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ABSTRACT
Previous work has explored the structure of the mashup
ecosystem, which can be modeled as a network of mashups
and APIs. However, it did not offer an explanation for its
growth. In this paper, we seek an answer to the question
how mashup developers select APIs. One hypothesis that
has been put forward is that APIs are selected by their pop-
ularity, that is, by preferential attachment. However, this
hypothesis is unsatisfying, as it disregards that mashups are
composed from multiple APIs, and neglects the learning be-
tween mashup developers. Instead, we propose a copying
model. We test to what degree developers create mashups
by copying other mashups. We show that a good fit be-
tween the actual distribution of APIs and our model can
be obtained. We can conclude that copying plays a signifi-
cant role in explaining how mashups are developed. We also
identify open research questions raised by the results.

1. INTRODUCTION
Mashups are applications that combine data and services
provided by third parties through open APIs with user-
supplied data [21]. For example, the Google Maps API
generates maps for a given location, and its output can
be combined with other open APIs and user-supplied data.
Mashups allow the quick creation of custom applications
short life span and specific context of use. This has given
rise to a new application development model: opportunis-
tic programming emphasizes speed and ease of development
over robustness and ability to maintain the software [5].

The creation of mashups is supported by a complex ecosys-
tem of interconnected data providers, mashup platforms,
and users. Previous work has examined the structure of
the mashup ecosystem and its growth over time [18, 20, 19].
Since late 2005, the evolution of the ecosystem of mashups
and APIs has been documented public directories. One of
these sources is the ProgrammableWeb site.1 It lists APIs

1http://www.programmableweb.com

and mashups by date of introduction and profiles them. It
also categorizes APIs and mashups through a provided tax-
onomy and tags that users can associate with the entries.
Since the contents of the site are user-contributed, not all
APIs and mashups in existence are indexed. However, the
ProgrammableWeb is probably the most widely recognized
mashup directory, and its contents can be considered repre-
sentative of the state of the mashup ecosystem.

Previous work has explored the structure of the mashup
ecosystem, but it did not offer an explanation for its growth.
In this paper, we seek an answer to the question how mashup
developers select APIs. One hypothesis that has been put
forward is that APIs are selected by their popularity [20].
This is the classic preferential attachment hypothesis: the
more links a node has, the more likely it is to be selected
as target of a link by nodes added to the network [3, 4].
However, this hypothesis is unsatisfying for two reasons:

1. It seems to oversimplify the process by which mashups
are created. While the popularity of an API can cer-
tainly be thought to influence the developer’s choice,
reducing the selection process to just that neglects
other factors, such as category of mashup to be cre-
ated (for example, search or travel), or how developers
learn about APIs that can be combined.

2. It appears that mashup developers would learn from
other developers. Just selecting the APIs that have
been used most only captures part of this learning.
If the lessons obtained from how people create web
pages or how programmers learn a new programming
language can provide any guidance [5], it is likely that
developers will emulate each other.

We, therefore, propose to examine to what degree developers
create mashups by copying other mashups. Like a new web
page created by copying the HTML code from an existing
web page [5], a new mashup would often start out as a copy
of an existing mashup. However, with this analogy, there is
an important difference. Whereas in the case of a web page,
the source is usually available, a mashup author typically
only has access to what APIs another mashup uses. Copying
is restricted to the “blueprint” of the mashup, and does not
include the logic of how the APIs are composed.

Figure 1 offers empirical evidence that suggests mashups
are created by copying other mashups. The graph shows
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Figure 1: Empirical distribution of the number of
copies of mashups on the ProgrammableWeb

the cumulative distribution P (X ≥ x) of mashups with x or
more copies on the ProgrammableWeb. Mashups are con-
sidered copies of each other, if they use the same blueprint.
This snapshot was taken on August 16, 2010. At this point,
the database contained 4983 mashups that used at least one
API.2 Of these, 1528 or 31% only existed in one copy. The
remaining mashups shared their blueprint with one of 341 or
7% of the mashups. There were only 1869 unique blueprints.
62% of the mashups were copies of other mashups.

The rest of the paper is organized as follows. In Section 2, we
review the related work on mashup ecosystems and copying
as a design principle and a model of network growth. In
Section 3, we introduce our copying hypothesis and describe
a simulation model to test it. In Section 4, we outline our
research method, and in Section 5 present the results of the
simulation. In Section 6, we discuss the results and their
implications. Section 7 concludes the paper.

2. RELATED WORK
In the following, we first review related work on the evolution
of the mashup ecosystem, then the literature that makes a
case for copying as a design principle, and finally existing
work on copying as a model of network growth.

The structure of the mashup ecosystem and its growth over
time has been examined in [18, 19] and [20]. The first
study presents a research method for the analysis of mashup
ecosystems [18, 19]. The authors develop techniques for vi-
sualizing the mashup ecosystem, and use network analysis
to obtain characteristics of the ecosystem and to identify
significant ecosystem members and their relationships. Sim-
ilarly, the second study provides evidence that the mashup
ecosystem is organized into three tiers, and that a small set

2The ProgrammableWeb contains some entries that do not
reference any APIs, but those are not of interest here.

of core APIs play a dominant role, but that peripheral APIs
are key to the creation of new links in the network [20]. Yet,
neither study offers insights into which internal mechanisms
lead to the observed growth of the mashup ecosystem.

The ability to quickly assemble custom applications from
existing parts has given rise to a new application develop-
ment model. In opportunistic programming, speed and ease
of development are given more weight than creating appli-
cations that are robust and maintainable [5]. The authors
cite the example of web pages, which are often created by
copying existing web pages, as an instance of opportunis-
tic programming. Here, the concept of opportunism refers
to the opportunities or options afforded by the components
that can be quickly assembled into new applications. Simi-
larly, open APIs are provided to users with the intent that
users can create applications that had not been anticipated
by API providers, and are often highly specialized to the
needs of a few users. Open APIs enable users on the “long
tail” of possible user needs to help themselves.

This perspective is consistent with research on the recom-
binant nature of the innovation process [8]. Innovation can
be described as the construction of new ideas from exist-
ing ones. Benefits of recombination include shortening the
learning curve by combining known elements in new ways,
sharing of past experience across organizational boundaries,
and the diversity of problem solving frames. The concept
of recombinant innovation is closely linked to the concept
of modularity. Modularity allows the creation of new prod-
ucts by mixing and matching components [6]. The increased
modularity implied by open APIs is of great influence on
the development of mashups. Open APIs are the modules
that can be (re)combined into mashups. Modularity is also
the basis for imitating the design of a mashup, when a user
“clones” an existing mashup. Work on the role of imitation
in innovation [7] leads us to conclude that modularity en-
ables others to imitate the design of a system.

Many real network such as citation networks [15] and the
Internet [2] have a degree distribution that observes a power
law. Networks with a power law distribution are also known
as scale free networks [2]. A growth model for scale-free net-
works has been proposed in [3] based based on two processes:
growth (nodes are added continuously in the network) and
preferential attachment (edges are added in proportion to
the number of existing edges). Several mechanisms for gen-
erating power law distributions are described in [13].

The web growth model in [9, 10] describes a copying process
that gives rise to a scale free network. The main step to their
model is that new nodes are created by copying a subset of
the links of a randomly selected existing node. Others [16,
17] also recognize that duplication mechanisms could explain
the scale-free nature of biological networks. For example, the
cell replication process has elaborate copying mechanisms to
limit the number of replication errors. However, occasional
errors are significant for creating the population diversity
upon which selection acts to produce evolution.

3. COPYING MODEL
We model the mashup ecosystem as a network of mashups
and APIs. Technically, this amounts to a bipartite graph



G = (M ∪ A,E) with two sets of nodes, M , representing
mashups, and A, representing APIs, E being the set of edges
or links between the nodes. Mashup nodes m ∈M are only
connected to API nodes a ∈ A. These are the APIs that are
composed by the mashup author to provide the functionality
of the mashup. For example, if a mashup m combines the
Google Maps (agm) and the Flickr (af ) APIs, the ecosystem
graph will contain the edges (m,agm) and (m,af ). The total
number of nodes in the graph is N = |M ∪A|.

Our approach is to create a simulation model of the evolution
of the mashup ecosystem under a copying hypothesis, and to
compare the characteristics of the resulting network to those
of the actual network. The initial model was created by
starting with an algorithm for simulating the growth of the
web proposed in [9], which was then iteratively adapted. We
also implemented models for random growth and evolution
by preferential attachment to compare with the model.

In our initial model, we made the assumption that each
mashup has the same number (m) of APIs. In the future,
we plan to modify the simulation model to let the number
of APIs per mashup vary according to a distribution. The
ratio r = |A|/|M | of APIs to mashups was obtained from
the data on the ProgrammableWeb.3 The proportion p of
APIs among network nodes is p = |A|/|M ∪A|.

Initialize the network. The initial network consists of m0

nodes (where m0 ≥ m). The first m0 − 1 nodes are created
as APIs. The last node is a mashup that combines m of
the APIs. This step is required as the network does not yet
have m nodes from which the first mashup can be composed.
From the related work, we can expect that the exact value
of m0 has little impact on the results. Previous work [9]
showed that the size of the initial network does not affect
the results in a significant way, as long as N � m0.

Grow the network. APIs and mashups are added continu-
ally to the network. For simplicity, we assume that changes
to the network occur in N discrete timesteps.4 At each
timestep t, starting at t0 = m0 + 1, a new API is added
to the network with probability p. With probablity 1 − p,
an existing mashups ms is selected from the set of mashups
Mt−1 at timestep t− 1. This mashup provides the template
for a new mashup to be added to the network.

For each API in the template, the API is either copied to
the new mashup or substituted by a random API. With
probability α, the API is copied from the template. With
probability 1− α, a new API is chosen at random from the
set of APIs At−1 at timestep t− 1. This copying factor (α)
is the proportion of copied APIs in a mashup. An α close
to 1 implies that most APIs are copied from the template,
whereas an α close to 0 means that most APIs are chosen
at random. When APIs are chosen randomly, care is taken
not to choose the same API twice per mashup.

Figure 2 illustrates how the copying model works. In this

3http://api.programmableweb.com
4Where N = |M ∪A| is the number of nodes, as above.
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Figure 2: Illustration of how copying works

example, two APIs (nodes 1 and 2) and one mashup (node
3) that uses those APIs are created during the initializa-
tion phase.5 The solid lines indicates that these links were
randomly selected. Next, assume that mashup (node 4) is
created as a copy of node 3. A thick solid line indicates
a “copies” relationship. This mashups is a full copy of the
mashup in node 3, so we add links to nodes 1 and 2. A
dashed line indicates that these links were copied. The next
node added is an API (node 5). Finally, we add a mashup
(node 6) as a partial copy of node 4. The copy retains the
link to node 1, but adds a link to node 5 at random.

4. RESEARCH METHOD
4.1 Calibration
The ProgrammableWeb maintains a list of all APIs in the
directory sorted by their popularity. A snapshot of this list
taken on August 16, 2010 shows that there were 2084 APIs.
Only 703 of these have been used in a mashup at least once.
A count of 0, however, does not mean that this API is not
important, just that there are no records (yet) of mashups
using this API in the directory. Thus, we include them in
the sample. The 2084 APIs were used by 5028 mashups.
The ratio r of APIs to mashups is, therefore, 0.414.

4.2 Simulation
The simulation model described in Section 3 was imple-
mented in Perl. The analysis of the simulation results was
conducted using the iGraph package for R.6 iGraph offers
functions for network analysis, including the computation
of social network metrics (e.g. degree distribution), network
visualization and fitting power law distributions. We added
functions for computing the sum of squared error fit and for
obtaining various characteristics of the mashup graph.

Network structure. For a given combination of input pa-
rameters (m = 2, α = 0.750), Figure 3 shows snapshots of
the simulated network after 100, 500, and 2500 timesteps.
API are shown as circles, mashups as squares. The size of
each node is proportional to the number of links it has. As
the number of links follows a Zipf distribution, some nodes
will have a disproportionally high number of links [1]. Thus,

5Node numbers correspond to timesteps.
6igraph.sourceforge.net



(a) N = 100 (b) N = 500 (c) N = 2500

Figure 3: Snapshots of the simulated network after 100, 500, and 2500 timesteps (m = 2, α = 0.750)

we base node size on the logarithm of its degree. If ki is the
degree of node i, we compute its size as log(1 + ki) + 1.

Each simulation was run for N = 7112 timesteps, the com-
bined number of APIs and mashups on the day for which
we took the snapshot of the directory. The results of the
simulation are affected by two parameters: the number of
APIs in a given mashup m (mashup size), and the copying
factor α, which determines to what degree the evolution of
the mashup ecosystem is the result of copying.

Each snapshot consists of a large component comprised of
mashups and APIs, and a group of unused APIs, which are
shown as a crescent around the center. However, not all
mashups and APIs are necessarily in the central component.
They can also form smaller components on their own. Dif-
ferent values of m and α will result in similar types of dia-
grams. They differ primarily in terms of their API degree
distribution and the number of unused APIs.

Best fit with actual data. We systematically varied the in-
put parameters for the simulation to arrive at a best fit
between the distribution of the number of mashups per API
that can be observed in the actual data with the simulated
data. The 2084 APIs are used a total of 9833 times, or on
average 9833/5028 = 1.96 times per mashup. Therefore, a
value of m = 2 appears to be a reasonable choice. A larger
m would result in a higher than actual use of the APIs.7

Determining the best fit then becomes a task of finding the
value of α that minimizes the difference between the actual
and simulated distributions. We explored two different ways
to accomplish this: sum of squared error fit, and power law
fit. In the first approach, our goal is to minimize the sum
of squared error (SSE) between the degrees (that is, the
number of mashups using an API) in the simulated and the
actual mashup ecosystem networks:

7This obviously simplifies our analysis.

SSE =
X

i∈Aact∩Asim

(ksim
i − kact

i )2 (1)

Aact and Asim are the sets of APIs in the actual and simu-
lated network, respectively. As the number of APIs in the
actual and simulated network may differ, we only run the
index over APIs that are included in both.8 ki is the de-
gree of the ith API in the network. We assume the lists to
be ordered by the rank of the API, starting with the most
popular API. The superscript indicates whether we refer to
a node in the actual or the simulated network.

In the second approach, we chose to determine the best fit as
the value of α for which the closest correspondence between
the Zipf exponent of the simulated and actual distributions
is obtained. The distribution of API degrees follows a Zipf
distribution [1]. A Zipf distribution is typically shown as
a plot of the frequency of an event relative its rank. Zipf
distributions have been used to describe the frequency of
words in English text, the size of cities, or the number of
visitors to web pages. Figure 4 shows the actual distribution
of APIs measured in the mashup ecosystem. The line has a
slope of −0.990, which is very close to the expected −1 slope
linking frequency to rank in a typical Zipf distribution.

In a log-log plot of degrees over their rank, a Zipf distribution
will be a straight line. Its slope can be estimated by fitting
the distribution to a power law. A distribution is said to
follow a power law, if it adheres to the form P (x) ∼ x−a.
From this, we obtain the exponent b of the ranked plot of
the Zipf distribution y ∼ r−b by subtracting 1 from the
coefficient a in the power law fit of the Zipf distribution. In a
Zipf distribution, the coefficient a is approximately 2; hence,
the exponent b will be around 1. To estimate the power
law coefficient, we use the maximum likelihood technique as
recommended in [11] and implemented in iGraph.

8Due to the long tail nature of the degree distribution, the
nodes excluded from the calculation can be expected to have
a degree of 1, leading to a negligible error term compared to
the squared errors of nodes with higher degree.
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Figure 4: Actual distribution of the number of
mashups for the APIs in the mashup ecosystem

To increase the accuracy of the simulation results, we ran
each simulation multiple times. To determine the appro-
priate number of simulation runs, we calculated the 95%
confidence interval and used it to assess whether the accu-
racy required to carry out the minimization was sufficient.
Initially, we conducted 30 simulations for each value of α,
and increased it first to 100, then to 1000, respectively, as
the difference between the value of α and its previous value
decreased with the progress of the minimization.

5. RESULTS
5.1 Sum of squared error fit
Figure 5(a) shows the sum of squared error for different val-
ues of α. The best fit occurs for α = 0.798. The power
law coefficient for the simulated network is 2.089. Thus,
the Zipf plot has a slope of −1.089. Figure 5(c) shows the
Zipf plot for the sum of squared error fit. We observe that
the simulation underestimates the number of mashups for
the top-ranked API (Google Maps) and overestimates the
number of mashups for the second-ranked API (Flickr).

Two other indicators are the number of APIs used by at
least one mashup, and the number of APIs that contributed
to 50% of API uses in mashups. In the sum of squared error
fit, there are an average of 1020 APIs with more than one
mashup as compared to 703 in the actual distribution.

In the actual distribution, the 12 top APIs contribute 50%
of the APIs uses in mashups (4981 out of 9833). By com-
parison, in the sum of squared error fit, it takes 16 APIs to
achieve 50% (5079 out of 10156). Thus, the sum of squared
error fit underestimates the contributions of the top APIs.
Figure 6 shows the cumulative contributions of APIs in the
simulated network for the sum of squared error fit.

5.2 Power law fit
Figure 5(b) shows the power law fit error. The best fit oc-
curs for α = 0.855. While the value is different from that ob-
tained for the sum of squared error fit, the values are close to-
gether. The power law coefficient for this simulated network
is 1.986 with a 95% confidence interval of (1.983, 1.990). The
ranked Zipf plot shown in Figure 5(d) has a slope of −0.986.
We can see that, unlike the sum of squared error fit, a power
law fit error overestimates the number of mashups for the
top-ranked API, but similarly overestimates the number of
mashups for the second-ranked API.

Again, it is interesting to look at the number of APIs with
more than one mashup and the cumulative contribution of
APIs. In the power law error fit, there are an average of 859
APIs with more than one mashup as compared to 703 in
the actual distribution. In the power law error fit, it takes 5
APIs to achieve 50% (5044 out of 10152). Thus, the power
law error fit overestimates the contributions of the top APIs.
Figure 6 shows the cumulative contributions of APIs in the
simulated network for the power law error fit.

6. DISCUSSION
Both the sum of square error and power law error fits ap-
proaches obtained their best fit for a high copying factor.
This suggests that most mashups are created by using an
existing mashup as a template and modifying its design. In
79.8% to 85.5% of the cases, an API in the template mashup
is copied to the new mashup, otherwise it is substituted by a
different API. This indicates that copying plays a significant
role in the evolution of the mashup ecosystem.

As expected, a power law fit error more closely approximates
the actual power law distribution than a sum of squared er-
ror fit. However, the sum of square error fit provides a closer
match of the actual degrees of the APIs in the midrange
of the distribution (ranging approximately from rank 20 to
100). The former overestimates the number of mashups for
the top-ranked API, the latter underestimates it.

To further examine this effect, we studied the contributions
of APIs to mashups. While the sum of squared error fit
underestimates the contributions of the top APIs (that con-
tribute 50% of the uses), the power law error fit overesti-
mates it. However, neither provided a close estimate of the
actual value. In part, this can be attributed to the overesti-
mation of the contribution of the second-ranked API.

7. CONCLUSION
The results of our simulation suggest that copying plays a
significant role in the evolution of the mashup ecosystem.
However, we cannot rule out that other factors are at play
that could explain how the mashup ecosystem grows.

Future research should test the copying hypothesis empiri-
cally. In the introduction we provided some anecdotal evi-
dence of copying in the mashup ecosystem. It is clear that
given the assumptions we made during the simulation, the
simulation results cannot provide an exact match with the
actual data, but both the simulation and the anecdotal ev-
idence point to a high degree of copying. One suggested
way to go forward is to examine the relationships between
mashups in the Programmable Web data. Our current work
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Figure 5: Simulation results for the copying model
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Figure 6: Cumulative contribution of APIs to
mashups

on evolutionary processes in the mashup ecosystem heads
that way. Another approach would be to examine online
repositories of mashups such as Yahoo Pipes that support
copying.9 The Yahoo Pipes platform provides a reposi-
tory where developers can share the mashups they created.
A new pipe can be built by explicitly cloning an existing
mashup. Thus, a link between the existing mashup and
the clone is established. This offers an interesting venue for
studying copying processes in situ.

Another open question is the link between copying and di-
versity in the mashup ecosystem. We might expect copying
to lead to a more homogeneous landscape of mashups. If new
mashups imitate the design of existing mashups would this
not reduce the diversity of solutions and, thus, the amount
of innovation in the mashup ecosystem? Our current work
tries to address this question by applying models from evo-
lutionary biology. This research shows that the evolution of
species can be represented as a phylogenetic tree [14]. Such
a tree shows the evolutionary relationships among species
that can be reconstructed from similarities and differences
in their characteristics [12]. Birth-death models allow us to
estimate the diversity rate from a phylogenetic tree.
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