani. UTS, Sydney, 13–22. Retrieved August
15, 2004, from http://www.caeser.unsw.edu.au/publications/pdf/Tech03_2.pdf
Buhr, R.J.A. & Casselman, R.S. (1996). Use Case Maps for Object-Oriented Systems. Prentice Hall.
http://www.usecasemaps.org/pub/UCM_book95.pdf
Buhr, R.J.A. (1998). Use Case Maps as Architectural Entities for Complex Systems. IEEE Trans. on
Software Engineering, Vol. 24, No. 12, December, 1131-1155.
http://www.usecasemaps.org/pub/ucmUpdate.pdf
Carlson, D. (2001). Modeling XML Applications with UML. Addison-Wesley, 2001.
Chung, L., Nixon, B.A., Yu, E., & Mylopoulos, J. (2000). Non-Functional Requirements in Software
Engineering, Kluwer Academic Publishers, Dordrecht, USA.
de Bruin, H., and van Vliet, H. (2001). Scenario-based generation and evaluation of software architec-
tures. Generative and Component-Based Software Engineering (GCSE’01), LNCS 2186, Springer.
Endrei, M., Ang. J., Arsanjani, A., et al. (2004). Patterns: Service-Oriented Architecture and Web
Services, IBM Redbook, April 2004. http://www.redbooks.ibm.com/redbooks/pdfs/sg246303.pdf
Gordijn, J. (2002). Value-based Requirements Engineering: Exploring Innovative e-Commerce Ideas.
Ph.D. thesis, Vrije Universiteit, The Netherlands, SIKS Dissertation Series No. 2002-08.
http://www.cs.vu.nl/~gordijn/thesis.htm
Gordijn, J., & Akkermans, J. (2003). Value-based requirements engineering: exploring innovative
ecommerce ideas. Requirements Engineering Journal, 8:114-135.
ITU-T – International Telecommunications Union (2004). Recommendation Z.120 (04/04) Message
Sequence Chart (MSC). Geneva, Switzerland.
ITU-T – International Telecommunications Union (2003). Recommendation Z.150 (02/03), User Re-
quirements Notation (URN) – Language Requirements and Framework. Geneva, Switzerland.
Lau, D., & Mylopoulos, J. (2004). Designing Web Services with TROPOS. IEEE International Confer-
ence on Web Services (ICWS'04), San Diego, USA, 306-313.
Liu, L., & Yu, E. (2003). Designing Information Systems in Social Context: A Goal and Scenario
Modelling Approach. Information Systems (Journal), Vol.29, No.2. .
http://www.cs.toronto.edu/~liu/publications/
OMG – Object Management Group (2003). Unified Modeling Language Specification (UML), version
1.5, March 2003. http://www.omg.org/uml/

OMG – Object Management Group (2004). Model Driven Architecture (MDA).
http://www.omg.org/mda/
Petriu, D.B., & Woodside, C.M. (2002). Software Performance Models from System Scenarios in
Use Case Maps. Computer Performance Evaluation / TOOLS, LNCS 2324, Springer, 141-158.
Petriu, D.B., Amyot, D., & Woodside, C.M. (2003). Scenario-Based Performance Engineering with
UCMNav. 11th SDL Forum (SDL'03), Stuttgart, Germany, July. LNCS 2708, 18-35.
http://www.usecasemaps.org/pub/SDL03-UCM-LQN.pdf
Telelogic AB (2004). Tau SDL Suite. http://www.telelogic.com/products/tau/sdl/index.cfm
UCM User Group (2003). UCMExporter. http://ucmexporter.sourceforge.net/
UCM User Group (2004). UCMNav 2. http://www.usecasemaps.org/tools/ucmnav/index.shtml
URN Focus Group (2003a). Draft Rec. Z.151 – Goal-oriented Requirement Language (GRL). Geneva,
Switzerland, Sept. 2003. http://www.UseCaseMaps.org/urn/. See also
http://www.cs.toronto.edu/km/GRL/
URN Focus Group (2003b). Draft Rec. Z.152 – Use Case Map Notation (UCM). Geneva, Switzer-
land, Sept. 2003. http://www.UseCaseMaps.org/urn/. See also http://www.UseCaseMaps.org/
Weiss, M., & Amyot, D. (2005). Designing and Evolving Business Models with URN. Montreal Con-
ference on eTechnologies (MCeTech), Montréal, Canada, January 2005.
Weiss, M., & Esfandiari, B. (2004). On Feature Interactions among Web Services. IEEE International
Conference on Web Services (ICWS'04), San Diego, USA, 88-95.
WS-I – Web Services Interoperability Organization (2003a). Supply Chain Management: Use Case
Model, Version 1.0. http://www.ws-i.org
WS-I – Web Services Interoperability Organization (2003b). Supply Chain Management: Sample
Application Architecture, Version 1.0.1. http://www.ws-i.org
W3C (2001). Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl
Yu, E. (1997). Towards Modelling and Reasoning Support for Early-Phase Requirements Engineer-
ing. 3rd IEEE Int. Symp. on Requirements Engineering (RE’97), Washington, USA, 226-235.
Yu, E., & Liu, L. (2000). Organization Modelling Environment (OME).
http://www.cs.toronto.edu/km/ome/
Yu, E., & Mylopoulos, J. (1998). Why goal-oriented requirements engineering. Proceedings of the 4th
REFSQ, Pisa, Italy, 15–22.

ANNEX A: SUMMARY OF THE USER REQUIREMENTS NOTATION

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

(b) GRL Satisfaction Levels

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

(b) GRL Satisfaction Levels

Dependency

Contribution
Correlation
Means-end

Decomposition

(d) GRL Links

Dependency

Contribution
Correlation
Means-end

Decomposition
DependencyDependency

ContributionContribution
CorrelationCorrelation
Means-endMeans-end

DecompositionDecomposition

(d) GRL Links

?
Break Hurt Some- Unknown

Make Help Some+ Equal

(e) GRL Contributions Types

?
Break Hurt Some- Unknown

Make Help Some+ Equal

??
Break Hurt Some- Unknown

Make Help Some+ Equal

(e) GRL Contributions Types

OR

AND

(c) Link Composition
OROR

ANDAND

(c) Link Composition

Goal

Softgoal

Belief

Actor

Actor
Boundary

Resource

(a) GRL Elements

Task

Goal

SoftgoalSoftgoal

BeliefBelief

ActorActor

Actor
Boundary

Actor
Boundary

Resource

(a) GRL Elements

Task

Fig. 18. Summary of the GRL notation.

…
…

…
…

[C1]
[C2]

[C3]

OR-Fork
& Guarding
Conditions

…
…

…
…

OR-Join

…
…

…
… …

…

…
…

AND-JoinAND-Fork

(b) UCM Forks and Joins

…
…

…
…

[C1]
[C2]

[C3]

OR-Fork
& Guarding
Conditions

…
…

…
…

OR-Join

…
…

…
…

[C1]
[C2]

[C3]
…

…

…
…

[C1]
[C2]

[C3]

OR-Fork
& Guarding
Conditions

…
…

…
… …
…

…
…

OR-Join

…
…

…
… …

…

…
…

AND-JoinAND-Fork
…

…

…
……
…

…
… …

…

…
… …
…

…
…

AND-JoinAND-Fork

(b) UCM Forks and Joins

Start
Point

End
Point

Path

… …
… … Responsibility

Direction Arrow

… … Timestamp Point

Failure Point… …
Shared Responsibility… …

(a) UCM Path Elements

Start
Point

End
Point

Path

… …… …
… …… …… … Responsibility

Direction Arrow

… …… …… … Timestamp Point

Failure Point… …… …… …
Shared Responsibility… …… …… …

(a) UCM Path Elements

(c) UCM (Generic) Component(c) UCM (Generic) Component

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Timer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
Path

(e) UCM Waiting Places and Timers

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Timer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
PathTimer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
Path

(e) UCM Waiting Places and Timers

… …IN1 OUT1 Static Stub &
Segments ID

Dynamic StubIN1 OUT1… …
S{IN1} E{OUT1}

(d) UCM Stubs and Plug-ins
Plug-in Map

… …IN1 OUT1… …… …IN1 OUT1 Static Stub &
Segments ID

Dynamic StubIN1 OUT1… …IN1 OUT1… …… …
S{IN1} E{OUT1}S{IN1} E{OUT1}

(d) UCM Stubs and Plug-ins
Plug-in Map

Fig. 19. Summary of (a subset of) the UCM notation.

ANNEX B: PATH CONTROL VARIABLES FOR SCENARIO DEFINITIONS

The following are the global Boolean path control variables used in the supply chain man-
agement UCM model :
— CanAccessLog: Is the requester allowed to access the event logs?
— ItemListEmpty: Is the list of remaining items to order empty?
— LogRequestValid: Is the log access request valid?
— MoreItems: Are there more items that can be provided by the current warehouse?
— ProductExists: Does the requested product exist?
— ReplenishTimer_timeout: Will the replenishment timer time out?
— RepositoryAvailable: Is the log repository available?
— SomeItemsShipped: Are there any items being shipped to the consumer?
— StockStillSufficient: Will the stocks be sufficient for the next product (for simulation)?
— SufficientInventory: Is the inventory sufficient? (If not, goods need to be manufactured)
— SufficientStock: Are the stocks sufficient for the current product?
— ValidOrder: Is the order valid?
— WarehouseLeft: Any warehouse left to which the remaining items could be ordered?

	NFR
	Definition

