
Designing and Evolving Business Models with URN
M. Weiss∗, D. Amyot†

∗School of Computer Science, Carleton University
Ottawa, ON, K1S 5B6 (Canada)

Email: weiss@scs.carleton.ca
†SITE, University of Ottawa

800 King Edward
Ottawa, ON, K1N 6N5 (Canada)

Email: damyot@site.uottawa.ca

Abstract— The User Requirements Notation (URN) combines
goals and scenarios in order to help capture and reason about
user requirements prior to detailed design. In terms of appli-
cation areas, this emerging standard targets reactive systems
in general, with a particular emphasis on telecommunications
systems and services. However, URN can also be applied to
business process modeling. In this paper, we illustrate how goals
can help design suitable business processes expressed as scenarios,
and the architectures supporting them. URN models can also help
us determine when is the right moment to improve the business
model. Through a supply chain management case study, this
paper illustrates how architectures can evolve in that context
while the scenarios remain untouched.

I. I NTRODUCTION

In today’s rapidly evolving world, companies need to
constantly adjust their business models to changes in their
environment. However, they also need to do so in a controlled
manner. An approach to evolving business models needs to
strike a balance between capitalizing on new opportunities, and
entering uncharted territories by mitigating the risks involved
with such a change. The approach needs to belightweight in
order to quickly evaluate alternative models, but must also be
reliable.

In this paper, we argue that theUser Requirements Notation
(URN) enables such an approach. While it allows us to explore
alternative business models, it addresses the need to preserve
investments in existing business processes. Business processes
can be expressed as scenarios, which are defined separately
from the participants in the business model that perform them.
This separation of concerns allows us to experiment with
different business models without changing the underlying
business processes.

A. Business Process Modeling

Business process modeling(BPM) is a structured method for
describing and analyzing opportunities of improving the busi-
ness objectives of multiple stakeholders, including providers
and customers. BPM usually involves identifying the roles of
users involved in the process, and the definition of activities
(often described as workflows or services) that contribute to
the satisfaction of well-defined business goals. Approaches
for BPM are business-centric rather than technology-centric,
although connections to designs and implementations (for

example, via mappings to software architecture elements such
as Web services) are also desirable. Hence, business models,
business processes, and software architectures need to be
developed in an integrated manner (Figure 1).

B. User Requirements Notation

The purpose of URN is to support, in a semi-formal
and lightweight way, the modeling and analysis of user
requirements in the form of goals and scenarios. URN is
being standardized by the International Telecommunications
Union in the Z.150 series of Recommendations [15]. A brief
overview of the notation is presented here, but a more complete
introduction can be found in [1][15].

URN has concepts for the specification of behavior, struc-
ture, goals, and non-functional requirements, which are all
relevant for business process modeling. URN is in fact
composed of two complementary notations, which build on
previous work. The first one is GRL, theGoal-oriented
Requirement Language[23], summarized in Figure 2. For the
last decade, goal-oriented modeling has been a very active field
in the requirements engineering community [33]. One of the
most well-established language is the NFR (Non-Functional
Requirements) framework [9]. GRL includes some of the
most interesting concepts found in the NFR framework and
complements them with agent modeling concepts from the
i* framework [31]. GRL captures business or system goals,
alternative means of achieving goals, and the rationale for
goals and alternatives. The notation is applicable to non-
functional as well as functional requirements. However, as
for most notations, not all requirements are expressible with
URN and hence conventional textual requirements can still
supplement URN models.

Business ProcessBusiness Process

Software ArchitectureSoftware Architecture

BusinessBusiness ModelModel

StakeholdersStakeholders

Fig. 1. Three aspects of Business Process Modeling.

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

(b) GRL Satisfaction Levels

Dependency

Contribution

Correlation
Means-end

Decomposition

(d) GRL Links

?
Break Hurt Some- Unknown

Make Help Some+ Equal

(e) GRL Contributions Types

OR

AND

(c) Link Composition

Goal

Softgoal

Belief

Actor

Actor
Boundary

Resource

(a) GRL Elements

Task

Fig. 2. Summary of the Goal-oriented Requirement Language (GRL).

…
…

…
…

[C1]
[C2]

[C3]

OR-Fork
& Guarding
Conditions

…
…

…
…

OR-Join

…
…

…
… …

…

…
…

AND-JoinAND-Fork

(b) UCM Forks and Joins

Start
Point

End
Point

Path

… …
… … Responsibility

Direction Arrow

… … Timestamp Point

Failure Point… …
Shared Responsibility… …

(a) UCM Path Elements

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Timer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
Path

(e) UCM Waiting Places and Timers

… …IN1 OUT1 Static Stub &
Segments ID

Dynamic StubIN1 OUT1… …
S{IN1} E{OUT1}

(d) UCM Stubs and Plug-ins
Plug-in Map

(c) UCM Components

Team Agent

Fig. 3. Summary of the Use Case Map (UCM) notation.

The second part of URN is theUse Case Map(UCM) nota-
tion, described in [24] and summarized in Figure 3. The UCM
notation was first proposed to depict emerging behavioral
scenarios during the high-level design of distributed object-
oriented reactive systems [7][8]. It was later found to be an
appropriate notation for describing operational requirements
and services. A UCM model depicts scenarios as causal flows
of responsibilitiesthat can be superimposed on underlying
structures ofcomponents. UCM responsibilities are scenario
activities representing something to be performed (operation,

action, task, function, etc.). Responsibilities can potentially
be allocated to components, which are generic enough to
represent software entities (e.g., objects, processes, databases,
or servers) as well as non-software entities (e.g., actors or
hardware resources).

Note that, in our case study (overviewed in the next section),
only some of the symbols found in Figures 2 and 3 are being
used, which does not preclude the applicability of the other
symbols to business process modeling in general.

Fig. 4. GRL actor diagram: Sell to stock via warehouse and retailer (R) strategy.

C. Case Study

Our example is based on a WS-I (Web Services Interop-
erability) case study [28][29]. These documents describe a
simple supply chain management system in terms of use cases
defining the use of Web services in structured interactions
and identifying basic interoperability requirements. A sample
deployment architecture is also introduced, although we did
not use it to generate our model. Instead, it provided a way
of validating that our approach lead to comparable results.

The use cases and architecture include several types of ac-
tors: consumers, retailers, warehouses, and manufacturers. The
use case model integrates high-level functional requirements,
a set of simplifying assumptions, and eight use cases and
activity diagrams. Non-functional requirements of the nature
considered by URN are not specified in the WS-I case study.

The main high-level functional requirements are:

• Retailer offers electronic goods to Consumers.
• Retailer must manage stock levels in Warehouses.
• Retailer must restock a good from the respective Man-

ufacturer’s inventory, if the stock level in one of its
Warehouses falls below a certain threshold.

• Manufacturers must execute a production run to build the
finished goods, if a good is not in stock.

In a recent contribution [26], we showed how a UCM
model could be extracted from such use cases and informal
requirements. We argued that URN offers suitable and useful
features for modeling and analyzing business processes, and
meets the goals of a BPM language.

In this paper, we show how a similar UCM model could be
designed given a set of business goals and informal require-
ments as a starting point (Section II). In Section III, we explore
various links between goals and scenarios as well as transfor-
mation to detailed scenarios to promote understanding of the
system. We then focus on business model design. Various ways

to evolve the business model from the Manufacturer’s point of
view are explored in Section IV. A brief overview of related
work and conclusions follow in Sections V and VI.

II. D ESIGNING, FROM GOALS TO SCENARIOS

A. Business Goal Model in GRL

Business goals describe the objectives a business should
achieve. They provide answers towhy particular activities
are performed in a business process. Business goals can be
modeled in GRL. GRL provides a higher, strategic level of
modeling both the current situation and future evolution of
a business and its environment in terms of goals and their
interactions. In this section we will focus on modeling the
current business. Business model evolution will be discussed
in Section IV.

Figure 4 shows the GRL model for a manufacturer that
sells to stock via warehouses (a.k.a. distributors), and retailers.
Given the dominant role that the intermediaries (warehouse
and, in particular, the retailer) play, we will also refer to this
business model as theR (Retailer) strategy. This model rep-
resents each participant in the business model (consumer, re-
tailer, warehouse, and manufacturer) as anactor, and indicates
their dependencies. Thus, for example, theConsumer depends
on the Sales Support provided by theRetailer, whereas the
Retailer relies on theConsumer to Receive Payment. The half-
moon symbol indicates the direction of the dependency.

Here we adopt the definition of a business model from [25]
as a set of participants and the flows between them. The
participants include the company whose business model we
are describing, its customers, suppliers, and allies or interme-
diaries. Value is created in the form of information, product,
and money flows between the participants. At present, we do
not represent the type of flow in our GRL models (the are all
expressed in abstract terms as dependencies between actors).

The Manufacturer actor is expanded in the diagram (the
actor boundary is shown as a dotted circle partially under
to the actor) to reveal its internalgoals. There are twotasks
(hexagons) that the manufacturer performs,Sell via interme-
diary and Build to stock. The Sell via intermediary task is
decomposed into threesoftgoals(where softgoals, shown as
clouds, are goals that can never be fully satisfied). Tasks,
goals, and softgoals can be recursively refined via such de-
composition. The manufacturer wants to position itsProducts
close to customers, as supported by theAccess to retailer that
the warehouses provides. This goal is also guarded with a
precondition (Small market share) modeled as abelief(ellipse).
This allows us to state that the goal is only an appropriate
business objective for a manufacturer who does not have a
recognizable brand in the marketplace, and a correspondingly
large market share.

The manufacturer also ensuresSufficient inventory by build-
ing products to be held in inventory (modeled as the taskBuild
to stock). The inventory levels try to anticipate the market
demand. However, as there can be unexpected changes in the
demand, the manufacturer relies on the warehouse toBuffer
demand fluctuations. Furthermore, the manufacturer enjoys
Efficient production levels as long as the market demand is
for a Standardized product.

Preconditions for this business model are modeled as beliefs
and connected to other model elements throughmakecontri-
butions. Therefore, the levers for evolving this business model
are moves that increase the market share or make the product
more differentiated.

B. Scenario Model in UCM

In Figure 4, we have identified several actors which will be
shown in UCM models asagent components(rectangles with
thick lines). They have to be involved in the support of the
various functionalities identified in the informal requirements
(e.g., Section I-C).

UCM models often start with a single, top-level map called
root map. One possible root map for our business process is
shown in Figure 5. A consumer visiting the retailer Web site
expresses her intent to purchase goods by submitting an order.
The retailer system replies by fulfilling the order. There are
two possible outcomes:RejectOrder, andShipmentConfirmed.
The [NoSuchProductOrCannotBeShipped] path is taken if any
of the products in the order do not exist (in this case the whole
order is rejected), or none of the items can be shipped. In
the [OrderSuccessful] path, a shipping confirmation is returned
with a list of items shipped, indicating the quantity shipped
for each.

In the UCM notation, scenarios are initiated atstart points,
represented as filled circles, and terminate atend points, shown
as bars.Paths show the causal relationships between start
and end points. Components are responsible for the various
activities (calledresponsibilitiesand indicated by X’s on a
path) allocated to them. As a convention here, we use UCM
agents (thick lines) to represent GRLactors. Additionally,
team components (thin lines) are used to capture the various

Consumer Retailer

OrderProcessing:R

PurchaseGoods IN1

RejectOrder
OUT1

IN1OUT1

OUT2

ShipmentConfirmed [OrderSuccessful]

[NoSuchProductOrCannotBeShipped]

FulfillOrderSubmitOrder

Fig. 5. Sell-to-stock root Use Case Map.

roles an agent can play. Several roles (e.g.,OrderProcessing,
InventoryManagement, and Production in our example) can
be associated with an agent simply by showing component
containment. Only the components involved in the current part
of the business process need to be shown in a given map. In
the following UCM models, we use:R to indicate that a role
is associated with a retailer agent,:M for a manufacturer, and
:W for a warehouse.

Diamonds are used to representstubs, which are containers
for submaps calledplug-ins. Stubs have named input and
output segments (e.g.,IN1 and OUT1 in Figure 5) that are
bound to start and end points in a plug-in, hence ensuring the
continuation of a scenario from a parent map to a submap, and
to the parent map again. The Sell-to-stock root map contains
two stubs, each of which with one submap: SubmitOrder
and FulfillOrder. In SubmitOrder, the consumer navigates to
the shopping site, and the system responds with the product
catalog. The consumer then enters the order information and
submits the order. This submap is shown in Figure 6. In
FulfillOrder, shown in Figure 7, the retailer checks with its
warehouses whether they can supply the items in the order
(assuming the requested product exists), and asks them to ship
the items.

Consumer OrderProcessing:R

in1

out1

NavigateToSite PresentCatalog

EnterOrderInfo ReceiveOrder

Fig. 6. SumbitOrder plug-in for Fig. 5.

The process of sourcing goods is shown in Figure 8. It is
important to note that, in a UCM model, we do not need to
map each use case separately, but we can integrate several in
the same diagram. The complexity of the resulting model can
be reduced through hierarchical abstraction, as provided by
stubs and plug-ins.

The retailer tries to locate the ordered goods in its ware-

OrderProcessing:R

in1

out2

OUT1

[OrderSuccessful]

GenListItemsShipped

ValidateOrder
[ValidOrder]

[NoSuchProduct]

out1

OUT2

[NoItemCanBeShipped]

IN1
SourceGoods

Fig. 7. FulfillOrder plug-in for Fig. 5.

houses. If the requested quantity of a given item is available,
the retailer requests its shipment. Otherwise, it will record that
the item could not be shipped. This process results in a list
of the items that each warehouse will ship, and accordingly
adjusted inventory levels.

OrderProcessing:R Warehouse

InventoryManagement:W

in1

out1

OUT1

[SomeItemsShipped]

[NoItemCanBeShipped]out2

PresentToFirstWH

PresentToNextWH

IN1

RecordShippedItems

[NeedToCheckNextWH]

[AllShippedOrNoMoreWH]

CheckAvailability

Fig. 8. SourceGoods plug-in for Fig. 7.

The CheckAvailability submap in Figure 9 shows the it-
eration through the list of items presented to an individual
warehouse. Whenever an item is available, the ordered quan-
tity is decremented from the warehouse inventory. The start
point touching the main path is triggered in-passing and this
leads to theReplenishment stub. This path is to be executed
asynchronously (i.e., in parallel) once theDecrementStock
responsibility has been performed. By makingReplenishment
a dynamic stub(shown as a dotted diamond), we can specify
a selection policyto decide whether the stock needs to be
replenished or not. These options would be descriped as two
separate plug-ins, with one of them being selected at run-time
according to the selection policy.

One plug-in for theReplenishment stub would simply be a
straight, pass-trough connection fromIN1 to OUT1. The other
plug-in is shown in Figure 10. The warehouse orders goods
from manufacturers to replenish its own stock for a given
product. This map is interesting as it demonstrates the use
of parallelism with a UCMAND-fork. Upon receiving and
validating the order, the selected manufacturer immediately
acknowledges the receipt of the order before it starts process-

InventoryManagement:W

in1 out1[Done]

[MoreItems]

GetNextItem DecrementStock

[SufficientStock]

TEST-MoreItem

UpdateStock
IN1

OUT1

OUT2
NoStockUpdate

TEST-SufficientStock

Replenishment

Fig. 9. CheckAvailability plug-in for Fig. 8.

ing the request (first of two parallel branches, which ends in
AckToWH). The reason for this is that the manufacturer may
need to produce the requested goods before it can supply them,
if it has insufficient inventory of the product (second parallel
branch).

As soon as the manufacturer has shipped the finished
product, it sends a shipping notice to the warehouse (Shipping).
In response the warehouse updates its inventory, and acknowl-
edges the receipt of the shipping notice to the manufacturer
(AckToManu). Again, an AND-fork is used to indicate that
these responsibilities are performed in parallel.

Manufacturer

Production:M

InventoryManagement:W

in1

Shipping

IN1

updateStock

BuildOrder

SelectManufacturer

PlaceOrder ValidateWHorder

AckToWH

[ValidOrder][InvalidOrder]reject

OUT1

AckToManu

SupplyFinishedGoods

Fig. 10. ReplenishStock plug-in for Fig. 9.

This plug-in also illustrates that bindings to stubs can
be fairly flexible (e.g., not all plug-in start/end points and
stub input/output segment labels need to be bound). Plug-
ins must be bound explicitly to their parent stub(s), although
this has not been illustrated so far for simplicity reason. The
binding relationship here is described as:{<IN1 → in1>,
<updateStock → OUT1>, <reject → OUT2>}.

To supply finished goods, we developed the submap de-
scribed in Figure 11. After receiving a purchase order from a
warehouse, the manufacturer may either be able to satisfy the
request with the inventory at hand, or may need to manufacture
the requested goods. This map makes use of a dynamic stub
to represent the optional step of manufacturing finished goods
(not shown here).

Production:M

in1 out1

CheckInventory

IN1

ShipOrder

OUT1

UpdateInventory

ManufactureFinishedGoods

Fig. 11. SupplyFinishedGoods plug-in Fig. 10.

III. U NDERSTANDING COMPLEX PROCESSES

The understanding of complex business processes is influ-
enced by many aspects. This section discusses two important
contributors: the exploitation of links between GRL models
and UCM models (the former providing rationales for the lat-
ter), and the extraction of specific scenarios from the process.

A. Links Between the GRL and UCM Models

In URN, various traceability links can be created between
GRL and UCM models. If a GRL model is fine grained,
then detailed elements such as GRL tasks and goals can
be linked to specific UCM responsibilities, path segments,
scenario definitions or entire plug-in maps. Responsibilities are
activities that represent something to be performed (operation,
task, function, etc.). GRL goals and softgoals such as those
in Figure 4 can be refined into high-level tasks (not shown
here), and those tasks into low-level UCM responsibilities.
This provides a traceable rationale for the scenarios and
their responsabilities, hence explainingwhy they exist and are
structured in this way.

From another perspective, UCM models explainwhat the
activities related to a business goal are (responsibilities and
scenarios),who is involved in these activities (actors and
components),where they are performed (allocation to com-
ponents), as well aswhenthey should be performed (via con-
structs for expressing sequence, choices, concurrency, timers,
and synchronization).

GRL models also allow analysts to link business or system
goals to architectural alternatives, and thus to document the
rationale for a particular choice. For instance, in [1][26],
several ways of allocating UCM responsibilities to components
are explored and the decision is based on the contribution
of each alternative to the satisfaction of higher-level GRL
goals such as performance, reuse of current infrastructures,
and maintainability.

Another use for GRL models consists in considering and
evaluating different configurations of actors, or allocation of
roles to actors. This aspect will be further explored in an
evolution context in Section IV.

Although there exists tools to create GRL and UCM models
(OME [32] and UCMNAV [22] have been used in this paper),
these types of links are currently not supported by any tool.
However, [20] presents an approach where UCM models are
exported to a requirements management system (e.g., Telelogic
DOORS) so that traceability links between UCM elements and
external requirements and goals can be created, explored, and
maintained as the models evolve.

B. Single Scenario in MSC

One problem everyone faces when studying a complex
UCM model is that we need to flip back and forth between
many maps, nested through stub/plug-in relationships. This
hinders the understandability of specific scenarios. However,
this issue can be overcome by extracting specific scenarios and
representing them using a suitable notation.

The UCM notation supports a very simplepath data model
that can be used to traverse paths in a deterministic way.
Global Boolean control variables can be used to formalize
conditions in guards attached to OR-forks and in selection
policies (in dynamic stubs). Responsibilities can also modify
the content of these variables with new values resulting from
the evaluation of Boolean expressions. In our case study,
several such variables were created and used to formalize the
various conditions found in the model.

A UCM model may also include several groups ofscenario
definitions. Each such definition consists of initial values for
the variables, a set of start points initially triggered, and an
optional post-condition expected to be satisfied at the end
of the execution of the scenario. In our model, we created
20 scenarios definitions categorized in five groups. These
scenarios cover the interesting functionalities offered by the
system, as well as all the UCM path segments in the model.

Scenario definitions can be combined to a path traversal
algorithm in order to highlight specific scenarios in a complex
UCM model, or to transform them to other representations.
Details of the various algorithm used here can be found
in [2][24]. In a nutshell, the algorithm uses a depth-first
traversal of the graph that captures the UCMs’ structure and
generates scenarios where sequences and concurrency are pre-
served, but where alternatives are resolved using the Boolean
variables. If conditions cannot be satisfied or evaluated, then
the algorithm reports an error.

The target representation selected here is Message Sequence
Charts (MSCs) [14]. The UCM model was first constructed
using the UCMNAV tool [22]. Then, scenario definitions
were added and this tool generated the resulting scenarios in
a XML format whose schema is described in [3]. Another
tool (UCMEXPORTER [3]) takes these scenarios in XML and
converts them to MSCs or to UML sequence diagrams [18].

MSCs give a linear view of scenarios that traverse multiple
UCMs, a situation that occurs frequently when plug-in maps
are used. They are composed of component instances, shown
as vertical lines, and of messages, shown as arrows. Actions
(small boxes), conditions (hexagons), and concurrent behavior
(large boxes crossing many instances) are also supported.

Figure 12 provides a simple example of an MSC gen-
erated from a basic scenario where the warehouse has the
desired item and the shipment is confirmed, but during the
replenishment the inventory is found to be insufficient and
hence manufacturing gets involved. This scenario was selected
because it traverses all the UCM found in Figures 5 to 11. To
preserve the semantics of UCMs and traceability to the original
model, UCM components are mapped to MSC instances, start

and end points to messages, condition labels to conditions, and
responsibilities to actions.

In this MSC, we can observe that aNavigate message shows
up while it is absent from the UCM model. This message
is synthesized automatically by UCMEXPORTER in order to
preserve the causal flow between successive responsibilities
found in two different components (Customer and Retailer).
Message names between pairs of components are provided in
a configuration file and can be refined by concrete message
exchanges, e.g., in a way consistent with message names used
in corresponding Web service operations. Plug-ins selected
in dynamic stubs are reported as conditions in the MSC to
indicate which one was chosen (e.g., theDefault plug-in was
selected in the dynamic stub that followsCheckInventory from
Figure 11). Start points and end points that are not used as
connectors in a stub/plug-in binding correspond to messages
(e.g.,AckToManu andAckToWH from Figure 10).

The linear nature of MSCs makes it easy to follow and
inspect this scenario, which otherwise would require the
stakeholders to flip back and forth through eight different
UCMs in order to get the same understanding. This scenario is
also interesting because it preserves the concurrency specified
at the UCM level (e.g., with AND-forks).

It should also be noted that the MSCs generated here are
comparable in content to the sequence diagrams found in [29],
with the addition of concurrency and timer information. The
MSCs are also defined at the same level of granularity and
abstraction, they are traceable to the UCM model, and they
are consistent with each other. These aspects cannot be taken
for granted when MSC or sequence diagrams are created
manually.

Scenario definitions, path traversals, and transformations to
other formalisms are not limited to model understanding. They
also contribute greatly to many validation activities:

• The UCM model itself can besimulated. Scenario defini-
tions can be seen as test cases that can be used to ensure
nothing is broken as the business process and architecture
evolve, in a way somewhat compatible with the test-
development approach proposed by theagile development
community. Errors are reported when the traversal stops
(because of non-determinism, unsatisfied conditions, or a
start point that is not triggered) or when scenario post-
conditions are not met.

• Different stakeholders can review, inspect, and validate
individual MSC scenarios extracted from a UCM model,
in order to reach agreement on issues identified in GRL
models.

• Test goals can be generated from these scenarios. Several
approaches are surveyed in [4].

• Performance annotations can be added to UCM models
in order to generate analyzable performance models [20].

The generation of detailed scenarios from higher-level
UCM descriptions respects the spirit of model-driven devel-
opment. In OMG’sModel Driven Architecture[19], platform-
independent models are refined into models containing
platform-specific information. Indeed, as seen in this section,

Retailer ManufacturerConsumer Warehouse

2

3

3

3par

2

2par

1

1

1par

UpdateInventory

ShipOrder

Default

CheckInventory

ValidOrder

ValidateWHorder

PlaceOrder

SelectManufacturer

BuildOrder

ReplenishStock

SomeItemsShipped

AllShippedOrNoMoreWH

RecordShippedItems

Done

DecrementStock

SufficientStock

GetNextItem

GenListItemsShipped

PresentToFirstWH

ValidOrder

ValidateOrder

ReceiveOrder

EnterOrderInfo

PresentCatalog

NavigateToSite

MSC STS_ShipmentWithReplenishmentSuffInv

AckToWH

Shipping

AddGoods

OrderManu

AckToManu

UpdateStock

PresentOrder

ShippedItems

ShipmentConfirmed

OrderInfo

Catalog

Navigate

PurchaseGoods

Fig. 12. An MSC scenario for Sell-to-stock strategy.

platform-specific communication information can be added to
the scenarios generated from a UCM model.

IV. EVOLVING BUSINESSPROCESSES

A. Evolution of Business Goals

Our working hypothesis in this paper is that we can use
the samescenario to describedifferent business models and
to reason about them. The fundamental underlying concept of
UCM is the separation of the definition of a scenario from its
allocation to components. Allocations can be reasoned about,
and compared using GRL models. This concept lays the basis
for an incrementalevolutionof the business model.

Consider the options available to a manufacturer who cur-
rently sells its products via intermediaries. As indicated in
Figure 4, the manufacturer could consider actions that result in
either one or both of the preconditionsSmall market share and
Standardize product to change. Exploring those options leads
to several possible evolutions of the business model illustrated
by Figure 13.

The boxes in Figure 13 correspond to different business
model available to the manufacturer. The initial option (R)
represents the manufacturer’s current model. We name it for
the dominant role played by the retailer in controlling access
to the customer in this model. This option is exemplified by
North-American PC retailers such as CompuSmart and Micro
Warehouse.

R
CompuSmart

Micro Warehouse

W
Sam’s Club
Converge

WR
Ingram Micro

MicroAge

MW
Micron

M
Dell

Gateway

W assembles final product

W assembles final product

Standardized product

M assembles product

Fig. 13. Different ways for a manufacturer to sell its products.

The arrows indicate the evolution between these business
models, and the labels on the arrows characterize the nature of
the transition between the models. For example, the transitions
from R to W, and R to WR, are both about increasing
market share. However, in the transition fromR to W the
manufacturer keeps selling a standardized product, whereas in
the other transition, it can offer a differentiated product. It is
the warehouse that assembles the customized product. In both
options the warehouse keeps control of order processing.

The manufacturer could increase its market share by partner-
ing with a warehouse. This leads to either theW (Warehouse),
the WR (Warehouse-Retailer), or theMW (Manufacturer-
Warehouse) strategy. In the first option (W), the warehouse
now owns the relationship with the customer, and its impact

on the manufacturer is in many ways similar to that of the
R strategy. However, a higher revenue can be expected due
to the reduced length of the supply chain. In this option, the
manufacturer keeps selling a standardized product. Examples
of warehouses that sell direct to customers are Sam’s Club
(Walmart’s warehouse outlets), or the Converge consortium.

In the second option (WR), the warehouse assumes ad-
ditional responsibilities such as assembly of all or part of
the product. The main difference from theW strategy is that
manufacturer can now (via the distributor or warehouse) offer
a customized product, and can strengthen its market position
against competitors that continue to sell standardized goods.
In common with the first option, however, order processing
is still performed by the warehouse, which therefore controls
the flow of customer information to the manufacturer. This
strategy is illustrated by examples such as Ingram Micro or
MicroAge, both established distributors of PC components,
and providers of value-added services.

Of greater interest to the manufacturer, however, should
be the third option (MW). In this strategy, illustrated by
companies such as Micron, the manufacturer is in the driver’s
seat. It sells its products directly to the customer, but, in part
to share revenue risks, and in part to leverage the distribution
experience of a warehouse partner, it outsources distribution
to a warehouse. Traditional shipping service providers such
as Micron’s partner FedEx have developed additional capa-
bilities to manage the inventories of their clients. Although
not specialists in the manufacturer’s domain, they may still
perform some of the assembly tasks formerly performed by
the manufacturer, or domain experts such as Ingram Micro.
FedEx’s service is branded as Merge-in-Transit, and builds on
FedEx’s extensive distribution network.

The most evolved of these strategies, however, is to assume
all key responsibilities (order processing, inventory manage-
ment, and production) within the manufacturer. This is labeled
as the M (Manufacturer) strategy in Figure 13. Note that
this option does not necessarily imply that the manufacturer
handles the physical product, but refers to the control the
manufacturer exerts over the information flow in the supply
chain. The fully virtual version of this business model (not
discussed here) is also known as Value-Net-Integrator [25].

The impact of choosing one of these alternatives can be
analyzed within an actor diagram. The GRL model for the
M strategy is shown in Figure 14. This figure shows that the
benefit of selling direct with an internal warehouse allows the
manufacturer toProvide tailored services, know the customer
and achieve high rates ofRepeat business (Own customer
relationship), and sell at aLow price while still realizing a
high margin. The latter can be achieved by only assembling
a product on receipt of a firm order (Build to order), and
efficiencies in inventory levels (Low inventory), as well as the
float resulting from receivingAdvance payment.

However, adopting theM strategy is predicated on two pre-
conditions: that the manufacturer already has aLarge market
share, and the capability to offer aDifferentiated product. One
important component of our approach is, therefore, to use

Fig. 14. GRL actor diagram: Sell direct to consumer with internal warehouse (M) strategy.

GRL beliefs to model preconditions for achieving business
objectives represented as softgoals. (Similarly, we will later
use decomposition of GRL tasks into softgoals to express
preconditions for alternative business models to be compared
by using GRL models.)

Figure 15 summarizes the business architectures corre-
sponding to these business model alternatives. Since theW and
WR strategies share most aspects, except for the fact thatW
involves standardized, andWR differentiated products, their
architectures are the essentially the same.

Another GRL model can be used to compare the business
models. For the sake of understandability, we limit ourselves
to a comparison of the two extreme models, i.e., theR and
M strategies. Figure 16 shows the impact of choosing either
alternative on profitability and risk.

The comparison thus focuses on two high-level goals that
can be used to characterize any business (not just the business
models discussed) of achievingHigh Profitability and Low
Risk. The profitability goal can be achieved by increasing
revenue (High revenue), or reducing cost (Low cost). The
contributing factors of these goals are the five subgoals of
Sell direct identified in Figure 14. The diagram also captures
the preconditions for each option via softgoals into which the
M and R tasks are decomposed. These are the same as the
beliefs identified earlier.

However, not all companies will be able to evolve their
business models as rapidly as they would like to. Figure 16
indicates a key obstacle for evolving quickly from theR
strategy to theM strategy for manufacturers with existing
resellers. Trying to remove those resellers from the chain will
(initially, at least) lead to achannel conflict, and to a loss in
sales as the manufacturer can no longer count on the sales

from its resellers. Thus, the strength of the existing resale
channels is a key determinant for how fast the manufacturer
can evolve its business model. In the model, this is represented
as a belief (Existing channels) that provides a precondition to
Channel conflict.

B. Evolving the UCM Model

Evolving a UCM model usually involves modifications to
the path elements (including responsibilities), the component
architecture, and the allocation of path elements to compo-
nents. However, in order to evolve our business process from
a Sell to stock via warehouse and retailer (R) strategy to a
Sell direct to consumer with internal warehouse (M) strategy,
there is little need for modifying the existing UCM paths.
Obviously, the underlying component model changes from
Figure 15a) to Figure 15c). Thus, two actors are removed,
and the three roles (OrderProcessing, InventoryManagement,
and Production) become allocated to the remainingManu-
facturer component. Accordingly, the new root map shows
the Consumer submitting her order to theManufacturer (see
Figure 17).

Note that, for this example, we do not need to modify the
allocation of responsibilities to roles, nor do we need to modify
the paths themselves. Only the deployment of roles to actors
needs to be updated. This is a major benefit of the UCM
notation: the scenarios are often robust and long-lived, even
when the underlying architecture changes. This is usually not
the case with message-based scenario notations like MSCs and
UML sequence diagrams.

In the set of maps previously defined for the (R) strat-
egy, only two other maps need to be slightly modified to
describe the (M) strategy. Figure 8 becomes Figure 18 whereas
Figure 10 is changed to Figure 19. These modifications are

Warehouse

InventoryManagement

Warehouse

InventoryManagement:W

Retailer

OrderProcessing

Retailer

OrderProcessing:R

Manufacturer

Production
Warehouse:M

Manufacturer

Production:M
Warehouse:M

ConsumerConsumer

a) Sell to stock via warehouse and retailer (R)

ConsumerConsumer Manufacturer

InventoryManagement:M
Warehouse:M

OrderProcessing:M

Production:M

Manufacturer

InventoryManagement:M
Warehouse:M

OrderProcessing:M

Production:M

c) Sell direct to consumer with internal warehouse (M)

ConsumerConsumer Warehouse

InventoryManagement:W

Warehouse

InventoryManagement:W

Manufacturer

OrderProcessing:M

Production:M

b) Sell direct to consumer with external warehouse (MW)

Warehouse:M

d) Sell to stock via warehouse (W/WR)

ConsumerConsumer Warehouse

InventoryManagement:W

Warehouse

InventoryManagement:W

Manufacturer

OrderProcessing:W

Production:M
Warehouse:MWarehouse:M

Fig. 15. Four alternative architectures for supporting the business process.

required because these UCMs showed situations where the
causality involved two different actors. In the UCM notation,
components in plug-ins do not need to be repeated because,
unless stated otherwise, the roles in a submap are allocated
to the actor that contains the stub where this plug-in is
used. For instance, theOrderProcessing role in Figure 7 is
part of the Retailer component because the latter contains
the FulfillOrder stub where this plug-in is used. However,
in the new (M) strategy, this same role is allocated to the
Manufacturer component, which now contains theFulfillOrder
stub (Figure 17).

Note that in Figure 19, we are keeping theSelectManufac-
turer and PlaceOrder responsibilities for simplicity, although
their interpretation is slightly different (i.e., there is only one
manufacturer to choose from). In general, some adjustments
to a few such responsibilities, which are specific to a given
architecture, may be required in UCM models.

Fig. 16. GRL diagram: Comparison between strategies M and R.

Consumer Manufacturer

OrderProcessing:M

PurchaseGoods IN1

RejectOrder
OUT1

IN1OUT1

OUT2

ShipmentConfirmed [OrderSuccessful]

[NoSuchProductOrCannotBeShipped]

FulfillOrderSubmitOrder

Fig. 17. Strategy M: root Use Case Map.

C. MSC Scenarios Revisited

The scenario definitions developed for the first UCM model
can be reused as is in the second one because the start points
and the Boolean variables used in guards and selection policies
have not changed. The new model can be simulated again and
the resulting scenarios transformed to MSCs.

Figure 20(a) shows the result of exploring the same scenario
definition as the one used in Figure 12. It is very similar
to the first one because this version uses the roles as MSC
instances, and they match the actors used in Figure 12.
However, the same scenario could be represented at the actor
level only (i.e., without references to the roles). For instance,
Figure 20(b) clearly illustrates the various activities for which
the Manufacturer is responsible.

Since there are fewer intermediaries, in total there are
likely fewer services that will be supported between actors.
The interfaces between theRetailer and theWarehouse and
between theWarehouse and theManufacturer are no longer
required in this new business process. In fact, the messages
on these interfaces have disappeared from Figure 20(b). This
could lead, for instance, to simplified Web services required
to implement the overall process.

OrderProcessing:M InventoryManagement:M

Warehouse:M

in1

out1

OUT1

[SomeItemsShipped]

[NoItemCanBeShipped]out2

PresentToFirstWH

PresentToNextWH

IN1

RecordShippedItems

[NeedToCheckNextWH]

[AllShippedOrNoMoreWH]

CheckAvailability

Fig. 18. Strategy M: SourceGoods plug-in.

Warehouse:M
Production:M

in1

Shipping

IN1

updateStock

BuildOrder

SelectManufacturer

PlaceOrder ValidateWHorder

AckToWH

[ValidOrder][InvalidOrder]reject

OUT1

AckToManu

SupplyFinishedGoods

Fig. 19. Strategy M: ReplenishStock plug-in.

V. RELATED APPROACHES

The User Requirements Notation and similar languages have
been exploited in various contexts, some of which are related
to the one presented here.

A. Other Similar Notations

• In use-case driven design, use cases can be supplemented
or, to some extent, replaced by URN models. The use
case approach has a number of known drawbacks that
can be averted by using UCMs to model the early
requirements of a business process. Usingextendsand
includesrelationships is often difficult, whereas the same
functionality is achievable in a simpler way with UCM
stubs and plug-ins. UCM models provide a more system-
atic way of modeling concurrent behavior, and analyzing
the interaction of multiple scenarios. Use-case driven
approaches seldom provide notions of modeling design
goals and linking them to other design artifacts, as in
URN.

• The Service-Oriented Architecture (SOA) approach pro-
posed by [11] aims to align services with business goals.
In this approach, services are large-grained activities at
the use-case level. SOA aims to support many design
activities, including domain decomposition, goal-service
model creation, and subsystem analysis. URN provides
support for these three parts, as well as better guidance on

what should do be done at each step, and better modeling
of scenario interactions.

• Conceptual value modeling ore3-value [12][13] is an
approach for precisely describing and evaluating inno-
vative e-business ideas. It provides means to evaluate
the feasibility of an e-business model focusing on the
creation, exchange, and consumption of objects (i.e., the
revenue streams) in a multi-actor network. Value models
are different from business process models in that the
former show how objects of economic value are created
and handled by actors, whereas the latter focus on how
exchanges of value objects are put into operation from a
business process perspective.e3-valueuses UCM scenar-
ios to model and analyze revenue streams as causal flows,
and to integrate various viewpoints: value, process, and
information system.e3-valueis similar to our approach
in terms of its use of scenarios to model causal flows. It
also provides a means for performing value-based trade-
offs. However, unlike in URN, value is mainly expressed
in monetary terms; other non-functional goals cannot be
modeled directly. On one hand,e3-valueis hence much
more specific in scope than URN. On the other hand, we
can think ofe3-valueas an intermediary view between
general GRL models and operational UCM models. Both
approaches could therefore be integrated for modeling e-
commerce systems.

• Many GRL concepts are formalized in the TROPOS

OrderProcessing_M Production_MConsumer InventoryManagement_M

3

3par

2

3

2

2par

1

1

1par

PresentCatalog

ReceiveOrder

ValidateOrder

PresentToFirstWH

GenListItemsShipped

ValidOrder

GetNextItem

DecrementStock

RecordShippedItems

BuildOrder

SelectManufacturer

PlaceOrder

SufficientStock

Done

AllShippedOrNoMoreWH

SomeItemsShipped

ReplenishStock

UpdateInventory

ShipOrder

Default

CheckInventory

ValidOrder

ValidateWHorder

EnterOrderInfo

NavigateToSite

MSC SDC_roles_ShipmentWithReplenishmentSuffInv

AckToWH

ShipmentConfirmed

OrderInfo

Catalog

Navigate

PresentOrder

ShippedItems

UpdateStock

AckToManu

OrderManu

AddGoods

Shipping

PurchaseGoods

(a) With roles as instances

ManufacturerConsumer

3

3par

2

3

2

2par

1

1

1par

ShipOrder

UpdateInventory

Default

CheckInventory

ValidOrder

ValidateWHorder

PlaceOrder

SelectManufacturer

BuildOrder

ReplenishStock

GenListItemsShipped

DecrementStock

SufficientStock

GetNextItem

PresentToFirstWH

ValidateOrder

ReceiveOrder

PresentCatalog

RecordShippedItems

ValidOrder

SomeItemsShipped

AllShippedOrNoMoreWH

Done

EnterOrderInfo

NavigateToSite

MSC SDC_agents_ShipmentWithReplenishmentSuffInv

AckToWH

AckToManu

UpdateStock

ShipmentConfirmed

Navigate

Catalog

OrderInfo

PurchaseGoods

(b) With agents as instances

Fig. 20. MSCs for a Sell direct to consumer with internal warehouse (M) strategy.

agent-oriented methodology. In [16], Mylopoulos and
Lau explore the use of TROPOS in the context of Web
service design, with an emphasis on actors and their de-
pendencies (as was presented here). It is suggested to use
the Agent-based Unified Modeling Language (AUML)
to refine the goal and actor models prior to defining
Web services in WSDL. However, this step is not well
illustrated.

B. Other URN Usages

• UCMs are used in [10] for describing and selecting appro-
priate architectures. An architecture generator produces a
candidate software architecture based on feature-solution
graphs (which could be expressed to some extent in GRL)
connecting quality requirements and solutions (expressed
as potential UCM plug-ins for a reference architecture).
The architecture is then evaluated, mainly by inspection,
against functional and non-functional requirements.

• Both UCM and GRL are used in [17] to model infor-
mation systems in a social context specified in terms of
dependency relationships among agents and roles. Their
approach includes an iterative process where the use of
GRL and UCM is intertwined: scenarios refine solutions
to goals (tasks), and the elaboration of scenarios can
lead to the discovery of new goals. They illustrate their
approach with a Web-based training system.

• In [6], Bleistein et al. use GRL to link requirements
for strategic-level e-business systems to business strat-
egy, as well as documenting recurring patterns of best
business practices. They explore goal modeling for pro-
viding traceability and alignment between strategic levels
(business model and business strategy) and tactical and
operational ones (business process model and system re-
quirements). This work is still preliminary but it provides
encouraging insights regarding the scalability of GRL for
strategic business issues.

• Both GRL and UCMs are used in [27] to model Web
services and their interactions. However, their focus is not
on modeling business processes per se, but on detecting
undesirable interactions among services. We see this
work as complementary to our work. It could be used
to discover architectural alternatives where they are not
apparent, and to strategize about ways of restructuring a
business process to meet user (or company) goals.

VI. CONCLUSION

This paper introduced how the User Requirements Notation
can be used to design and evolve business models. Through
a case study, we illustrated the systematic and incremental
evolution of (a family of) business model alternatives. GRL
models allow the analyst to model the business goals, the
specific benefits and liabilities (risks) of each alternative, as
well as the dependencies between all participants in the supply
chain. We decided to model preconditions as GRL beliefs,
which help assess the applicability of business models, and
select among different alternative business models.

While GRL models provide rationales, UCM models focus
more on the operational aspects of the business process by
describing, in abstract terms, who should do what, when, and
where. UCMs can integrate multiple scenarios and use cases
in a collection of interrelated maps. The notation promotes
the evolution of the model by allowing analysts to map
responsibilities to components as well as roles to agents/actors
in various ways, while minimizing the impact on the rest of
the model.

In our case study, we used a standard example (sell through
resellers), and developed several alternatives based on the
exact same scenario. We discussed the impact of the business
models from the perspective of the Manufacturer, who would
like to determine when would be a good time to eliminate
intermediaries such as Retailers and Warehouses, as well as
how this would affect current ways of delivering services.

Although various links between GRL and UCM models
can improve the understanding of these two views, sometimes
business processes modeled as UCMs become rather complex.
They can then be more suitably shown with a different nota-
tion, such as MSCs. UCMs ease the design and evolution of
an integrated set of scenarios as a whole, but transformations
of specific scenarios to linear representations such as MSCs
help understand a scenario from end to end without having to
go back and forth between different UCMs. Extracting MSCs
(or the like) from UCMs also pave the way towards more
detailed design and testing activities, in accordance with the
requirements of the business process.

We foresee several items for future work:

• Definition of more detailed business processes to enable
the mapping of UCM models to Web service implemen-
tations. In particular, we would first consider a mapping
from UCMs to the Business Process Execution Language
(BPEL) for Web Services [5] that can be directly executed
by a BPEL execution engine.

• Derivation of test goals from UCM models and transfor-
mation to a suitable format for testing, e.g., Web services.

• Look at ways of describing a complex business process
as a composition of smaller business processes, to make
them more usable as the complexity of the model in-
creases.

ACKNOWLEDGMENT

This work has been supported financially by the Natural
Science and Engineering Research Council of Canada, through
its Strategic Grants and Discovery Grants programs.

REFERENCES

[1] D. Amyot, “Introduction to the User Requirements Notation: Learning
by Example”, Computer Networks, 42(3), 285-301, 21 June 2003.
http://www.usecasemaps.org/pub/ComNet03.pdf

[2] D. Amyot, D.Y. Cho, X. He, and Y. He, “Generating Sce-
narios from Use Case Map Specifications”,Third Int. Conf.
on Quality Software (QSIC’03), Dallas, USA, November 2003.
http://www.usecasemaps.org/pub/QSIC03.pdf

[3] D. Amyot, A. Echihabi, and Y. He, “UCMEXPORTER: Supporting
Scenario Transformations from Use Case Maps”,Proc. of NOTERE’04,
Säıdia, Morocco, June 2004.

[4] D. Amyot, M. Weiss, and L. Logrippo, “UCM-Based Generation of
Test Goals”,ISSRE04 Workshop on Integrated-reliability with Telecom-
munications and UML Languages (ISSRE04:WITUL), Rennes, France,
November 2004.

[5] T. Andrews, F. Curbera, et al.,Business Process Execution Language
for Web Services, Version 1.1.
http://www-106.ibm.com/developerworks/library/ws-bpel

[6] S.J. Bleistein, A. Aurum, K. Cox, and P.K. Ray, “Linking
Requirements Goal Modeling Techniques to Strategic e-Business
Patterns and Best Practice”,8th Australian Workshop on Re-
quirements Engineering (AWRE’03), UTS, Sydney, 2003, 13–22.
http://www.caeser.unsw.edu.au/publications/pdf/Tech032.pdf

[7] R.J.A. Buhr and R.S. Casselman,Use Case Maps for Object-Oriented
Systems, Prentice Hall, 1996.
http://www.usecasemaps.org/pub/UCMbook95.pdf

[8] R.J.A. Buhr, “Use Case Maps as Architectural Entities for Complex Sys-
tems”,IEEE Trans. on Software Engineering, Vol. 24, No. 12, December
1998, 1131–1155. http://www.usecasemaps.org/pub/ucmUpdate.pdf

[9] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos,Non-Functional
Requirements in Software Engineering, Kluwer Academic Publishers,
Dordrecht, USA, 2000.

[10] H. de Bruin and H. van Vliet, “Scenario-based generation and evaluation
of software architectures”.Generative and Component-Based Software
Engineering (GCSE’01), 2001, LNCS 2186.

[11] M. Endrei, J. Ang., et al.,Patterns: Service-Oriented Architecture and
Web Services, IBM Redbook, April 2004.
http://www.redbooks.ibm.com/redbooks/pdfs/sg246303.pdf

[12] J. Gordijn, Value-based Requirements Engineering: Exploring
Innovative e-Commerce Ideas. Ph.D. thesis, Vrije Universiteit,
The Netherlands, SIKS Dissertation Series No. 2002-08, 2002.
http://www.cs.vu.nl/ gordijn/thesis.htm

[13] J. Gordijn, J. Akkermans, “Value-based requirements engineering: ex-
ploring innovative ecommerce ideas”.Requirements Engineering Jour-
nal, 2003, 8:114-135.

[14] ITU-T – International Telecommunications Union,Recommendation
Z.120 (04/04) Message Sequence Chart (MSC). Geneva, Switzerland,
2004.

[15] ITU-T – International Telecommunications Union,Recommendation
Z.150 (02/03), User Requirements Notation (URN) – Language Require-
ments and Framework. Geneva, Switzerland, 2003.

[16] D. Lau and J. Mylopoulos, “Designing Web Services with TROPOS”.
IEEE International Conference on Web Services (ICWS’04), San Diego,
USA, 306–313, 2004.

[17] L. Liu and E. Yu, “Designing Information Systems in Social Context:
A Goal and Scenario Modelling Approach”.Information Systems (Jour-
nal), Vol.29, No.2, 2003. http://www.cs.toronto.edu/ liu/publications/

[18] OMG – Object Management Group,Unified Modeling Language Spec-
ification (UML), version 1.5, March 2003. http://www.omg.org/uml/

[19] OMG – Object Management Group,Model Driven Architecture (MDA),
http://www.omg.org/mda/

[20] D.B. Petriu, D. Amyot, M. Woodside, and B. Jiang, “Traceability and
Evaluation in Scenario Analysis by Use Case Maps”. To appear in:
Scenarios: Models, Algorithms and Tools, LNCS, Springer, 2004.

[21] UCM User Group,UCMExporter, 2003.
http://ucmexporter.sourceforge.net/

[22] UCM User Group,UCMNav 2, 2004.
http://www.usecasemaps.org/tools/ucmnav/index.shtml

[23] URN Focus Group, Draft Rec. Z.151 – Goal-oriented
Requirement Language (GRL). Geneva, Switzerland, Sept. 2003.
http://www.UseCaseMaps.org/urn/.
See also http://www.cs.toronto.edu/km/GRL/

[24] URN Focus Group,Draft Rec. Z.152 – Use Case Map Notation (UCM).
Geneva, Switzerland, Sept. 2003. http://www.UseCaseMaps.org/urn/.
See also http://www.UseCaseMaps.org/

[25] P. Weill and M. Vitale,Place to Space, Harvard Business School Press,
2001.

[26] M. Weiss and D. Amyot, “Business Process Modeling with URN”.
Submitted.

[27] M. Weiss and B. Esfandiari, “On Feature Interactions among Web
Services”.IEEE Int. Conf. on Web Services (ICWS’04), San Diego, USA,
2004, 88–95.

[28] WS-I – Web Services Interoperability Organization,Supply Chain
Management: Use Case Model, Version 1.0, 2003. http://www.ws-
i.org/Documents.aspx

[29] WS-I – Web Services Interoperability Organization,Supply Chain
Management: Sample Application Architecture, Version 1.0.1, 2003.
http://www.ws-i.org/Documents.aspx

[30] W3C, Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl

[31] E. Yu, “Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering”.3rd IEEE Int. Symp. on Requirements
Engineering (RE’97), 1997, Washington, USA, 226–235.

[32] E. Yu and L. Liu, Organization Modelling Environment (OME).
http://www.cs.toronto.edu/km/ome/

[33] E. Yu and J. Mylopoulos, “Why goal-oriented requirements engineer-
ing”. Proc. of the 4th REFSQ, Pisa, Italy, 1998, 15–22.

