
In Proc. Workshop on Middleware for Web Services (MWS 05) at EDOC 05, Enschede, Sept. 2005. ©2005 IEEE. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Template Driven Performance Modeling of Enterprise Java Beans

Jing Xu, Murray Woodside
 Dept. of Systems and Computer Engineering,
Carleton University, Ottawa K1S 5B6, Canada

xujing@sce.carleton.ca, cmw@sce.carleton.ca

Abstract
System designers find it difficult to obtain insight into the

potential performance, and performance problems, of
enterprise applications based on component technologies
like Enterprise Java Beans (EJBs) or .NET. One problem is
the presence of layered resources, which have complicated
effects on bottlenecks. Layered queueing network (LQN)
performance models are able to capture these effects, and
have a modular structure close to that of the system. This
work describes templates for EJB components that can be
instantiated from the platform-independent description of an
application, and composed in a component-based LQN. It
describes the process of instantiation, and the interpretation
of the model predictions.

1. Introduction and motivation

Application servers using component technologies such
as Enterprise Java Beans and the J2EE standards [1] [6] [8]
promise rapid development and good performance and
scalability. Many services are provided by platforms for
J2EE and other approaches like .NET (such as support for
concurrency, security, and transaction control), leading to
substantial overhead costs. Performance shortfalls are a
significant concern.

Predictive models of a software design can provide
insight into potential problems, and guidance for solutions,
as described by Smith and Williams (e.g. [14]) and others
(see for example [1] [20]). However modeling is unfamiliar
to designers, and takes significant effort. This work sets out
to reduce the effort by providing templates which can be
tailored to the business logic of the application. They are
instantiated and composed into a model of the infrastructure
parts such as a J2EE platform, the web server and the
database, which are modeled in advance, with parameters to
describe the possible deployments. This provides a rapid
model-building capability, compatible with the rapid
development process.

The process of defining component-based performance
models, and of building models from components, has
described in [5][19]. The models are layered queueing
networks (LQNs) as described in [15][16][21], and the
introductory tutorial [17]. Layered queueing is a strategic
choice. Compared to other formalisms surveyed in [1], it
extends queueing networks to include software resources,
and it avoids the state explosion of Markov models based on
Petri Nets. Each software component is a distinct model

entity, and contention for logical resources such as threads
(which define the concurrency in the server platform) is
captured.

This work defines a template-based framework for
models of any J2EE application server, and describes in
detail how the templates can be applied. The main focus of
this paper is the rationale of the LQN templates, i.e. how the
templates are derived from the platform-independent
description of the application behavior, and how to
instantiate the templates to represent a concrete EJB
component. The paper also shows the interpretation of results
to guide the choice of pool sizes. A companion paper [23]
has considered the calibration of a model against real
profiling data, and its capability to represent the performance
of a small application.

2. Model Framework

Figure 1 shows a layered queueing model for a small web
application that provides two business services to the Web
Server and further to the Client. Each layer has a large
rectangle represents a concurrent entity that may have
multiplicity, resources, and behaviour. The right-hand block
of each entity (called a “task” in LQNs) represents the entity
as a whole; the blocks to its left represent its methods or
services exposed to its users (called “entries” in LQNs).

Client
(100)

WebServer
(20)

WSservice
[0.003]

<<component>>
ApplicationServer

DataBase
(20)

WriteOp
[0.005]

ReadOp
[0.002]

invokeServ
[2]

(2) read update

toRead
toWrite

Figure 1 Layered Queueing Model for a web application

The arrows represent calls originating in one entry, to call

another. All these calls are synchronous (call-wait-reply)

interactions; asynchronous calls (with no wait/reply) can also
be indicated (graphically, by an open arrowhead on the arc).

The parameter within each entry gives its “host demand”
(CPU time demand per call); the parameter within each task
gives its multiplicity. Thus there are 100 Clients
(representing users at their desktops) with client delays of 2
sec., the Web server has 20 threads and WSservice demands
3 ms total to handle each call by a Client (including invoking
the application service), and the database has 20 threads, 2ms
for a read operation and 5 ms for a write operation. The
parameter on each arrow shows the mean number of calls
made during one invocation of the calling entry. It is 1 by
default if not explicitly shown.

Component-based modeling for LQNs was described in
[19] for assembling sub-models for application elements
together with infrastructure sub-models such as a web server,
a database, or an application server [13]. The definition of a
component sub-model, and its binding into a system model,
are illustrated in Figure 1 and Figure 2. In Figure 2, the large
rectangle represents the boundary of the component, with its
interfaces. The ports represented by circles on the upper edge
show provided interfaces (with a separate port for each entry
within the component), and the ports represented by squares
on lower edge show required interfaces. In component-based
modeling the outer system model is defined with a “slot”
having the same interface (shown as the ApplicationServer in
Figure 1). The component sub-model is defined separately
(as in Figure 2), and then bound to the interfaces and
processors of the slot in the system model.

InvokeRead
[$s_checkAccess]

InvokeUpdate
[$s_checkAccess]

Container
(inf)

getThread1
[$s_getThread]

getThread2
[$s_getThread]

Bean Thread Pool
(inf)

prepareBean
[$s_prepareBn]

ContServ
(1)

updateService
[$s_writeserv]

activebean
(inf)

readService
[$s_readserv]

Read-in

Write-out Read-out

Update-in

Figure 2 Component Sub-model for an Application
Server

The component submodel in Figure 2 represents a

Session Bean (based on a template that is described below)
taking the place of the application server in Figure 1. We
notice that there is a number of internal “tasks”, some of
which represent the container functions (Container and
Bean_Thread_Pool) and some, the application. Infinite
multiplicity is attached to fully reentrant objects, multiplicity

1 to a critical section, and other multiplicities, to thread
pools. Host demands are described by variables with names
beginning with ‘$’ signs.

3. Template Driven LQN Modeling

Model templates provide a general solution for modeling
EJB applications in their environment. The template captures
common standard structure and parameters and allows
variable features to be instantiated both for specific platform
and for specific application.

A template has partially fixed internal structure with
placeholders and parameters that provide capability of
alternative. Instantiation of a template results a LQN
component sub-model.

A placeholder is like a piece of schema or meta-model for
a LQN model fragment (e.g. entries in a task). When a
template is instantiated, the placeholder is replaced by zero
or more concrete elements according to application behavior.
Relationship between generated concrete elements remains
the same as the relationship between their placeholders.

Execution demands and entry invocations (frequency of
calls in LQN) can be defined as parameters in a template.
When the template is instantiated, the parameters are either
replaced by concrete values or kept as variables to be
determined later.

Template driven modeling is suitable for analysis of EJB
system because all application servers behave alike. Fixed
part of a template represents features that are common to all
application servers that conform to the J2EE standards. For a
particular product, the parameters associated with structural
fixed part (mostly container services) can be instantiated by
using platform specific data. These data usually can be
obtained through profiling or benchmark. Instantiation of the
placeholders and their parameters makes the resulted
concrete component representing specific application
business logic. The data for these parameters can be either
obtained by profiling or benchmark, or be assumed or
required values in order to get performance prediction.

In the following sections, we will show templates for
different types of Enterprise Java Beans (EJBs) and
examples on how to use these templates.

4. LQN templates for different EJBs

The three main types of EJB are the Session Bean (used
to implement business logic), the Entity Bean (used to
represent business entity objects that exist in persistent
storage), and the Message Driven Bean (used to respond to
an asynchronous invocation). Session Beans are called
“stateful” if they maintain the status of a client conversation,
or “stateless” if they do not. This section will describe the
LQN templates for each type of the EJBs, for cases with
Container-Managed Persistence.

4.1 LQN Template for a Stateless Session Bean

A Session Bean represents a single client inside the
Application Server, and is not sharable. It performs work for
its client and is similar to an interactive session, for instance
it manages transaction properties. A Session Bean is not

persistent. When the client terminates the session, the session
bean is no longer associated with the client.

Figure 3 shows the internal behavior of a Stateless
Session Bean. Incoming requests for a business method are
captured by the EJB container. A Container thread will be
generated for each incoming call. It first checks if the client
has access rights to perform this operation on the Session
Bean, indicated as a method of the Container. Here we model
cases in which the client is authorized. Then the Container
thread requests a bean thread from the bean thread manager
(BnThreadMng). After obtaining a bean thread, the
Container instance enters a critical section described by the
behavior fragment in the box labeled “critical”, to prepare
the thread to execute the method. If the session bean involves
transaction operations, it may call external services for
initiating or terminating transactions. On exit from the
critical section, the Container will invoke the business
method on the active bean thread obtained. During execution
of the method, external services may be called.

Figure 3 is annotated with performance information
according to the UML Profile for Schedulability,
Performance and Time [11]. This includes the stereotyping
of computation steps (<<PAstep>>) with CPU demands
(tagged value PAdemand) and in the case of calling for
external transaction services giving the step probability
which is shown as tagged value PAprob=$ptranx, and same
for PAprob=$pextserv for invoking external services. The
stereotyping of the critical section as <<GRMResource>>,
with steps to acquire and release it, is an extension of the
Profile for logical resources suggested in [12].

Container

busiMethod(args)

execMethod

 transactionService <<PAStep>> {PAProb=$ptranx}

Check Access

sd StlBn_callMethod

Prepare Bean Thread
critical

<<PAstep>> {PAdemand =
(‘asmd’, ‘mean’, (4.1, ‘ms’) }

<<PAStep>>{ PAdemand=(‘asmd’,‘mean’,($s_checkAccess,‘ms’) }

ActiveBean BnThreadMng

Get Bn Thread <<GRMacquire>>

Release Bn Thread <<GRMrelease>>

<<PAStep>>{PAdemand = (‘asmd’, ‘mean’, ($s_prepBn, ‘ms’) }

<<GRMResource>>

 extService
<<PAStep>>
{PAProb=$pextserv}

Figure 3 Internal behavior of a Stateless Session Bean

Figure 4 shows the LQN template for a stateless Session

Bean derived from the behaviour. The container services are
separated into 2 tasks: a Container task with infinite
multiplicity represents the unconstrained operations on the
incoming calls, including the check access operation, and a
single threaded task ContServ models the critical section for
preparing the bean thread. The contention for active bean
instances is represented as requests to the BeanThreadPool
task, with multiplicity parameter $M for the pool size.

The elements with bold lines are placeholders, which, in
this case, include all provided and required ports, entries
invokeMethod, getThread, busiMethod and all the calls that
with at least one end connected to these entries. Parameters
are annotated by a ‘$’ sign followed by a name, such as
$s_prepareBn for the CPU demand of the entry prepareBean
and $ptranx for mean number of calls made to external
transaction services from prepareBean.

The general structure of this template represents the
platform independent behaviour of a session bean, while the
parameters $s_checkAccess, $s_getThread, $s_prepareBn
can be filled with values according a specific middleware
solution. $M is a tunable parameter of the runtime
configuration. The business logic of an application
determines the instantiation of the placeholders and their
associated parameters, including the instantiation of required
or provided interfaces (the placeholder ServiceRequest or
methodInvoke) and calls to or from them. Options in the
business logic will also determine the use of the required
transactionService interface.

Container
(inf)

Bean Thread Pool
($M)

getThread
[$s_getThread]

ContServ
(1)

invokeMethod
[$s_checkAccess]

activebean
(inf)

busiMethod
[$s_method]

methodInvoke

transactionService serviceRequest

($ptranx)

prepareBean
[$s_prepareBn]

($pextServ)

Figure 4 LQN template for Stateless Session Bean

To instantiate the template, each placeholder is replaced
by one or more instance entities. The chain of entries
invokeMethod, getThread, busiMethod is instantiated for
each separate business method, along with its input port and
the arcs joining the entries. The result is an LQN component
sub-model. Figure 2 shows an instantiation of the template in
Figure 4, with two ports connected to two business methods.

The template methodInvoke port is instantiated twice into
ports Read-in and Update-in, along with the entry chain,
invokeMethod, getThread and busiMethod. The required port
serviceRequest is instantiated twice. The call from
busiMethod is instantiated once for readService, and twice
for updateService with calls to both required ports (the call
number $pextServ =1 for both). Since no external transaction
service is required, the outgoing call from entry prepareBn
and its port are omitted in Figure 2 (i.e $ptranx=0). The CPU
demands $s_checkAccess and $s_getThread are the same on
both paths since they representing platform operations,
whereas $s_method is instantiated separately in the instance
entries since each business method has its own demands.

4.2 LQN Template for a Stateful Session Bean
A Stateful Session Bean is different in that it maintains

the status of its client conversation. In order to achieve this
while maintaining efficiency on sharing a limited thread
pool, the status of a session bean may be swapped out from
memory and stored in a file system when it is not in use and
the container claims its thread resource. This procedure is
called passivation of a bean instance. When its client requires
its service again, an empty thread will be acquired from the
container and its status information will swapped into
memory again, called activation of the instance. This may
incur swapping out another bean instance.

Passivate/Activate
[$s_callback]

(1-$p)

prepareBean
[$s_prepareBn]

ContServ
 (1)

Container
(i)

homeRemove
[$s_cremove]

getThreadForC
[$s_getThreadC]

getThreadForR
[$s_getThreadR]

homeCreate
[$s_ccreate]

invokeMethod
[$s_checkAccess]

Bean Thread Pool
($M)

getThread
[$s_getThread]

($ptranx)

($pextserv) busiMethod
[$s_method]

activeBean
 (inf)

($pextserv)

serviceRequest

Transaction
Service

methodInvoke removeBean createBean

create
[$s_create]

remove
[$s_remove]

Figure 5 Template for a Stateful Session Bean

Figure 5 shows the LQN template for a Stateful Session
Bean. The passivation and activation operations are
aggregated and shown as callback functions from the critical
section of the container service ContServ to the active bean.
These calls inform the bean that the container is about to
passivate or activate the bean instance, so that the bean
instance can release or acquire corresponding resources such
as sockets, database connection, etc., and they include the
passivation/activation overhead as well. The “hit rate” $p is
the probability that a required bean instance is currently
active (in memory), so (1-$p) is the probability that
passivation/activation is invoked on a new request.

A Stateful Session Bean also provides home interfaces
that allow clients to control creation and removal of a bean
instance. Elements representing these interfaces and related
container services are shown in the template.

4.3 LQN Template for a Message Driven Bean

A Message Driven Bean is similar to stateless session
bean except that it processes messages asynchronously. It
normally acts as a Java Message Service (JMS) listener
which can process either JMS messages or other kinds of
messages. The messages can be sent to any J2EE component
by a JMS application, including systems that do not use
J2EE technologies. A Message Driven Bean is useful for
implementing asynchronous business logic.

The LQN template for a message driven bean is the same
as the template of a stateless session bean, except its
incoming calls are asynchronous messages to the
invokeMethod entry.

Container
(inf)

invokeMethod
[$s_checkAccess]

Instance
(1)

instanceMethod
[0] }$I replicas

Bean Thread Pool
($M)

(1-$p)

prepareBean
[$s_prepareBn]

ContServ
(1)

(1/$I)

getThread
[$s_getThread]

activebean
(inf)

passivate
[$s_passiv]

activate
[$s_activ]

load
[$s_load]

store
[$s_store]

(1-$p)

homeFinder
[$s_cfind]

homeCreate
[$s_ccreate]

homeRemove
[$s_cremove]

instanceRemove
[0]

getThreadForR
[$s_getThreadR]

getThreadForC
[$s_getThreadC]

(1/$I)

(1-$p)

remove
[$s_remove]

create
[$s_create]

store

serviceRequest

methodInvoke removecreatefind

updateDB

readDB

storeEntity
[$s_cstore]

busiMethod
[$s_method]

($pextserv)

Figure 6 Template for an Entity Bean

4.4 LQN Template for an Entity Bean
The Entity Bean has the most complex functional and

resource behaviour, often resulting in performance issues.
Besides competing for thread pool and critical container
services, requests may contend for data objects. When an
instance of an Entity Bean is in use by a client, other clients
requiring the same instance (i.e. the same data) must wait. In
the LQN template this contention is represented by requests
to a replication pool of pseudo-tasks called Instance, with
one task for each Entity Bean instance. A request to a busy
Instance must wait for it to become free. The probability of
accessing each replica in the pool is assumed equal here, i.e.
probabilities of calls into entries of each replica are the same
(1/$I in the diagram). In the case of some data instances may
be accessed more frequently than others, separate tasks with
different accessing rate need to be added.

Besides the home interfaces for creating and removing an
instance, a find interface is also provided for looking up data
in database and returning the handle of a bean instance which
represents the data. The store interface is used when a
request to update the Entity state into the database is issued
by another EJB component in the same application server,
for instance during a transaction-committing step of a
Session bean.

The readDB and updateDB interfaces represent database
operations during service and bean-instance context
swapping (passivate/activate).

5. Using the LQN templates
An EJB system is modeled by first modeling the beans as

tasks with estimated parameters, then instantiating the
template to wrap each class of bean in a model of its
container, and finally modeling the execution environment
including processors (CPUs) and database. Calls between
beans, and calls to the database, are part of the final
assembly. The model may be calibrated directly from
operational data such as profiling, or by combining designer
knowledge of the operations of each bean with pre-calibrated
workload parameters for container and database operations.

The model can then be solved by LQN solvers either
analytically or by simulation, to evaluate throughputs,
response times, and resource utilizations. The results can be
used to guide choices of EJB patterns and deployment
configurations.

Two examples will be shown in this section. The first
example describes the LQN model for a three-tier client-
server system with only Entity Beans. The model was solved
and the results were compared with a previous study by
simulation. The second example describes how to build a
model for a more complex system with different type of
EJBs, but (to save space) it only shows parts of the model.

5.1 An Entity Bean example for the use of the template

To demonstrate that the LQN model can be applied to this
class of system with reasonable accuracy, we revisit a
simulation study done by Llado and Harrison for a system
with entity beans [9] [10].

Client

Application

Server

Database

Figure 7 A three-tier client-server system in [9] [10]

Figure 7 shows the architecture of their three-tier client-

server system. The client requests database operations
through Entity Beans which reside in the application server.
There is only one class of Entity Bean involved with a single
type of business method. No home operations are required on
the Entity Beans.

Figure 8 shows the LQN model for this system. The
client and database are modeled by tasks. The Entity Bean
template was instantiated into an “EJB Component” sub-
model and then was assembled in the slot of the application
server. Finally the component is bound to the ServerCPU
which is shared with the Database. In order to focus on
performance of software components and eliminate the affect
of hardware, the ServerCPU was set at infinite multiplicity
(ample multiple CPUs).

update
[$update]

read
[$read]

Database
(inf)

Server
CPU

store
[$s_store]

load
[$s_load]

passivate
[$s_passiv]

activate
[$s_activ]

busiMethod
[$s_method]

activebean
(inf)

(1-$p)

prepareBean
[$s_prepareBn]

ContServ
(1)

getThread
[$s_getThread]

Bean Thread Pool
($M)

ClientCPUClient
 ($N)

request
[$thinkTime]

instanceMethod
[0]

Instance
(1)

Container
(inf)

invokeMethod
[$s_checkAccess]

}$I replicas

(1-$p)

(1/$I)

EJB Component
sub-model

Figure 8 LQN model for the system in Figure 7

Using the same parameter values as in [10], the LQN

model was solved with 40 instances ($I=40), a pool size of 6
($M=6), negligible execution demand for invokeMethod,
getThread, and prepareBean ($s_checkAccess = 0.001ms,
$s_getThread = 0, $s_prepareBn = 0.00ms) and business
method (busiMethod) time of 4.1ms ($s_method = 4.1ms).
The underlying Database services and call back functions
were aggregated to a total demand of 0.4ms (i.e. $update +
$read + $s_store + $s_load + $passiv + $activ = 0.4ms).

Figure 9 compares the simulation results from [10] with
the LQN model. The difference between these two results is
about 6%, with the LQN being a little pessimistic.

From the results we can learn that the system is saturated
with about 10 clients giving a throughput of 1.3/ms. The
bottleneck is at the bean thread pool, which has a utilization
of 98.8%. These results imply that the configuration of the
bean thread pool size should be increased in order to achieve
higher performance if more than 10 concurrent clients are
expected.

$M=6 $I=20

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 10 20 30 40 50 60

$No of Client

Th
ro

ug
hp

ut

SIM
LQN

Figure 9 LQN model predictions compared with
Simulation Results [10]

In [9] Llado and Harrison describe another analytic model

for this system using decomposition, with a custom-built
solution strategy, which provides an even closer match to the
simulation results. However the effort of creating such a
model must be repeated for every configuration, and would
be even more complex with multiple interacting beans. The
advantage we seek with the LQN is the use of a standardized
model framework and solution strategy, and a systematic
model-building process based on templates for different
kinds of beans.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 10 20 30 40
No of Clients

Th
ro

ug
hp

ut

$I=20
$I=40
$I=100

Figure 10 Results for Different Numbers of Instances

Another set of results in Figure 10 compares the
throughput for different numbers of bean instances $I, with
the same pool size $M = 6. We can see that the number of
bean instances makes little difference because the system is
limited by the small thread pool. This also corresponds to

Llado’s results. Before reaching saturation, the system with a
larger number of instances gives higher throughputs because
of less competition for each data instance (based on an equal
probability 1/$I of accessing each instance, which is small
for large $I). On the other hand, after the bean thread pool is
saturated, the throughput for the case with small number of
instances is higher, because the hitting rate on an active bean
instance is lower ($p is small), which results in more
overhead on swapping bean instance.

5.2 Example on constructing a LQN component model
containing different types of EJBs

In this section, we model a more complex EJB system
called RADS Book Store. Due to space limitations, we only
show the internal structure of the application server and some
but not all of the EJB components.

The RADS Book Store is a web-based system providing
basic online store services including user inquiry, purchase,
and inventory management. The system was implemented on
Weblogic 8.0 platform in Windows environment.

Figure 11 shows the sequence diagram for one of its
scenarios, the Checkout scenario. It follows the EJB session
façade pattern and involves three types of EJB: Stateless
Session Bean (Controller), Stateful Session Bean (Shopping
Cart) and Entity Bean (Order, OrderLine, and Book). We
will model this scenario.

Sd Checkout

Controller
(StlSesnB)

ShoppingCart
(StfSesnB)

Order
(EntB)

Book
(EntB)

checkout()

loop findBook(BookID)

BookRef
insertOrderLine(L)

updateStock()

create()

N=$B

order

OrderLine
(EntB)

create()

fillData()

userCheckout()

Figure 11 Checkout Scenario for RDS Book Store System

Figure 12 shows the LQN component model for the

application server with slots to fit in EJB components. It has
a provided interface (userCheckout) which will be connected
to the client component, and 2 required interfaces (readDB
and updateDB) that will be connected to database component
in higher level LQN model.

Figures 13-15 shows the internal structure of the
Controller Bean, Shopping Cart Bean and Book Bean
instantiated from different EJB templates, as described in
section 4.

In the case of the session façade pattern with container
managed persistence, transactions are entirely managed by
the container. A transaction is started at the beginning of an
invocation on the session bean ShoppingCart, and is
committed and ended right before the operation on

ShoppingCart is completed. Any change on entity data is
updated into database during the transaction committing
stage. Therefore, the store operation on entities is actually
invoked by ShoppingCart during its critical section for bean
context swapping (represented by prepareBean in the model).

Due to limited space, the component models for the Order
and OrderLine entity beans are not shown here. Instantiation
of the entity bean template for them is similar to that for the
Book bean. The model would be completed by binding each
component into its corresponding slot in Figure 12.

Controller
(StlSessionBean)

shoppingcartCheckOut

ShoppingCart
(StfSessionBean)

Order
(EntityBean)

OrderLine
(EntityBean)

Book
(EntityBean)

shoppingcartCheckOut

find updateStock create insertLine

create fillData

create
Line

fillLine

create
Order

InsertOrder
Line

findBook updateStock

($B) ($B) ($B)

userCheckOut

userCheckOut

readDB updateDB

Tranx
Service

store
store

store

Application Server

Figure 12 LQN model with Slots for EJB

Container
(inf)

prepareBean
[$s_prepareBn]

Bean Thread Pool
($Mcontroller)

getThread
[$s_getThread]

ContServ
(1)

InvokeCheckout
[$s_checkAccess]

activebean
(inf)

Checkout
[$s_checkout]

ControllerBean
userCheckout

shoppingCartCheckout

Figure 13 LQN component model for the Controller
(Stateless Session Bean)

Container
(inf)

prepareBean
[$s_prepareBn]

Bean Thread Pool
($MShoppingCart)

getThread
[$s_getThread]

ContServ
(1)

checkout
[$s_checkAccess]

activebean
(inf)

checkout
[$s_checkout]

ShoppingcartBean

Passivate/activate
[$s_callback]

ShoppingcartCheckout

TransactionService createOrder Insert
OrderLine

Find
Book

update
Stock

(1-$p)

Figure 14 LQN component model for the Shopping Cart

(Stateful Session Bean)

Container
(inf)

prepareBean
[$s_prepareBn]

Bean Thread Pool
($Mbook)

getThread
[$s_getThread]

ContServ
(1)

updateStock
[$s_checkAccess]

activebean
(inf)

updateStock
[$s_updtStk]

(1-$p)

BookBean

findByPK
[$s_cfind]

Instance
(1)

instUpdateStock
[0] }$I

(1/$I)
storeEntity
[$s_cstore]

activate
[$s_activate]

passivate
[$s_passivate]

load
[$s_load]

store
[$s_store]

store find updateStock

updateDB

readDB

(1-$p) (1-$p)

(1-$p)

Figure 15 LQN component model for Book (Entity Bean)

6. Conclusions
This paper has described the process of defining

predictive performance models for J2EE-based systems,

using templates for EJB containers, and Layered Queueing
with component-based features.

The modeler needs to define models only for platform-
independent objects. These are then incorporated in template

instances which are assembled into a system model. Most of
the model, representing the J2EE platform, can be pre-
calibrated, and the application description (in terms of its use
of services) can be dropped in. This is a kind of PIM-to-PSM
(Platform-Independent Model to Platform-Specific Model)
transformation, in model space. Automation of the
transformation would be a useful next step.

The examples described in Section 5 demonstrate that the
model gives useful accuracy, comparable to other
approaches, and show how a complex system is handled.

The templates described here are for Enterprise Java
Beans in a J2EE application server, but a similar approach
could be applied to other technologies like .NET. The
templates could be further extended to include the operating
system by capturing common features of different operating
systems.

The process of building models is supported by tools for
component-based model-building [19][22]. However, the
sub-model of the application logic represented by a bean is
inserted into a template instantiated to contain it, with
appropriate parameters for the instantiation. This is different
from other examples of infrastructure which may run as a
service layer to the application elements, for example in [18].

The present approach has been tested on a couple of
example systems, including the well-known Duke’s Bank
Application which is shipped with J2EE documentation
provided by Sun Microsystems [3]. A companion paper [23]
describes experience calibrating a model and predicting
saturation and delay. Saturation was correctly predicted and
response time prediction errors ranged from about 2% to
about 25%, with better accuracy for more clients.

Acknowledgements
Discussions with Alexandre Oufimstev and Liam Murphy,
with regard to model calibration for the paper [23], were
helpful in this work.

References
[1] E. Armstrong, J. Ball, S. Bodoff, D. Carson, I. Evans,

D. Green, K. Haase, E. Jendrock, The J2EE 1.4
Tutorial, on-line document at
java.sun.com/j2ee/1.4/docs/tutorial/doc, Sun
MicroSystems, Dec. 16, 2004.

[2] S. Balsamo, A. DiMarco, P. Inverardi, and M. Simeoni,
"Model-based Performance Prediction in Software
Development," IEEE Trans. on Software Eng., vol. 30,
no. 5 pp. 295-310, May 2004.

[3] S. Bodoff, D. Green, E. Jendrock, M. Pawlan, The
Dukes Bank Application, on-line document at
java.sun.com/j2ee/tutorial/1_3-fcs/doc/E-bank.html,
Sun MicroSystems.

[4] G. Franks, A. Hubbard, S. Majumdar, J. Neilson, D.C.
Petriu, J.A. Rolia and C.M. Woodside, "A Toolset for
Performance Engineering and Software Design of
Client-Server Systems", Performance Evaluation, vol.
24, pp117-136, 1995

[5] V. Grassi, R. Mirandola, “Towards Automatic
Compositional Analysis of Component Based Systems”,
Proc Fourth Int.Workshop on Software and

Performance, Redwoood Shores, CA, Jan. 2004, 00 59-
63.

[6] Java Community Process, “J2EE 1.4 Specification”, on-
line document at http://java.sun.com/j2ee/1.4/download.
html#platformspec, Nov. 24, 2003

[7] Prasad Jogalekar, Murray Woodside, “Evaluating the
Scalability of Distributed Systems”, IEEE Trans. on
Parallel and Distributed Systems, v 11 n 6 pp 589-603,
June 2000.

[8] R. Johnson, J2EE Design and Development, Wiley
Publishing Inc., Indianapolis.

[9] C.M. Llado, P.G. Harrison, “Performance Evaluation of
an Enterprise Java Bean Server Implementation”, Proc
second Int. Workshop on Software and Performance
(WOSP 2000), Ottawa, September 2000, pp 180-188.

[10] C.M. Llado, PhD thesis, Imperial College, London,
2001.

[11] Object Management Group, "UML Profile for
Schedulability, Performance, and Time Specification,"
OMG Adopted Specification ptc/02-03-02, July 1, 2002.

[12] D. B. Petriu and M. Woodside, "A Metamodel for
Generating Performance Models from UML Designs,"
Proc. UML 2004, v. 3273 of Lecture Notes in Computer
Science (LNCS 3273), Lisbon, Oct 2004, pp. 41-53.

[13] Erik Putrycz, Murray Woodside, and Xiuping Wu,
“Performance Techniques for COTS Systems”, IEEE
Software, v. 22, n 4, pp. 36–44, July-August 2005.

[14] C. U. Smith and L. G. Williams, Performance Solutions.
Addison-Wesley, 2002.

[15] C.M. Woodside, E. Neron, E.D.S. Ho, and B. Mondoux,
"An ``Active-Server'' Model for the Performance of
Parallel Programs Written Using Rendezvous," J.
Systems and Software, pp. 125-131, 1986

[16] C.M. Woodside, J.E. Neilson, D.C. Petriu and S.
Majumdar, "The Stochastic Rendezvous Network
Model for Performance of Synchronous Client-Server-
Like Distributed Software", IEEE Transactions on
Computers, Vol. 44, No. 1, January 1995, pp. 20-34

[17] M. Woodside, “Tutorial Introduction to Layered
Modeling of Software Performance”, Edition 3.0, May
2002 (Accessible from http://www.sce.carleton.ca/rads/
lqn/lqn-documentation/tutorialg.pdf)

[18] M. Woodside, D.B. Petriu, K. H. Siddiqui,
"Performance-related Completions for Software
Specifications", Proc 24th Int. Conf. on Software
Engineering (ICSE 2002), Orlando. May 2002.

[19] X.P. Wu and M. Woodside, "Performance Modeling
from Software Components," in Proc. 4th Int. Workshop
on Software and Performance (WOSP 04), Redwood
Shores, Calif., Jan 2004, pp. 290-301.

[20] J. Xu, M. Woodside, and D.C. Petriu, "Performance
Analysis of a Software Design using the UML Profile
for Schedulability, Performance and Time," in Proc.
13th International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation
(TOOLS 03), Urbana, USA, Sept. 2003

[21] J. A. Rolia and K. C. Sevcik, "The Method of Layers,"
IEEE Trans. on Software Engineering, vol. 21, no. 8
pp. 689-700, August 1995

[22] E. Putrycz, M. Woodside, X. Wu, “Performance
Techniques for COTS Systems”, IEEE Software, to
appear, 2005.

[23] Jing Xu, Alexandre Outfimtsev, Murray Woodside,
Liam Murphy, “Performance Modeling and Prediction

of Enterprise Java Beans with Layered Queueing
Network Templates”, to appear in Proc. of
SAVCBS’05, Lisbon, Portugal, Sept. 2005.

