
Computer Networks 51 (2007) 359–381

www.elsevier.com/locate/comnet
Towards a classification of web service feature interactions

M. Weiss *, B. Esfandiari, Y. Luo

School of Computer Science, Carleton University, Ottawa, Ont., Canada K1S 5B6

Available online 14 September 2006

Responsible Editor: H. Rudin
Abstract

The rapid introduction of new web services into a dynamic business environment can lead to undesirable interactions
that negatively affect service quality and user satisfaction. In previous work, we have demonstrated how such interactions
between web services can be modeled as feature interactions. In this paper, we outline a classification of web service feature
interactions. The goals of this classification are to understand the scope of the feature interaction problem in the web ser-
vices domain, and to propose a benchmark against which to assess the coverage of solutions to this problem. As there is no
standard set of web services that one could use as examples, we illustrate the interactions using a fictitious e-commerce
scenario.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Feature interaction; Web services; Classification
1. Introduction

A service-oriented architecture (SOA) approach
holds the promise for businesses of adapting quickly
and easily to changes. Web services are a way of
encapsulating application functionality in a location
and implementation transparent manner. They are a
way of packaging features and making them acces-
sible to other businesses as distributed software
components. However, rapid changes in the web
services a business provides or uses can lead to
undesirable results and poor service quality: web
services may interact with each other in unexpected
and undesirable ways. In the literature, the problem
1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2006.08.003

* Corresponding author.
E-mail addresses: weiss@scs.carleton.ca (M. Weiss), babak@

sce.carleton.ca (B. Esfandiari), rayluo@rogers.com (Y. Luo).
of undesirable interactions has been studied as the
feature interaction problem.

Feature interactions are interactions between
independently developed system units (features),
which can be either intended (as in a uses or extends
relationship between features), or unintended and
result in undesirable side effects. The problem of

feature interactions has first been formally investigated
in the telecommunications domain [5]. It concerns
the coordination of features such that they cooper-
ate towards a desired result at the application level.
However, the feature interaction problem is not
limited to telecommunications. The phenomenon of
undesirable interactions between components of a
system can occur in any software system that is sub-
ject to changes. Here, we consider the occurrence of
feature interactions in web services as first described
in [19].
.

mailto:weiss@scs.carleton.ca
mailto:babak@sce.carleton.ca
mailto:babak@sce.carleton.ca
mailto:rayluo@rogers.com

1 The concept of a ‘‘web of services’’ refers to the notion that
the key characteristic of web services is not the use of web
technology, but their potential for providing universal interop-
erability, manifested by the web-like network of services created
by the composition of lower-level web services into higher-level
web services.

360 M. Weiss et al. / Computer Networks 51 (2007) 359–381
Interaction is, of course, the very foundation of a
service-oriented architecture. Web services must
interact, and useful web services will ‘‘emerge’’ from
the interaction of more specialized services, as
higher-level services are composed from lower-level
services. As the number of web services available
increases, their interactions will also become more
complex. Many of these interactions will be
intended, but others may be unintended, and we
need to prevent their side effects from occurring.
As noted in [15], a large number of these side effects
are related to security and privacy concerns.

Unlike in traditional telecommunication systems,
where operators oversee the integration of services
from different vendors and act as ‘‘central authori-
ties’’ [13] for managing feature interactions, systems
using web services are largely built from third-party
services, over whose implementation service users
have little control. Instead of a few operators who
perform the task of coordinating features, the large
number of service users and small- and medium-
sized service providers cannot handle interactions
in the same manner (i.e., by wielding their power
over the service providers), and the problem is
greatly exacerbated. A further significant differenti-
ator is the trend towards the automated discovery
and composition of web services for creating appli-
cations on demand.

This paper builds on our previous work on web
service feature interactions [20,21] by providing a
classification of interactions by their nature and
causes, following a similar approach as Cameron
et al. [6] in their classic survey on feature interac-
tions in telecommunications systems. We also
propose a unified, realistic, and quite generic case
study (the ‘‘Amazin’’ virtual bookstore) that illus-
trates all of the causes, while remaining technol-
ogy-agnostic and easily translatable to other
domains. We believe that this case study can be used
as a benchmark for future studies on feature interac-
tions in web services. The paper expands on the pre-
sentation in [22] by making significant changes to
the organization and discussion of the interaction
examples, providing more background on the case
study and its implementation, and exploring the
notion of feature and feature interaction in the con-
text of web services.

While in [20,21] we had hand-crafted our exam-
ples in order to high-light the potential for feature
interaction in a composite web service, in this work
we use a controlled approach in which features are
first described individually, and without consider-
ation regarding their possible participation in fea-
ture interactions. The feature interactions that we
can observe only ‘‘emerge’’ from the composition
of the services for the scenarios in the case study.
We believe that this approach strengthens our
claims with respect to the pervasiveness of the
feature interaction problem in web services.

The paper is organized as follows. Section 2 gives
an introduction to the feature interaction problem
as it applies to web services, and summarizes our
approach to modeling web services in terms of
features. As there is no standard set of web services
that one could use as examples, Section 3 introduces
our case study of a fictitious virtual bookstore.
Section 4 presents our classification of web service
feature interactions by their nature. This section
also describes the feature interactions examples
from the case study. Section 5 provides a classifica-
tion of web service feature interactions by their
cause. The paper concludes with a discussion and
an outlook on future research in Section 6.
2. Feature interaction problem and feature modeling

2.1. Feature interaction problem

The first generation of web services did not
exploit the benefits of a ‘‘web of services’’.1 They
were either of a simple, non-composite nature (often
information services, such as a stock quote lookup
service), or provided access to application function-
ality over pre-existing business relationships. By
contrast, the current generation of web services
are typically composite (i.e., they are constructed
from other, more primitive web services), and
offered by third-party service providers, and thus
not grounded in existing relationships.

First generation web services were predicated on
two implict assumptions: (1) that services developed
in isolation would either be used in isolation, or, if
part of a composite service, would not interact in
unexpected ways, and (2) that users had full control
over the services they used, or there was a common
understanding of the operation and side effects of

Fig. 1. Relationship between web services and features.

M. Weiss et al. / Computer Networks 51 (2007) 359–381 361
those services. We argue that these assumptions are
no longer valid for current web services.

Consider the example of a word-processing
service that uses two third-party services, hyphen-
ation2 and formatting [20]. Assume that the user
has set her language preference for the word-pro-
cessing service to UK English. However, let us also
assume that, hidden to the word-processing service,
the formatting service itself incorporates a hyphen-
ation service (not such an unrealistic assumption).
This time, the formatting service does not specify
a language preference to the hyphenation service.
Suppose that the hyphenation service uses US Eng-
lish hyphenation rules by default. The result of the
service composition is that the hyphenation will be
changed as part of formatting.

This is a case of an undesirable feature interac-
tion. As noted, the concepts of feature and feature
interaction originated in the telecommunication
domain, but the concepts are quite general. A
feature is the minimum user-visible service unit
[11]. Features are often independently developed
and deployed. A feature interaction occurs when a
feature invokes or influences another feature
directly or indirectly. Although many of these inter-
actions are intended (even required), other interac-
tions can lead to undesirable side effects a such as
an inconsistent system state, or data inaccuracies.
Next, we discuss how the notions of feature and
feature interaction can be applied to web services.
This is followed by an overview of our feature mod-
eling approach.

2.2. Modeling web services in terms of features

Our approach [21,25] is to model web services as
a set of one or more features. Each feature is a bun-
dle of closely related operations that can be invoked
through the web service. Web services can, them-
selves, be composed from lower-level web services,
resulting in hierarchy of services. The UML dia-
gram in Fig. 1 shows the relationship between web
services and features in our definition. It follows
the well-known composite design pattern [8].

This model of web services retains the key aspects
of the current standards [1] for describing and com-
posing web services, namely WSDL (web services
description language) and BPEL (business process
2 Thanks to K. Turner for suggesting the hyphenation service
to make the example more compelling than the spell-checking
service we had used originally.
execution language). A WSDL specification
describes a web service in terms of schemas,
messages, operations and bindings (protocols to
use, e.g., SOAP). Operations are grouped into port
types, and a service is a set of ports, each of which
associates a service endpoint (address through
which the service can be invoked) with a port type
(i.e., the operations the service implements), and a
binding.

A BPEL specification represents a composite web
service. It defines a (partial) order in which opera-
tions on the component services are invoked (i.e.,
a process), a set of roles (service providers) that pro-
vide these services, and the port types that need to
be supported by those roles. The composite service
can again be exposed through a WSDL specifica-
tion. Features are, thus, units of functionality that
bundle the operations a service provider exposes
to (potential) service users. Web services are compo-
sitions of features (the features they provide), as well
as other web services (the features they require).

In a UML model, features can be represented as
interfaces, where operations become methods. Fig. 2
shows the components of the word processing
service. They include one service user (Word Proces-
sor), two service providers (Formatter and Hyphena-
tor), and two features (IFormat and IHyphenate). In
this example, each provider only implements one
interface, but in general it could implement several.
For example, Formatter implements the IFormat
interface with a format method. The Word Processor
uses the IFormat and IHyphenate features. The
Formatter also uses the IHyphenate feature.

While two features can have the same func-
tionality, they will likely differ in terms of their

Formatter

IHyphenate

hyphenate

Hyphenator

<<implements>>

IFormat

format

<<implements>>

Word
Processor

<<uses>> <<uses>>

<<uses>>

Fig. 2. Components of the word processing service.

362 M. Weiss et al. / Computer Networks 51 (2007) 359–381
non-functional impact on the system. In order to
incorporate non-functional properties of services
into our model, we extend our earlier definition of
feature to include service properties. A feature is
now either a bundle of operations with a common
purpose (such as order processing), or a non-func-
tional property of the service (such as privacy).
We also refer to the former as functional and to
the latter as non-functional features. This extended
definition is reflected in the two subclasses of
Feature in Fig. 1. The distinction between features
as functional units and properties was first made
by [14]. There is no way to model non-functional
properties in UML, so we introduce a graphical
notation to represent them in Section 2.3.1.

The definitions of services and features provided
is consistent with our use in the case study below.
While we deem it fairly general, and certainly appli-
cable beyond the scope of the case study, other
authors will without doubt identify different feature
models, designed to capture other aspects such as
variability or traceability. One such approach based
on feature engineering is [7]. In alignment with our
definition, it proposes to model services as groups
of features, and features in terms of service inter-
faces. However, it does not model non-functional
service properties. The purpose is also different:
there, feature models are used to extract service
interfaces from legacy applications.
2.3. Feature modeling approach

Our approach focuses on the requirements stage.
The feature modeling approach uses the User
Requirements Notation (URN) [2] to model the
intentional and behavioral aspects of the web
services and their composition, and Finite State

Processes (FSP) [12] for their formal specification
and the validation of safety and progress properties.
These notations are complementary: URN is a
visual notation that allows designers to describe
goals and scenarios; and FSP brings the established
benefits of process algebra to the analysis of
distributed systems and feature interaction
detection. In this section we can only provide an
overview of the approach; see [21,25] for further
details.

Goals, scenarios and processes describe feature
intent and behavior at different levels of abstraction.
Intentional aspects of web services (the why) are
modeled in the form of goals (both functional and
non-functional in nature). Their behavioral aspects
(the what and when) are modeled as scenarios.
Service providers are represented as actors or com-
ponents. Finally, detailed aspects of service behav-
ior are modeled in the form of processes. The
interaction of features is captured in the form of
links between goals at a high-level, as well as in
the form of safety and progress properties at a
low-level.

These models allow us to reason about feature
interactions, and to document detection and resolu-
tion strategies. In our approach, we progress from
higher-level to lower-level models. First, the intent
and side effects of a feature are modeled as URN
goals, and their high-level operation in the form of
URN scenarios. The interaction of features is
captured in the form of links between goals. Then
we describe the allocation of features to system
URN actors or components, and the relationships
between these actors. Scenarios are then refined at
a greater level of detail in FSP, which enables their
validation using tools. Features are represented as
processes, and their interaction as process composi-
tion, and undesirable feature interactions as prop-
erty violations.

Fig. 3 summarizes the stages of our feature mod-
eling approach. The arrows indicate the idealized
information flow between the stages. Iteration is
not shown in the diagram, although the process is
highly iterative, and some stages can be skipped.
The output of the three requirements stages is fed
into the design stage where a UML as outlined in
Section 2.2 will be produced. Actual service design
and implementation is outside the scope of this
approach.

Fig. 3. Stages of the feature modeling approach.

M. Weiss et al. / Computer Networks 51 (2007) 359–381 363
2.3.1. User requirements notation (URN)

URN contains two complementary notations:
the Goal-oriented Requirements Language (GRL)
[9], and the Use Case Map (UCM) notation [17].

In GRL, requirements are modeled as goals to be
achieved by the design of a system. It builds on well-
established goal-oriented analysis techniques. The
main elements of the notation are summarized in
Fig. 4. Softgoals represent non-functional require-
ments, their shape suggesting that there are no
clear-cut criteria for achieving them. Functional
requirements are represented as (hard) goals. Tasks
Sa

We

Un

We

De

Co

(b) GRL Sat

Dependency

Contribution

Correlation

Means-end

Decomposition

(d) GRL Links

B

(e

Goal

Softgoal

Belief

Actor

Actor
Boundary

Resource

(a) GRL Elements

Task

Fig. 4. Summary of the goal-oriented
are solutions that achieve goals or softgoals.
Resources are entities that are required to perform
a task or goal. During the analysis, a set of initial
goals is iteratively refined into subgoals. These goals
and their refinement relationships form a goal graph

that shows the influence of goals on each other, and
can be analyzed for goal conflicts.

The perspectives of different stakeholders (actors)
can also be described in GRL. For each stakeholder
we model their goals, as well as their dependencies
on one another to achieve those goals. These goals
of one stakeholder can now also compromise the
goals of other stakeholders, resulting in a conflict.
Conflicts indicate potential feature interactions.
One feature may subvert or ‘‘break’’ the intent
(goals) of other features. Where there is a choice
between different means (i.e., features or feature
implementations) to achieve a goal, the objective
of the analysis is to determine those that resolve
goal conflicts in a way that best satisfies the initial
goals of all stakeholders.

The UCM notation provides a way of describing
scenarios without the need to commit to system
components. The main elements of the notation
are summarized in Fig. 5. A scenario is a causally
ordered set of responsibilities that a system
performs. Responsibilities can be allocated to com-
ponents by placing them within the boundaries of
that component. This is how we will be modeling
feature deployment. With UCMs, different struc-
tures suggested by alternatives that were identified
in a GRL model can be expressed and evaluated
tisficed

akly Satisficed

decided

akly Denied

nied

nflict

isfaction Levels

?
reak Hurt Some- Unknown

Make Help Some+ Equal

) GRL Contributions Types

OR

AND

(c) Link Composition

requirements language (GRL).

…

…

…

…
[C1]

[C2]

[C3]

OR-Fork
& Guarding
Conditions

…

…

…

…
OR-Join

…
…

…
… …

…

…
…

AND-JoinAND-Fork

(b) UCM Forks and Joins

Start
Point

End
Point

Path

… …
… … Responsibility

Direction Arrow

… … Timestamp Point
Failure Point… …

Shared Responsibility… …
(a) UCM Path Elements

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Timer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
Path

(e) UCM Waiting Places and Timers

… …IN1 OUT1 Static Stub &
Segments ID

Dynamic StubIN1 OUT1… …
S{IN1} E{OUT1}

(d) UCM Stubs and Plug-ins

Plug-in Map
(c) UCM Components

Team Agent

Fig. 5. Summary of the use case map (UCM) notation.

364 M. Weiss et al. / Computer Networks 51 (2007) 359–381
by moving responsibilities from one component
(which is the UCM equivalent of a GRL actor) to
another, or by restructuring components.

The UCM and the GRL perspectives are comple-
mentary. The UCM perspective allows us to refine
the goals identified in a GRL model into greater
detail (by refining them into tasks/responsibilities),
as necessary. Generally, when creating these models
we would iterate between both views. That is, we
cannot decide on the allocation of goals to actors
simply within a GRL model, but only after repeat-
edly refining both the GRL and UCM perspectives.

At the higher-level of abstraction, as described in
this subsection, feature interaction analysis iterates
over the following three steps:

1. Model the features to be analyzed as a GRL goal
graph. Goal graphs allow us to represent fea-
tures, and to reason about conflicts between
them.

2. Analyze the goal graph for conflicts. Conflicts
point to possible feature interactions, in particu-
lar, if a conflict ‘‘breaks’’ expected functionality.

3. Resolve the interactions. During this step, UCM
models allow us to explore the different alterna-
tives suggested by the GRL models.
2.3.2. Finite state processes (FSP)

The hierarchical architecture inherent in SOA of
building larger services from smaller services,
together with object-oriented principles such as
encapsulation and information hiding, creates many
challenges in dealing with service interactions. It is
thus also desirable to develop formal approaches
to modeling web services and detecting problematic
interactions automatically.

Finite state processes (FSP) [12] is an algebraic
notation for describing labeled transitions systems.
The main elements of the notation are summarized
in Table 1. A Labeled Transitions System (LTS) is
a form of state machine for the modeling of concur-
rent systems in which transitions are labeled with
action names. Their behavior can be analyzed using
well-established model checking techniques based
on state-space exploration.

The analysis involves the validation of safety and
progress properties. Informally, a property is an
attribute of an LTS that is true for every possible
execution of that LTS. A safety property is a state-
ment of what is considered to be a correct execution
of the system. If anything happens in the system
that goes against the specifications of the safety
property, the system is considered to be in error.

Table 1
Subset of the finite state processes (FSP) notation

Construct Notation

Action prefix ! (x! P) describes a process that initially engages in the action
x and then behaves exactly as P

Choice j (x! Pjy! Q) describes a process which initially engaged
in either of the actions x or y

Parallel composition k (PkQ) models the concurrent execution of P and Q

Process labeling: a:P prefixes each label in the alphabet of P with a

Safety property Property asserts that any trace including actions
in the alphabet of P is accepted by P

Progress property Progress P = a1, . . .,an asserts that at least one of the actions
a1, . . .,an will be executed

M. Weiss et al. / Computer Networks 51 (2007) 359–381 365
For example, a safety property that defines an
expected sequence of transitions enables us to detect
the order of invocation interactions. A progress
property asserts that some part of the system will
eventually execute. A common example of a viola-
tion of this property is a deadlock.

An FSP model comprises a collection of constant
definitions, named processes, and named process
compositions. FSP offers rich syntactic features
including guards, choices, variables, and index
ranges. It also supports process parameters, relabel-
ing and hiding of actions, which allow the compact
modeling of component-based concurrent systems.
A structure diagram is a visual representation of
FSP model. In a structure diagram, processes are
represented as boxes, and externally visible actions
are shown as circles on the perimeter of the box.
Shared actions (i.e., actions that two processes need
to execute simultaneously) are shown as lines con-
necting two action circles.

At the lower-level of abstraction, the analysis of a
composite web service for feature interactions iter-
ates over the following steps:

1. Model the salient parts of the behavior of each
component service as a process, and define prop-
erties that detect specific feature interactions.

2. Analyze the model of the composite service,
which comprises instances of the features, and
any safety properties we want to validate.

3. Resolve each detected feature interaction, and
update the FSP model accordingly, and thus in
an iterative manner eliminate interactions.
3. Case study: A virtual bookstore

As there is no standard set of web services that
one could use as examples, we illustrate the interac-
tions using a fictitious virtual bookstore. From a
methodological point of view, we do not want our
design of individual services to be aware of other
services they may be used together with. Therefore:

1. We first describe the individual web services that
we will use. These services are developed without
knowledge of how they will be composed later.
Often they include third-party services that pro-
vide certain supplementary functionality such as
identity management or payment.

2. We then create a composite service for an virtual
bookstore from these services. We analyze the fea-
ture interactions that can occur as a result. As the
services have been implemented independently,
they may embody assumptions that cause unex-
pected behavior as the services are composed.

This purpose of this division is to reproduce the
problems that can result in the actual development
of service-based applications. Each web service fea-
ture is implemented with developers making
assumptions that are individually valid, i.e., they
faithfully implement the service interfaces. Feature
interactions only result when these features are com-
bined, often in unanticipated ways.

While clearly, some of these interactions can be
anticipated by the service designers from past expe-
rience, it is impossible to plan for all potential inter-
actions, including with services and features to be
developed in the future. In our example, we there-
fore do not try to anticipate possible interactions
during service design, but focus on implementing
the specified interfaces.
3.1. Examples of services and their features

The following web services have one aspect in
common: they all focus on one narrow type of

366 M. Weiss et al. / Computer Networks 51 (2007) 359–381
functionality, and are usually employed in a
supporting role. Examples of such supplementary

services are identity management, payment process-
ing, and shipping. In principle, any of these services
could be provided by the service user (such as the
virtual bookstore), but usually at a significant devel-
opment cost, or risk of poor quality (and thus liability
issues).

3.1.1. iPassport

An identity management service simplifies
authentication with multiple service providers. It
allows service requesters to authenticate themselves
once with one service provider (known as single
sign-in), and to access other service providers linked
to the initial service provider through a circle of
trust. It simplifies the implementation of service pro-
viders, as well, because they no longer need to pro-
vide their own authentication component.

Fig. 6 is a GRL model of the iPassport service. It
models the service provider, as well as each type of
requester as an actor (circle). As shown, iPassport
mediates between Requesters [Service] and Providers
[Service], and thus acts in the role of a broker.
Requesters [Service] use iPassport to manage their
profiles through the Manage Profile feature, while
Providers [Service] can authenticate users and access
their profiles through the Authenticate and Access
Profile features.

Service provisioning relationships are modeled as
goals (rounded rectangles) that an actor wants to
achieve with the help of another actor. For example,
the Requester [Service] (depender) depends on
iPassport (dependee) to achieve the Manage Profile
goal. Non-functional needs, which cannot be
Fig. 6. GRL model of th
achieved in an absolute manner, are specified as
softgoals (clouds). From the diagram, iPassport
ensures the requester’s Legitimacy. Resource depen-
dencies (rectangles) represent physical or informa-
tional entities that must be available.

Internally, the Identity Management goal of the
iPassport actor is decomposed into two functional
components: Authentication and Profile Manage-
ment. Authentication is responsible for verifying a
user’s login information, and creating a delegation
proxy (also known as a ‘‘ticket’’) that can substitute
for an explicit login in order to access a service. Pro-
file Management is responsible for storing profiles,
and giving access to profile information. These func-
tional components are shown as tasks (hexagons),
which specify ways of achieving a goal.

Decomposition is used to represent how a service
is composed from other internal or external func-
tional components. External functionality is pro-
vided through a feature from another service, and
indicated via a dependency link in the GRL model.
In the context of modeling web services, a goal
dependency should be read as a functional feature
provided by one service (dependee) to another ser-
vice (depender). It can be subsequently mapped into
a service interface. A softgoal dependency indicates
an associated service property.

More insight into the sequencing of service invo-
cations (i.e., the temporal relationship of tasks), and
deployment aspects of features (the what, when and
how) can be gained from a UCM model. It can be
derived from a GRL model by refining each tasks
into one or more responsibilities, and adding infor-
mation about their execution sequence. Fig. 7 shows
the UCM model for iPassport. Note that this is only
e iPassport service.

Requester [Service] iPassport Provider [Service]

access signIn performServiceaccessProfileOUT1

edit IN1 storeOUT1

signInOtherProvider

IN1
Authenticate

Update

Fig. 7. UCM model of the iPassport service.

M. Weiss et al. / Computer Networks 51 (2007) 359–381 367
a top-level model with placeholders (also known as
stubs) for submaps that define the Authenticate and
Update behaviors.

This model captures that service requesters,
having signed up with a participating service pro-
vider, are authenticated by iPassport each time they
want to access a service. A Provider [Service] can
subsequently access the requester’s profile (access-
Profile) for information required to perform its ser-
vice. This may involve other service providers, upon
which a delegation proxy is passed to these provid-
ers, automatically signing in the provider without
the user’s involvement (signInOtherProvider). This
detail is added in the UCM model, and was not
explicit in the GRL model. In the diagram, crosses
represent responsibilities, filled circles start points,
and bars end points of paths.
3.1.2. PayMe
A payment processing service allows payers to

make secure payments online, and simplifies credit
card processing for payees, while contributing to
Fig. 8. GRL model of t
increased sales for them. As shown in Fig. 8, PayMe
provides two service interfaces (features): one to the
Payer [Order] to Manage Accounts, and one to the
Payee [Order] to receive payment for an order (Pro-
cess Payment). The Process Payment feature
includes functionality to submit payment details,
as well as to cancel payments. The non-functional
properties of the PayMe service (Security and
Increase Sales) are again modeled as softgoals.

The PayMe service provides separate interfaces
for accessing buyer and seller accounts. For exam-
ple, buyers can only Deposit, while sellers can With-
draw and initiate a Transfer between accounts. The
Security goal is achieved by not disclosing buyers’
payment information such as credit card numbers
or bank accounts to sellers. Sellers achieve the
Increase Sales goal by offering buyers a payment
option that is less risky than credit card transactions.
3.1.3. ShipEx

A shipping service provides shippers with guar-
anteed delivery of product, and simplifies tracking
he PayMe service.

Fig. 9. GRL model of the ShipEx service.

368 M. Weiss et al. / Computer Networks 51 (2007) 359–381
of a shipment for shipees. As shown in Fig. 9,
ShipEx offers a Delivery feature to the Shipper
[Order] with functionality for initiating shipment
of an order, and canceling shipments, as well as a
Tracking feature for the Shippee [Order] to check
on the status of a shipment.

We do not show the internal structure of this ser-
vice to save space. However, the required steps are
similar to those for the earlier examples.

3.1.4. Shark

Caching improves performance by storing the
results of previous requests, thus reducing the num-
ber of service requests that are made. As shown in
Fig. 10, the Shark proxy service provides a Caching
feature through which a Consumer [Content] can
cache the results of popular service requests.

3.1.5. Prototype

We implemented prototypes of these features
using the Glue web services framework [18], and
tested them independently. Then we combined the
features into composite services, and analyzed the
result for feature interactions. The largest of these
case studies (a virtual bookstore) will be described
in Section 3.2. Although space does not allow us
Fig. 10. GRL model of the Shark service.
to go into great detail on the implementation, a brief
overview will be provided below.

Fig. 11 shows a UML model of the implemented
features. As shown, there is a direct correspondence
between service interfaces in the UML model and
goal dependencies in the above GRL models. For
example, the GRL model of the ShipEx service in
Fig. 9 has goal dependencies Tracking and Delivery.
These are represented in the UML model as the
interfaces ITracking and IDelivery, together with
the operations exposed through these interfaces.

Service operations can be discovered either from
the textual description of the features, or from the
UCM models. In [23], we outline an approach for
systematically deriving service interfaces from
UCMs representing business process models. The
basic approach is to extract messages exchanged
between UCM components that correspond to cau-
sal paths in a scenario. These messages are then
grouped into operations according to message
exchange patterns (such as request-reply), and
related operations into service interfaces. The names
of operations can often be based on the names of
responsibilities.

3.2. Composite service: virtual bookstore

As a case study, we created the Amazin virtual
bookstore, which gives Customers access to its vir-
tual catalog, and the option to order books from
the catalog through an Order Processing feature.
The actor diagram for the Amazin service is shown
in Fig. 12. This diagram only shows the relation-
ships between Amazin and other actors (service
users and providers), not those between the other
actors themselves. For clarity, these will be shown
in separate diagrams.

Fig. 11. UML model of the implemented feature prototypes.

M. Weiss et al. / Computer Networks 51 (2007) 359–381 369
3.2.1. Amazin

Amazin relies on a number of Suppliers to fulfill
customer orders. Customer logins are handled
through the iPassport identity management service,
which provides an Authenticate User and an Access
Profile feature. On receiving a customer order, Ama-
zin authenticates the customer, and accesses the cus-
tomer’s profile. It then selects a Supplier which
stocks the ordered book and invokes its Order Pro-
cessing service, passing along the customer’s
identity.

An internal structure of the Amazin service that
fits this description is also shown in Fig. 12. This
design makes assumptions that, while in agreement
with service interfaces, may cause feature interac-
tions. One potential source of interactions is a per-
formance optimization: in order to improve order
throughput, Amazin caches copies of popular
ebooks, which can be stored electronically. Doing
so may result in the supplier of the ebook not get-
ting paid.

A non-obvious aspect of this diagram is the spec-
ification of alternative ways of achieving the Place
Order goal. If the order is for an ebook, the Order
eBook task will be selected; otherwise, the service
proceeds with Order Book. Ordering ebooks and
regular books are handled differently, since an
ebook can be cached. It is in this way that the alter-
natives Check Cache and Submit Order for achieving
the Order eBook goal need to be evaluated. We
should first try Check Cache, and execute Submit
Order only if the ebook is not in the cache.

It should be pointed out that such alternatives
are optional. We can remove all but one alternative,
and will still have a functional service. The Amazin
service without caching of ebooks (i.e., the only

Fig. 12. GRL model of the Amazin virtual bookstore.

Fig. 13. GRL model of the Supplier service.

370 M. Weiss et al. / Computer Networks 51 (2007) 359–381

Fig. 14. GRL model of the Customer application.

Fig. 15. UML model of the Am

M. Weiss et al. / Computer Networks 51 (2007) 359–381 371
option to Place Order is to Submit Order) works,
although access to popular content will not be opti-
mized. We will return to that observation in the dis-
cussion of Example 2 below.
3.2.2. Supplier

Suppliers themselves rely on other services.
Fig. 13 shows the internal structure of the Supplier
service, documenting its fulfilment process, and its
relationships with other services. The Supplier deter-
mines the availability of an ordered book, and, if
successful, obtains the Customer’s payment and
shipping preferences from the iPassport service. It
then invokes the Process Payment feature provided
by the PayMe financial service provider, and the
azin and Supplier services.

3 This is not an exclusive categorization. Sometimes, an
interaction shows aspects of both a functional and a non-
functional interaction.

4 It is also an instance of the well-known Call Forwarding loop
in telephony. This high-lights that many known interactions can
be found in emerging domains.

372 M. Weiss et al. / Computer Networks 51 (2007) 359–381
Delivery feature of Amazin’s ShipEx fulfillment
partner.

If a Supplier cannot fulfill an order, it will
attempt to satisfy it from its network of Other Sup-
pliers. Although the corresponding service relation-
ships have been omitted from the diagram, the
chosen Other Supplier will use the same payment
processing and shipping services as Supplier.
Accordingly, Fig. 13 indicates two means to achieve
the Fulfill Order goal: Fulfill from Inventory or For-
ward Order. It is interesting to view these alterna-
tives as service components that have been added
at different stages of evolution of the service. Here
we suppose that the initial version of the Supplier
service could only Fulfill Orders from inventory,
and later the service was changed to Forward Orders
that could not be locally satisfied. This observation
is further discussed in Section 5.4.

3.2.3. Customer
Customers can track the progress of their orders

via the Tracking service. They can also manage their
profiles (Manage Profile), and accounts (Manage
Account) through the iPassport and PayMe services,
respectively. The service relationships of the Cus-
tomer application are shown in Fig. 14.

3.2.4. Prototype
Fig. 15 shows a UML model of the implemented

composite services. The service interfaces only differ
from the goal dependencies in the GRL model in
two additional interfaces added during the design
stage that were only implicit in the requirements
model. The ILogin interface is required as part of
implementing the IOrderProcessing interface of
Amazin, as Amazin is the entry point into the single
sign-in network. In the GRL model, the transfer of
profile information is indicated using the Profile
resource dependency. However, this leaves unspeci-
fied whether a customer needs to login, or has
already been authenticated. The service design
resolves this ambiguity. The IOrderStatusNotifica-
tion interface is a technical side product of current
web service frameworks, which require a separate
interface for implementing callbacks.

4. Classification by the nature of interactions

As discussed in Section 2.2, it is helpful to
distinguish between functional and non-functional
features. Feature interactions can, thus, be cate-
gorized as either being of a functional or a non-
functional nature, depending on what kind of side
effect they have.3 Functional feature interactions

are those undesirable side effects of the composition
of features that render the system no longer func-
tional. Non-functional feature interactions are unde-
sirable side effects in a system that is working from a
purely functional point of view.

4.1. Functional interactions
Example 1 (Order Processing with Order Process-
ing). When a Supplier tries to fill orders for items
that it temporarily does not have in stock from their
network of suppliers, a loop can be created that
causes another order to be placed to the initial
Supplier. At that point, the OrderProcessing fea-
tures could deadlock (if requests are synchronous),
or a buffer overflow would eventually result as
requests are repeatedly sent along the same chain of
suppliers.

This is a feature interaction of multiple implemen-
tations of the same OrderProcessing feature, as exe-
cuted by different actors.4 An FSP model (structure
diagram and process definitions) of a situation where
the interaction will occur is shown in Fig. 16. It
depicts a ‘‘closed’’ chain of three suppliers, where
supplier s[1] receives the initial placeOrder request
from Amazin, as well as the forwarded request from
supplier s[3]. The up and down labels indicate the
direction of the order flow. The structure diagram
can be mapped into the composite process Virtual
Bookstore. Relabeling associates the down and up
actions of adjacent suppliers in the chain via channels
(the chan[i] actions). Validation of this model will flag
a deadlock with each Supplier trying to complete a
placeOrder action. More details are presented in [25].

Example 2 (Caching with Process Payment). Cach-
ing digital content using Shark can prevent that access
to the content will be properly billed. Since the
Amazin service works correctly without caching (this
point was discussed in Section 3.2), an assumption
may have been built in that for every order, a
respective order will be placed with a supplier, and
thus no internal accounting (which keeps track of the

a:Amazin

s[3]:Supplier

s[1]:Supplier

s[2]:Supplier

placeOrder

placeOrder

placeOrder

fulfilled

placeOrder

up

down

down

updown

updown

up

AMAZIN = (down.placeOrder->down.fulfilled->AMAZIN).
SUPPLIER = (up.placeOrder->ORDER_PROCESSING),
ORDER_PROCESSING = (
 inStock->up.fulfilled->SUPPLIER |
 notInStock->down.placeOrder->
 down.fulfilled->up.fulfilled->SUPPLIER).

||VIRTUAL_BOOKSTORE(N=3) = (a:AMAZIN ||
 forall [i:1..N] s[i]:SUPPLIER)
 /{
 chan[0]/a.down,
 chan[i:0..N-1]/s[i+1].up,
 chan[i:1..N]/s[i].down,
 chan[N]/s[1].up
 }.

fulfilled fulfilled

fulfilled

Fig. 16. FSP model of OrderProcessing with OrderProcessing.

M. Weiss et al. / Computer Networks 51 (2007) 359–381 373
number of requests) is required. When caching is
added to improve the performance of the service,
there is a potential that the implications of this
change are not fully understood by the designers.

Fig. 17(a) shows a UCM map for processing an
order for an ebook. It contains a SubmitOrder stub
that describes the process for placing an order with
a supplier. The corresponding plug-in is defined in
Fig. 17(b). This is also the basic flow of operations
before adding a Caching feature to the service. Sup-
pose Caching is added in such a way that before sub-
mitting an order, the cache is checked. If
ProductInCache is true, the return path labeled [Pro-
ductInCache] will be taken, and the ebook is
returned from the cache. It is important to note that
adding the Caching feature is non-invasive. The map
in Fig. 17(a) creates a strict wrapper around the
basic order processing behavior in the Submit Order
plug-in, i.e., it does not modify the basic behavior.

Example 3 (Order Processing with Process Payment
or Delivery). There is a potential conflict between
Process Payment and Order Processing, or Process
Payment and Delivery due to timing errors. The
interaction can result in either the customer being
charged without the product having been shipped,
or the customer receiving the product for free. Both
errors exploit timing glitches. For example, when
the customer cancels his order, it could be that
payment still gets processed (because Process Pay-
ment was started before the order was canceled) but
Delivery is aborted. The cancellation request was
sent just before payment started, but arrived after

(a) Map with SubmitOrder stub

(b) Plug-in for SubmitOrder

Amazin

Supplier

Customer

PayMe

ShipEx

in1

out1

ProcessPayment

Ship

SubmitOrder

FulfillOrder

SelectSupplier

AmazinCustomer

PlaceOrder

OrderCompleted [ProductInCache]

OUT1

[!ProductInCache] IN1

SubmitOrder

Fig. 17. UCM model of Caching with Process Payment.

374 M. Weiss et al. / Computer Networks 51 (2007) 359–381
Process Payment has proceeded. A similar explana-
tion can be given for the second case.

The UCM model in Fig. 18 provides the basis for
understanding the cause of the interaction. The Pro-
cess Payment and Ship responsibilities are initiated
in parallel (the vertical bar after ProcessOrder indi-
cates concurrency), and can execute in any order
of one another. The Cancel requests to a component
only take effect, if the Process Payment and Ship
requests have not been started yet. This means that
there are two successful cancellation scenarios, and
two unsuccessful ones (where one of these requests
has already been performed).

The reason for this feature interaction is missing
transaction behavior. While there are protocols to
ensure transaction behavior (e.g., WS-Transaction
[4]), the scope of the atomic region that needs to
be protected is generally difficult to identify in a ser-
vice-oriented system due to its lack of a central
authority.
Example 4 (Order Processing with Fulfill Order).
Different interpretations of elements of an order may
result in incorrect processing of an order. Heteroge-
neities may arise, when two elements with the same
semantics are assigned different concrete names,
types or cardinality, or two elements with the same
value have different semantics [3]. As an example,
Amazin may use the name price in the interpretation
of raw price, while a Supplier interprets it as price
including tax. In this example, we are dealing with a
situation when the same concrete name is given to
two elements with different semantics.

Detection of such interactions is currently out-
side the scope of our feature modeling approach,
however, there are already ways to detect them [3].
In support of a point that was made in Section 1,
this interaction demonstrates one of the key differ-
ences between service-oriented architectures and
traditional telecommunication systems. Given the
large number of web services, and many points of

Amazin

Supplier

Customer

PayMe

ShipEx

PlaceOrder

OrderCompleted

SubmitOrder

ProcessPayment

Ship

FulfillOrder

SelectSupplier

Cancel

Cancel

Cancel

Fig. 18. UCM model of Order Processing with Process Payment or Delivery.

M. Weiss et al. / Computer Networks 51 (2007) 359–381 375
integration where web services are composed, an
approach based on a central integration authority
is, therefore, not feasible. The problem of semantic
heterogeneity is not simply a problem of inaccurate
ontologies, but heterogeneity must be accepted as a
defining characteristic of web services. Therefore,
solutions that can resolve such conflicts dynami-
cally, i.e., through negotiation, have to be developed.
In the web services domain, runtime feature interac-
tion detection and resolution will be an essential
requirement.

4.2. Non-functional interactions
Example 5 (Authenticate User with Access Profile).
Any iPassport member organization can access the
Customer’s profile, including those organizations
with whom the Customer has no trusting relation-
ship: customers have no control over who has access
to their profile. As shown in the GRL model of the
interaction in Fig. 19, two non-functional goals,
Convenience (satisfied) and Privacy (denied), of the
Customer conflict with one another.5
5 This diagram is a refinement of Fig. 6. It is customary for
GRL models to be developed over multiple iterations, during
which primary contributions are initially identified, and side
effects (modeled as correlations) at a later stage of analysis.
This interaction can be detected from the GRL
model. Fig. 19 adds labels to Fig. 6 to indicate to
what degree goals in the graph are satisfied. For
example, by placing a X next to the Authentication
task, we indicate that it is satisfied. The impact of
assigning labels to goals can be evaluated using
qualitative label propagation as implemented by
GRL tools such as OpenOME [9]. The evaluation
procedure propagates label values along links
between goals. For instance, as there is a positive
contribution from Authentication to Convenience,
the Convenience goal will also be labeled as satisfied.
Similarly, it follows that Authenticate User is satis-
fied, since it depends on Authentication.

In this example, the Privacy and Convenience
goals cannot both be satisfied. Privacy is denied
(as indicated by the X symbol) because, although
there is a trusting relationship between Customer
and Amazin, the relationships between Customers
and Suppliers are untrusted, and there is no guaran-
tee that a Supplier will adhere to Amazin’s privacy
policy. This violates the intent of the Customer,
who (as a privacy-conscious individual) expects
both goals to be satisfied. This is an unexpected
and undesirable side-effect of combining the
Authenticate User and Access Profile features within
the same iPassport service.

This problem could be resolved by disassociat-
ing Authenticate User from Access Profile. In an

Fig. 19. GRL model of Authenticate User with Access Profile.

376 M. Weiss et al. / Computer Networks 51 (2007) 359–381
alternative design, the Access Profile feature could
be required to obtain permission from the
Customer before accessing the profile. This solution
is instructive, because the undesirable interaction
was not due to the existence of the Access Profile
feature, but to how it was provided. Another solu-
tion would be to establish a chain of trust between
Amazin and its Suppliers, in which Amazin trusts its
Suppliers to keep profiles confidential. However, in
an environment where service relationships are
established dynamically (e.g., Amazin may consult
a service directory for potential Suppliers), it may
be hard to establish such trust, giving rise to new
types of feature interactions.

Example 6 (Access Profile with Access Profile). Pro-
file access cannot be restricted to specific service
providers, as a way of mitigating the privacy
violation in Example 5. The user can only choose
to mark sections of the profile as either accessible by
all service providers, or not accessible at all. No
finer level of access can be specified (such as giving
access to selected service providers only). This is
another facet of the Convenience versus Privacy
conflict.

We consider this a feature interaction of multiple
instances of the Access Profile feature with itself, as
profiles are transparently shared between providers.

Example 7 (Manage Profile with Access Pro-
file). iPassportstores customer profiles on the cus-
tomer’s behalf. While this alleviates the need to
store profiles at the customer’s end, and allows
access to the profiles even when customers are not
online, it also makes iPassport a likely target of
attacks, and introduces a Security issue, which
further reduces the customer’s Privacy.

Example 8 (Order Processing with Order Processing
revisited). Example 1 can also be interpreted as a
non-functional interaction. If either a deadlock or
buffer overflow occurs, the Availability of the Suppli-
ers will suffer. The user-perceived effect is that the
Order Processing service is unavailable. Fig. 20
shows a scenario where Amazin is both a client
and a supplier to a given Supplier. This can lead to
a situation where the order is sent back to Amazin
itself, which, in this case, is treated just like an Other
Supplier.

In Fig. 20, the dependencies at the source of the
issue have been high-lighted for emphasis. The X next
to Availability indicates that this goal cannot be satis-
fied, and the high-lighting under the dependency
links connected to Availability via contribution links
signal the links at the root of the problem.

5. Classification by the causes of interactions

As the examples in Section 4 will have conveyed,
there are many different causes of web service feature
interactions. These include the causes shown in
Fig. 21. We introduce two causes of interactions that
we consider characteristic of web services, and that

Fig. 20. GRL model of OrderProcessing with OrderProcessing.

Cause

Violation of
Assumptions

Concurrency

Resource
Contention

Policy Conflict

Goal Conflict Deployment and
Ownership

Inadequate
Interface

Fig. 21. Classification by causes of feature interactions.

M. Weiss et al. / Computer Networks 51 (2007) 359–381 377
are not encountered in such a pronounced way in
closed, centralized telecommunications systems:
deployment and ownership, and inadequate inter-
faces (also referred to as information hiding in
[21]). The other causes have equivalents in telephony
(although goal conflicts also appear to play a more
significant role in the context of web services).

5.1. Goal conflict

Each feature has specific tasks or goals it is trying
to achieve. When there is only one web service, there
is also only one set of (conflict-free) goals. However,
when services are combined into higher-level ser-
vices, each with its own goals, it may be that the
goals of those services (or, more precisely, the means
for achieving those goals) are in conflict with one
another, and we cannot guarantee to achieve them
all. We consider a goal to be the expression of an
intent of the service, as discussed in Section 2.3.1.
Goal conflicts are often the result of a side effect.
In those cases, achieving one goal negatively affects
another goal. Example 5 illustrates this type of
interaction. The composition of the Authenticate
User and Access Profile features results in an unde-
sirable violation of Privacy as a side effect of how
the intent of iPassport (Convenience) is achieved.
(We like to distinguish between the intent of a ser-
vice towards whose achievement it contributes,
and side effects on other goals that it affects, as it
achieves the primary goal.)

5.2. Resource contention

Features may be competing with each other
through access to shared resources of finite capacity
on a service provider. Examples of such resources
are: disk space, memory, CPU, network bandwidth,
database access, etc. The correct operation of one
feature may be compromised by the interference of

378 M. Weiss et al. / Computer Networks 51 (2007) 359–381
another feature that is using more than its allotted
share of resources.

Examples 1 and 8 illustrate resource contentions.
If it is possible for a circular chain of suppliers
linked through their Order Processing dependencies
to form, a deadlock or buffer overflow may occur,
which then decreases the Availability of the suppliers
in the chain (which amounts to a denial of service).

5.3. Deployment and ownership

Decisions as to who provides the features needed
(ownership), and where they should be provided
(deployment) lead to performance, scalability and
quality assurance, as well as to conflict of interest
(separation of duty) issues:

1. Physical decoupling of features (by making
dependent features run on different hosts, and
sometimes under different ownership) helps solve
resource contention (by avoiding that a single
host becomes a bottleneck).

2. Grouping of related features gives their owner
more control over the resulting system, and
allows for performance optimizations. However,
physical decoupling under the same ownership
can lead to better scalability.

3. Conversely, delegating a feature to a third party
removes the need for local management features
to assure its quality. Of course, we then have to
trust the third party that such features are prop-
erly supported.

4. Ownership of some features by the same owner
can also lead to a conflict of interest, and a loss
of trust in the owner due to (perceived) bias. This
provides further incentives for delegation and
physical decoupling.

Interactions of this type are shown in Examples 5
and 7. In both cases, one and the same entity
(iPassport) authenticates the Customer, and controls
access to its profile, respectively stores the profiles.
Profile information is shared between Amazin and
its Suppliers without involvement of the Customer
(as the UCM model in Fig. 7 clearly shows). This
causes the following conflict of interest: if acting in
the interest of Customers, protecting their Privacy
should be the foremost goal of iPassport; however,
if acting on behalf of Suppliers, it would be in the
best interest of the organization providing the iPas-
sport service to share profiles with Suppliers, and
thus violating the Privacy of Customers.
Due to the decentralized nature of control in a
service-oriented system, deployment and ownership
issues are faced more frequently and on a wider
scale than in a traditional telecommunications sys-
tem. Whereas such issues arise in telecommunica-
tion systems, there is usually an operator that
oversees the service integration and can coordinate
feature deployment and resolve ownership issues.
Of course, with increasing deregulation in telecom-
munications, the problem will look very much like
that facing web services.
5.4. Violation of assumptions

Feature developers need to make some assump-
tions about how other features (the users of the
feature, and features provided to the feature) work.
They can make incorrect assumptions, for example,
due to semantic ambiguity (such as use of the
same concepts in different ways), or the presence
of different versions of the same feature. Similarly,
feature implementations may be based on incorrect
assumptions about their context of use. A character-
istic of an assumption violation is that a change in
one feature breaks a formerly correct assumption
that another feature relies on.

Examples 1, 2, and 4 illustrate this type of inter-
action. Example 1 illustrates how assumptions are
often violated as a result of service evolution. As
suppliers decide to evolve their order processing
processes to forward unfulfilled order to other sup-
pliers, an assumption may have been made that the
supplier which finally fulfills the order will be a dif-
ferent supplier. However, the presence of a loop in
the chain of suppliers breaks that assumption. In
Example 4, the same price element is used with
two different interpretations.

5.5. Inadequate interface

Decoupling service interfaces (i.e., feature specifi-
cations) from their implementation is sometimes a
dubious benefit. On one hand, decoupling insulates
feature users from changes in the feature implemen-
tation. All they (apparently) need to know about the
feature is the interface. On the other, the informa-
tion conveyed through current web service inter-
faces (i.e., operation signatures) is not sufficient to
properly use a feature. Feature users must make
too many assumptions about how a feature is imple-
mented. Similarly, service providers implementing

M. Weiss et al. / Computer Networks 51 (2007) 359–381 379
an interface may find that the interface does not
provide sufficient guidance for the implementation.
In such cases, they may make design decisions that
constrain the use of the feature in unexpected ways.

A result of inadequate interface specification is
that service users cannot control how a service
performs. For example, they may not be able to
pass on required parameters to a service implemen-
tation. This can lead to a duplication of effort,
inconsistencies, and incorrect execution. Conflicts
of this type may concur with a policy conflict, where
the policies of feature users are not in agreement
with the (unexpressed) policies of the service
provider.

Examples 5 and 6 demonstrate inadequate inter-
face interactions. In Example 5, the iPassport service
does not declare through any of its interfaces that
profiles will be shared transparently with parties
other than Amazin. In Example 6, the Manage Pro-
file feature does not allow a Customer to impose
restrictions on what profile information service
providers can access. However, the Customer may
not want all of these parties to access their full
profile.

While the general issue of inadequate specifica-
tion of features is certainly also a significant issue
in the telephony domain, we feel that the issue is
both more specific and more pervasive in the web
services context. The notion of a web service
interface is very specific in its focus on service oper-
ations, and current proposals to include non-func-
tional aspects in the interface definition have been
limited. Also, there is not one well-known set of
interfaces that service providers implement corre-
sponding to the standard set of telephony features
(not including multimedia and other emerging ser-
vices). Rather, services may evolve from a specific
context of use, and, therefore, impose limitations
on service interfaces (e.g., parameters that cannot
be passed across the interface) that may lead to fea-
ture interactions once the context of use is widened.

5.6. Policy conflict

Policies provide the means for specifying and
modulating the behavior of a feature to align its
capabilities and constraints with the requirements
of its users [10]. A policy conflict occurs, if there
are policies (e.g., authentication or privacy policies)
specified on two features that refer to their corre-
sponding operations, and the policies are not com-
patible [16].
Policy conflicts are particularly prone to cause
user confusion, as policies are often specified by
the users as part of customizing a feature. Example
5 shows such an interaction. Suppliers are not bound
to the same privacy policy as Amazin. For example,
a Supplier may decide to keep profile information
beyond the extent of the order, whereas Amazin’s
privacy policy forbids this.
5.7. Concurrency

The correct operation of a composite web service
may also depend on properly handling concurrency.
Incorrect invocation order, timing glitches, and
transaction failures cause this type of interaction.
A feature may expect events to take place in a cer-
tain order. If a feature user breaks this order, the
correctness of the feature’s results is no longer guar-
anteed. Another situation is that certain operations
must either all complete, or not have any effect at
all. Example 3 illustrates this type of interaction.
An order cancellation should not only terminate
either Payment Processing or Delivery, but both. A
better solution, in this case, would have been to only
ship an order after payment has been received.
However, as the execution of a business process is
distributed over several service providers, each per-
forming part of the task, identifying the boundaries
of a transaction, and furthermore enforcing them, is
generally difficult in a service-oriented system, as it
lacks a central authority.
6. Conclusion

This paper makes three contributions:

1. It discusses characteristics of web services that
suggest the separate treatment of web service fea-
ture interactions.

2. It develops a case study that we hope can serve as
benchmark for comparing approaches to web
service feature interaction management.

3. It proposes a classification of feature interactions
among web services by their nature and causes,
using the case study for illustration.

Throughout the paper, we have made many
observations about the nature of web services that
suggest that we should treat web service feature
interactions separately from other types of feature
interactions. These include:

380 M. Weiss et al. / Computer Networks 51 (2007) 359–381
• Systems using web services are largely built from
third-party services, over whose implementation
service users have little control.

• There are a large number of service users and
small- and medium-sized service providers, and
all are potential service integration points.

• New services can be cheaply created by assem-
bling existing ones. Specifically, this means ser-
vices will be created by end users.

• There are no operators or ‘‘central authorities’’
(unlike in the telecom world) which oversee the
integration of services from different vendors.

• Web services must evolve rapidly to adapt to
changes in the business environment, and to meet
the needs of loosely coupled business models.

• Heterogeneity must be accepted as a defining
characteristic of web services. We cannot assume
the various actors to use a common ontology.

• There is an increasing trend towards automated
service discovery and composition, and towards
making service context-aware.

• Furthermore, the concept of an ACID properties
from the database world cannot be easily
mapped into the web services context.

• Establishing trust will also become much harder
in a world, in which we cannot rely on pre-exist-
ing, proven relationships.

In light of these observations, we have proposed
a classification of feature interactions among web
services by their nature and causes. This classifica-
tion is summarized in Table 2. Numbers refer to
examples that illustrate a given type of interaction.
Some examples appear more than once, because
they exemplify multiple interactions. It should be
pointed out that the table is likely not complete,
and we invite readers to add to it.

We position our classification in the tradition of
existing classifications of feature interactions for
the telecommuncations domain, while emphasizing
Table 2
Summary of the classification of web service feature interactions

Cause of interactions Nature of interactions

Functional Non-functional

Goal conflict 5
Resource contention 1 8
Deployment and ownership 5, 7
Violation of assumptions 1, 2, 4
Inadequate interface 5, 6
Policy conflict 5
Concurrency 3
web service-specific aspects. A classification of web
service feature interactions is beneficial, as it helps
us understand the scope of the feature interaction
problem in the web services domain, and provides
a benchmark against which to assess the coverage
of solutions to this problem. Solutions for specific
feature interactions can then be generalized to other
interactions of the same type.

Specifically, our classification builds on the work
by [6] for the telecommunications domain. That
work was based on the premise, even more impor-
tant now with web services, that service creation is
no longer governed by a single organization. It also
discusses a categorization by nature of the interac-
tions, which depended on the nature of the features
involved, the number of users, and the number of
components in the network, and by causes. How-
ever, some causes of feature interactions do not
carry over to the web services domain. For instance,
we do not list limitations on network support as a
cause, since explicit service invocation in web ser-
vices avoids signaling ambiguity.

In our own earlier work [20,21], we have pro-
vided additional examples of interactions, as well
as approaches for resolving them. By contrast this
paper does not consider resolution. The goal con-
flict scenario is based on our work on assessing pri-
vacy technologies [24]. An earlier version of the
classification was presented in [22]. In this paper,
we have reworked the classification, added examples
of interactions, and put it into a more accessible
format.
Acknowledgements

Parts of this research were sponsored by an
NSERC Discovery Grant. We also want to thank
the students who participated in the implementation
of the prototype of the Amazin virtual bookstore,
and in related case studies. In particular, we want
to recognize Yi Lin and Zhiyong Lu for their efforts
in coding much of the Amazin prototype, and Alex
Oreshkin for his contribution to exploring the use
of FSP in various feature interaction scenarios.
References

[1] G. Alonso, F. Casati, et al., Web Services: Concepts,
Architectures, and Applications, Springer, 2004.

[2] D. Amyot, Introduction to the user requirements notation:
Learning by example, Computer Networks 42 (3) (2003)
285–301.

M. Weiss et al. / Computer Networks 51 (2007) 359–381 381
[3] V. Arago, A. Fernandes, Conflict resolution in web service
federations. In: Proceedings of International Conference on
Web Services (Europe) LNCS, vol. 2853, Springer, 2003, pp.
109–122.

[4] F. Cabrera, et al, Web Services Transaction, IBM, Micro-
soft, and BEA, 2002.

[5] M. Calder, M. Kolberg, E. Magill, S. Reiff-Marganiec,
Feature interaction: a critical review and considered forecast,
Computer Networks 41 (1) (2003) 115–141.

[6] J. Cameron, N. Griffeth, et al., A feature interaction
benchmark for IN and Beyond, Feature Interactions in
Telecommunications Systems (1994) 1–23.

[7] F. Chen, S. Li, W.C. Cheng-Chung, Feature analysis for
service-oriented reengineering. In: Proceedings of Asia–
Pacific Software Engineering Conference, IEEE, 2005, pp.
201–208.

[8] E. Gamma, R. Helm, et al., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 2004.

[9] GRL. Available from: <http://www.cs.toronto.edu/km/
GRL>, last accessed in April 2006.

[10] H. Kamoda, et al, Policy Conflict Analysis Using Free
Variable Tableaux for Access Control in Web Services
Environments. In: Proceedings of World Wide Web Con-
ference, 2005.

[11] D. Keck, P. Kuehn, The feature and service interaction
problem in telecommunications systems, IEEE Transactions
on Software Engineering (1998) 779–796.

[12] J. Magee, J. Kramer, Concurrency: State Models and Java
Programs, Wiley, 1999.

[13] E. Magill, Feature Interactions: Old Hat or Deadly New
Menace? in: K. Turner, E. Magill, D. Marples (Eds.),
Service Provision: Technologies for Next Generation Com-
munications, Wiley, 2004, pp. 235–252.

[14] E. Pulvermüller, A. Speck, et al., Feature Interaction in
Composed Systems, Workshop on Feature Interactions in
Composed Systems, TR 2001-14, 1–6, Universität Karlsruhe,
Fakultät für Informatik, 2001.

[15] A. Ryman, Understanding Web Services. Available from:
<http://www.software.ibm.com/wsdd/library/techarticles/
0307_ryman/ryman.html>, 2003.

[16] A. Sahai, C. Thompson, W. Vambenepe, Specifying and
Constraining Web Service Behavior through Policies, Work-
shop on Constraints and Capabilities for Web Services,
W3C, 2004.

[17] UCM. Available from: <http://www.usecasemaps.org>, last
accessed in April 2006.

[18] webMethods, Glue User Guide. Available from: <http://
www.webmethods.com/docs/glue/guide>, last accessed in
April 2006.

[19] M. Weiss, Feature Interactions in Web Services, Feature
Interactions in Telecommunications and Software Systems,
IOS, 2003, pp. 149–156.
[20] M. Weiss, B. Esfandiari, On Feature Interactions among
Web Services. In: Proceedings of International Conference
on Web Services, IEEE, 2004, pp. 88–95.

[21] M. Weiss, B. Esfandiari, On feature interactions among web
services, International Journal on Web Services Research 2
(4) (2005) 21–45.

[22] M. Weiss, B. Esfandiari, Towards a Classification of Web
Service Feature Interactions. In: Proceedings of Interna-
tional Conference on Service-Oriented Computing LNCS,
vol. 3826, Springer, 2005, pp. 101–114.

[23] M. Weiss, D. Amyot, Business process modeling with URN,
International Journal of E-Business Research 1 (3) (2005)
63–90.

[24] M. Weiss, B. Esfandiari, Modeling Method for Assessing
Privacy Technologies, in: G. Yee, Privacy in e-Services, Idea
Books, 2006, pp. 265–280.

[25] M. Weiss, A. Oreshkin, B. Esfandiari, Method for detecting
functional feature interactions of web services, Journal of
Computer Systems Science and Engineering 21 (4) (2006)
273–284.

Michael Weiss (Ph.D., University of
Mannheim, 1993) is an associate profes-
sor of Computer Science at Carleton
University. Before joining Carleton in
2000, he worked four five years in the
telecommunications industry (Mitel
Corporation) on agent-based service
creation environments. His research
interests include software architecture
and patterns, service-oriented architec-
tures, and open source.
Babak Esfandiari is an associate profes-
sor at the department of Systems
and Computer Engineering at Carleton
University, Ottawa, Canada. He
obtained his Ph.D. in computer science
at the University of Montpellier, France
in 1997. His research interests include
agent-based systems and network
computing.
Yun Luo was a master’s student at the School of Computer Sci-
ence, Carleton University. He is presently a software engineer at
Nortel Networks.

http://www.cs.toronto.edu/km/GRL
http://www.cs.toronto.edu/km/GRL
http://www.software.ibm.com/wsdd/library/techarticles/0307_ryman/ryman.html
http://www.software.ibm.com/wsdd/library/techarticles/0307_ryman/ryman.html
http://www.usecasemaps.org
http://www.webmethods.com/docs/glue/guide
http://www.webmethods.com/docs/glue/guide

	Towards a classification of web service feature interactions
	Introduction
	Feature interaction problem and feature modeling
	Feature interaction problem
	Modeling web services in terms of features
	Feature modeling approach
	User requirements notation (URN)
	Finite state processes (FSP)

	Case study: A virtual bookstore
	Examples of services and their features
	iPassport
	PayMe
	ShipEx
	Shark
	Prototype

	Composite service: virtual bookstore
	Amazin
	Supplier
	Customer
	Prototype

	Classification by the nature of interactions
	Functional interactions

	Non-functional interactions

	Classification by the causes of interactions
	Goal conflict
	Resource contention
	Deployment and ownership
	Violation of assumptions
	Inadequate interface
	Policy conflict
	Concurrency

	Conclusion
	Acknowledgements
	References

