
Evolution of Open Source Communities

Michael Weiss, Gabriella Moroiu, and Ping Zhao

Carleton University, School of Computer Science, 1125 Colonel By Dr, Ottawa,
Ontario KIS 5B6, Canada weissQscs.carleton.ca

Abstract . The goal of this paper is to document the evolution of a
portfolio of related open source communities over time. As a ca,se study,
we explore the subprojects of the Apache project, one of the largest and
most visible open source projects. We extract the community structure
from the mailing list data, and study how the subcommunities evolve,
and are interrelated over time. Our analysis leads us to propose the
following hypotheses about the growth of open source communities:
(1) communities add new developers by a process of preferential at
tachment; (2) links between existing communities are also subject to
preferential attachment; (3) developers will migrate between communi
ties together with other collaborators; and (4) information flow follows
project dependencies. In particular, we are concerned with the underly
ing factors that motivate the migration between communities, such as
information flow, co-worker ties, and project dependencies.

1 Introduction

There is much anecdotal evidence that open source communities grow accord
ing to a preferential attachment mechanism [13]. However, there is not much
empirical analysis to demonstrate this phenomenon. Most work on open source
communities centers on either static aspects of a community (such as its topol
ogy at a given time) [9, 14, 15], or describes the evolution of the community in
a qualitative manner [16, 8, 4]. The interaction between communities over time
(eg the migration of developers) has also not received sufficient attention.

Our goal in this paper is to document the evolution of a portfolio of related
open source communities over time. As a case study, we explore the subprojects
of the Apache project, both for reasons that this is a highly visible group of
open source communities, but also because a wealth of data is being collected
on the Apache project site that allows deep insight into the dynamic project
structure. In particular, we rely on mining the project mailing lists. Another
reason that made this choice conducive was the availability of the Agora [10]
tool for extracting information from the Apache project mailing lists.

The paper is structured as follows. Section 2 describes the methodology
followed to extract the community structure and various indicators (such as
developer rank) from the mailing list data. In Section 3, we show how the
various subcommunities of the Apache project evolve, and are interrelated over

Please use the following format when citing this chapter:
Weiss, M., Moroiu, G., and Zhao, P., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 21-32

22 Michael Weiss, Gabriella Moroiu, and Ping Zhao

time. We state our findings in the form of four hypotheses, and provide evidence
in their support. Finally, Section 4 presents our concluding remarks.

2 Community Structure

Our goal is to track the evolution of open source communities with time. Com
munities form around open source projects. They are groups of developers who
share a common interest in the project, and who regularly interact with one an
other to share knowledge, and collaborate in the solution of common problems
[16]. Communities are at the core of what is described in [3] as Collaborative
Innovation Networks (COINs), highly functional teams characterized by the
principles of meritocracy, consistency, and internal transparency. As shown in
[16], an open source community co-evolves with its associated project. A project
without a community that sustains it is unlikely to survive long-term.

Members of an open source community play different roles, ranging from
project leaders (maintainers) and core members (contributors) to active and
passive users [13, 14, 16]. Project leaders are often the initiators of the project.
They oversee the direction of the project, and make the major development
decisions. Core members are members who have made significant contributions
to a project over time. Active users comprise occasional developers and users
who report bugs, but do not fix them. Passive users are all remaining users
who just use the system. Core members can further be subdivided into creators
(leaders) communicators (managers), and collaborators [3].

Large open source projects such as GNU, Linux, or Apache comprise many
subprojects, not of all of which are strongly connected to one another. They
are not associated with a single, homogenous community, but rather an ecol
ogy [5] of (sub-)communities is formed around these subprojects. However, they
share a common governance/ (the Apache Foundation, in the case of the Apache
project), and often produce artefacts shared among all projects (such as the
Jakarta Commons in the Apache project). The idea of an ecology should convey
mutual dependencies between many of the projects and cross-project collabo
ration, but also competition for resources among projects.

Figure 1 shows the current portfolio of projects in the Apache project and
their relationships. It depicts the communication patterns between projects,
as determined from the project mailing lists. This diagram was generated by
an extension of the Agora [10] tool, which reuses its data extraction and core
visuahzation routines, but adds project and module dependency views (based
on JDepend [6]), and significant capabilities for pruning by strength of the
communication links and filtering by date, as well as statistical analysis.

The structure of a community can be inferred from the interactions between
developers on the mailing list of the associate project. We analyze the commu
nication patterns between developers, and order developers by the strength of
their communication links. For each developer we tally the number of inbound

Evolution of Open Source Communities 23

:ubatof

t^^gh-jg'.

• ' td
d

^ " 0'< #" #-..
Fig. 1. Portfolio of projects in the Apache project and their relationships

and outbound messages.-^ The project leader is considered the developer with
the highest number of inbound messages, as this indicates how frequently this
developer is consulted by others. It is, therefore, also a measure of the de
veloper's reputation. The same metric is used in [3] to identify creators, the
members who provide the overall vision and guidance for a project.

For the purposes of our analysis, we Hmit our attention to the group of core
developers. According to a previous study of the Apache project [11], most of
the contributions are made by the top 15 developers in a project. These are
considered the core developers. As noted in [3], a typical core group starts out
with 3 to 7 members, and grows to 10 to 15 members, once the community is
established. Using the pruning feature of our extended Agora tool, we retrieved
the core developers for every subproject of the Apache project. The structure
of a community obtained can be visualized as a network of developers.

Fig. 2 shows the community structure of the Httpd subproject based on
the messages exchanged over the 01/1999 to 12/1999 time frame.^ It can be
observed that the core group is a nearly fully connected network in which every
member communicates directly with every other member. Our database consists
of 24 projects and 253 unique core developers. Fig. 3 plots the cumulative
number of projects P and developers Â for the period of 1997-2004.

1

2

The algorithm for extracting topological data from the message set in the Agora
tool is is based on the concept of "reply": when a person sends a message in reply
to another message, a link is created in the graph. To eliminate noise messages that
are not replied to are excluded from the extracted data [10].
The color intensity of the links indicates the strength of a communication link.

24 Michael Weiss, Gabriella Moroiu, and Ping Zhao

1998

Fig. 2. Communication Hnks between the developers of the Httpd subproject

—4--N

1996 1998 2000 2002 2004 2006

Fig. 3. Cumulative number of projects and developers in the Apache project

3 Tracing Community Evolution

To trace the evolution of a community we took snapshots of its membership at
regular intervals. Here, we chose a one year period, but we plan to study the
evolution of the Apache communities over smaller time periods in the future.
For each period we retrieve the list of core developers ordered by their number
of inbound messages, as noted above. The extracted information is captured in
a spreadsheet similar to Figure 4 with the nicknames of the core developers for
each community and time period. Notably, the top row indicates the project
leaders, as inferred from the data. A Perl script translates the spreadsheet data
for further processing into a set of Prolog facts. This provide a knowledge base
that we can analyze in a flexible manner using the Prolog reasoning engine.

3.1 Growth by Preferential Attachment

Based on this data, we established several hypotheses about the growth of open
source communities. Our initial hypothesis that open source communities grow
by a process of preferential attachment [9], or selection through professional
attention [13] was adopted from the literature. It can be stated as follows:

Evolution of Open Source Communities 25

1997 1998 1999 2000 2001
donaldp
bloritsch
paul hamman
mail
peter
leo.sutic
mcconnell
mirceatoma
colus
Charles
jeff
giacomo
ulim
leif
proyal

2002
bloritsch
peter
paul hamman
leo.sutic
nicolaken
leosimons
mcconnell
proyal
leif
craferm
jeff
noel
stefano
paulo.gaspar
cziegeler

2003
bloritsch
mcconnell
leosimons
niclas
aokl23
noel
leo.sutic
alag
Steve
farra
nicolaken
cziegeler
holiveira
leosimons
paul hamman

2004
mcconnell
niclas
bloritsch
leo.sutic
dev
lira
cziegeler
aokl23
farra
leosimons
noel
develop
Isimons
jhawkes
exterminatorx

Fig, 4. Sample of the extracted data (core members of the Avalon subproject)

Hypothesis 1 The more developers a community has already, the more new
developers it will attract (also known as "rich gets richer^' phenomenon).

In support of this hypothesis, we first determine the degree distribution
P{k). As shown in Fig. 5, the distribution follows a power law. This indicates
that the communication network of the Apache community is scale-free. Such
networks contain relatively few highly connected nodes, while the majority of
nodes are only connected to few other nodes. This leads to a typical core-
periphery structure, as observed for many open source communities.

1000

10

i

10 100 1000

if 2001 X 2002 * 2003 ^ 2004

Fig. 5. Developer degree distribution shown with logarithmic binning

26 Michael Weiss, Gabriella Moroiu, and Ping Zhao

10000 -

1000

C 100

10

M^

fS

y = 4.064x '̂* '̂*^

R̂ = 0.9153

Fig. 6. Cumulative preferential attachment K(k) of new developers

One common mechanism to explain the growth of a scale-free network is
preferential attachment [1], as captured by the hypothesis. Preferential attach
ment implies that, as the network evolves, nodes will link to nodes that already
have a large number of links. To verify that the network of the Apache commu
nity follows a preferential attachment rule, we determine the probability that a
new developer is connected to an existing developer with degree k.

As described in [1], this probability can'be estimated by plotting the change
in the number of links Ak for an existing developer over the course of one year
as a function of A:, the number of links at the beginning of each year. Fig. 6
shows the cumulative preferential attachment K(k) of new developers joining
the Apache community. If attachment were uniform, K{}i) would be expected
to be linear. As shown, we find that K(]<i) is non-linear.

Having established that the growth of the Apache community follows a
preferential attachment regime at the developer level, we repeat the analysis
at the project level. Instead of estimating the probability of a new developer
connecting to an existing developer, we determine the probability of a new
developer selecting a given community. In order to show that this probability
is proportional to the degree If-^'^ of the project community, we determine the
change in the number of links for an existing project over the course of one year
as a function of the number of links lif^"^ at the beginning of each year.

Fig. 7 shows the cumulative preferential attachment K(k^°^) of new devel
opers joining an existing project community. We note that community degree
and community size are strongly correlated for higher degrees and larger sizes
[12]. Therefore, since the attachment process is preferential with regard to com
munity degree, it is also preferential with regard to community size.

Evolution of Open Source Communities 27

1000

100

Fig. 7, Cumulative preferential attachment K{k^°^) of new developers

3.2 Interaction and Migration between Projects

As much as the influx of external developers is a key characteristic of open
source communities that distinguishes them from other types of networks, it
is not the only factor that affects community evolution. As has been noted by
[1, 12], the internal interaction between projects also affects the structure and
dynamics of a community. Interaction comprises the flow of information, work
products, and developers. We will look at each of these aspects below.

Information Flow Information is shared between projects through common
developers who act as bridges between the projects. In [4], these developers are
considered the "glue that maintains the whole project together, and the chains
that contribute to spread information from one part of the project to another".

Hypothesis 2 The more developers a community shares with other communi
ties, the more developers from other communities will interact with it.

Fig. 8 shows that the distribution of projects per developer follows a power
law. That means that while most developers participate in only few projects,
some are active in many projects at the same time. These well-connected de
velopers act as network hubs and facilitate inter-project information flow.

Fig. 9 shows that the number of shared developers grows according to a
preferential attachment rule. We obtain this result by plotting the cumulative
change A{kl°'^k2°'^) for each pair of projects as a function of ki°^k2°^. This
estimates the probability that a project with degree kf^'^ will establish a link
with another project with degree k2°^' As shown, the growth is non-linear.

Migration To determine the migration behavior we look at pairs of projects,
and test, for each pair P and Q, whether a developer participates in project P is
one year and in project Q dunng the next one, but she is not already a member

28 Michael Weiss, Gabriella Moroiu, and Ping Zhao

1000

100
fx.

I = 223.SSx^'''''

R^ = 0.9827

1 10
p

Fig. 8. Distribution of the number of projects per developer

100000 -

10000

^ 1000

E
8

1000

conti , com

Fig. 9. Cumulative internal preferential attachment K(kik2) between projects

of project Q in the current year/^ Fig. 10 shows the developer migration from
2003 to 2004. Each row contains the number of developers migrating from a
given project to any of the other projects during the following year. Note that
"pool" is not a project, but indicates the influx of new core developers.

Many of these developers migrate to new projects, of which they form the
core to which new developers attach themselves. As projects are spun off from
existing projects, developers tend to migrate with community members they
closely associate with. We should expect the effect to be most pronounced, if
the leader of one project moves on to a new project: this would create an even
stronger pull for other core developers to join the new project. Thus, we surmise
that developer reputation also plays a critical role in migration decisions.

^ This is an example of a rule that we can easily model and evaluate in Prolog.
However, space does not allow us to describe the details of this modeling step.

Evolution of Open Source Communities 29

2003
2004

pool

httpd

apache

Jakarta

ant

apr

logging

ws

struts

tcl

avalon

incubator

xml

forrest

maven

gump

db

james

cocoon

portals

geronimo

xmlbeans

amassassin

lenya

apaciiecon

excalibur

0)

I

^

%m

m
m

i^

ti
(0

7

€
W^

M

m 5f

M
m
m Yi

f l

c

6

Q.

c

9

M

^
9

t

i3
S

8

•n

6

'M

c o
5

6

o
nj

3
c
7

' ^^ /S

^

*

^

•

E

10

m
•

1 1
10

C

1
E
9

S

S
11

a
E
3

4

•
i

1
1

1
r'«

s

i3
•o
12

m
m

m

E

4

^

c o

7

1 o
Q.

8

^

r*

E
c

I
8

•t

c
E
1

n

;8
E
Q. •

«

5
c
0)

7

^

»

,^1

x:

TO

3
X)

1
9

i

5 •
i
*
'1

Fig. 10. Migration between projects from 2003-2004

Hypothesis 3 Developers will migrate between communities with their collab
orators, that is, other developers with which they have strong ties.

Fig. 11 plots the distribution P(s) of group size s. It can be seen to observe a
power law. This supports the hypothesis. While many developers will migrate in
small groups, some well-connected developers will move in large groups, which
provide the support for a new project. Our data supports that most new projects
include at least one large group migrated from another project.

As an example, consider the migration into the Excalibur project shown in
Fig. 12. The Excalibur project receives its main contribution from the Avalon
project. A drill-down into the underlying data reveals that the current leader
of the Avalon project (bloritsch), as well as the future leader of the Excal
ibur project (leosimons) are among those developers. The leader of the Avalon
project brings with him four co-workers from that project.

Project Dependencies Sharing of work products takes the form of shared
modules. It can be observed in different ways, eg from the developer attributions
in a code repository as in [4], or from an analysis of the import statements in the
source code. Our extensions to Agora includes a module dependency view, which

30 Michael Weiss, Gabriella Moroiu, and Ping Zhao

Fig. 11. Distribution of migration group size (transition from 2003-2004)

xml excalibur

bloritsch/xml,
mcconnell/apache,
bloritsch/avalon,
mcconnell/avalon,
niclas/avalon,
aok123/avalon,
farra/avalon,
aokl 23/incubator,
mcconnell/incubator,
mcconnell/maven,
peter/logging,
bloritsch/logging, l
bloritsch/gump, \

/

\
I
I
I
/

gump

Fig. 12. Migration to the ExcaUbur project between 2003 and 2004

presents information extracted from the project source code using JDepend [6]
as a graph. Links in the graph indicate module dependencies.

Hypothesis 4 Information flow follows project dependencies.

While we have not yet extracted dependency information on all subprojects
in the Apache project, we have analyzed project dependencies for specific cases,
as triggered by observations made during our analysis of information flow or
developer migration. As an example of the kind of analysis, we can perform with
Agora, Fig. 13 shows the dependencies between the Agora, Forrest, and XML
projects (top), and corresponding information flow (bottom). It can be seen
that there is one core developer bridging the Avalon and Forrest communities,
and that the Forrest and XML projects share three core developers.

Evolution of Open Source Communities 31

2002
f<?rrest - ̂

- • imports '̂̂ ^̂ ^

(a) Project dependencies

forrest

avalon • "̂ s

/̂ N ^ 2002

\ N ^ « * I V - A " ' ~ ~ " ^ ^ ..^<. w, . -^^^-.-^--^ ^-.^^ttCstm

* \ L I'--. "^^•:-"*^ Vx^..^' / .'TA'/ , xml

•̂' '̂ "^^^: 'A \ / ^ '
•'^""f— ^. " ^ - - ^ ^ / .'^ /

(b) Information flow between projects

Fig. 13, Project dependencies between the Agora, Forrest, and XML projects in 2002

4 Conclusion

In this paper, we stated a set of hypotheses about the evolution of open source
communities. As a first step of the empirical validation of these hypotheses, we
presented our initial results exploring the communities formed around the vari
ous subprojects of the Apache project. To this end we extended a tool (Agora)
developed by a member of the Apache project with project and module depen
dency views, and pruning and date filtering capabilities, as well as statistics.

We then extracted information about the core developers of each community
over an eight year time period (1997-2004). This data allowed us to explore the
hypotheses in some detail through various cases, where we documented the
migration behavior of developers between selected project communities. We
also built an exploratory tool in Prolog for rapidly modeling and testing new
hypotheses about the extracted data. We were able to identify different factors
that underlie the preferential attachment mechanism of community evolution,
including information flow, co-worker ties, and project dependencies.

32 Michael Weiss, Gabriella Moroiu, and Ping Zhao

References

1. Barabasi A, Jeong H, et al (2002) Evolution of the Social Network of Scientific
Collaborations, Physica A 311, 590-614

2. Feller J, Fitzgerald B, Hissam S, Lakhani K (2002) Perspectives on Free and
Open Source Software, MIT Press

3. Gloor P (2006) Swarm Creatitity, Oxford University Press
4. Gonzalez-Barahona J, Lopez L, Robles G (2004) Community Structure of Mod

ules in the Apache Project, Workshop on Open Source Software Engineering
5. Healy K, Schussman A (2003) The Ecology of Open Source Development, Un

published, w w w . k i e r a n h e a l y . o r g / f i l e s / d r a f t s / o s s - a c t i v i t y . p d f
6. JDepend (2006) Project, www.clarkwaxe.com/software/JDepend.html, last ac

cessed in Jan 2006
7. Koch S (2005) Free/Open Source Software Development, Idea Publishing
8. Koch S (2005) Evolution of Open Source Software Systems - A Large-Scale In

vestigation, International Conf on Open Source Systems, 148-153
9. Madey G, Freeh V, Tynan R (2005) Modeling the F/OSS Community: A Quan

titative Investigation, in [7], 203-220
10. Mazzocchi S (2006), Apache Agora 1.2, p e o p l e . a p a c h e . o r g / ~ s t e f a n o / a g o r a / ,

last accessed in Jan 2006
11. Mockus A, Fielding R, Hersleb J (2005) Two Case Studies of Open Source Soft

ware Development: Apache and Mozilla, in [2], 163-209
12. Pollner P, Palla G, Viczek T (2006) Preferential Attachment of Communities:

The Same Principle, But at a Higher Level, Europhysics Letters, 73 (3), 478-484
13. van Wendel R, de Bruijn J, van Eeten M (2003) Protecting the Virtual Commons,

Information Technology & Law Series, T.M.C. Asser Press, 44-50
14. Xu J, Madey G (2004) Exploration of the Open Source Software Community,

NAACOSOS Conf, no page numbers
15. Xu J, Gao Y, et al (2005) A Topological Analysis of the Open Source Software

Development Community, Hawaii International Conf on System Sciences, 1-10
16. Ye Y, Nakakoji K, et al, The Co-Evolution of Systems and Communities in Free

and Open Source Software Development, in [7], 59-82

