
Pay to Play or Requirements Prioritization in Collectives

Michael Weiss
Systems and Computer Engineering

Carleton University
Ottawa, Canada

Email: weiss@sce.carleton.ca

Abstract—This paper presents two patterns for requirements
prioritization in a collective. A collective is a group of stake-
holders with a common need. The stakeholders join the collec-
tive to create an infrastructure that they can leverage to develop
their own products more effectively. This new organizational
model differs from the traditional value chain, and changes the
way requirements are identified and prioritized.

Keywords-requirements; prioritization; pattern; collective

I. INTRODUCTION

Requirements define what a system “needs to do, but not
how” [21]. A requirement is a single objective that a system
must satisfy [21]. It must be possible to measure whether
a requirement has been met. A requirements specification
documents all the requirements (functions and capabilities)
for a system, and also includes any background information
necessary to understand them [12], [21].

Requirements prioritization refers to the process of se-
lecting the requirements to implement in a system [13]. It
is usually impossible to accommodate all desired functions
and capabilities. Projects need to make compromises to
ensure that the most critical and most timely requirements
are implemented [20]. Typically, the requirements selected
will be the ones that maximize customer value [19].

A collective is a group of stakeholders with a common
need [2]. The stakeholders join the collective to create an
infrastructure that they can leverage to develop their own
products more effectively. This new organizational model
differs from the traditional value chain. In a value chain,
products are developed in response to customer or perceived
market needs [12]. In a collective, products are jointly
created between the stakeholders. Stakeholders share the cost
and risk of developing these products, but also the profits.

Existing research on requirements engineering has mainly
focused on the value chain [12]. The goal of this paper is
to examine how requirements are prioritized in a collective
of stakeholders. In this case, the customers of the system
are the members of the collective themselves. Insights on
this question were obtained through a combination of action
research with an analysis of examples from the literature. In
action research, the research is done by or in collaboration
with practitioners [9]. The author is an active member of a
collective to create a collaboration framework (TFN 200).
The findings are documented in the form of patterns.

The paper is organized as follows. Section II provides
background on requirements engineering, collectives, and
patterns. Section IV describes the patterns for requirements
prioritization in collectives. Section V concludes the paper.

II. BACKGROUND

A. Types of requirements

Wiegers [19] identifies three levels of requirements:
busines requirements, which represent the business value
created by a system; user requirements, which describe
the capabilities to be provided to users; and detailed func-
tional and non-functional requirements. A recent review [12]
distinguishes three types of requirements to be managed:
stakeholder, system, and design requirements. Stakeholder
requirements can be defined in a solution-independent man-
ner, whereas the latter two are specific to a solution.

B. Types of organizations defining requirements

Hull et al. [12] identify three types of organizations in
which the requirements are collected:

1) Acquisition organizations that request systems. They
create and manage stakeholder requirements.

2) Supplier organizations that respond to requests from
acquisition organizations or other supplier organiza-
tions. They receive input requirements and develop
system requirements and designs in return.

3) Product companies that develop and sell products.
They collect stakeholder requirements from the market
instead. They develop products in response to per-
ceived stakeholder requirements. They are, in a sense,
both acquisition and supplier organizations.

Collectives appear to be a fourth type of organization.
They combine the roles of product organizations with those
of acquisition and supplier organizations. The members of
a collective are all stakeholders in the same system. They
collaborate to establish common requirements, while also
individually interacting with their own customers.

C. Collectives

A collective can achieve things that its individual mem-
bers cannot achieve on their own [2]. For example, as
a collective, a group of startups can deliver a complete
solution to a customer, whereas individually they are only



able to deliver pieces of the solution, which the customer
has to integrate. Joining forces makes the group of startups
much more competitive against large system integrators.
Collectives can also collaborate to address common needs,
allowing their members to focus on features of their products
that differentiate them. The more members a collective has,
the more its members are able to share the load of meeting
common needs. However, such collaboration is also fraught
with problems, for example, the coordination overhead that
results from dependencies between subtasks [17].

A key characteristic of collectives is that they are volun-
tary organizations. Membership in a collective is a function
of how well the collective helps its members meet their
business goals. As contributors to the collective, members
gain access to the total value generated by the collective. As
long as the total value is higher than the cost of contribution,
previous research [3] has shown that members benefit from
joining. Conversely, existing members of a collective are not
interested in members who do not add value to the collective.
Thus, collectives often impose conditions on membership
such as asking members to commit resources.

D. Patterns
A pattern describes a recurring problem that occurs in a

specific context and its solution [1]. Each pattern describes
the situation when the pattern can be applied in its context.
The context can be thought of as a precondition for the
pattern. This precondition is further refined in the problem
description with its elaboration of the forces (trade-offs)
involved. The solution describes a way of resolving the
forces. Some forces may not be resolved by a single pattern.
In this case, a pattern often includes references to other
patterns, which help resolve forces that are left unresolved
by the current pattern. Together, patterns connected in this
way are often referred to as a pattern language [1].

Two common pattern representations are the Coplien
form, and the Alexandrian form. The Coplien form [5]
includes explicit sections for forces and consequences, in
which the forces and the implications of using the patterns
are presented in bullet form. This provides quick access to
the reasons for applying a pattern. The Alexandrian form [1]
resolves the trade-off between the needs to have structure
on the one hand, and the desire to create more easily
readable pieces of literature, on the other. In practical use
for documenting software designs, the Alexandrian form has
been adapted to include the concept of explicit lists of forces
and consequences from the Coplien form.

III. CASE STUDIES

This section provides an overview of the case studies.
More details on the case studies are available in [17].

A. Eclipse
Eclipse is an open source community focused on building

an open software development platform [14]. The Eclipse

project was founded in 2001 as a spin-out of technology that
IBM had acquired from Object Technology International.
We use the term “spin-out” to refer to a case where a
company externalizes an internal development project [18].
Initially, the Eclipse community was primarily driven by
IBM and other software vendors. With the creation in 2004
of an independent, non-profit governance body, the Eclipse
Foundation, IBM relinquished its control over the project
and allowed other players, including IBM’s competitors, to
become equal members of the community [15].

Eclipse has a well-defined process for how members can
engage with the collective [8]. Three councils, responsi-
ble for requirements, planning and architecture, guide the
projects. The requirements council collects, reviews, and
prioritizes incoming requirements. The planning council
manages the release train. The architecture council defines
and evolves the architecture of the Eclipse platform. Indi-
vidual projects are overseen by project management com-
mittees. The councils are comprised of strategic members
and representatives of the project management committees.

B. TFN 200

The TFN 200 is a next generation collaboration system
released under an open source license. It is designed by
a collective that comprises academics and students, several
startups, an economic development agency, and early cus-
tomers. Its goal is to provide a shared platform that can
be extended by members to develop their own products in
a shorter time frame and to deliver a more comprehensive
solution than they could provide on their own. Achieving
alignment with the business goals of the members was an
important design goal of the TFN 200. The collective was
launched by Carleton University in March 2011.

The governance structure of the TFN 200 involves three
councils responsibile for architecture, opportunity develop-
ment, and infrastructure. The architecture council guides the
development and evolution of the platform. The opportunity
council identifies opportunities – products or services that
can be derived from the platform – and extracts and priorities
requirements for the shared platform from the opportunities.
Opportunities need to be backed up by commitments; they
only get to move forward, if there are members of the
collective willing to fund or assign resources to them.
The infrastructure council provides a shared testing and
development platform that is available to all members.

IV. PATTERNS

The format for describing the patterns for requirements
prioritization in collectives follows the Coplien form.

A. Pay to Play

1) Context: A group of stakeholders with a common need
jointly create an infrastructure, which they then leverage to
develop their own products more effectively.



2) Example: Eclipse is an infrastructure for the de-
velopment of applications [8]. Unlike other development
environments, Eclipse is jointly developed by a group of
companies and individuals with a common interest. Various
subprojects of Eclipse support different vertical domains.

3) Problem: How does the group of stakeholders
decide on which requirements to implement?

4) Forces: The solution needs to balance these forces:

• Stakeholders, if given the option, would like to see all
their requirements implemented.

• There are always more requirements than time or
resources to implement them.

• Stakeholders have limited resources.
• Stakeholders have different skills. Some have domain

experience. Others are good at attracting customers.
• Some stakeholders may have more urgent needs than

others, which make them care more about them.
• Stakeholders are prepared to share the results.

5) Solution: Only accept requirements that stakehold-
ers are willing to pay for. Start by identifying opportunities
for new products to be built on top of the common infras-
tructure. Then, ask the stakeholders to commit money or
developers to those opportunities. Only opportunities that
are backed up by commitments should be selected. Note
that this pattern is not about requirements the stakeholders’
(external) customers are willing to pay for, but commitments
that the stakeholders themselves are prepared to make.

Stakeholders can “pay” for requirements in different ways.
They may contribute to the implementation, or offer to pay
someone to do so. They can also provide unique domain
knowledge, or experience with other systems. Finally, stake-
holders can provide access to paying customers.

Some requirements are not visible to users, and it may
be difficult to link them directly to stakeholder needs.
However, these requirements need to be met as other visible
requirements depend on them. You need to budget for these
invisible requirements as described in Wallflowers.

Some members of the collective may be in a better
position to implement a specific requirement, because the
skills required are not generally available, or they may
have a more urgent need than other members for a specific
requirement to be in place. One advantages of driving the
implementation of a requirement is that the infrastructure
will be better aligned with the member’s needs.

6) Consequences: Applying this pattern ensures:

• System will implement the most valued requirements.
• Scope of the requirements implemented matches the

amount of resources available.
• Implemented features are available to all stakeholders.
• Stakeholders’ perspectives complement each other.
• Stakeholders who invest more time and resources in

implementing the requirements will benefit more.

7) Known uses: The Eclipse project only allows strategic
members of the collective to influence the direction of the
project. To become a strategic member, a company has
to pay a membership fee and commit resources to the
development of the common infrastructure.

In the TFN 200 project, an opportunity council identifies
products or services that can be derived from the infras-
tructure, and extracts and priorities requirements from these
opportunities. To be moved forward, opportunities need to
be backed up by funding or resource commitments.

8) Related patterns: Requirements are driven by business
needs. These break down into user and functional/non-
functional requirements. It is best to think of these as a
Requirements Pyramid [10]. Buy a Feature [11] has been
proposed as a technique for getting customers to prioritize
requirements. Planning Poker [4] in agile methods serves a
similar purpose. In both cases, a virtual currency, not actual
resources, is used to assign priorities.

9) Source: This pattern is based on the author’s observa-
tions about the case studies. The name refers to a term used
in the investment field that means that you cannot achieve
a high return on your investment without taking risks.

B. Wallflowers

1) Context: Not all requirements are visible to stakehold-
ers. Pay to Play only deals with visible requirements.

2) Example: Many non-functional requirements are not
visible. For example, login into a web conferencing system
needs to be secure, but this is not a very visible feature.

3) Problem: How do you ensure that all essential
requirements are implemented?

4) Forces: The solution needs to balance these forces:
• Stakeholders only want to pay for visible requirements

that are directly meaningful to them.
• Visible requirements often depend on other, invisible

requirements that need to be met as well.
• Some requirements are more interesting to implement

than others, which may never get done.
5) Solution: Build the cost for invisible requirements

into the cost of visible requirements. Increase the cost
for visible requirements to include invisible requirements
(a.k.a. “wallflowers”) that need to be implemented as well.
These requirements may be as critical to the operation of
the system as visible ones, but they remain hidden to most
stakeholders, and are not recognized as important.

As this may be difficult to achieve on a per-requirement
basis (for example, it may not be possible to accurately
estimate the dependencies on invisible requirements without
a detailed design), you can impose a “tax” (sometimes also
referred to as project overhead) on visible requirements.
The tax can be a portion of the cost for implementing
the visible requirement. Stakeholders then share the cost of
implementing the invisible requirements.



Wallflowers can be identified based on architectural
knowledge. This is the distinction made in [6] between what
the system is and what the system does. What the system
is includes all the visible system features. Stakeholders are
well aware of those requirements. What the system does may
only be visible to those with experience in the domain.

6) Consequences: Applying this pattern ensures:
• Invisible requirements (a.k.a. “wallflowers”) are bud-

geted as part of visible requirements.
• Dependencies between requirements are articulated and

can be better accounted for in the future.
• All necessary requirements get implemented.
7) Known uses: The Eclipse platform contains core

projects related to the runtime. These components are not
visible to subprojects focus on particular vertical domains.
In terms of Wallflowers, the runtime projects implement
invisible requirements. Eclipse members need to pay a
membership fee as well as commit developers to the project.
The membership fee can be interpreted as a kind of tax; it
is not assigned to any project in particular.

In the TFN 200, the architecture council ensures that the
implications of visible requirements on the architecture are
understood, and that all invisible requirements that need to
be implemented are uncovered. A potential weakness of the
TFN 200 project is that, at this early stage, it does not
yet charge a membership fee. Thus the implementation of
invisible features relies on creating a common understanding
among the members of the collective.

8) Related patterns: None.
9) Source: This pattern is based on the author’s observa-

tions about the case studies. The name refers to a stock that
has fallen out of favor and is trading at a low price. The
need to include requirements dependencies in requirements
prioritization has also been identified in [7].

V. CONCLUSION

The process by which collectives of stakeholders prioritize
requirements has not received sufficient attention in the
literature. Based on insights the author developed through
the active involvement with an open source collective (TFN
200) and from examples in the literature, this paper identified
two patterns for requirements priorization in collectives.
These pattern are only the beginning of a pattern language
for requirements prioritization that awaits to be written.

ACKNOWLEDGMENT

I thank my colleague, Tony Bailetti, for suggesting the
name for the Pay to Play pattern. He does not know that he
did, but he introduced this expression to me.

REFERENCES

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel, A Pattern Language: Towns,
Building, Construction, Oxford University Press, 1979.

[2] T. Bailetti, Keystone Off-The-Shelf, Open Source Business
Resource, September, 9-15, 2010, www.osbr.ca.

[3] C. Baldwin, and K. Clark, Architecture of participation: Does
code architecture mitigate free riding in the open source
development model?, Management Science, 52(7), 1116-1127,
2006.

[4] M. Cohn, Agile Estimating and Planning, Prentice Hall, 2005.

[5] J. Coplien, Software Patterns, SIGS, 1996.

[6] J. Coplien, and G. Bjornvig, Lean Architecture for Agile
Software Development, Wiley, 2010.

[7] M. Daneva, and A. Herrmann, Requirements prioritization
based on benefit and cost prediction: A method classification
framework, Euromicro Conference on Software Engineering
and Advanced Applications, 240-247, 2008.

[8] Eclipse Foundation, About the Eclipse Foundation, http://www.
eclipse.org/org (last accessed in May 2011).

[9] K. Herr, and G. Anderson. The Action Research Dissertation.
Sage, 2005.

[10] A. Hoffmann, Requirements pyramid, European Conference
on Pattern Languages of Programs, 2010.

[11] L. Hohmann, Innovation Games: Creating Breakthrough
Products through Collaborative Play, Addison Wesley, 2007.

[12] E. Hull, K. Jackson and J. Dick, Requirements Engineering,
Springer, 2011.

[13] Z. Racheva, M. Daneva, K. Sikkel, R. Wierenga, and A. Her-
rmann, Do we know enough about requirements prioritization
in agile projects: Insights from a case study, Requirements
Engineering Conference, 147-156, 2010.

[14] D. Smith, and M. Milinkovich. Eclipse: A premier open
source community. Open Source Business Resource, July,
2007, www.osbr.ca.

[15] S. Spaeth, M. Stuermer, and G. v. Krogh. Enabling knowledge
creation through outsiders: towards a push model of open
innovation. International Journal of Technology Management,
52(3/4), 411-431, 2010.

[16] M. Weiss, Performance of open source projects, European
Conference on Pattern Languages of Programs, CEUR, 566,
2009, http://ceur-ws.org/Vol-566.

[17] M. Weiss, Economics of collectives, International Workshop
on Quantitative Methods in Software Product Line Engineering
at the Software Product Line Conference, 2011 (to appear).

[18] J. West, and S. Gallagher. Challenges of open innovation:
the paradox of firm investment in open-source software. R&D
Management, 36(3), 319-331, 2006.

[19] K. Wiegers, Karl Wiegers describes 10 requirements traps to
avoid, Software Testing & Quality Engineering, 2(1), 2000.

[20] K. Wiegers, More About Software Requirements: Thorny
Issues and Practical Advice, Microsoft Press, 2005.

[21] S. Withall, Software Requirements Patterns, Microsoft Press,
2007.


