

Free/Open Services (F/O-Services)

G.R. Gangadharan, Politecnico di Milano, Italy

Vincenzo D’Andrea, University of Trento, Italy

Michael Weiss, Carleton University, Canada

Even if an apple is available freely on your way, you have to consider the issues of
property rights before the consumption of it. If, for an apple, considering the rights of
consumption is significant, then for software which is freely available, it becomes
inevitable to consider the associated rights. The Free/Open Source Software (FOSS) [1]
approach protects the unconditional rights of modification and redistribution by the
collaborating developers, making the source code freely available. The freedom in
software is reflected by the software license describing terms and conditions for use and
distribution.

Service-oriented computing (SOC) represents the convergence of technological enablers
with an understanding of cross-organizational business processes [2]. Services enhance
the World Wide Web model not only for human use, but also for machine use by
enabling application level interactions. Services deliver complex business processes and
transactions as well as simple functions, allowing applications to be constructed on-the-
fly and to be reused. Service composition [3] can be perceived as a way of developing a
new service, a composite service, whose execution depends on the service(s) being
composed. Services can be composed statically, at design time, when the services to
be combined are selected, linked, and deployed. Alternatively, services can be selected
and composed dynamically during runtime.

Though services are software fragments, services differ from software in several ways.
Generally software serves as a stand-alone application. Services intend to make network-
accessible operations available anywhere and at anytime. Unlike software, services are
not resident in the recipient's environment. For that reason, in general service consumers
have no access to the implementation details of a service, including whether or not a

service uses other services, and what are these other services. Services are executed in the
hosted infrastructure and a consumer sees only the result of execution.

The seamless proliferation of SOC demands the thoughts related to the ownership and
distribution aspects, to enable widespread use of services. An approach similar to FOSS
that opens the accessibility of the source code of services and the execution/use of
services, would significantly enhance the understandability of the service composition
process (including data and control flow) and allow the creation of derivative services.
Adopting and adapting the principles of FOSS approach to SOC could enhance the
widespread use of services. In this paper, we illustrate the concept of Free/Open services
(F/O-Services), inspired by FOSS movement over SOC.

Unleashing F/O-Services

F/O-Services significantly enhance the way of usage and distribution a service as follows.

 Service Usage

Service usage describes the freedom to use a service by other applications, for any
purpose. The basics of F/O-Service allows the use of service by any other application,
both service-oriented or not, in agreement with the given F/O-Service license. With the
creation of F/O-Service, we are provided with the freedom to know how the service
works and could be adapted to our needs, making the source code of service interface as
well as service implementation freely available. A service is often created as a wrapper of
another software application, in that case the availability of source code of the F/O-
Service would not necessary include the source code of wrapped software (if, for
instance, the wrapped software is a proprietary application).

 Service Distribution

Service distribution describes the freedom to distribute a service as a new, separate
service. The new service could be implemented as an independent entity or invoke the
first one. Furthermore, this offers the freedom to improve the service, and release
improvements to the public, so that the whole community benefits. F/O-Services allow to
perform modifications on the interface and implementation of the service and thus,
derived services are created. Derived services could be executed independently (together
with separate interface and implementation) or could use the implementation of the
parent service.

Following the definition of FOSS1, 2, we define a F/O-Service as follows [14].

A F/O-Service should be free for use.

The source code of the interface (WSDL descriptions) as well as the implementation of a
F/O-Service should be available.

The service implemented by creating a new service using the source code and interface of
a F/O-Service should be freely distributable as an independent service. The modification
of interface and implementation should be permitted.

The service using a F/O-Service as part of a composite service should be freely
distributable as an independent service, even when using a separate interface. The
modification of interface and implementation should be permitted.

Derived services and modified services must be allowed and be capable of distribution.

The license must not discriminate against any person or group of persons or any field of
endeavor.

The license agreement must provide a F/O-Service “as is” with no warranties either to
functional and/or non-functional properties or non-infringement of third party rights.

The license must not place restrictions on composition with other services and on
distribution of composed services.

1. http://www.gnu.org/philosophy/free-sw.html

2. http://www.opensource.org/docs/osd

Exploring Freedom and Openness in F/O-Services

In this section, we analyze the possible scenarios in connection with F/O-Services using
three dimensions to characterize different approaches: the possibility to modify the
service interface, the possibility to modify the service implementation, and the possibility
to execute a service independently.

By execution independency, a service can be executed in a different context or that can be
owned and/or maintained by a different organization. By execution dependency, a new
service can be created from a F/O-Service in such a way that the service needs not to be
implemented again. The operations of a F/O-Service can be invoked and executed
directly on the host of the F/O-Service itself by another services in execution dependent
way.

Furthermore, a F/O-Service allows modification of interface or/and implementation.
Interface modification is a common scenario in SOC as the source code of service
interfaces must be generally available. The modification of implementation allows to
create value added services beyond composition.

Now, we exemplify the freedom and openness exclusively associated with F/O-Services
based on possible combinations of modification (or not) of service implementation,
modification (or not) of service interface, and independent (or dependent) execution as
follows (see Figure 1).

In all scenarios, we consider SA as a F/O-Service providing a spell checking operation for
words, say, Spell(word), by wrapping PWP (a fictitious name for a word processor) spell
checker API.

Figure 1. Exemplifying Freedom and Openness in F/O-Services

Scenario A

Description:

• The simplest method enabling free usage and distribution of a service.
• May require simple attribution to the parent service.

Example:

Let SB be an independent service, providing the same Spell(word), created by
replicating the source code of implementation and interface of SA. Albeit SA and
SB are performing same operations, SA and SB are two different services, executed
separately (possibly could be a part of the information system of a different
organization).

Scenario B

 Description:

• A common scenario in SOC.
• Adds value to a service by distributing the service, not requiring to implement the

service again.

 Example:

Let SB be a service providing a spell checking operation Spell(word) for words,
using (copying) the interface Spell(word) of SA. SB is designed in such a way that
Spell(word) of SB directly invokes the operation of SA, executing on the host of SA
itself.

From a service consumer’s perspective, SA and SB are providing exactly the same
Spell(word) interface. Thus, they can be interchangeable in an application on the
consumer side. However, implementations of SA and SB are not distinguishable.
Theoretically, there will not be any noticeable differences in performances of both
services, apart from possible network latency between SA and SB or different
hardware performances for the hosts of SA and SB.

Scenario C

Description:

• As an entirely new service from a F/O-Service keeping its interface unchanged
and modifying the implementation.

 Example:

Let SB be an another independent service, providing the same Spell(word), created
by replicating the interface of SA. However, SB provides the operation Spell(word)
by wrapping QWQ spell check API (QWQ is a fictitious name for another word
processor.). Albeit SA and SB are performing the same operations, SA and SB are
two different services, executed separately.

From a service consumer perspective, there could be differences in the
performance of SA and SB, same as in scenario B but also depending on the
performances of the different word processors in use.

Scenario D

Description:

• Creates a new independent service only by modifying its interface (by not
allowing or not interesting to change the implementation).

Example:

Let SB be another independent service, created by replicating the source code of
service implementation and modifying the interface of SA, to provide a spell
checking operation in Italian language, say Ortografia(parole). In this case, SB
translates the interface of SA and results in the Italian version of SA as an
independent service.

Scenario E

Description:

• Allows another services to modify the interface and to invoke operations in a
dependent way.

Example:

Consider a service SB with an interface providing Spell(sentence). For every
execution of a word in a sentence, Spell(word) of SA is repeatedly invoked. Thus, for
spell checking of a given prose Spell(sentence), SB invocates Spell(word) of SA
repetitively for each words. Here, SA as a F/O-Service allows SB for certain operations
to execute directly on the host of SA.

Scenario F

 Description:

• The most permissive case of freedom/openness offered by F/O-Services (as a
result of derivation).

 Example:

From the given F/O-Service SA, we create a new service SB, by modifying
interface and implementation of SA. The interface of SB provides Spell(sentence)
which composes parser() to split the given sentence and Spell(word) to spell
check a word reusing the operation of SA. Now, SA and SB are two different
services, executed independently. Spell(sentence) of SB is derived from
Spell(word) of SA and is value added by having an own additional functionality
parser().

Extending F/O-Services by Dependency

Services provide universal interoperability, manifested by the web-like network of
services created by the composition of services into more complex services. However, the
opaque nature of services often hides the details of operations from the service consumer.
The consumer could neither see anything beyond the interface nor understand about the
services being composed in a composite service. While in the tradition of software
encapsulation this is considered desirable, we claim that it may prove too restrictive when
applied to services as we will elaborate below.

We define dependency between services as the description of the interactions of a service
with other services. Interactions do not have a direction per se, but a dependency does. A
dependency link is directed from the service consumer to the service provider and
expresses the dependency of the consumer on the provider. Consider a service SA, which
composes the services SB, SC, and SD (see Figure 2). Further, these services compose SE,
SF, SG, and SH. Given the service SA, we could not understand what the services are being
composed in SA.

If we make the dependencies of services open, we could achieve a service, whose service
internals are completely exposed to the consumer. In Figure 2, circles represent services
and arrows represent their dependencies. From the given dependency graph, we could
recognize the complete hierarchy of composed services. This approach is quite similar to
white box description of components [4].

Opening dependencies implies only the provision of a list of composed services, and
differs from fully exposing the application logic used to compose them. There are at least
two notions of openness in the context of dependencies.

 1. The service declares which services it uses, but this does not imply a right for the
consumers to invoke those services directly, if the composition as an assembly is itself an
artifact that the service provider wishes to protect with restrictions and

2. The service allows others to reuse the relationships with other services it has.
Restrictions imposed by the component services apply, of course.

However, these notions are not all-encompassing. For instance, there may be intellectual
rights attached to the selection of services during composition. These could, for instance,
require the composer using a F/O-Service to allow similar freedom to users of the
composite service.

Also, expressing the openness of dependencies depicts licensing compliance issues of a
service with other services. In the dependency graph of our example, consider that
licenses of SF and SH impose restrictions on SC and SD respectively. The license of SC
should comply to SF and the license of SD should comply to SH. The licensing clauses of
SA should comply to the licensing clauses of SC and SD. Thus, SF and SH are the minimum
licensing sets for composing the licensing accountability of SA. However, we have
assumed the licenses of SB, SE, and SG will not impose any restrictions on the licensing of
composition of services in this example (indicated by dashed lines in Figure 2). Thus, the
licensing accountability graph is the sub-graph of a dependency graph showing the
services that require licensing compliances among themselves (indicated by straight
lines).

Figure 2. Service Dependability and Licensing Accountability

Business Models for F/O-Services

Free services inspired by Free Software licenses could make value addition by
composition, resulting composed services as `free'. Thus, free services (with free
licenses) could create a chain effect on composition of services to be free, even if one of
the composing service may be not `free'. Making services (monetarily) free could be
highly beneficial for government sectors, education, and non-profitable organizations to
explore and enjoy the benefits of services.

Making F/O-Services may raise an emergent question of how a service provider could
profit by providing services. For this, we propose the following set of business models for
the sustainability of F/O-Services. There exists a wide range of business models for
software [5] as well as for services [6].

Following are some of the possible business models for F/O-Services.

 Accessorizing

A service may be free in the sense of no cost. However, it could motivate the
consumer to purchase something. For example, a service providing map and route
information freely may require the service user to install a Global Positioning
System device in his/her vehicle. Also, F/O-Services can make revenue from
training, consulting, and custom development.

 Sell It, Free It

Like traditional commercial software, services can begin their life cycle as closed
and then later, can be converted as F/O-Services when appropriate.

 Brand Licensing

A F/O-Service provider can charge other service providers/ aggregators/
consumers for the right to use its brand names and trademarks in creating
derivative services. This is one of the common business models in practice of the
FOSS community [7].

 Dual Licensing

Dual licensing is a business model for FOSS exploitation based on the idea of
simultaneous use of both FOSS and proprietary licenses. Following the dual
licensing strategy, a service can be licensed under a F/O-Service license as well as
a proprietary license. In addition to delivering complementary revenue streams,
the dual licensing strategy captures a large user base.

 Intermediary and Shared Infrastructure Models

The intermediary and shared infrastructure models [8] can also be adapted to F/O-
Services. One type of intermediary is a service aggregator. It adds value by
composing other services so that a new functionality arises that was not available
before. An example is a context-aware service that combines location sensing
with location-specific information services. Intermediaries may also add value
through the pre-selection of component services and managing their quality. A
shared infrastructure service is an open service jointly developed by service users
or providers for their common usage. In this case, it is more economic to share the
development costs rather than developing the capabilities provided by the services
individually.

Differentiated Use Model

A service could be used for consumption (by the end user) or for value addition
(composition or derivation by another service). A service provider could come
across a model of offering a base service for free to end users, but charging for
value added capabilities or vice versa. However, technologically, it is difficult to
differentiate these types of uses. The use of services could be charged by
subscription or pay-per-use models [9].

 Service Hosting

Service hosting is another business strategy for F/O-Services. A F/O-Service
provider could host the services defined by others, thus making a viable business
opportunity. A service host provides the capacity for executing a F/O-Service.
There are different options for the service host to be remunerated: charging users
a fee, charging providers of the service a fee, or by adapting the quality of service
in exchange for remuneration. For instance, a free hosting service could be
offered as time-limited, or only offer a certain number of executions per day.
There is also an opportunity to generate revenue through direct (embedded
advertising) or indirect (resale of demographics) marketing campaigns.

 Selling Infowares

Selling infowares is an exclusive business model for F/O-Services. As F/O-
Services allow derivation of services freely, the restrictions over usage or value
addition of the services might seem illogical at the first sight. But, of course, there
is data associated with the service. Services intend to use the data and could be
referred as data driven applications. Thus, services are infoware [10], more than
software. We view services as a combination of software and data. the use of
services signifies the access of software as well as the data. However, copying of
a service refers to copying of the associated software only. A F/O-Service placing
restrictions on usage/value addition owning a unique source of data would be a
sustainable source for financial income.

Summary

In this article, we have proposed the concept of Free/Open Services, a distinctive advance
over the concept of service-oriented computing, inspired by Free/Open Source Software
approach. F/O-Services allow the access to the source code of interface and
implementation of services, making freely distributable composite services and derivative
services. Though FOSS approach does not discriminate in the uses of software, the
dynamic binding and execution of services could enforce certain restrictions for the
execution/usage of F/O-Services. Thus, F/O-Services can be restricted by a service
provider. Furthermore, F/O-Services enable the creation of fully transparent composite
services and allow people and other services to access them. We have proposed a set of
business models for F/O-Services, adapted from the business strategies of services and
FOSS.

The wedding of services with FOSS would be beneficial for both communities, spreading
services `free'ly. Some informal and unstructured discussions about the concepts of
free/open services are budding in several web logs [11, 12, 13]. However, there is no
unambiguous conceptualization of F/O-Services. In early 2006, we have proposed and
illustrated free/open source perspectives of licensing for services [14] and extended the
concept further by [15] in early 2007. And, our perspective on F/O-Services are not all
futuristic! It is the need to enrich the service-oriented community by itself and to enable
services to proliferate without limits. We have seen the Honest Public License (Version 1
as on August 2006) having a clause to handle services. As a milestone in free software
licensing, in November 2007, Free Software Foundation has released GNU Affero
General Public License. According to AGPL, the modifications to software that power
publicly available services should be contributed to the free software community.

However, till now, the concept of Free/Open Services is still in its nascent stage. The
service-oriented community is afraid as there is no tradition of freeing/opening services
and the fear of going against encapsulation. Let us all join together for proclamation and
promotion of this F/O-Services community and to make a new brave world of F/O-
Services.

REFERENCES

1. J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, Perspectives on Free and Open
Source Software, MIT Press, 2007.

2. T. Erl, Service-Oriented Architecture: Concepts, Technology & Design, Prentice
Hall/Pearson PTR, 2005.

3. F. Casati, and M.C. Shan, Dynamic and Adaptive Composition of E-Services,
Information Systems, 6(3), 2001.

4. C. Szyperski, Component Software: Beyond Object Oriented Programming, ACM
Press, New York, 1998.

5. C. Shapiro, and H. Varian, Information Rules: A Strategic Guide to the Network
Economy, Harvard Business School Press, 1999.

6. J. Hagel, Out of the Box: Strategies for Achieving Profits Today and Growth
Tomorrow Through Web Services, Harvard Business School Press, 2002.

7. E. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary, O’Reilly Press, 2000.

8. P. Weill, and M. Vitale, Place to Space: Migrating to E-business Models, Harvard
Business School Press, 2001.

9. D. Ferrante, Software Licensing Models: What’s Out There?, IEEE IT Professional,
8(6), 2006.

10. T. O'Reilly, What Is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software, Communications & Strategies, 65(1), 17-37, 2007.

11. Web Services and Open Source at OSCON.
http://developers.slashdot.org/article.pl?sid=06/07/26/1537213 (Posted on July 26, 2006)

12. log.ometer.com: Log for July, 2006. http://log.ometer.com/2006-07.html (Posted on
July 29, 2006)

13. Evaluating a Free/Open Service Definition (rough draft).
http://tieguy.org/blog/2007/07/22/evaluating-a-freeopen-service-definition-rough-draft/
(Posted on July 22, 2007)

14. V. D'Andrea, and G. R. Gangadharan, Licensing Services: An "Open" Perspective,
In: Proceedings of the International Conference on Open Source Systems, 143-154,
Springer, 2006.

15. G.R. Gangadharan, V. D’Andrea, and M. Weiss, Free/Open Services:
Conceptualization, Classification, and Commercialization, In: Proceedings of the
International Conference on Open Source Systems, 253-258, Springer, 2007.

ABSTRACT

Service-oriented computing (SOC) represents the convergence of technology with an
understanding of cross-organizational business processes. In general service consumers
have no access to the implementation details of a service, including whether or not a
service uses other services, and what are these other services. An approach similar to
Free/Open Source Software (FOSS) that opens the accessibility of the source code of
services and use/distribution of services would significantly enhance the
understandability of the service composition process (including data and control flow)
and allow the creation of derivative services. A novel concept of Free/Open services
(F/O-Services) adopts and adapts the principles of FOSS approach to SOC, to enhance
the widespread use of services.

KEY WORDS

Free/Open Services (F/O-Services)
Service Oriented Computing
Free/Open Source Software
Service Dependency
Service Licensing

AUTHOR BIOS

G. R. Gangadharan is a researcher at the Politecnico di Milano, Milan, Italy. His research
interests are mainly located on the interface between technological and business
perspectives. His research interests include green information systems, service oriented
computing, and free/open source software. He has received Ph.D. degree in Information
and Communication Technology from the University of Trento, Trento, Italy and
European University Association. He is a member of IEEE. Contact him at
geeyaar@gmail.com.

Vincenzo D’Andrea is an associate professor at the University of Trento, Trento, Italy.
His research interests include service-oriented computing, free and open source licensing,
and socio-technical systems. He received his PhD in Information Technology from the
University of Parma. He is a member of the IEEE Computer Society and the ACM.
Contact him at dandrea@disi.unitn.it.

Michael Weiss holds a faculty appointment in the Department of Systems and Computer
Engineering at Carleton University, Ottawa, Canada. His research interests include open
source ecosystems, service-oriented architectures, mashups/Web 2.0, business process
modeling, product architecture and design, and pattern languages. Contact him at
weiss@sce.carleton.ca.

