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Abstract

Empowered with advancements in wireless technologies, radio spectrum regulators

are formulating a new spectrum management paradigm. Under this paradigm, it is

possible for a secondary user (SU) who does not necessarily have a spectrum license

to share a spectrum band with a primary user (PU) (the license holder) provided that

operations of the PU are not disturbed. A more interesting scenario is when there

are many SUs willing to utilize the spectrum band of the PU. The aggregate inter-

ference power received by the PU due to the transmissions of SUs is a key parameter

determining the availability of spectrum sharing opportunities. One of our contribu-

tions is a cumulant-based characterization of this aggregate interference power. We

introduce a comprehensive method to determine the cumulants under various system

and channel conditions. These cumulants are utilized to understand the dynamics

of the aggregate interference power, to approximate its distribution, and hence to

investigate the spectrum sharing opportunities.

Another contribution is the investigation of the Gaussianity of the aggregate in-

terference. We cast in a single mathematical framework the observations scattered

across the literature about the Gaussianity of the distribution of the aggregate in-

terference power. Moreover, we discuss the effect of different system and channel

parameters on the convergence of the distribution of the aggregate interference to a

Gaussian distribution.

Furthermore, this thesis studies the effect of the spatial size of the secondary
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network on spectrum sharing opportunities. We verify that asymptotic results ob-

tained for infinite fields are applicable for finite but relatively large fields as well. We

also demonstrate that in some cases, however, asymptotic results are too pessimistic

hiding some spectrum sharing opportunities.

Identifying the dominant region of the secondary network that would impact spec-

trum sharing opportunities is among our contributions. Results reveal that far in-

terferers may tangibly contribute to spectrum sharing decisions when a higher ap-

proximation accuracy is required or when a wide exclusion region (within which no

SUs are allowed to transmit) is considered. However, the dominant region shrinks

with an increase in the path-loss exponent or in the level of the interference threshold

specified by the PU or a regulator.
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Chapter 1

Introduction

The management of the radio spectrum is going through a paradigm shift, allowing

secondary users (SUs)1 to share spectrum bands with Primary Users (PUs) who hold

the licenses of these bands. This spectrum sharing would be permissible under the

constraint that activities of SUs in these bands do not harmfully disturb the opera-

tion of the PUs [4–6]. An important parameter in determining a spectrum sharing

opportunity is the level of interference power that secondary users may generate to-

wards primary users. This thesis deals with different aspects related to interference

characterization and spectrum sharing in large secondary networks. The rest of this

chapter highlights motivations, contributions, and organization of this thesis. This

chapter also provides a list of publications resulted from the work presented in this

thesis.

1.1 Motivations

An initial motivation for the work presented in this thesis is the lack of clear un-

derstanding of the impact of the spatial size of a wireless network on the aggregate

interference, and on spectrum sharing opportunities. To the best of our knowledge,

1In this thesis, the “secondary user” means a radio device or system that can opportunistically
access in a non-interfering basis an under-utilized spectrum band licensed to other users. The term
“secondary user” might be used differently by frequency regulators.

1



there is no work in the literature devoted to study this impact. Such study and un-

derstanding would provide answers to some important and interesting questions such

as the following:

• How do changes in the spatial size of the network affect the mean, variance and

distribution of the aggregate interference?

• Does an increase in the spatial size of the secondary network eliminate spectrum

sharing opportunities?

• Could asymptotic results (obtained for a network with an infinite spatial size) be

applied for a network with a finite size? Would these results be too conservative

hiding spectrum sharing opportunities?

• What is the smallest portion (dominant region) of the secondary network that

dictates spectrum sharing opportunities? How does the boundary of this region

change with changes in system parameters?

Further motivations of the work reported in this thesis are discussed in the following

subsections.

1.1.1 Cumulant-based Characterization of the Aggregate Interference Power

The importance of characterizing the aggregate interference power generated by a

wireless network has increased with the emergence of spectrum sharing and cognitive

radio. A cumulant-based characterization of this aggregate interference is an attrac-

tive approach. A number or recent papers in the literature have dealt with cumulants

of the aggregate interference but under specific scenarios. For example, [7] and [8]

only consider the first cumulant, i.e., the mean. The authors in [9] and [10] deal with

cumulants for non-fading scenarios, [11] provides an integral form to compute the cu-

mulants for out-of-cell interference in CDMA networks, and [12] considers an infinite

2



field with a very small exclusion region. Extending these results and generalizing

them for a wide range of scenarios are of great importance and advantage to study

the spectrum sharing in large secondary networks.

1.1.2 Gaussianity of the Distribution of the Aggregate Interference Power

The aggregate interference can be considered as the sum of a large number of indepen-

dent interference signals. As the number of interfering nodes increases, there might be

a tendency to approximate the distribution of the aggregate interference power by a

Gaussian random variable given that the individual interference signals are indepen-

dent. However, some scattered observations in literature suggest that this Gaussian

approximation is not valid, except under some specific scenarios [11, 13–16]. There-

fore, there is a need to have a thorough investigation of the Gaussian convergence

of the distribution of the aggregate interference power, and to cast these scattered

observations in a single mathematical framework.

1.1.3 Impact of the Spatial Size of the Secondary Network on Spectrum

Sharing

Previous works such as [9,12,17,18] studied the effect of different system parameters

on spectrum sharing opportunities. However, a parameter that has received little

attention is the spatial size of the secondary network. Usually, the spatial size is

assumed to be infinite. Using results developed for infinite networks might be too

pessimistic leading to missing spectrum sharing opportunities. This concern about

the applicability of the results of infinite networks could be addressed properly by

studying the behavior of the aggregate interference, and hence the spectrum sharing

opportunities, with respect to the changes in the spatial size of the secondary network.

To the best of our knowledge, current literature does not have such studies.
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1.1.4 Dominant Regions in Large Secondary Networks

While there are some comments in literature (e.g., in [19] and [20]) indicating that the

aggregate interference is dominated by the nearby interferers to the victim receiver,

there is to the best of our knowledge no work devoted to precisely identifying the

boundary of the dominant region. Thus, a contribution is required to fill this gap,

especially in the context of spectrum sharing.

1.2 Overview

This thesis can be considered as a study of the effect of different system and channel

parameters (in particular the spatial size of the network) on the distribution of the

aggregate interference power. Then, results obtained from this study is applied to the

context of spectrum sharing. The contents of this thesis can be divided into four parts.

The first part provides literature review on relevant works and some background

information on related topics. The second part presents preliminary results produced

at the early stages of this research which characterizes the aggregate interference

based on its first two moments, and then investigates spectrum sharing based on some

upper bounds like the Chebyshev’s inequality. A more rigorous characterization of

the aggregate interference power is presented in the third part. Then, these results

are utilized to investigate spectrum sharing in large secondary networks.

1.3 Contributions

The following list summarizes the main contributions of this dissertation.

• We introduce a simple yet comprehensive method to determine the cumulants

of the aggregate interference power originating from a wireless network. This

method is quite general and applicable for finite and infinite network sizes,
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and it is flexible to encompass different system and propagation parameters

such as large-scale fading, small-scale fading, or even composite fading. We

also investigate the behavior of these cumulants with respect to changes in the

network size and fading distributions. Moreover, we discuss how cumulants can

be used to approximate the distribution of the aggregate interference power.

• We cast observations scattered in the literature about the Gaussianity of the

aggregate interference power of large wireless networks in a single mathematical

framework. We express the conditions for which the Gaussian approximation

will be valid for the aggregate interference power generated by a Poisson field of

interferers. Furthermore, we discuss the effect of different system and channel

parameters on the convergence of the distribution of the aggregate interference

to a Gaussian distribution.

• We study the effect of the field size on spectrum sharing opportunities. We

verify that asymptotic results obtained for infinite fields are applicable for finite

but relatively large fields (when the radial depth of the field is much greater

than the minimum distance to the primary user) as well. We also demonstrate

that in some cases, however, asymptotic results are too pessimistic hiding some

spectrum sharing opportunities. Moreover, the dissertation shows that in cer-

tain situations a small reduction in the field size may create spectrum sharing

opportunities while in certain other situations a huge increase in the field size

may not eliminate spectrum sharing opportunities. Our results also suggest the

possibility of a secondary network to concurrently share the spectrum with a

primary user without the need for spectrum sensing techniques or other cogni-

tive radio functionalities.

• We identify the smallest portion (dominant region) of the secondary network

that would impact spectrum sharing opportunities. Our results show that the
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dominant region is not necessarily a small region encompassing a few interferers

within the proximity of the primary user. Far interferers may tangibly con-

tribute to spectrum sharing decisions when a higher approximation accuracy

is required or when a wide exclusion region is considered. On the other hand,

the dominant region shrinks with the increase in the path-loss exponent or in

the level of the interference threshold specified by the primary user or a regu-

lator. Some implications of these results are highlighted. Moreover, the results

are anticipated to inspire new ideas for designing MAC protocols for secondary

networks.

1.4 Published, Submitted, and Proposed Manuscripts

This section highlights a list of manuscripts that have been produced out of the

research contained in this thesis. Status of these manuscripts at the time of writing

this thesis is also indicated.

• M. Aljuaid and H. Yanikomeroglu, “On the asymptotic analysis of average inter-

ference power generated by a wireless sensor network,” in Proc. IEEE Vehicular

Technology Conference (VTC) 2008-Fall, Calgary, AB, Canada, Sep. 2008 [7].

This manuscript reports some initial results obtained at the early stages of our

research. These initial results are shown in Section 4.1.

• M. Aljuaid and H. Yanikomeroglu, “Impact of secondary users field size on

spectrum sharing opportunities,” in Proc. IEEE Wireless Communications and

Networking Conference (WCNC), Sydney, Australia, Apr. 2010 [21]. This

manuscript contains results from Section 4.2.

• M. Aljuaid and H. Yanikomeroglu, “A cumulant-based characterization of the

aggregate interference power in wireless networks,” in Proc. IEEE Vehicular
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Technology Conference (VTC) 2010-Spring, Taipei, Taiwan, May 2010 [22].

This manuscript shows some of the results presented in Chapters 5.

• M. Aljuaid and H. Yanikomeroglu, “A cumulant-based investigation of the im-

pact of secondary users’ field size on spectrum sharing opportunities,” submitted

to IEEE Transactions on Vehicular Technology (submission: 12 April 2010) [23].

This manuscript contains results shown in Chapters 5.

• M. Aljuaid and H. Yanikomeroglu, “Investigating the validity of a Gaussian ap-

proximation for the distribution of the aggregate interference power in large

wireless networks,” in Proc. 25th Biennial Symposium on Communications

(QBSC 2010), Queens University, Kingston, Ontario, Canada, May 2010 [24].

This manuscript contains some of the results presented in Chapter 6.

• M. Aljuaid and H. Yanikomeroglu, “Investigating the Gaussian convergence of

the distribution of the aggregate interference power in large wireless networks,”

accepted to IEEE Transactions on Vehicular Technology (20 April 2010) [25].

This manuscript contains results from Chapter 6.

• M. Aljuaid and H. Yanikomeroglu, “Identifying boundaries of dominant re-

gions dictating spectrum sharing opportunities for large secondary networks,”

accepted to IEEE International Symposium on Personal, Indoor and Mobile

Radio Communications (PIMRC) 2010, Istanbul, Turkey, Sep. 2010 [26]. This

manuscript contains results shown in Chapter 7.

• M. Aljuaid and H. Yanikomeroglu, “Impact of Secondary Network Partitioning

on Aggregate Interference and Spectrum Sharing,” IEEE journal manuscript in

preparation. This manuscript is to contain and extend results from Chapter 7.
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1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 presents a literature review,

and some mathematical and statistical preliminaries. The system model is described

in Chapter 3. Chapter 4 highlights preliminary results developed for the effect of net-

work size on spectrum sharing opportunities. A cumulant-based characterization and

approximation of the distribution of the aggregate interference power are discussed

in Chapter 5. This chapter also revisits the effect of the spatial size of the secondary

network on the spectrum sharing opportunities, which is introduced in Chapter 4, but

this time based on the approximation of the distribution of the aggregate interference

power. The Gaussianity of the distribution of the aggregate interference power is

investigated in Chapter 6. Then, Chapter 7 identifies the boundary of the dominant

interference region in large secondary networks, which dictates the spectrum sharing

opportunities. Finally, concluding remark and some suggestions for future work are

highlighted in Chapter 8.
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Chapter 2

Background and Literature Review

This chapter provides some background information on spectrum sharing related top-

ics including different spectrum sharing schemes and metrics used to identify the

availability of spectrum sharing opportunities. Moreover, this chapter summarizes

related works that deal with interference characterization and spectrum sharing in

large wireless networks. The last section of this chapter highlights some important

statistical and mathematical preliminaries used in the analysis and discussions in

subsequent chapters.

2.1 Spectrum Sharing

The success in wireless technologies and applications has led to an exponential growth

in the number of wireless systems and devices. These systems and devices require

radio channels (bands of the radio spectrum) to communicate. However, to avoid

interference between these systems, each band used to be assigned to a licensee in

an exclusive manner where other systems are not allowed to access this band. Look-

ing at a frequency allocation chart such as [27], it becomes obvious that there’s not

enough room in the radio spectrum to accommodate the requirements of the expo-

nential growth in wireless systems and devices. Therefore, frequency regulators have

considered changing how they manage this scarce resource, i.e., the radio spectrum.
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The Federal Communications Commission (FCC) proposal on spectrum sharing [4]

has stimulated significant interest in academia and industry due to its potential for

reducing the effect of radio spectrum scarcity. In the spectrum sharing proposal,

a secondary user (likely an unlicensed user) could share the spectrum with a pri-

mary user (licensed user) provided that the operation of the secondary user does not

introduce “harmful interference” towards the primary user [4, 5].

Advancements in wireless technologies pave the way for this paradigm shift in

spectrum management. An interesting technology is proposed in [28, 29], which is

considered to be the enabler for the dynamic spectrum sharing. This technology is

called Cognitive Radio (CR). According to [5], CR can be defined as “an intelligent

wireless communication system that is aware of its surrounding environment (i.e.,

outside world), and uses the methodology of understanding-by-building to learn from

the environment and adapt its internal states to statistical variations in the incoming

RF stimuli by making corresponding changes in certain operating parameters (e.g.,

transmit-power, carrier-frequency, and modulation strategy) in real-time, with two

primary objectives in mind:

• highly reliable communications whenever and wherever needed;

• efficient utilization of the radio spectrum”.

Some measurements campaigns were carried out to investigate the current utiliza-

tion of the radio spectrum. For example, the utilization for the bands below 3 GHz

was measured at six locations including New York City [30–35]. The measurements

results show that the maximum frequency utilization was 13.1% which was measured

in New York City. The average of the frequency utilization for the six locations

was 5.2%. These measurements reflect some of the benefits and opportunities that

spectrum sharing and CR could bring to the industry of wireless communications.

Important practical steps have been taken over the last few years towards the
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incorporation and implementation of CR and spectrum sharing concepts [36]. For

example, frequency regulators have taken forward steps changing the practice of man-

aging radio spectrum [18,37,38]. Moreover, some standardization bodies have formed

groups mandated to establish spectrum sharing related standards, e.g., [39] [40–42].

For example, one of the important standardization activities related to spectrum

sharing and CR is the IEEE Standards Coordinating Committee 41 (IEEE SCC41).

The IEEE SCC41 has different groups focusing on many aspects of spectrum sharing

including the following [42]:

• definitions and concepts for dynamic spectrum access,

• recommended practice for interference analysis,

• network architecture,

• policy language, and

• spectrum sensing interfaces and data structures.

Another important standardization activity is the IEEE 802.22 which aims to stan-

dardize the utilization of CR techniques to establish wireless regional area networks

using the unused TV bands [39]. The Ecma, an industry association focusing on the

standardization of the information and communication technologies, has a standard

know as (ECMA-392) that specifies a physical layer and a medium access sub-layer

for wireless devices willing to use the unused TV bands [43]. Moreover, there are

other IEEE standards, e.g., 802.11 and 802.16, that incorporate some of the CR func-

tionalities [42]. Furthermore, other standardization bodies such as ITU, SDR Forum,

and 3GPP have some activities related to the CR [42].
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2.1.1 Spectrum Sharing Schemes

There are different schemes that SUs can utilize to share the spectrum of PUs [44,45].

One of these schemes is based on the capabilities of SUs to identify a spectrum hole

where a PU is not using that portion of the spectrum. The SU could use that portion

during the absence of the PU. However, when the PU returns to that the band the

SU should evacuate the band. This scheme is known in some literature as the overlay

scheme [9]. Another scheme is when the SU could concurrently access the band

of the PU even during the presence of the PU provided that the activities of SU

do not cause intolerable interference (or harmful interference) towards the PU. This

scheme is called the underlay scheme and mainly proposed for spread-spectrum-based

SUs [9]. In a third scheme, a SU dedicates a portion of its power to relay the signal

of the PU to compensate for the interference that will be introduced due to the SU

transmission [46].

2.1.2 Metrics for Harmful Interference

Some metrics have been proposed in the literature to identify whether the inter-

ference generated by secondary users reaches to a level of being “harmful” to the

primary users. Therefore, these metrics indicate whether the SUs could share/access

the spectrum of PUs. Examples of these metrics include the following: interference

temperature [47], outage probability [9], interference indicator [18], spectral outage

probability [17], and interference probability [12, 14]. In this thesis, we choose inter-

ference probability as the harmful interference metric. An explanation of this metric

and justifications of our choice are discussed in the system model, i.e., Chapter 3.
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2.2 Related work

2.2.1 Spectrum Sharing in Large Wireless Networks

There could be a single SU trying to access the spectrum, or a group of SUs composing

a secondary network. Works such as [9, 10, 12, 14, 48–50] study the spectrum sharing

in large wireless networks. The authors in [50] consider the spectrum sharing in

large wireless networks. In their setup they assume that the nodes are uniformly

distributed over an annulus. They assume that the individual interference power

received by the PU at the center is affected by a distance-dependent attenuation

and a shadow fading. The authors formulate the CDF of the individual interference

power. However, they indicate the difficulty to characterize the aggregate interference.

Therefore, their study of the aggregate interference is based on simulations. They also

indicate that the simple lognormal approximation of the distribution of the aggregate

interference is inaccurate and more complex models are required. They compared the

performance of previously proposed interference management schemes. The first one

is called radio environment map (REM) [51]. In this scheme, the characterization of

the interference from all interferers is assumed to be known and ordered. A subset of

these interferers will be chosen to meet a signal-to-noise and interference ratio (SINR)

constraint. The second scheme is referred as a primary exclusion zone (PEZ) [49].

In this scheme, the minimum radius of the exclusion zone (within which no SUs are

allowed to transmit) is determined based on a specified SINR. The authors highlight

that REM outperforms PEZ but it requires a considerable overhead.

The authors in [14] investigate characterization of the aggregate interference from

nodes deployed in an infinite plane according to a Poisson point process. A charac-

teristic function of the aggregate interference signal is provided which reveals that

the distribution of the aggregate interference signal is a symmetric stable distribu-

tion. Moreover, they indicate that the distribution of aggregate interference power is
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a skewed stable distribution. The system model in [14] considers both shadow fading

and fast fading. The authors derived an expression for the characteristic function of

the aggregate interference when the SUs implement spectrum sensing for the presence

of PUs but in an integral form. Then, the interference probability can be evaluated

numerically.

The analysis in [49] considers a system of a single primary transmitter, group

of primary receivers and many SUs. The primary transmitter is located at the ori-

gin surrounded by an exclusion region where intended primary receivers are located

within. No SU is allowed to transmit within the exclusion region. The exclusion

region is chosen to be centered at the location of the primary transmitter not the

receiver based on the argument that it is easier to detect the PU transmitter than the

PU receiver especially if the receiver is passive like TV receivers. The discussion and

results of the paper were based on the average of the aggregate interference power

received by a primary receiver. The secondary users are assumed to be uniformly

deployed over the region outside the exclusion region. The paper does not consider

the effect of fading. Through some bounds, the paper tries to find the radius of the

exclusion region that satisfies an outage constraint.

The authors in [12] assume that a secondary network deployed over an infinite

plane in the two-dimensional space according to a PPP. The system model excludes

a small disk of radius 1 meter around a primary user located at the origin. The

exclusion of this disk is to avoid the singularity of the path loss model. The SUs run

a spectrum sensing technique to avoid transmission if they hear a beacon sent by the

primary receiver. This sensing should impose an exclusion region around the PU-RX.

The characteristic function of the aggregate interference power is derived under these

assumptions. Since there is no closed-form expression for CDF or the PDF of the

aggregate interference power, the authors resort to deriving the cumulants. These cu-

mulants are used to approximate the distribution of the aggregate interference power.
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The formulations count for shadow fading and multipath fading. The interference

(outage) probability is also used in [12] as the harmful interference metric.

The impact of spectrum sharing on a legacy system is studied in [48]. The study is

based on the assumption of an infinite secondary network sharing the spectrum with a

primary user at the origin. The secondary users are spatially distributed according to

a PPP. The cumulants of the aggregate interference power are provided. The authors

in [48] approximate the distribution of the aggregate interference power by a lognormal

random variable. The paper also investigates the impact of the absence of perfect

information about the legacy system, and the impact of shadow fading. The spectrum

sharing is assumed to be performed by an overlay scheme (interference avoidance),

an underlay scheme (interference averaging) or a hybrid scheme. The overlay scheme

outperforms the underlay scheme since it excludes the dominant interferers by creating

an exclusion region. However, the hybrid scheme outperforms the overlay scheme

because it averages the interference from far interferers in addition to excluding the

dominant ones.

2.2.2 Characterization of Interference in Large Wireless Networks

The importance of characterizing the aggregate interference generated by a wireless

network has some history dating back at least to packet radios [52–56]. This impor-

tance has increased with the emergence of different types of wireless networks over the

past two decades, e.g., CDMA [11,13], ad-hoc and sensor networks [15,17,20,57–61],

spectrum sharing and cognitive radio networks [9,10,12,48–50,62–64]. Further history

and references are provided in [3, 14].

The spatial distribution of nodes (interferers) in these networks has an impact

on the characterization of the aggregate interference. The location and number of

these nodes could be modeled by a deterministically or stochastically spatial distri-

bution. Deterministic distributions of the nodes are applicable if the exact locations
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and number of these nodes are known or if the nodes are deployed according to a

specific structure. However, it is more practical to model the distribution of the

nodes stochastically. The most common stochastic model used for the spatial distri-

bution of the nodes in wireless networks is the Poisson point process (PPP), see for

example [11, 12, 14, 15, 17, 19, 20, 48, 53, 54,57, 62, 62,65–67].

Another important factor affecting the characterization of the aggregate interfer-

ence is the distance-dependant attenuation model. We may categorize the relevant

models to our discussion into two categories: singular (unbounded) and non-singular

(bounded) models. In singular models, the function that is used to reflect the distance-

dependant attenuation goes to infinity when the distance between the victim receiver

and the interferer is zero. On the other hand, the non-singular models avoid this

singularity by not allowing the interferer to come very close to the victim receiver, or

by using a function that does not have a singularity at zero.

Works such as [14, 53, 54, 65] characterize the aggregate interference of a wireless

network assuming that the spatial distribution of interferers follows a PPP. These

works use singular distance-dependent attenuation models. Under these assumptions,

the characteristic function of the aggregate interference is obtained in a closed-form

expression. The characteristic function reflects that the distribution of the aggregate

interference is an alpha-stable distribution. While the characteristic function is in

a closed-form expression, it is not possible, however, to convert it to a cumulative

distribution function or probability density function except through numerical inte-

grations or series expansions. There is one special case which exhibits a closed-form

expression for the CDF/PFD that is when alpha is 1/2 which corresponds to having a

path loss exponent of 4 [53]. It is worth noting that the mth moment of alpha-stable

is defined only if m is less than or equal to alpha (which equals 2 divided by the path

loss exponent) [68].

Other works investigate the aggregate interference in wireless networks using PPP
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and non-singular models. These works follow different approaches to characterize the

aggregate interference. Some of these works focus on the mean of the aggregate

interference, e.g., [8, 49]. General expressions for the moments are given in [62].

Other works such as [10–12, 48] derive an expression for the characteristic function

and then use this function to derive cumulants of the aggregate interference. Then,

approximations of the distribution of the aggregate interference can be established

based on these cumulants.

Finally, there are many important papers in the literature dealing with the aggre-

gate (co-channel) interference generated by the transmissions from many interferers.

In addition, there are other papers dealing with research problems related to the

sum of Rayleigh random variables, Rician random variables, or lognormal random

variables. Results in these papers can be utilized to characterize the aggregate inter-

ference. However, these works don’t consider the spatial distribution of the interferers

or they consider the number of interferers deterministic. Examples of these works in-

clude [69–76]. In this thesis, we focus on the works that incorporate randomness in

the location of the interferers, and randomness in the number of these interferers.

Actually, we mainly focus on works that are based on a PPP to model the number

and spatial distribution of the interferers, i.e., SUs.

2.3 Statistical and Mathematical Preliminaries

These sections provides some background information on statistical and mathematical

topics that are used in the analysis and discussions presented in this thesis.

2.3.1 Poisson Point Processes [1–3]

A point process is a random collection of points in a space. An important application

of these processes in the context of this thesis is to model the spatial distribution of
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the nodes (SUs) in Euclidean space R
d.1 A simple but an important type of these

point processes is the Poisson point process. A point process is called a Poisson point

process if it satisfies the following two conditions:

• If R is a subset of R
d, the number of points (nodes) in R is a Poisson random

variable.

• If R1, R2, ..., Rk are disjoint subsets of R
d, random variables corresponding to

the number of nodes in each subset are independent.

There is an important theorem related to the PPP that will be used later in the

thesis to derive the characteristic function of the distribution of the aggregate inter-

ference power. This theorem is known as Campbell’s theorem. Before introducing

the theorem, it is helpful to explain a mean measure (℘) of a PPP. The mean mea-

sure of a subset, e.g., R, equals to the average number of points in this subset, i.e.,

℘(R) = E[N(R)], where N(R) denotes the number of points in R. For a PPP with

a constant intensity (λ), the mean measure of a subset equals λ multiplied by the

Lebesgue measure of the subset, e.g., the area of R in a two-decisional Euclidean

space.

Theorem 2.3.1 (Campbell’s Theorem [1]).

Let Π be a Poisson point process on a space S with a mean measure ℘, and let h:

S → R be measurable where R is the real line. Then,

Σ =
∑

X∈Π

h(X),

1Most of the discussions in subsequent chapters consider a two-dimensional Euclidean space.
However, some of the results can be easily generalized to a d-dimensional space as noted in Appendix
C.
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is absolutely convergent with probability 1 if and only if

∫

S

min(|h(X)|, 1)℘(dx) < ∞.

If this condition holds, then for any complex z for which the integral on the right

converges

E[ezΣ] = exp

[
∫

S

(

ezh(x) − 1
)

℘(dx)

]

.

Proof.

The proof can be found in [1].

Following are some important attributes of a PPP:

• A PPP is stationary if it is invariant to translation.

• A PPP is homogeneous if its intensity, i.e., λ is constant over the space. A

homogeneous PPP is stationary.

• A PPP is isotropic if it is invariant to rotation. A homogeneous PPP is isotropic.

2.3.2 Cumulants

The mth cumulant of a random variable X whose characteristic function is φX(w)

can be obtained by [77]

κm =
1

jm

[

dm ln(φ(ω))

dωm

]

ω=0

. (2.1)

Cumulants have some properties that make them attractive for the problem consid-

ered in this thesis. Among these properties are the following:

• The mth cumulant of the sum of two independent random variables is equal to

the sum of the individual mth cumulants of these independent random variables,
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i.e., if Z = X+Y where X and Y are independent random variables, and κm(X)

and κm(Y ) are the mth cumulants of X and Y , respectively, then

κm(Z) = κm(X) + κm(Y ),

where κm(Z) is the mth cumulant of Z [77].

• If Y = cX + b where Y and X are random variables, and c and b are constants,

then [78] κ1(Y ) = cκ1(X) + b, κm(Y ) = cmκm(X), for m ≥ 2.

• As a result of the previous property, if Y = X−µ̃
σ

where µ̃ and σ are the mean

and the standard deviation of the random variable X, respectively, then

κ1(Y ) = 0, and

κm(Y ) = κm(X)σ−m = κm(X)κ2(X)−m/2, for m ≥ 2 [78].

• Cumulants can be used to obtain some important measures of the distribution,

like mean (κ1), variance (κ2), skewness (κ3κ
−3/2
2 ) and kurtosis excess (κ4κ

−2
2 )

[78].

• The cumulants of a random variable are closely related to its moments. For

example, κ1 = µ̃1, κ2 = µ2 = σ2, κ3 = µ3, and κ4 = µ4 − 3µ2
2 where µ̃m is

the mth raw moment, µm is mth central moment, and σ2 is the variance [79] .

Expressions relating cumulants to central or raw moments are provided in [78].

• Cumulants of a random variable can be used to approximate the distribution

function of that random variable through some approaches like an Edgeworth

series expansion [11]. Alternatively, cumulants can be used to determine the

moments, and then moments-based approximations can be applied [78, 80].
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Chapter 3

System Model

This chapter describes the system model that we use to develop the results presented

in the rest of this thesis.

3.1 Spatial Distribution of Secondary Users

The analysis in this thesis is based on modeling a secondary network as a two-

dimensional field of interferers deployed over a region of area A with an annular

sector shape (ring or disk shapes are special cases). The set of active secondary user

transmitters (SU-TXs) is assumed to follow a Poisson point process with a homoge-

neous density λ. Based on this assumption, the number of SU-TXs in a region is a

Poisson random variable with a parameter specified by the multiplication of λ by the

area of that region. Moreover, the number of SU-TXs in disjoint regions are indepen-

dent Poisson random variables [1]. The field of SU-TXs is assumed to have an inner

radius of ro. We call exclusion region the disk b(O, ro) of radius ro and centered at the

origin. The field has a radial depth of L, making the outer radius of the field ro + L.

The field spans over an angle of θ as seen by the victim receiver, i.e., a primary user

receiver (PU-RX), at the origin, as illustrated in Fig. 3.1.
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Figure 3.1: Field layout.

3.2 Aggregate Interference Power

The individual interference power received by a PU-RX at the origin due to the

transmission of node i is denoted by Ii. Under the assumption of incoherent addition

of interfering signals, the aggregate interference power received by the PU-RX can be

expressed as [81]

IA =
∑

i∈Λ

Ii, (3.1)

where Λ is a set of active SU-TXs. Ii can be modeled as

Ii = Xig(ri), (3.2)

where Xi is a positive random variable that can be modeled as the multiplication

of deterministic quantities and various random variables reflecting the transmitter
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power, antenna gain, channel attenuation (including multipath and shadow fading)

and other factors [82]. In a mathematical representation, Xi can be modeled as

Xi =
∏

l

Xi,l, (3.3)

where the function g(ri) represents a path-loss model (or more precisely the distance-

dependent attenuation), which is discussed in another subsection. Xi,l is a determin-

istic or a random variable. A similar representation is used in [14].

Equation (3.3) is general enough to account for adjacent-channel interference. The

overlap between the frequency bands used by SU-TX i and PU-RX can be captured

by one of Xi,j, e.g., Xi,0. This Xi,0 has a range that goes from 0 to 1; it is equal to

1 if the frequency band of the interfering node is totally within the frequency band

of the primary user, whereas the Xi,0 is equal to zero if the frequency band of the

interference is outside the frequency band of the primary user and does not cause

an adjacent channel interference. To illustrate how the adjacent-channel interference

can be incorporated in the formulations, let us assume that an interferer SU-TX i

introduce adjacent channel interference. Let the transmit power of this SU-TX i be P ,

the distance between this SU-TX i and PU-RX be ri, and the channel be a non-fading

channel. Other parameters can be ignored to simplify the illustration of the effect of

the adjacent-channel interference. Therefore, Xi can be expressed as Xi = Xi,0Xi,1

where Xi,1 = P and Xi,0 reflects the fraction of the power P that leaks to the channel

of the PU-RX. Assuming Xi,1 = 0.1, the interference experienced by the PU-RX

due to the transmission of SU-TX i can be expressed as Ii = 0.1g(ri)P . Under the

assumption of incoherent addition of interfering signals, the value of this Ii should

be added to the interference power generated by other active SU-TXs according to

(3.1) for the evaluation of the aggregate interference power. In this thesis, Xi,0 is

considered to be 1 which corresponds to the worst case. The results reported in this
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thesis can easily be extended to consider the cases where Xi,0 < 1.

In analyzing the aggregate interference of a Poisson field, it is common to assume

that Xis are independent and identically distributed (i.i.d.) random variables [9, 12,

14, 54]. In this thesis, we follow the same assumption.

3.3 Path-Loss Models

The most common path-loss model used in literature is

g(ri) = kr−n
i , ri ≥ 0, (3.4)

where k is a constant, ri is the distance between the SU-TX i and the PU-RX, and

n is the path-loss exponent. This model is commonly used in contexts similar to the

one we consider in this thesis due to its mathematical tractability [83]. However, this

model suffers from a singularity at ri = 0. Therefore, it is known as a singular (or

unbounded) path-loss model [16, 83].

There are non-singular (bounded) path-loss models used in the literature as well,

e.g., [12, 16, 62, 84]. These non-singular models are similar, with some variations.

Following is an example:

g(ri) =















kr−n
i , ri ≥ rc

kr−n
c , ri < rc

, (3.5)

where the quantity kr−n
c is constant, and rc > 0 is the radius at which the slope of

the model starts changing.

It is indicated in [16] that the selection of the path-loss model has a significant

impact on the characterization of the aggregate interference. The authors in [83]

investigated the effect of the unbounded model on the performance analysis of wireless

networks and indicated that more realistic performance figures are obtained by using
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bounded models. We therefore consider the use of a non-singular model, specifically

(3.5) with n > 2. Without loss of generality, we take k = 1 assuming its effect is

absorbed by Xi.

3.4 Harmful Interference Metric

The harmful interference metric that is used in this thesis is the interference proba-

bility. This metric can be described as

P (IA ≥ Ith) ≤ β, (3.6)

which means that the probability of the aggregate interference being greater than a

certain interference threshold, Ith, should not exceed β, where β ≪ 1 [12]. If (3.6)

is not violated, then the aggregate interference is considered to be non-harmful. We

choose this metric because it has a fundamental and versatile form, which is mainly

based on the complimentary cumulative distribution function (CCDF). Thus, results

of this thesis should be useful even if different metrics are used provided that these

metrics depend on the distribution function of IA.

We are interested in studying how the interference probability, and hence the

spectrum sharing, behave with respect to changes in the field size, mainly L, and

the other channel and system parameters. To achieve this, the distribution of IA

or at least some of its characteristics are required. In this thesis, we characterize

the aggregate interference power using its cumulants. Background information on

cumulants is included in Chapter 2.
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3.5 Summary

In this chapter, we described the system model that we use to obtain the results

reported in the rest of the thesis. Description of the system model covered the spatial

distribution of the active secondary users, the distance-dependant attenuation model

and the harmful interference metric. This model incorporates different sources of

randomness, such as the number of active SU-TXs, locations of these active SU-TXs,

fading components in wireless channels between these active SU-TXs and the PU-

RX. Moreover, the model can reflect random fluctuations in antenna gains and power

levels. The model should be applicable also for the case when all the parameters are

deterministic; however, the aggregate interference power will be deterministic and

might be described by the formulations obtained in this thesis for the first cumulant

(or moment).
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Chapter 4

Preliminary Results on Interference

Characterization

This chapter presents an initial study performed at the early stages of the research re-

ported in this thesis. This chapter has two main sections. The first section discusses

the first moment (or cumulant) of the aggregate interference power. The second

section incorporates the variance, i.e., the second cumulant, in the discussion. Up-

per bounds on the interference probability are also discussed in these two sections.

More advanced results are reported in subsequent chapters, which are based on an

approximation of the distribution of IA rather than upper bounds. However, these

two sections are included in the thesis for reasons highlighted in the introduction of

Section 4.1 and Section 4.2.

4.1 Asymptotic Analysis of the Average Interference Power

Generated by a Wireless Sensor Network Towards a Pri-

mary User

While this section focuses on the average of the aggregate interference power, it

includes some ideas not mentioned in other chapters of the thesis. These ideas include

the representation of the whole field of interferers by a single virtual interferer (node).
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Moreover, it provides some formulations for the aggregate interference power when

the shape of the field can be approximated by a rectangular shape. Furthermore,

it investigates the behavior of the average interference power when the path-loss

exponent is equal to 2. Finally, discussions in this section are presented in the context

of wireless sensor networks sharing a spectrum with a PU.

4.1.1 Spectrum Sharing for Wireless Sensor Networks

Massive deployments of wireless sensor networks (WSNs) are expected in the near

future [85]. Since it is not a viable solution to acquire a spectrum license for a

WSN due to the high cost associated with it, a WSN is likely to share a frequency

band with other systems. Current WSN implementations share unlicensed frequency

bands with other unlicensed systems, e.g., WiFi and Bluetooth [86, 87]. The FCC

Spectrum Policy Task Force proposed that licensed frequency bands could be shared

between licensed users (primary users) and unlicensed users (secondary users) [4].

This spectrum sharing will be under the condition that the performance of primary

users communication is not degraded. The spectrum sharing proposal creates a num-

ber of opportunities for unlicensed systems like WSNs and leads to the efficient use

of this invaluable resource: the RF spectrum.

Some upcoming wireless technologies may empower the secondary users to dynam-

ically share a frequency band with other primary users. For instance, the cognitive

radio technology will enable the secondary users to sense the environment around

them and to identify spectrum holes that can be used without affecting the perfor-

mance of primary users [5]. A spectrum hole is defined in [5] as a frequency band that

is underutilized by the primary user. Although the cognitive radio technology will

increase the complexity of the sensor nodes [88], we envision that these complexity

issues will be resolved by future advancement in hardware technologies.

Characterizing the aggregate interference power of a WSN has been investigated
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in other works, such as [59]. However, to the best of our knowledge, no work has been

devoted to study the effect of the sensor field dimensions on the total interference

power generated by a WSN towards another system. The focus of this section is on

the behavior of the average interference power of a WSN towards a primary user with

respect to the changes in the field size.

The rest of this section is organized as follows. Subsection 4.1.2 provides the initial

formulation of the average interference power generated by a WSN towards another

system. This subsection also introduces possible representation of a sensor field by a

single virtual node producing equivalent average interference power. Subsections 4.1.3

and 4.1.4 extend the formulation developed in Subsection 4.1.2 to sensor fields with

the shape of an annular sector and a rectangle, respectively. Subsections 4.1.3 and

4.1.4 also discuss the behavior of the average interference power due to the expansion

of the sensor field. Subsection 4.1.5 demonstrates the use of the annular sector and

rectangular shapes in order to provide a conservative approximation of the interference

generated by any sensor field with an arbitrary shape. The average interference power

can be used in the well-known Markov Inequality to reach a conservative decision

about the probability of interference, as shown in Subsection 4.1.5.2.

4.1.2 Average Interference Power

The objective of this subsection is to develop a mathematical formulation of the

average interference power generated by a sensor field towards a primary user receiver

(PU-RX). Let us assume that there is a wireless sensor node at a distance ri from

PU-RX. The average interference power that would reach PU-RX from this node

would be

Ii = Xig(ri). (4.1)
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Then, the total interference power can be written as

IA =

N
∑

i=1

Ii =

N
∑

i=1

Xig(ri). (4.2)

So, the mean value of IA becomes

E[IA] = E

[

N
∑

i=1

Xig(ri)

]

. (4.3)

Since a) Xi and ri are assumed to be independent random variables, b) Xi are identi-

cally distributed, and c) ri are also identically distributed, then (4.3) can be written

as

E[IA] = µXµNE[g(ri)] (4.4)

where µX = E[Xi] and µN = E[N ]. In this chapter, we focus on the case where

ro ≥ rc > 0. Therefore, E[g(ri)] = E[r−n
i ].

Writing E[IA] in terms of the average interference power coming from a node at a

distance ro, i.e., Īo = µXr−n
o , results in

E[IA] = Īor
n
o

N
∑

i=1

E[r−n
i ] = KĪo (4.5)

where K is a scaling factor which absorbs the spatial distribution of interfering nodes

and the distance-dependent attenuation. The whole field can be represented by a

single virtual node that would generate an equivalent level of average interference

power received by a PU-RX, see Fig. 4.1. This virtual node concept is used here just

to simplify the representation and the calculation of the average interference power of

a large wireless network. Therefore, this representation should not be used for other

purposes without a careful thinking about its validity for such purposes.

In order to examine the behavior of the average interference power with respect
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Figure 4.1: Representing a sensor field by a signal virtual node generating equivalent
level of average interference power.

to the changes in field size, two rather simple but important shapes for the sensor

field are considered. They are the annular sector and rectangular shapes, shown in

Fig. 4.2 and Fig. 4.5, respectively, which are referred to as Shape I and Shape II for

brevity. These shapes could be used to provide a conservative approximation (upper

bound) of the interference power generated by a sensor field with any arbitrary shape.

In the next subsection, a formulation of K is derived for a field with the annular

sector shape.

4.1.3 Shape I: Sensor Field of Annular Sector Shape

In this subsection, we work with a secondary field with the shape of an annular sector

as shown in Fig. 4.2. Since the secondary users are uniformly distributed over a finite

region of the secondary network, the formulation of K for this shape can be derived
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Figure 4.2: A sensor field with the shape of an annular sector.

and written as

K =































λθr2
o ln
(

1 + L
ro

)

, n = 2

1
n−2

λθr2
o

[

1 −
(

ro

ro+L

)n−2
]

, n > 2

. (4.6)

Equation (4.6) highlights the effect of different wireless network parameters on the

average interference power. For the annular sector shape, the effect of the changes in θ

is obvious. Therefore, in the remaining part of this section, we focus on discussing the

effect of changes in L (the radial depth). It is clear from (4.6) that what matters is the

ratio L/ro rather than merely the value of L. In this section, ro is assumed to be fixed;

thus, the changes in the ratio L/ro are due to changes in L. Fig. 4.3 shows the effect of

the changes in L/ro on the value of K and, hence, on the average interference power.

In this figure, the value of K is normalized by λθr2
o which represents the number of

active nodes in an area of θr2
o . This value, λθr2

o, is another important parameter in
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Figure 4.3: Normalized K, i.e, K/λr2
o, vs. L/ro for different values of n.

determining the value of K and, hence, of the average interference power. The term

θr2
o might be considered as a reference area Aref and the term λθr2

o as a reference

number of active nodes (Nref). With these, (4.6) can be rewritten as

K = λAreff(n, L
ro

) = Nreff(n, L
ro

), (4.7)

where f(n, L
ro

) is a scaling function which depends on n and L/ro,

f(n, L
ro

) =







































ln
(

1 + L
ro

)

, n = 2

1
n−2



1 − 1
(

1+
L
ro

)n−2



 , n > 2

. (4.8)
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The value of f(n, L
ro

) is bounded by 1 for n > 2. This holds true even if L goes to

infinity. Therefore, the value of K and, hence, the average interference power of an

infinite sensor field, is bounded by a maximum value provided that the minimum

distance from the field to the primary user is fixed. From (4.5) and (4.7), the maxi-

mum value of the average interference power is determined by the average interference

power generated by a single node at ro scaled by the value of K. The maximum value

of K as shown above is the number of active nodes in a reference area, K = λθr2
o,

or a fraction of it. For n = 2, f(n, L
ro

) and therefore K, and in turn the average

interference, change logarithmically with the increase in L/ro. Consequently, f(n, L
ro

)

can exceed 1.

A relevant but limited observation about the effect of the field size on the average

interference power is made in [59]. That paper highlights the fact that an increase in

the field size of a WSN does not necessarily lead to an increase in the total interference

power. The observation is made for n = 3 and n = 6 based on simulation and

numerical results. However, the paper does not provide expressions for the average

interference power or the asymptotic constants. In this section, we provide exact

expressions describing the behavior of the average interference generated by a sensor

field towards a primary user. Expressions for the asymptotic constants for the case

of n ≥ 2 are also presented (moreover, we show that the behavior of the average

interference power with respect to L is different when n = 2.)

We discuss above how the average interference would change when L/ro goes to

infinity. On the other hand, when the field’s depth L is very small compared to ro,

the average interference power changes linearly with the changes in L/ro. This holds

true for any n ≥ 2.

The asymptotic behavior of K with respect to L/ro is shown Fig. 4.3 which can
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be summarized in a mathematical form as follows:

K ≈ λθroL; n ≥ 2 and L ≪ ro, (4.9)

K ≈



























λθr2
o ln
(

L
ro

)

, n = 2 and L ≫ ro

1
n−2

λθr2
o, n > 2 and L ≫ ro

. (4.10)

From the discussions so far, it has become clear that ro is a very important pa-

rameter in determining the average interference power. The value of ro controls the

reference area which determines the maximum number of active nodes considered in

calculating K and, hence, the total average interference power. In addition, the value

of ro sets up the different regions of how average interference power would behave

with changes in L.

The value of K can be interpreted as the number of active nodes in an effective

area (Aeff) within the sensor field. From (4.6) and K = λAeff , we can write Aeff as

Aeff =























θr2
o ln
(

1 + L
ro

)

, n = 2

1
n−2

θr2
o



1 − 1
(

1+
L
ro

)n−2



 , n > 2
. (4.11)

When L ≪ ro, the Aeff is equivalent to the total area of the sensor field. On the

other hand, when L ≫ ro, the value of Aeff is much less than the total area of the

sensor field. For n > 2 and L ≫ ro, Aeff is limited by a maximum value regardless of

how big the sensor field is. These remarks are deduced from (4.12) and represented

graphically in Fig. 4.4.
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Figure 4.4: Effective areas of Shape I when L ≫ ro and L ≪ ro.

Aeff ≈



























































θroL, n ≥ 2 and L ≪ ro

θr2
o ln
(

L
ro

)

, n = 2 and L ≫ ro

1
n−2

θr2
o, n > 2 and L ≫ ro

. (4.12)

For example, assume there is a sensor field with an L = 10ro and n = 3. In this case,

Aeff would be 1/60 of the total area of the sensor field.

As a summary of this subsection, the main observations are listed below:

36



• The maximum value of K and thus the average interference power for an un-

bounded sensor field is bounded. The maximum value of K is limited by

K ≈



























λθr2
o ln
(

L
ro

)

, n = 2 and L ≫ ro

1
n−2

λθr2
o, n > 2 and L ≫ ro

. (4.13)

• For n = 2, the value of K and, hence, the average interference power, increases

logarithmically with the increase in L.

• For n > 2, the value of K and, hence, the average interference power, asymp-

totically approaches to a constant level with the increase in L. The asymptotic

constant decreases with a factor of (n − 2) as n increases.

• For L << ro, the value of K and, hence, the average interference power, depends

linearly on L.

• To find the average interference power of a sensor field towards a primary user

at point X, the following needs to be done: 1) Find the average interference

power generated by a single node at a distance ro from PU-RX. 2) Multiply

that average by the number of interfering nodes in the area of θr2
o. 3) Scale the

result by a proper scaling factor f(n, L/ro), which depends on n and L/ro (refer

to (4.7)).

4.1.4 Shape II: Sensor Field of Rectangular Shape

This subsection considers a sensor field with a rectangular shape as shown in Fig.

4.5a. The width of this sensor field is denoted by W and the depth is denoted by L.
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(a)

(b)

Figure 4.5: A sensor field of a rectangular shape (Shape II). (a) General alignment;
(b) Worst-case alignment (given yo is fixed).

Assuming the nodes are uniformly distributed over this field, K can be expressed as

K = λrn
o

∫ yo+L

yo

∫ xo+W

xo

1
(

√

x2 + y2
)n dxdy, (4.14)
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which results in

K =
λrn

o

(n − 1)yn−2
o

×




xo + W

yo



h́

(

xo + W

yo

)

−
h́
(

xo+W
yo+L

)

(1 + L
yo

)n−1



− xo

yo



h́

(

xo

yo

)

−
h́
(

xo

yo+L

)

(1 + L
yo

)n−1







 ,

(4.15)

where h́(z) is an abbreviated notation for the following hypergeometric function [89]

3F2

(

1
2
, n−1

2
, n

2
; 3

2
, n+1

2
;−z2

)

=
∞
∑

k=0

(1
2
)k(

n−1
2

)k(
n
2
)k

(3
2
)k(

n+1
2

)k

(−z2)k

k!
, (4.16)

where (a)k = a(a + 1)(a + 2)...(a + k − 1) and (a)0 = 1.

Equation (4.15) is applicable to any rectangular shape with arbitrary alignment.

Before applying (4.15) to a sensor field with a rectangular shape, the x-axis and y-axis

should be chosen in such a way that they intersect at the location of the primary user,

and are parallel to the edges of the the sensor field.

An interesting special case for the rectangular shape field is when PU-RX is facing

the center of one of the edges, for example W as shown in Fig. 4.5b. This case is the

worst-case scenario for the positioning of a rectangular field with respect to PU-RX,

provided that yo is fixed. For this case, (4.15) can be simplified by substituting xo

with W/2 and yo with ro to yield

K =
2λr2

o

(n − 1)





1

2

W

ro

h́

(

1

2

W

ro

)

−

(

1
2

W
ro+L

)

h́
(

1
2

W
ro+L

)

(1 + L
ro

)n−1



 . (4.17)

Equation (4.17) can be reduced to simpler formulas for some integer values of n.

Considering (4.17), it can be said that K depends on the density of active nodes

multiplied by a reference area and scaled by a factor that depends on n, L/ro, and
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W/ro. By choosing the reference area for the rectangular shape as r2
o, and denoting

the scaling factor by g(n, W/ro, L/ro), (4.17) can be rewritten as

K = λr2
og(n, W/ro, L/ro). (4.18)

Once again, it can be seen for the rectangular shape as well that rather than the exact

values of L and W , their ratios to ro determine the total average interference.

Next, we would like to study the asymptotic behavior of the average interference

power with respect to the changes in the field dimensions, W and L. As shown in

(4.17), the value of K and, hence, the average interference power, depends on the

ratio of the field dimensions to ro. Therefore, the focus of the asymptotic discussion

is on W/ro and L/ro.

Equation (4.17) is plotted in Fig. 4.6 for n = 3 to show an example of the behavior

of K with respect to the changes in W/ro and L/ro. For a fixed value of L/ro, the

value of K depends linearly on W/ro when W/ro << 1. However, when W/ro >> 1

the value of K approaches to a constant regardless of how big W/ro is. Similar

behavior is observed for K with respect to the changes in L/ro.

Fig. 4.7 shows more plots for K with respect to changes in L/ro for different

values of n. Fig. 4.7a focuses on the case when W/ro >> 1. From Fig. 4.7a, it is

clear that when L/ro << 1, the value of K depends linearly on the changes in L/ro.

On the other hand, the value of K approaches to a constant when L/ro >> 1. An

exception to this observation occurs when n = 2; in this case K does not approach

to a constant with the increase in L/ro. Fig. 4.7b shows the behavior of K for the

case when W/ro << 1. For L/ro >> 1 in Fig. 4.7b, the value of K approaches to a

constant even for n = 2. However, when L/ro << 1, the value of K changes linearly

with the value of L.

As a summary, the following observations can be made:
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Figure 4.6: Normalized K, i.e, K/λr2
o, for Shape II for n = 3.

• An increase in the spatial size of the sensor field does not necessarily cause an

increase in the average interference power provided that the minimum distance

between the sensor field and the primary user is fixed. This is obvious in the

situations where the width and length of the field are large compared to ro

provided that n > 2.

• For a sensor field with a width W much greater than ro, a further increase in W

does not introduce a significant change in the average interference power even

for n = 2.

• If L << ro, the average interference power linearly depends on L. Similarly, for

W << ro, the average interference power depends linearly on W .

• The quantity λr2
o, which reflects the number of active nodes in an area of r2

o,

is very important in finding the value of K. For n ≥ 3, multiplying λr2
o by a
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(a)

(b)

Figure 4.7: Impact of the changes in L on normalized K, i.e, K/λr2
o, for Shape II.

(a) W/ro = 100; (b) W/ro = 0.01.
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Figure 4.8: Bounding a field of an arbitrary shape by one of the regular shapes
considered in this chapter.

proper constant sets an upper bound of K for the worst-case scenario, i.e., when

L/ro and W/ro both go to infinity. If the values of L or W are small compared

to ro, then the value of λr2
o is scaled down by the ratio of L/ro, W/ro, or both.

4.1.5 Upper Bounds on the Interference of a Sensor Field

The results achieved in the previous subsections are applied here to set up upper

bounds for the following:

• the average interference power of any sensor field, and

• the probability that a sensor field would generate harmful interference towards

the primary user.

4.1.5.1 Average Interference Power of any Sensor Field with an Arbitrary

Shape

The two special shapes analyzed above can be used to provide a conservative approx-

imation (upper bound) for the average interference power generated by any sensor

field with an arbitrary shape.
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The annular sector shape is useful in cases where the primary user has a direc-

tional antenna. In addition, it is applicable when the sensor field surrounding the

primary system has the shape of a disk or ring. Generally, the approximation with

a rectangular shape is more appropriate than the annular sector shape in most other

cases.

The objective of the mapping is to choose the smallest shape (between Shape I

and Shape II) that contains the sensor field of an arbitrary shape. Here, ro is the

shortest distance between the shape approximating the sensor field and the primary

system. An example is shown in Fig. 4.8. A tighter upper bound can also be achieved

by segmenting the sensor field into subfields with an annular sector or a rectangular

shape or both. The average interference power will then be equal to the sum of all

average interference powers generated by the subfields.

4.1.5.2 An Upper Bound on Interference Probability

The average interference power can be used to set an upper bound for the probability

that a sensor field would generate a harmful interference towards a primary user at

point X. The determination of this upper bound is based on the Markov Inequality [90]

which states that for a non-negative random variable U which has a mean of µ, and

for α ≥ 0,

P(U ≥ α) ≤ µ

α
. (4.19)

Applying this inequality to the context of average interference power of a sensor field

towards another system results in

P(IA ≥ Ith) ≤
E[IA]

Ith
, (4.20)

where Ith is the threshold value for the harmful interference, and E[IA] can be written

in terms of K from (4.5).
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It should be noted that the Markov inequality provides a very loose upper bound;

nevertheless it can be used to deduce a conservative conclusion. For example, the

primary user or the frequency regulator may require that P(IA ≥ Ith) ≤ β, where

β is a limit of the interference probability. In this case, if the Markov inequality in

(4.20) gives a value lower than β, then it can be deduced that the sensor field satisfies

the requirement of probability of interference. Then, it is not necessary to calculate

the other moments or the distribution function of the aggregated interference power

generated by that sensor field. On the other hand, if (4.20) gives a value greater

than β, it does not necessarily mean that the interference power generated by the

senor field violated the requirement. In this case, it is required to conduct further

investigations which may include calculating other moments, tighter bounds or the

distribution function of the aggregate interference power.

4.2 Upper Bound on the Interference Probability

In this section, an upper bound on the interference probability, i.e., P (IA ≥ Ith), is

established based on the knowledge of the first two moments (or cumulants) of IA.

This upper bound is used to investigate the impact of the network size on the spectrum

sharing opportunities. While this upper bound could be very loose, conclusions are

conservative in favor of protecting PUs. Moreover, some of the conclusions that are

deduced based on this upper bound about the general behavior of the interference

probability with respect to changes in the network size are valid regardless of the

exact distribution of the aggregate interference power.

4.2.1 Objective and Approach

We are interested in studying how the interference probability and, hence, the spec-

trum sharing behave with respect to changes in the field size, mainly L, and the
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location of the field (or the exclusion region), i.e., changes in ro. To achieve this, the

distribution of IA or at least some of its characteristics are required. As mentioned

before, the characteristic function of the aggregate interference generated by a Poisson

field of interferers has been derived in [9,12,19,20,53]. While the characteristic func-

tion is known, the cumulative distribution function and probability density function

have no closed-form expression except for a special case when the path loss exponent

is 4, the field is infinite with no exclusion region around the victim receiver [53], and

the distance dependant-attenuation model is singular. Therefore, the authors in [9]

and [12] end up working with approximations, and the authors in [20] use upper

bounds based on Chebyshev’s inequality1. Similarly, in this section, Chebyshev’s in-

equality is utilized to establish an upper bound on the interference probability. To

use this inequality, the first two moments of IA have to be identified. In the following

sections, formulations for these moments and the upper bound on the interference

probability are developed. It is worth highlighting that the expressions for the mean

and the variance can be obtained from the expressions provided in Chapter 5 for

the first and second cumulants, respectively. However, in this section, we follow a

different approach to develop the expressions. This approach is based on conditional

expectations.

4.2.2 Mean of the Aggregate Interference

This subsection addresses the formulation of the mean of the aggregate interference

(µA) and discusses the behavior of this mean with respect to changes in the field size

and location.

1A better bound for the case of the sum of independent random variables is the Chernoff upper
bound [91]. This bound has a tuning parameter that can be optimized to make the bound very tight;
however, it might be difficult to calculate the optimal value of this parameter. In [20], the Chernoff
bound was investigated; however, the authors resort to the the Chebyshev’s inequality instead of
the Chernoff bound due to the computational difficulties associated with the Chernoff bound.
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4.2.2.1 The Formulation

Taking the expectation of IA in (3.1) results in

µA = E[IA] = E

[

∑

i∈Λ

Ii

]

. (4.21)

The cardinality of Λ is assumed to be N . Assuming that the Ii’s are i.i.d. random

variables,

µA = E[N ]E[Ii] = µNµI . (4.22)

Since the number of transmitting nodes in an area follows a Poisson distribution,

µN = λA, (4.23)

where A is the area of the field. Using (3.2) and the assumption that Xi and ri are

independent, µI can be expressed as

µI = µXE[ri
−n], (4.24)

where µX = E[Xi]. In this section, we consider ri ≥ rc. General expressions for the

mean and variance including when ri < rc are discussed in Chapter 5.

Since the nodes are spatially distributed according to a PPP, the locations of the

nodes follow a uniform distribution over A [53]. Thus,

E[ri
−n] =

θ

A(n − 2)
ro

2−n

[

1 −
(

1 +
L

ro

)2−n
]

. (4.25)

From (4.22)-(4.25), µA can be obtained as

µA =
λθ

(n − 2)
ro

2−nµX

[

1 −
(

1 +
L

ro

)2−n
]

. (4.26)
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Increase in L has no significant
effect the mean

Figure 4.9: Effect of field size on the mean of the aggregate interference (ro=1000 m;
see Table 4.1 for other assumptions used to produce this plot).

4.2.2.2 Effect of Field Size and Location on µA

The behavior of the mean with respect to the changes in the field size is discussed

thoroughly in Section 4.1. In brief, the mean of the aggregate interference changes

linearly with changes in L when L ≪ ro, see Fig. 4.9. For L ≫ ro, changes in L do

not significantly affect the mean of the aggregate interference, rather the mean tends

to a limiting value of

µA =
λθ

(n − 2)
µXro

2−n. (4.27)

This asymptotic observation agrees with the findings reported in [53] and [57]

which indicate that the aggregate interference power generated by an infinite field of

interferers tends to an asymptotic limit if the path loss exponent is greater than the

dimensions of the field2.

2The divergence of the aggregate interference power for an infinite two-dimensional field is also
discussed in [7, 55, 56].
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10(n − 2) dB decrease in mean

For ro >> L:
10 dB decrease in ro leads to
10(n − 1) dB decrease in mean

Figure 4.10: Effect of ro on the mean of the aggregate interference (L=1000 m; see
Table 4.1 for other assumptions used to produce this plot).

Table 4.1: System and Propagation Parameters Used to Produce Plots

Parameter Value Remarks

n 3

Pi 1 mW

Gi, Gx 0 dBi Omni antenna

f 2.4 GHz

do 1 m

θ 2π

λ 0.01 node/m2

σ2
X Xi assumed to be deterministic

The effect of the field location on the mean of the aggregate interference is high-

lighted in Fig. 4.10 which can be summarized as follows: a 10 dB increase in ro leads

to a 10(n-2) dB decrease in µA for ro ≪ L; when ro ≫ L, a 10 dB increase in ro

results in 10(n-1) dB decrease in the mean of the aggregate interference.
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4.2.3 Variance of the Aggregate Interference

The variance of the aggregate interference of the field of secondary users is denoted

by σ2
A. This subsection presents the formulation of σ2

A and discusses its behavior with

respect to changes in L and ro.

4.2.3.1 The Formulation

Based on the assumptions that all Ii’s are i.i.d. random variables, it can be shown

that the second moment of the aggregate interference for N transmitting nodes is

E[I2
A|N ] = N(σ2

I + µ2
I) + N(N − 1)µ2

I . (4.28)

Averaging (4.28) over N results in

σ2
A = µNσ2

I + σ2
Nµ2

I . (4.29)

Since N follows a Poisson distribution,

σ2
N = µN = λA. (4.30)

By noting that

σ2
I = E[X2]E[r−2n

i ] − µ2
I , (4.31)

E[r−2n
i ] =

θr2−2n
o

A(2n − 2)

[

1 −
(

1 +
L

ro

)2−2n
]

, (4.32)

and substituting them as well as (4.30) in (4.29), we obtain

σ2
A =

λθr2−2n
o

2n − 2
µ2

X

(

1 +
σ2

X

µ2
X

)

[

1 −
(

1 +
L

ro

)2−2n
]

, (4.33)
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Figure 4.11: Effect of field size on variance of the aggregate interference (ro=1000 m;
see Table 4.1 for other assumptions used to produce this plot).

which means that the randomness in Xi causes an increase by a factor of (1 +
σ2

X

µ2

X
).

So, the behavior of the variance of the aggregate interference with respect to changes

in the field size and location can be studied without loss of generality by assuming

that Xi is deterministic.

4.2.3.2 Effect of Field Size and Location on σ2
A

The variance of the aggregate interference changes linearly with changes in L when

L ≪ ro, see Fig. 4.11. However, when L ≫ ro changes in L have no tangible effect on

the variance. The variance of the aggregate interference reaches a limit with respect

to the increase in L to

σ2
A =

λθr2−2n
o

2n − 2
µ2

X

(

1 +
σ2

X

µ2
X

)

. (4.34)

Fig. 4.12 shows the effect of ro on the variance of the aggregate interference. A
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Figure 4.12: Effect of ro on the variance of the aggregate interference (L=1000 m; see
Table 4.1 for other assumptions used to produce this plot).

10 dB increase in ro leads to 10(2n − 2) dB decrease in the variance when ro ≪ L,

and a 10(2n − 1) dB decrease if ro ≫ L.

4.2.4 Upper Bound on the Interference Probability

4.2.4.1 The Formulation

An upper bound on the interference probability can be established using Chebyshev’s

inequality3. This inequality states that for a random variable X with mean µ and

variance σ2 [92]

P (|X − µ| ≥ t) ≤ σ2

t2
, t > 0. (4.35)

3While Chebyshev’s inequality may result in loose upper bounds, the decisions deduced from
these bounds are conservative and in favor of protecting the primary user.
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Applying this inequality to our problem results in

P (IA ≥ Ith) ≤
λθr2−2n

o

2n−2
µ2

X(1 +
σ2

X

µ2

X
)
[

1 − (1 + L
ro

)2−2n
]

(

Ith − λθr2−n
o

(n−2)
µX

[

1 − (1 + L
ro

)2−n
])2 , (4.36)

provided that Ith > µA where Ith could be the maximum level of the tolerable inter-

ference by the primary user.

The expression (4.36) can be used to understand the effect of the randomness in

Xi on the probability of interference. As mentioned before, the randomness in Xi

may be due to the fluctuations in the transmit power, multipath fading, and more

importantly, the shadowing effect. The randomness in Xi shifts up the upper bound

of the interference probability by 10log(1+
σ2

X

µ2

X
) dB. So, without loss of generality, the

behavior of the upper bound on the interference probability with respect to changes

in field size and location can be studied with the assumption that Xi is deterministic.

The results could be adjusted with a proper scaling factor (or a proper dB shift) to

reflect the randomness in Xi.

4.2.4.2 Effect of Field Size and Location on the Interference Probability

Before discussing the effect of changes in the field size and location on the interference

probability, it is important to highlight the following: the Chebyshev inequality is

valid when Ith > µA; however, µA would change with changes in the field size and

location. Therefore, in our plots we make sure that Ith > µA over the ranges of L or

ro considered in the plots. In practice, the value of Ith is determined by the regulator

or the primary user, as such, the secondary user has no control over it.

The behavior of the upper bound on the interference probability with respect to

changes in the field size is shown in Fig. 4.13. The upper bound on the interference

probability increases linearly with the increase in L for L ≪ ro. If L ≫ ro, then the
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Figure 4.13: Effect of field size on interference probability (ro=1000 m; see Table 4.1
for other assumptions used to produce this plot).

increase in L has no or negligible effect on the upper bound. In this case, the upper

bound saturates at

P (IA ≥ Ith) ≤
λθ

2n−2
r2−2n
o µ2

X(1 +
σ2

X

µ2

X
)

(Ith − λθ
n−2

r2−n
o µX)2

. (4.37)

Fig. 4.14 shows the behavior of the upper bound on the interference probability

with respect to changes in ro. A 10 dB increase in ro leads to a 10(2n-2) dB decrease

in the upper bound if ro ≪ L; when ro ≫ L, a 10 dB increase in ro leads to a 10(2n-1)

dB decrease in the upper bound. Table 4.2 summarizes some asymptotic expressions,

i.e., when L ≫ ro and L ≪ ro, for the probability upper bound, variance, and mean

of the aggregate interference.
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Figure 4.14: Effect of field location on interference probability (L=1000 m; see Table
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Table 4.2: Summary of Asymptotic Expressions

For L ≫ ro For L ≪ ro

P (IA ≥ Ith) ≤
1

2n−2
λθr2−2n

o µ2

X(1+
σ2

X
µ2

X

)

(Ith−
1

n−2
λθr2−n

o µX)2

λθr1−2n
o L µ2

X(1+
σ2

X
µ2

X

)

(Ith−λθro
1−nL µX)2

σ2
A = 1

2n−2
λθr2−2n

o µ2
X(1 +

σ2

X

µ2

X
) λθr1−2n

o L µ2
X(1 +

σ2

X

µ2

X
)

µA = 1
n−2

λθr2−n
o µX λθro

1−nL µX

4.2.5 Effect of Field Size and Location on Spectrum Sharing Opportuni-

ties

We consider a spectrum sharing opportunity exists if the condition in (3.6) is satisfied.

Therefore, for a certain value of Ith, the upper bound obtained in (4.36) will be

compared to (3.6). If the upper bound is less than or equal to β, then the aggregate

interference of the secondary network is considered to be non-harmful to the primary

user (non-interfering region). Otherwise, the secondary network may cause harmful
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interference to the primary user (interfering region).

If the secondary network operates in an interfering region, then it may use the

spectrum of the primary user during the absence of the primary user. However, when

the primary user starts using the spectrum, then the secondary user has to evacuate

the spectrum or to adapt its transmission parameters to move to the non-interfering

region. Therefore, the secondary user has to have a technology such as “cognitive

radio” to be able to sense the presence of the primary user, and to perform a proper

action accordingly [5, 6].

On the other hand, if the secondary network operates in the non-interfering region,

then it can concurrently and continuously share the spectrum with the primary user

without the need to implement any spectrum sensing technique or cognition related

function. This result could be used towards solving the spectrum problem facing wire-

less sensor networks (WSN)s without increasing the complexity of the sensor nodes.

Currently, Wireless Sensor Networks (WSNs) are operating in unlicensed bands, e.g.,

2.4 GHz. These bands are becoming over-crowded which may severely affect the op-

eration of the WSNs. Alternatively, the WSNs could share a licensed band with a

primary user. However, this sharing usually requires spectrum sensing and cognitive

radio functionalities. Adding these functionalities may increase the complexity of

the sensor nodes to a level that is economically infeasible with today’s technologies

especially for massive deployments [88]. It has been shown in this section that under

certain conditions secondary users (WSNs in this example) could concurrently and

continuously share the spectrum with a primary user without the need to have any

spectrum sensing techniques or cognitive radio functionalities.

The effect of the field size and location on determining the interfering and non-

interfering regions and on the spectrum sharing opportunities are discussed in the

following subsections. Without loss of generality, the numerical examples and results
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Figure 4.15: Field size and spectrum sharing opportunities (ro=1000 m; see Table 4.1
for other assumptions used to produce this plot).

shown later in this section are based on the following model for Xi :

Xi = PiGiGx

( γ

4π

)2

dn−2
o hi10

Si
10 , (4.38)

where Pi is the transmitted power by node i, Gi is its antenna gain, Gx is the antenna

gain of the primary user, γ is the wavelength of the carrier frequency, do is the close-in

reference distance, hi reflects the effect of the multipath fading on the received power,

and Si is a Gaussian random variable modeling the shadowing effect.

4.2.5.1 Field Size and Spectrum Sharing Opportunities

The discussion in this subsection is based on Fig. 4.15. This figure has four curves;

each curve corresponds to a certain value of β. Each one of these curves divides

the figure into two main regions: interfering (comprised of zones 1 and 2) and non-

interfering (comprised of zones 3 and 4) regions.
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If the maximum interference probability that a primary user can tolerate is β (e.g.,

0.01), then the aggregate interference generated by the secondary network is not con-

sidered to be harmful if the interference probability is less than β. Therefore, the

region in Fig. 4.15 above the curve of β = 0.01 is considered to be a non-interfering

region. In this case, a secondary network could concurrently and continuously share

the spectrum with the primary user without the need to have spectrum sensing tech-

niques or cognitive radio capabilities.

The non-interfering region in Fig. 4.15 can be divided into two zones: zone 3 and

zone 4. In zone 4, the secondary network does not cause harmful interference towards

the primary users regardless of the field size, L. Therefore, expanding the field does

not eliminate any spectrum sharing opportunity. In zone 3, on the other hand, the

increase in L may move the secondary network from the non-interfering region to the

interfering region eliminating a spectrum sharing opportunity.

For a specific β value, the part of Fig. 4.15 below the curve corresponding to

that β (e.g., 0.01) is considered to be an interfering region because the interference

probability in this part is grater than 0.01. The interfering region can also be divided

into two zones. In the first one (zone 1), a reduction in L never moves the secondary

network from the interfering region to the non-interfering region except when there

is no transmitting node. Therefore, controlling the field size here does not create

a spectrum sharing opportunity. In the other zone (zone 2), on the other hand, a

reduction in L may lead to moving the secondary network from the interfering region

to the non-interfering region which creates a spectrum sharing opportunity.

At this stage we can comment on the impact of the field size on the spectrum

sharing opportunities. It has been shown that an increase in the field size may

eliminate spectrum sharing opportunities. However, there are some cases where the

spectrum sharing opportunities are not affected by the increase in the field size even if

the field size grows to infinity. Moreover, it has been demonstrated that the reduction

58



10
1

10
2

10
3

10
4

10
5

−110

−100

−90

−80

−70

−60

−50

−40

r
o
 (m)

I
th

 (
d

B
m

)

 

 

β = 10−1

β = 10−2

β = 10−3

β = 10−4
Non-Interfering Region

Interfering Region

Figure 4.16: Field location and spectrum sharing opportunities (L → ∞; see Table
4.1 for other assumptions used to produce this plot).

in the field size may open spectrum sharing opportunities. On the other hand, there

are some other cases where the reduction in the field size does not open any spectrum

sharing opportunities.

4.2.5.2 Field Location and Spectrum Sharing Opportunities

Fig. 4.16 has four curves. Each curve corresponds to a certain value of β. Each

one of these curves divides the figure into two regions: interfering and non-interfering

regions.

A parameter that the secondary network may use to move from an interfering

region to a non-interfering region is ro. By knowing the maximum acceptable inter-

ference probability β in (3.6) and Ith, Fig. 4.16 can be used to find the minimum

exclusion region (ro) satisfying these requirements. For example, if Ith = −80 dBm,

then ro should be greater than or equal to 630 m to ensure that the interference
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probability is less than or equal to 0.1.

Fig. 4.16 also reveals an interesting situation. The right side of the plot where

the lines of different β’s overlap may suggest that for sufficiently high ro there is no

need to know the distribution of the aggregate interference; knowing only the mean

is sufficient. In other words, the aggregate interference in this case is tending towards

a deterministic quantity. Similar observations are made in [19] while discussing the

ratio of the standard deviation of the aggregate interference to its mean.

4.3 Conclusions

In this chapter, we provide an asymptotic analysis of the average interference power

generated by a WSN towards a primary user sharing the same frequency band. Ap-

plying this analysis to two special but important wireless sensor field shapes produces

closed-form expressions. These expressions provide further insight into the behavior

of the average interference power generated by a sensor field towards a primary user.

based on exponential power decay with distance. Moreover, the analysis and results

presented in this chapter can also be applied to the case when a WSN shares an

unlicensed frequency band with another set of unlicensed users.

Results reported in this chapter reveal that the average interference power does

not depend on the exact values of the depth or width of the sensor field, but depends

on their ratio to the shortest distance between the field and the primary user. If this

ratio is much smaller than 1, then the average interference power changes linearly

with changes in this ratio. On the other hand, if the ratio is much greater than 1,

then the average interference power is upper bounded by a constant regardless of how

big the field is. An exception to this is when the path loss exponent is 2. In this case,

the average interface power changes logarithmically with changes in the field size.

It has been demonstrated that the annular sector shape or rectangular shape
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presented in this chapter can be used to provide a conservative approximation (an

upper bound) for the average interference power of a sensor field with any arbitrary

shape.

This chapter also studies the impact of the field size of secondary users on spec-

trum sharing opportunities. The study shows that an increase in the field size may

eliminate the spectrum sharing opportunities. However, there are some cases where

the spectrum sharing opportunities are not reduced by the increase in the field size

even when the field size grows to infinity.

The results in this chapter show the possibility of a secondary network to concur-

rently and continuously share the spectrum with a primary network without the need

for spectrum sensing techniques or other cognitive radio functionalities. This obser-

vation hints at a promising spectrum sharing solution for the wireless sensor networks

which are facing interference challenges in the crowded unlicensed spectrum.
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Chapter 5

Cumulants-Based Characterization of the

Aggregate Interference Power and Spectrum

Sharing

A cumulant-based characterization of the aggregate interference is an attractive ap-

proach. A number of recent papers in the literature have dealt with cumulants of the

aggregate interference but under specific scenarios. In this chapter, we introduce a

simple yet comprehensive method to determine the cumulants of the aggregate inter-

ference power originating from a wireless network. This method is quite general and

applicable for finite and infinite network sizes, and it is flexible to encompass different

system and propagation parameters such as large-scale fading, small-scale fading or

even composite fading. Moreover, this chapter revisits the impact of the spatial size

of the secondary network on spectrum sharing opportunities, which is discussed pre-

liminarily in Chapter 4. The study in this chapter is based on an approximation of

the distribution of the aggregate interference power and the interference probability,

rather than an upper bound.
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5.1 Introduction

While the moments and cumulants are closely related, cumulants have some properties

making them more attractive for characterizing the aggregate interference of a Poisson

field of interferers. Among these properties is that the mth cumulant of a sum of

independent random variables is equal to the sum of the individual mth cumulants

[77]. Combining this property with the independence property of disjoint Poisson

fields provides a powerful tool in characterizing the aggregate interference in a wireless

network.

To the best of our knowledge, few papers in the literature have dealt with cumu-

lants of the aggregate interference power. These papers focus on specific scenarios.

For example, [7] and [8] only consider the first cumulant, i.e., the mean. The authors

in [9] and [10] deal with cumulants for non-fading scenarios, [11] provides an inte-

gral form to compute the cumulants for out-of-cell interference in CDMA networks,

and [12] considers an infinite field with an exclusion region. Extending these results

and generalizing them for a wide range of scenarios are among the contributions of

this thesis.

In this chapter, we characterize the distribution of the aggregate interference us-

ing cumulants. We provide a very simple yet powerful method to determine the

cumulants. The method is flexible enough to be applicable to a wide range of scenar-

ios including, but not limited to, the following: finite fields, infinite fields, different

small-scale and large-scale fading distributions (e.g., Rayleigh, Rician, lognormal,

generalized-K), and variations in power levels.

5.2 Cumulants of IA

One of the contributions of this thesis is stated in the following proposition. To

interpret this proposition, it is helpful to imagine that the field of interferers would
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virtually collapse to a subfield with an effective area Aeff , an inner radius ro, and an

outer radius reff . The average number of interfering nodes within this subfield is Neff .

Proposition 1. The mth cumulant of the distribution of the aggregate interference

power received by a victim receiver at the origin from an annulus-shaped Poisson field

of i.i.d. interferers is

κm(IA) = Neff(m)µ̃m(Iro), (5.1)

where Neff(m) is the average number of interfering nodes within a radius of reff(m)

from the victim receiver, and µ̃m(Iro) is the mth raw moment of the distribution of the

interference power received by the victim receiver from an interfering node at distance

ro. We then have

Neff(m) = λAeff(m), (5.2)

where

Aeff(m) = 1
2
θ
[

r2
eff(m) − r2

o

]

, (5.3)

and

reff(m) =r̂

√

√

√

√1 +
2

mn − 2

(

1 −
[

r̂

ro + L

]mn−2
)

,

r̂ = max(min(rc, ro + L), ro).

(5.4)

Note that µ̃m(Iro) = µ̃m(X)[g(ro)]
m where µ̃m(X) is the mth raw moment of Xi .

Proof. Using Campbell’s theorem for a Poisson point process [1,14], it can be shown

that

φIA
(ω) = exp

(

−θλ

∫ ro+L

ro

∫ ∞

0

[

1 − ejωxg(r)
]

fX(x)rdxdr

)

, (5.5)

where φIA
(ω) is the characteristic function of IA, fX(x) is the PDF of Xi, and j =
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√
−1. Denoting the characteristic function of Xi by φX(ω), (5.5) can be rewritten as

φIA
(ω) = exp

(

−θλ

∫ ro+L

ro

[1 − φX(ωg(r))] rdr

)

. (5.6)

Using (5.6) and (2.1),

κm(IA) = θλµ̃m(X)

∫ ro+L

ro

gm(r)rdr. (5.7)

Then, the proof follows directly from (5.7) with some mathematical manipulations

and rearrangements.

Remarks:

• Equation (5.1) is simple yet flexible in the sense that it can be applied to a wide

range of scenarios such as finite fields, infinite fields (see Chapter 5.6), and to

different fading distributions (see Section 5.3).

• Moreover, (5.1) is applicable for many field’s topologies, including when the

PU-RX is in the middle of a secondary network or away from it.

• Equations (5.2), (5.3), and (5.4) can be combined to express κm in an expanded
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form as

κm(IA) =















































































1
nm−2

λθµ̃m(X)r2−mn
o

[

1 −
(

ro

ro+L

)mn−2
]

, 0 < rc ≤ ro ≤ ro + L

1
2
λθµ̃m(X)r−mn

c

[

r2
c − r2

o

]

+

1

nm − 2
λθµ̃m(X)r2−mn

c

[

1 −
(

rc

ro + L

)mn−2
]

,
0 ≤ ro < rc ≤ ro + L

1
2
λθµ̃m(X)r−mn

c [(ro + L)2 − r2
o], 0 ≤ ro ≤ ro + L < rc

.

(5.8)

5.3 Effect of the Distribution of X on Cumulants

As indicated in Chapter 3, the random variable Xi encompasses many system and

channel parameters. It might be modeled as the multiplication of some deterministic

and random variables reflecting the effect of different parameters, such as fluctuations

in power level and antenna gains, multipath fading, and shadow fading. From (5.1)

and µ̃m(Iro) = µ̃m(X)[g(ro)]
m, it is clear that the distribution of Xi has a major

influence on κm, and hence the distribution of the aggregate interference power. A

similar observation on the influence of the fading distribution, equivalently of the

distribution of Xi, on the aggregate interference appears in [16].

Following are some examples of κm under different distributions of Xi. While Xi

in our model is more general than just fading, examples given here consider fading

distributions only.
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5.3.1 Multipath Fading

A general model that could be used to reflect the multipath fading on the interference

power is the Gamma distribution (under the assumption of Nakagami fading for the

interference signal amplitude). The PDF of the Gamma distribution is

fX(x) =
( ν

Ω

)ν xν−1

Γ(ν)
e−

ν
Ω

x, x > 0, ν ≥ 1
2
, (5.9)

where ν is the shape parameter, Γ(·) is the Gamma function, and Ω is the average

power, i.e., E[X], which is commonly assumed to be equal to unity [93]. The mth

raw moment of the Gamma distribution with Ω = 1 can be expressed as

µ̃m(X) = ν−m Γ(ν + m)

Γ(ν)
. (5.10)

Therefore,

κm(IA) = Neff(m)[g(ro)]
mν−m Γ(ν + m)

Γ(ν)
. (5.11)

The exponential distribution (corresponding to Rayleigh fading for the interference

signal amplitude) is a special case of the Gamma distribution, when ν = 1.

5.3.2 Shadow Fading

Shadow fading is usually modeled by a lognormal random variable whose mean and

standard deviation in the dB domain are zero and σdB, respectively. Let Xi = 10Si/10,

representing the shadowing effect in the linear domain, where Si ∼ N (0, σ2
dB). It can

be shown that

µ̃m(X) = e
1

2(m ln10

10
σdB)

2

, (5.12)

and
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κm(IA) = Neff(m)[g(ro)]
me

1

2(m ln10

10
σdB)

2

, (5.13)

after a proper normalization of constant terms.

5.3.3 Composite Fading

If the wireless channel suffers from multipath and shadow fading simultaneously,

Xi can be modeled as the product of two independent random variables [14, 82].

Assuming these random variables are Gamma (for multipath fading) and lognormal

(for shadow fading), the cumulants of the normalized aggregate interference can be

expressed as

κm(IA) = Neff(m)[g(ro)]
me

1

2(m ln10

10
σdB)

2

ν−m Γ(ν + m)

Γ(ν)
. (5.14)

5.4 Generalizations of the Cumulant-Based Characterization

The formulations of the cumulants and the discussions on spectrum sharing opportu-

nities can be generalized for other cases including the following situations.

5.4.1 A Field with an Irregular Shape

If the PU-RX is inside a field of SU-TXs but the shape of this field is not a regular

disk or annular sector shape, then the results obtained before are applicable to this

case provided that the distance between the PU-RX and the nearest edge of the field

is much greater than the radius of the exclusion region around the PU-RX. Otherwise,

the field can be segmented into disjoint segments and the total mth cumulant will be

the sum of mth cumulants of each segment, i.e.,

κm =
∑

i

κmi
, (5.15)
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where κmi
is the mth cumulant of segment i. This result is obtained from the in-

dependence property of disjoint Poisson fields and the property of the cumulants of

independent random variables that states the mth cumulant of the sum of indepen-

dent random variables is the sum of their individual mth cumulants.

5.4.2 A Field of Heterogeneous Networks

The results obtained before have been based on the assumption that the Xi are iden-

tically distributed. However, for a heterogeneous network (which can be visualized

as the overlap of different types of networks) the distributions of the Xi might be

non-identical. If each network by itself makes a Poisson field and those sub-networks

are independent of each other, then it can be shown that the mth cumulant of the

heterogeneous network is the sum of the mth cumulant of each of the individual net-

works. It is worth noting that a similar approach, i.e., considering a heterogeneous

network as a set of overlapping homogeneous networks, is used in [63] to develop a

moment generating function of the aggregate interference in heterogeneous networks.

5.4.3 Many Primary Users

While the system model considers a single PU-RX, results of this chapter are still

useful for cases having many PU-RXs (composing a primary network). For example, if

a primary network allows spectrum sharing only if none of its PU-RXs is experiencing

harmful interference, then analysis in this chapter should be applied to the PU-RX

representing the worst case scenario. An example of a PU-RX representing the worst

case scenario is when this PU-RX is at the center of the secondary network given

that a portion of the primary network overlaps with the center of the secondary

network. Another example is when the primary network and secondary network

partially overlap at the edges. In this case, the deepest PU-RX within the secondary

network will be considered for the analysis. A third example is when the primary
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network and secondary network do not overlap. Then, the analysis will be based

on the closest PU-RX to the secondary network. Furthermore, the results in this

chapter could be used to establish an upper-bound of the interference probability,

or a lower bound of spectrum sharing opportunities. Generally, the results of this

chapter can be extended to investigate the spectrum sharing opportunities that a

secondary network may have in the presence of a primary network that imposes a

network level harmful interference metric, which could be a generalization of the user

level harmful interference metric shown in (3.6).

5.5 Cumulants-based Approximations of the Distribution of

the Aggregate Interference Power

The distribution of IA can be approximated using a finite set of its cumulants. This

section discusses some of these cumulant-based approximations.

5.5.1 Edgeworth Series Expansion

The Edgeworth expansion is a simple approach used to expand the logarithm of the

characteristic function using its Taylor series expansion. Based on this expansion

and knowing the cumulants of a random variable, the PDF of this random variable

can be approximated [11]. A detailed discussion of the Edgeworth expansion for

approximating a PDF is provided in [78].

The Edgeworth series expansion is used in [9,11,12] to approximate the PDF of the

aggregate interference. An approximation of the PDF of IA based on this approach

and using the first few cumulants can be written as:

fĨA
(y) ≃ fnd(y)[1 +

κ̃3(IA)

6
H3(y) +

κ̃4(IA)

24
H4(y) +

κ̃2
3(IA)

72
H6(y)], (5.16)
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where ĨA = IA−κ1(IA)

κ
1/2

2
(IA)

which is the standardized IA, fnd(y) is the standard Normal

PDF, and κ̃m is the mth standardized cumulants which is equal to κm

κ
m/2

2

for m ≥ 2

and 0 for m = 1. Hm(y) are the Hermite polynomials which are defined by

Hm(y) = (−1)mfnd(y)−1 dm

dym
fnd(y). (5.17)

The (outage) interference probability can be calculated as

P (IA ≥ Ith) = P (ĨA ≥ Ĩth) =

∫ ∞

Ĩth

fĨA
(y)dy, (5.18)

where Ĩth = Ith−κ1(IA)√
κ2(IA)

.

It is important to highlight that while the Edgeworth series expansion is an asymp-

totic expansion for the PDF, the finite Edgeworth series should be applied with some

caution: it is applicable for moderately-skewed distributions only. Conditions under

which the Edgeworth finite approximation can be used are discussed in [94].

5.5.2 Shifted Lognormal

If the distribution of the aggregate interference has a positive skewness, IA can be

approximated by a lognormal random variable. An enhanced version of the lognor-

mal approximation, called shifted lognormal approximation, is proposed in [95], and

used in [12] to approximate the distribution of the aggregate interference power. The

shifted lognormal approximation is a three-parameter approximation. These param-

eters are obtained from the first three cumulants. To implement this approximation

for the aggregate interference considered in this thesis, let Z denotes the shifted log-

normal random variable whose PDF can be written as

fZ(z) =
1

s(z − b)
√

2π
e−(ln(z−b)−u)2/2s2

, z > b, (5.19)
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where s, b, and u can be calculated as follows:

s2 = ln τ,

u =1
2
ln

κ2(IA)

τ(τ − 1)
,

b =κ1(IA) −
√

κ2(IA)

τ − 1
,

τ =
[

υ +
√

υ2 − 1
]1/3

+
[

υ −
√

υ2 − 1
]1/3

− 1,

υ =1 + 1
2
ρ2,

ρ =
κ3(IA)

[κ2(IA)]3/2
.

(5.20)

Then, the (outage) interference probability can be approximated as

P (IA ≥ Ith) ≃ Q

(

ln(Ith − b) − u

s

)

. (5.21)

5.5.3 General Remarks on the Approximations

As an alternative approximation approach, cumulants can be used to calculate the

moments. Then, moments-based approximations or bounds can be applied to ap-

proximate the distribution of IA [78].

Generally, [16] highlights some helpful guidelines for the approximation of the

distribution for the aggregate interference which can be summarized as follows. The

fading distribution dictates the approximating distribution of the aggregate interfer-

ence. If the fading distribution in the aggregate interference decays polynomially,

then the distribution of the aggregate interference should be approximated by a poly-

nomially decaying distribution (like a lognormal distribution). However, if the fading

distribution decays exponentially, then an exponentially decaying distribution (like a

Gamma distribution) could be used as an approximating distribution.
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5.5.4 Approximation and Simulation Results for the Distribution of IA

Fig. 5.1 and Fig. 5.2 compare the the performance of different approximating dis-

tributions with respect to the Monte Carlo simulation for fading and non-fading

scenarios, respectively. Edgeworth series expansion, shifted lognormal and Gamma

approximations work well for the non-fading case. However, if we go deep in the

upper tail, the Edgeworth series approximation deviates. The performance of the

shifted lognormal and Gamma approximations continue to provide good approxima-

tions. Introducing shadow fading increases the skewness of the distribution of IA and

makes it a heavy tailed distribution. As a result, the Edgeworth series expansion fails

to approximate the distribution; it generates a PDF with negative values, therefore,

we exclude it from Fig. 5.2. The Gamma distribution also does not provide a good

approximation when the distribution of IA has a heavy tail. The shifted lognormal

distribution, on the other hand, provides an acceptable approximation of the upper

tail of the distribution of IA, as shown in Fig. 5.2. In this thesis, we focus more

on the interference probability as the metric for the spectrum sharing; therefore, the

upper tail of the CCDF is more relevant than the body.

5.6 A Cumulant-Based Investigation of the Impact of Sec-

ondary Users’ Field Size on Spectrum Sharing Opportu-

nities

This section revisits the effect of the field (network) size on spectrum sharing oppor-

tunities, which is discussed preliminarily in Chapter 4.
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Figure 5.1: The CCDF of IA (ro = 10 m, L = 1000 m, n = 3, λ = 0.01 node/m2,
θ = 2π, no multipath fading, no shadow fading). (a) The CCDF on a linear scale.
(b) The upper tail of the CCDF (log-log scale).
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Figure 5.2: The CCDF of IA (ro = 10 m, L = 1000 m, n = 3, λ = 0.01 node/m2,
θ = 2π, Rayleigh fading, 6 dB shadow fading). (a) The CCDF on a linear scale. (b)
The upper tail of the CCDF (log-log scale). The curve for the Edgeworth approxima-
tion is excluded because it fails to generate a valid CCDF curve for heavily skewed
distributions. We show a lognormal approximation instead.
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5.6.1 Objective and Approach

Works such as [9, 12, 17, 18] study the effect of various system parameters on the

harmful interference metric. However, a system parameter that has not received

much attention is the spatial size of the field of secondary users. In most studies, the

spatial size of the field is assumed to be infinite.

One might argue that asymptotic results obtained for infinite fields may be used

as bounds for finite fields. However, since the spectrum sharing is opportunistic,

using results developed for an infinite field may end up being too pessimistic leading

to missing spectrum sharing opportunities. This concern about the applicability of

the results of infinite fields could be addressed properly by studying the behavior of

the harmful interference metric, and hence the spectrum sharing opportunities, with

respect to changes in the field size.

In this section, we investigate the behavior of the cumulants, and hence the ag-

gregate interference power, with respect to changes in the network size for various

fading distributions. In this thesis, we consider a two-dimensional field but without

assuming that the field is infinite; rather we consider a general setup in which the

infinite field is a special case. We use the interference probability as the harmful

interference metric. We study how the interference probability and, correspondingly,

the spectrum sharing opportunities, would change with changes in the field size. The

study shows that in some cases an increase in the field size may eliminate spectrum

sharing opportunities; however, our study also demonstrates that there are other cases

where the spectrum sharing opportunities are not affected by the increase in the field

size even if the field size grows to infinity. Moreover, it is observed that while the

reduction in the field size may open spectrum sharing opportunities in some cases; it

does not in some other cases.

The rest of this section is organized as follows. First, Subsection 5.6.2 discusses
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the effect of the field size on the cumulants of IA. Then, the effect of the field size on

spectrum sharing is addressed in Subsection 5.6.3.

5.6.2 Effect of Spatial Size of the Field and SU-TXs Density on the Cu-

mulants

As shown before, the mth cumulant of IA can be expressed as

κm(IA) = Neff(m)g(ro)
mµ̃m(X), (5.22)

where

Neff(m) = λAeff(m), (5.23a)

Aeff(m) = 1
2
θ
[

r2
eff(m) − r2

o

]

, (5.23b)

reff(m) = r̂

√

√

√

√1 +
2

mn − 2

(

1 −
[

r̂

ro + L

]mn−2
)

, (5.23c)

r̂ = max(min(rc, ro + L), ro). (5.23d)

The spatial size of the field is controlled by L, ro, and θ. The changes in L affect

reff , and hence Aeff and κm. However, this effect is limited. As L increases, reff

increases but it tends to a limiting value regardless of further increase in L. As m

or n increases, reff approaches the limiting value faster. The effect of changes in L is

significant only for lower-order cumulants and for L closer to or less than max(rc, ro).

As L approaches the value of max(rc, ro), its effect becomes weaker and it will be

negligible when (max(rc,ro)
ro+L

)mn−2 ≪ 1.

As an example, Fig. 5.3 shows that the limiting value for κ1 is almost reached

when L > 100 m for a field with no exclusion region (ro = 0). However, κ2 is almost

at the limiting value when L > 2 m. The higher-order cumulants tend faster (at

lower values of L) to the limiting values. Therefore, doubling L or even expanding it
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Figure 5.3: The effect of L on Aeff , and hence on κm, for the case of no exclusion
region around the PU-RX (rc = 1 meter, θ = 2π, and n = 3).

to infinity has a negligible (or practically no) effect on κm provided that κm is almost

at the limiting value.

If there is an exclusion region, e.g., ro = 10 m, then the limiting value will be

almost reached when L > 1000 m for the first cumulant and L > 20 m for the

second cumulant. A smaller L will be required to closely approach the limiting value

for higher cumulants, as seen in Fig. 5.4.

Interestingly, the value of reff tends to max(rc, ro)
√

1 + 2
mn−2

as L → ∞. From

this, we may conclude that κm is controlled mainly by the region which is close to the

victim receiver. The dominant region for κ1 (the average) is wider than that for κ2

(the variance). It shrinks as m increases. On the other hand, this dominant region

expands as ro (the exclusion region) increases.

The exclusion region has an effect on Aeff of an order of r2
o (provided that ro > rc).

Moreover, ro affects the value of µ̃m(Iro) by an order of r−mn
o . Therefore, the net effect
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Figure 5.4: The effect of L on Aeff , and hence on κm, for the case of an exclusion
region of ro = 10 meters (rc = 1 meter, θ = 2π, and n = 3).

of ro on κm is in the order of r2−mn
o , which suggests that increasing the value of ro

is an effective way to lower the aggregate interference. However, increasing ro may

contradict the performance objectives of the wireless network [10, 15, 63]. Therefore,

an optimal tradeoff is to be found.

Regarding the effect of the active node density (λ), it has a linear effect on all

cumulants. Therefore, it is one of the important parameters that could be used to

control the level of interference at the PU-RX.

Similarly, θ has a linear effect on the cumulants. However, it is limited to the

range [0, 2π]. It may reflect the effectiveness of using a directional antenna at the

PU-RX.

The effect of the increase in the network size (spatial size and node density) on

the mean of the aggregate interference is considered in [57] and [7]. Moreover, the
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effect on the variance is discussed in [21]1. However, to the best of our knowledge,

this thesis is the first to address the effect of the spatial size on all cumulants of

the aggregate interference. In this chapter, we don’t focus on the effect of ro on IA

because it has been the subject for other papers, such as [10], [15] and [63].

5.6.3 Effect of Field Size on Spectrum Sharing Opportunities

5.6.3.1 Spectrum Sharing Opportunities

If the condition in (3.6) is satisfied, we consider a spectrum sharing opportunity exists.

Therefore, for a certain value of Ith, the interference probability (Pint = P (IA ≥ Ith))

will be compared to β. If Pint is less than or equal to β, then the aggregate interference

of the secondary network is considered to be non-harmful to the PU. In this case,

the secondary network is considered to be operating in a non-interfering region. On

the other hand, the secondary network operates in an interfering region if it causes

harmful interference to the PU.

If the secondary network operates in an interfering region, then it may access the

spectrum of the PU during the absence of the PU. However, when the PU starts using

the spectrum, then the secondary network has to leave the spectrum or to change

its transmission parameters to move to the non-interfering region. For the secondary

network to be able to sense the PU and to perform a proper action accordingly, it

should employ a technology such as a “cognitive radio” [5, 6].

On the other hand, if the secondary network operates in the non-interfering region,

then it can concurrently share the spectrum with the PU. It is possible that the

secondary network operations will be in the non-interfering region under all practically

possible scenarios. In this case, the secondary network could share the spectrum with

the PU without the need to implement any spectrum sensing technique or cognition

1The divergence of the aggregate interference power for an infinite two-dimensional field is also
discussed in [55, 56].
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related function.

5.6.3.2 Field Size and Spectrum Sharing Opportunities

In this chapter, a discussion of the effect of the field size on spectrum sharing oppor-

tunities is based on approximating the distribution of IA by a shifted lognormal; see

Chapter 5.5 for more details. Therefore, the interference probability can be written

as

P (IA ≥ Ith) ≃ Q

(

ln(Ith − b) − u

s

)

. (5.24)

Expressions for b, u and s are given in Section 5.5.2 in terms of the cumulants of IA.

Fig. 5.5 reflects the effect of the field size on spectrum sharing opportunities. This

figure has a straight line that corresponds to a certain value of β. This line divides

the figure into two main regions: interfering and non-interfering regions.

If β (e.g., 0.1) is the maximum interference probability that a PU can tolerate,

then the aggregate interference generated by the secondary network is not considered

to be harmful if the interference probability is less than β. Therefore, a non-interfering

region in Fig. 5.5 corresponds to the part of the figure below the straight line of 10−1.

In this case, the spectrum of the PU can be shared with the secondary network.

If the secondary network operates in the upper part of Fig. 5.5, i.e., the interfering

region, the secondary network could utilize the spectrum during the absence of the

PU. If the PU is present and active, then it is possible for the secondary network to

access the spectrum provided that it has adapted its operation parameters, and has

moved to the non-interfering region.

There are three curves in Fig. 5.5; each curve corresponds to a certain value of Ith.

For the curve corresponding to Ith = 0.009,2 the secondary network does not cause

2All values of Ith mentioned here and in Fig. 5.5 are normalized with respect to the deterministic
parts of IA, e.g., transmit power and antenna gains, which are not of interest in this discussion. The
values of Ith are properly chosen from the corresponding CCDF curve; see for example Fig. 5.1.
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Figure 5.5: Field size and spectrum sharing opportunities (ro = 10 m, n=3, rc = 1
m, θ = 2π, λ = 0.01 node/m2, no multipath fading, no shadow fading). The dashed
line corresponds to Pint = β = 0.1, which divides the figure into two regions: a non-
interfering region (the lower part of the figure), and an interfering region (the upper
part of the figure). The values of Ith are properly chosen from the corresponding
CCDF curve; see for example Fig. 5.1.

harmful interference towards the PU regardless of the field size, L. Therefore, the

field expansion does not eliminate any spectrum sharing opportunity. For the curve

corresponding to Ith = 0.007, on the other hand, the increase in L may move the

secondary network from the non-interfering region to the interfering region eliminating

a spectrum sharing opportunity. From the same curve and starting with a field with

a large L, we may also deduce that a reduction in the field size might lead to moving

the secondary network from the interfering region to the non-interfering region which

creates a spectrum sharing opportunity. For the curve corresponding to Ith = 0.004,

a reduction in L never moves the secondary network from the interfering region to the

non-interfering region except when there is no transmitting node. Therefore, reducing
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the field size here does not create a spectrum sharing opportunity.

At this stage we can comment on the impact of the field size on the spectrum

sharing opportunities. In summary, it has been shown that an increase in the field

size may eliminate spectrum sharing opportunities. However, it is possible that the

increase in the field size, even if the field size grows to infinity, does not affect the

the spectrum sharing opportunities. Moreover, a reduction in the field size may open

spectrum sharing opportunities. However, there are some cases where the reduction

in the size of the field does not help in opening any spectrum sharing opportunities.

Regarding the applicability of asymptotic results obtained for a field of an infinite

size to the case where the field size is finite, we can state the following: asymptotic

results obtained for infinite fields can be applied for finite fields whose radial depth

(L) is much greater than the minimum distance between the field and the PU (ro).

Otherwise, these asymptotic results will be too conservative and may lead to missing

spectrum sharing opportunities.

In Fig. 5.5 where ro = 10 meters, the interference probability is almost constant

as long as L > 1000 meters. Fig. 5.6 shows curves for different values of ro. From

this figure, we can highlight some observations as follows. For lower ro, the inter-

ference probability tends to a limiting value faster with respect to the increase in

L. Furthermore, Fig. 5.6 reflects the importance of the exclusion region in creating

spectrum sharing opportunities. A slight increase in ro could move the operation of

the secondary network to the non-interfering region and create a spectrum sharing

opportunity.

The value of ro can be properly designed during the pre-deployment stages of

the secondary network. For an already deployed secondary network, it is possible to

virtually control ro by a MAC protocol forcing nodes within a distance of ro from the

primary user not to transmit.
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Figure 5.6: Field size and spectrum sharing opportunities under different values of ro

(n = 3, rc = 1 m, θ = 2π, λ = 0.01 node/m2, no multipath fading, no shadowing, Ith

= 0.009). The dashed line corresponds to Pint = β = 0.1, which divides the figure into
two regions: a non-interfering region (the lower part of the figure), and an interfering
region (the upper part of the figure).

5.7 Conclusions

We characterized the aggregate interference power generated by a secondary network

through a cumulant-based approach. We introduced a simple yet comprehensive

method to calculate the cumulants. Our method is applicable for finite and infinite

secondary networks, and is flexible to encompass different system and propagation

parameters including large-scale fading, small-scale fading, and composite fading.

Moreover, we presented some cumulant-based approximations of the distribution of

the aggregate interference power. The shifted lognormal distribution shows a better

match for the upper tail of the distribution of the aggregate interference power es-

pecially when the skewness is high. Since the upper tail of the distribution of the
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aggregate interference power is more relevant to my discussions on spectrum sharing,

the shifted lognormal distribution is used as the approximating distribution in this

thesis. We discussed the behavior of these cumulants with respect to changes in the

network size and fading distributions. An important contribution of this chapter is

the study of the impact of the field size of secondary users on the aggregate inter-

ference power, and hence on spectrum sharing opportunities. We showed that an

increase in the field size may eliminate the spectrum sharing opportunities. However,

we also showed that there are some cases where the spectrum sharing opportunities

are not reduced by the increase in the field size even when the field size grows to in-

finity. It was demonstrated that asymptotic results obtained for an infinite field could

be applied for a finite field whose radial depth is much greater than the minimum

distance between the field and the primary user. Otherwise, these asymptotic results

will be too conservative and may lead to missing spectrum sharing opportunities.
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Chapter 6

The Gaussian Convergence of the Distribution of

the Aggregate Interference Power

As the number of interfering nodes in a wireless network increases, there might be

a tendency to approximate the distribution of the aggregate interference power by

a Gaussian random variable given that the individual interference signals are inde-

pendent. However, some observations in the literature suggest that this Gaussian

approximation is not valid, except under some specific scenarios. In this chapter, we

cast these observations in a single mathematical framework and express the condi-

tions for which the Gaussian approximation will be valid for the aggregate interference

power generated by a Poisson field of interferers. Furthermore, we discuss the effect

of different system and channel parameters on the convergence of the distribution of

the aggregate interference to a Gaussian distribution.

6.1 Introduction

It is common to characterize the interference in large wireless networks using a Poisson

point process (PPP). Therefore, the aggregate interference can be considered as the

sum of a large number of independent interference signals. Thus, there might be

a tendency to approximate the aggregate interference power by a Gaussian random
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variable. However, this approximation is not valid, except under certain conditions.

the authors in [11] consider the interference in a CDMA network and indicate that

the distribution of the aggregate interference power from users in other cells is likely

to be Gaussian if there is a large number of interfering users in the vicinity of the

victim cell. The authors in [13] consider the aggregate interference in a CDMA

network as well and show that the distribution of the aggregate interference power

converges to a Gaussian distribution as the traffic measure (which can be related

to the average number of interferers in a cell) goes to infinity. The authors in [14]

indicate that the Central Limit Theorem (CLT)1 does not apply in the case where

some of the interferers are dominant although the number of interferers may be large.

It is indicated in [16] that the Gaussian distribution is a bad approximation for the

distribution of the aggregate interference when the node density is low. Based on

simulation results, [15] shows that the Gaussian approximation could be acceptable

when there is a wide-enough exclusion region (with no interferers) around the victim

receiver. It is also indicated in [48] that when the exclusion region is relatively small

the distribution of the interference power has a heavy tail; therefore, the Gaussian

distribution does not model the interference very well2.

Observing that the aggregate interference can be modeled as shot noise, discus-

sions in [99] on the convergence of shot noise to a Gaussian random variable become

relevant to our study. The authors in [99] proved that under certain conditions the

shot noise converges in distribution to Gaussian when the intensity (density) of the

underlying point process of the shot noise goes to infinity. However, no discussion has

been given to the effect of the exclusion region on this convergence. In this chapter,

1The history of the CLT is summarized in [96].
2In the context of ultrawide bandwidth (UWB) systems, the validity of the Gaussian approxi-

mation for the multiuser interference in Time-Hopped UWB is discussed in [97, 98]. However, the
number of interferers is assumed to be deterministic. In contrast, this thesis uses PPP which ac-
counts for the spatial distribution of the interferers and imposes a randomness in the number of
interferers.
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we apply some of the results obtained in [99] to the case of the aggregate interference

power in large wireless networks. We incorporate in the formulations the effect of the

exclusion region and identify the rate of the Gaussian convergence with respect to the

size of the exclusion region. Moreover, we discuss the effect of fading distributions,

including the small-scale and large-scale fading, on this convergence.

The rest of this chapter is organized as follows. Section 6.2 establishes the math-

ematical framework to quantify how far away the distribution of the aggregate inter-

ference power is from a Gaussian distribution. Also, the same section discusses some

system and channel parameters affecting the convergence to a Gaussian distribution.

The effect of the fading distributions is addressed in Section 6.3. The chapter is

concluded by some remarks in Section 6.4.

6.2 Berry-Esseen Bound for the Distribution of IA

Our investigation of the Gaussianity of the distribution of IA is based on the Berry-

Esseen bound. This bound is explained in its basic form in Appendix A. Formulations

for the Berry-Esseen bound when the underlying process is a stationary PPP are ob-

tained in [99]. These formulations are extended in [100] by removing the requirement

that a PPP is stationary. We apply the results in [99] and [100] to investigate the

Gaussianity of the distribution of IA.

Let µ̃A and σA be the mean and standard deviation of IA, respectively. Let FZ(y)

denote the cumulative distribution function (CDF) of Z (where Z = IA−µ̃A

σA
), and FN

denote the CDF of the standard normal distribution, i.e., N (0, 1). Then, for all y

|FZ(y) − FN (y)| ≤ 2.21
κ3(IA)

[κ2(IA)]
3
2

, (6.1)

where κ2(IA) and κ3(IA) are the second and third cumulants of IA, respectively.

88



Equation (6.1) is a new formulation of the Berry-Esseen bound. The formulation

of the Berry-Esseen bound in [99] is not explicitly presented in terms of cumulants.

However, as shown in Appendix B, we equivalently expressed the Berry-Esseen bound

using the second and the third cumulants.

Results obtained in Chapter 5, [48], or [58] can be used to find κ2(IA) and κ3(IA).3

Based on Chapter 5, the mth cumulant of IA can be written as

κm(IA) = Neff(m)g(ro)
mµ̃m(X), (6.2)

where

Neff(m) = λπ
[

r2
eff(m) − r2

o

]

, (6.3a)

reff(m) = max(rc, ro)

√

mn

mn − 2
. (6.3b)

Here, Neff(m) virtually represents the average number of active nodes as seen by the

victim receiver in an annular region of inner radius ro and an outer radius reff . The

parameter µ̃m(X) denotes the mth raw moment of Xi, i.e., E[Xm
i ]. For convenience

and since Xis are i.i.d., we omit the subscript i. Using (6.2) and (6.3) in (6.1), the

Berry-Esseen bound for the distribution of IA can be expressed as

|FZ(y) − FN (y)| ≤ 2.21
Neff(3)µ̃3(X)

[Neff(2)µ̃2(X)]
3
2

. (6.4)

There are three possible topologies with respect to the exclusion region: an exclu-

sion region with ro ≥ rc, no exclusion region (ro = 0), and an exclusion region with

0 < ro < rc. We do not discuss the third topology here since results for the third

3It is worth highlighting that cumulants are derived by differentiating the logarithm of the char-
acteristic function (or moment generating function) of IA. There are different approaches in the
literature to derive this characteristic function for a PPP. One approach is to use the conditional
expectation as explained in [48, 53]. Another approach is to use Campbell’s theorem for a PPP as
demonstrated in [11, 12, 22].
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topology are bounded by the results of the first two topologies. However, results for

the third topology can be easily obtained from (6.2), (6.3), and (6.4).

6.2.1 Exclusion Region (ro ≥ rc)

For this topology, it can be shown from (6.3) and (6.4) that the Berry-Esseen bound

yields4

|FZ(y) − FN(y)| ≤ 2.21
2(n − 1)

3
2

3n − 2

1
√

λπr2
o

µ̃3(X)

[µ̃2(X)]
3
2

. (6.5)

Remarks:

• It is observed from (6.5) that the bound is mainly controlled by the path-loss

exponent, the active node density, the radius of the exclusion region, and the

fading distribution.

• The active node density is an important parameter in the convergence of the

distribution of IA to a Gaussian distribution. As λ increases, the bound becomes

smaller and the distribution of IA becomes closer to the Gaussian distribution;

Figs. 6.1 and 6.2 show simulation results supporting this remark. Fig. 6.1

considers the histograms of the normalized IA for different values of λ. These

histograms reflect the shape of the PDF of IA as compared to a Gaussian distri-

bution. In Fig. 6.2 the comparison is performed among the CDFs. The rest of

the figures shown in this chapter focus on CDFs, which are more relevant to the

Berry-Esseen bound. It is observed from (6.5) that the rate of Gaussian con-

vergence with respect to the increase in λ is
√

λ, which agrees with the findings

in [99].

• Similarly, as the exclusion region increases, the bound in (6.5) becomes smaller.

Hence, the distribution of IA converges to a Gaussian distribution. Simulation

4A generalization of (6.5) for a d-dimensional space is considered in Appendix C.
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Figure 6.1: Monte-Carlo simulation-based histograms for the normalized IA, i.e.,
IA−µ̃A

σA
, for different values of λ (ro = 10 meters, rc = 1 meter, n = 3, no multi-

path fading, and no shadow fading). (a) λ = 0.001 nodes/meter2. (b) λ = 0.01
nodes/meter2. (c) λ = 0.1 nodes/meter2.
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Figure 6.2: Monte-Carlo simulation-based CDF for the normalized IA, i.e., IA−µ̃A

σA
, for

different values of λ (ro = 10 meters, rc = 1 meter and n = 3).

results shown in Fig. 6.3 demonstrate this convergence. However, the conver-

gence caused by increasing ro is faster than convergence caused by increasing

λ. The rate of convergence with respect to the size of the exclusion region is
√

πr2
o.

• An explanation for this convergence with respect to the increase in λ and ro is

as follows. What really matters for the convergence of the distribution of IA to

Gaussianity is the number of dominant interferers around the victim receiver,

not the total number of interferers in the field. The number of dominant in-

terferers is controlled mainly by the active node density and an effective area

around the victim receiver. As λ increases, the number of dominant interferers

increases. Similarly, as ro increases the effective area increases as well, hence

the number of the dominant interferers increases. By virtue of the CLT, as the

number of the dominant interferers increases, the distribution of IA converges

to a Gaussian distribution.
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Figure 6.3: Monte-Carlo simulation-based CDF for the normalized IA, i.e., IA−µ̃A

σA
, for

different values of ro (λ = 0.01 nodes/meter2, rc = 1 meter and n = 3).

• The lower n is, the better the convergence becomes. However, this effect on

convergence is minor since the range of n is practically limited. Assuming

n ∈ (2, 6],

0.5 <
2(n − 1)

3
2

3n − 2
≤ 1.4. (6.6)

The effect of the fading distribution on the Gaussianity of IA is discussed in Section

6.3.

6.2.2 No Exclusion Region (ro = 0)

If there is no exclusion region around the victim receiver, i.e., ro = 0, then it can be

shown from (6.3) and (6.4) that the Berry-Esseen bound becomes

|FZ(y) − FN(y)| ≤ 2.21
3(n − 1)

3
2√

n(3n − 2)

1
√

λπr2
c

µ̃3(X)

[µ̃2(X)]
3
2

. (6.7)
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Remarks:

• From (6.7), it might be concluded that a high rc value improves the Gaussian

approximation. However, rc is used in the path-loss model to avoid the singu-

larity at ri = 0. The model effectively fixes the distance-dependant attenuation

over a small disk of radius rc around the victim receiver. Therefore, the value

of rc should be kept relatively small.

• To justify the Gaussian approximation for this topology,
√

λπr2
c should be large.

However, since rc is relatively small then λ should be very high. To demonstrate

this, let us assume that there are two networks: Net(ro=100) with an exclusion

region of ro = 100 meters and Net(ro=0) without an exclusion region. Except for

ro, these two networks are assumed to have the same system and channel pa-

rameters including rc = 1 meter and n = 3. Assuming that these two networks

have the same active node densities, the Berry-Esseen bound for Net(ro=100) can

be shown to be smaller than the one for Net(ro=0) by about 20 dB. Therefore,

the distribution of IA in Net(ro=100) is much closer to Gaussianity in comparison

to the distribution of IA in Net(ro=0). For Net(ro=0) to have the same Berry-

Esseen bound value as of Net(ro=100), the active node density in Net(ro=0) has to

be about 40 dB higher, which might be too high unless the active nodes density

of Net(ro=100) is too low.

• Therefore, the Gaussian approximation could be possible for wireless networks

with a sufficiently wide exclusion region. However, the validity of the approxi-

mation is questionable when there is no exclusion region or when the exclusion

region is small5, unless the active node density is very high which might be

practically infeasible.

5The authors in [48] shows that a lognormal distribution can be used to approximate the distri-
bution of the aggregate interference power when the exclusion region is small.
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• From (6.5) and (6.7), it might be deduced that the Gaussian approximation is

valid if
√

λπr2
o >> 2.21

2(n − 1)
3
2

3n − 2

µ̃3(X)

[µ̃2(X)]
3
2

, for ro ≥ rc, (6.8)

or
√

λπr2
c >> 2.21

3(n − 1)
3
2√

n(3n − 2)

µ̃3(X)

[µ̃2(X)]
3
2

, for ro = 0. (6.9)

6.3 Effect of Fading Distributions on the Gaussian Approxi-

mation of IA

In this section, we investigate the effect of the distribution of Xi, i.e., the fading

distribution, on the Gaussian convergence of the distribution of IA. We provide

expressions for µ̃3(X)/ [µ̃2(X)]
3
2 considering different fading cases. These expressions

can be used with (6.4), (6.5) or (6.7) to get the related Berry-Esseen bounds.

6.3.1 Case I: Without Multipath Fading and without Shadow Fading

For the case without fading (neither multipath nor shadow fading), Xi becomes de-

terministic. Therefore,

µ̃3(X)

[µ̃2(X)]
3
2

= 1, (6.10)

which leads to

| FZ(y) − FN (y) | < 2.21
2(n − 1)

3
2

3n − 2

1
√

λπr2
o

. (6.11)

Equation (6.11) may be considered as the baseline to judge the effect of fading on the

Gaussian convergence.
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6.3.2 Case II: With Multipath Fading but without Shadow Fading

The effect of multipath fading on the received individual interference power Ii can

be modeled by a Gamma random variable (which is a result of the assumption that

the envelope of the interference signal can be modeled by the versatile Nakagami

distribution). In this case, the probability density function (PDF) of Xi can be

represented as [93]

fX(x) =
( ν

Ω

)ν xν−1

Γ(ν)
e−

ν
Ω

x, x > 0, ν ≥ 1
2
, (6.12)

where Ω is the average received power, ν is the shape parameter, and Γ(·) is the

Gamma function. The mth moment of Xi can be expressed as

µ̃m(X) =

(

Ω

ν

)m
Γ(ν + m)

Γ(ν)
. (6.13)

Thus,

µ̃3(X)

[µ̃2(X)]
3
2

=
Γ(ν + 3)

[Γ(ν + 2)]
3

2

Γ(ν)
1

2 =
ν + 2

√

ν(ν + 1)
. (6.14)

We may conclude that the multipath fading shifts the distribution of the IA away

from Gaussianity. However, the shift is limited since, for 1
2
≤ ν < ∞,

1 <
ν + 2

√

ν(ν + 1)
≤ 2.89. (6.15)

6.3.3 Case III: With Shadow Fading but without Multipath Fading

The shadow fading is commonly modeled by a lognormal random variable with log-

arithmic mean 0 dB and standard deviation σs dB. Therefore, the effect of shadow

fading on the aggregate interference power can be reflected by assuming that Xi is

a lognormal random variable, and hence it has the following expression for its mth
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Figure 6.4: Values of µ̃3(X)/ [µ̃2(X)]
3
2 for different values of σs.

moment:

µ̃m(X) = e
1

2(m ln 10

10
σs)

2

, (6.16)

which leads to

µ̃3(X)

[µ̃2(X)]
3
2

= e
3
2(

ln 10

10
σs)

2

. (6.17)

As shown in Fig. 6.4, for typical values of σs, e.g., σs ∈ [4, 10] dB, the effect of shadow

fading on µ̃3(X)/ [µ̃2(X)]3/2, and consequently on the Berry-Esseen bound, could be

dominant compared to the effect of multipath fading.

6.3.4 Case IV: With Composite Fading

If the interference signals are subject to both multipath and shadow fading, Xi can

be modeled as the product of two independent random variables, such as a Gamma

random variable (for the multipath fading) and a lognormal random variable (for the
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shadow fading). Thus, using (6.14) and (6.17),

µ̃3(X)

[µ̃2(X)]
3
2

=
ν + 2

√

ν(ν + 1)
e

3
2(

ln 10

10
σs)

2

. (6.18)

6.3.5 General Remarks

Having multipath or shadow fading shifts the distribution of IA away from Gaussian-

ity. To maintain the Gaussianity, the density of active nodes should be increased or

the exclusion region should be extended.

Fig. 6.5 reflects the divergence from the Gaussian distribution that the fading

distribution may cause. It shows three different fading scenarios. It is clear from

the figure that the divergence caused by lognormal shadow fading with σs = 6 dB

is more than the one caused by the Rayleigh multipath fading. In the presence of

significant shadow fading, the Gaussian distribution is a very poor approximation for

the distribution of IA unless the active node density is too high or the exclusion region

is too wide.

6.4 Conclusions

In this chapter, we studied the convergence of this distribution to a Gaussian dis-

tribution. Based on the Berry-Esseen bound, we casted in a single mathematical

framework some observations scattered across the literature about the Gaussianity of

the distribution of the aggregate interference power. We showed that an increase in

the size of the exclusion region brings the distribution of the aggregate interference

power closer to the Gaussian distribution. Increasing the active node density has a

similar effect. However, the convergence is faster with the increase in the size of the

exclusion region compared to the increase in the active node density. In contrast,

channel fading causes divergence from Gaussianity. Shadow fading typically causes

98



−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized I
A

C
D

F

 

 

No fading

Rayleigh fading only

Shadow fading (σ
s
= 6 dB) but no multipath fading

Rayleigh fading and shadow fading (σ
s
= 6 dB)

Standard normal distribution, i.e., N(0,1)

Figure 6.5: Monte-Carlo simulation-based CDF for the normalized IA, i.e., IA−µ̃A

σA
,

for different fading scenarios (ro = 10 meters, rc = 1 meter, n = 3, and λ = 0.01
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more divergence as compared to multipath fading.
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Chapter 7

Identifying Boundaries of Dominant Regions

Dictating Spectrum Sharing Opportunities

It is indicated in previous chapters and in the literature as well that the aggregate

interference power of an infinite network (such as a very large secondary network)

is bounded under certain conditions. Moreover, we have shown in Chapter 5.6 that

the mth cumulant tends to a constant as L goes to infinity (or practically when

L ≫ ro). A similar tendency behavior has been observed for the interference prob-

ability as well. However, Chapter 5.6 does not discuss the boundary of the region

that dominantly sets the values of cumulants, interference probability, and hence the

spectrum sharing opportunities. Therefore, the objective of this chapter is to identify

the smallest region of the secondary network that would dominantly impact spectrum

sharing opportunities. Our results show that the dominant region is not necessarily a

small region encompassing a few interferers within the proximity of the primary user.

Far interferers may tangibly contribute to spectrum sharing decisions when a higher

approximation accuracy is required or when a wide exclusion region is considered. On

the other hand, the dominant region shrinks with increase in the path-loss exponent

or in the level of the interference threshold specified by the primary user or a regula-

tor. Some implications of these results are highlighted in this chapter. Moreover, the
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results are anticipated to inspire new ideas for designing MAC protocols for secondary

networks.

7.1 Introduction

It is indicated in Chapter 5.6, [53], [57] and some of the references therein that the

interference of an infinite wireless network is bounded when the path-loss exponent is

strictly greater than the dimension of the space of the network. We show in Chapter

5.6 that the cumulants of the aggregate interference asymptotically approach con-

stant values as the spatial size of the network increases provided that the density of

interfering nodes remains constant. While there are some comments in the literature

(e.g., in [19] and [20]) indicating that the aggregate interference is dominated by the

nearby interferers to the victim receiver, there is to the best of our knowledge no work

devoted to identifying the boundary of the dominant region. Our contribution comes

to fill this gap, especially in the context of spectrum sharing. Results reported in this

chapter are anticipated to be useful for designing MAC protocols for large wireless

secondary networks to create and maintain spectrum sharing opportunities.

To simplify the flow of discussions in this chapter, the next section provides a

brief summary of relevant results obtained in previous chapters for cumulants and

approximations of the aggregate interference power. Then, Section IV provides anal-

ysis and discussions on the dominant region. Finally, the chapter is concluded with

some remarks in Section 7.4.

7.2 Cumulants of IA and the Interference Probability

As mentioned before, a viable approach to characterize the distribution of IA is to use

the characteristic function to calculate cumulants of IA. These cumulants are then

used to approximate the distribution of IA. Applying cumulants expressions obtained
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Figure 7.1: Layout of a partitioned secondary network. In this chapter, we consider
L → ∞. The dominant region Rd has an inner radius of ro and an outer radius
ro + Ld. The inner white circle is the exclusion region. The region Rt = Rd ∪ R2

corresponds to the whole secondary network.

in Chapter 5 for the network shown in Fig. 7.1 leads to

κm(IA) = λπµ̃m(X)[g(ro)]
m

×
[

r̂2

(

1 +
2

mn − 2

(

1 −
[

r̂

ro + L

]mn−2
))

− r2
o

]

,
(7.1)

where r̂ = max(min(rc, ro + L), ro), and µ̃m(X) denotes the mth raw moment of Xi

(the subscript i is omitted for convenience and since Xis are i.i.d.). In this chapter,

we consider an infinite field, i.e., L → ∞.

These cumulants could be utilized to approximate the distribution of the aggregate

interference power. A good approximating distribution that could be used for this

purpose is the shifted lognormal distribution [12, 22]. The probability distribution

function of the shifted lognormal random variable can be expressed as
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fZ(z) =
1

s(z − b)
√

2π
e−(ln(z−b)−u)2/2s2

, z > b, (7.2)

where s, b, and u can be calculated using the cumulants of IA according to the

following equations:

s2 = ln τ,

u =1
2
ln

κ2(IA)

τ(τ − 1)
,

b =κ1(IA) −
√

κ2(IA)

τ − 1
,

τ =
[

υ +
√

υ2 − 1
]1/3

+
[

υ −
√

υ2 − 1
]1/3

− 1,

υ =1 + 1
2
ρ2,

ρ =
κ3(IA)

[κ2(IA)]3/2
.

(7.3)

Based on this approximation, the interference probability of IA can be expressed

as

P (IA ≥ Ith) ≃ Q

(

ln(Ith − b) − u

s

)

. (7.4)

7.3 The Dominant Region

As mentioned before, the objective of this chapter is to determine the boundary of

the dominant region. Therefore, we present in this section two different approaches

to identifying the dominant interfering region. There might be other approaches, but

these two are deemed to be sufficient to explain the concept. The first approach is

based on the cumulants while the other one is based on the interference probability.

In this chapter, we focus on the case where there is an exclusion region around the

PU with ro ≥ rc. Other cases can be investigated in a similar way by substituting r̂

and g(ro) in (7.1) with their corresponding expressions.
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7.3.1 A Cumulant-Based Approach

Let us define the dominant region for the mth cumulant to be the minimum region

around the PU-RX that approximately produces the same mth cumulant as the one

obtained for the whole network. To quantify this approximation, we assume that the

PU-RX is insensitive to, or can tolerate, a maximum relative approximation error

ǫκ in the calculation of cumulants. Denoting the mth cumulant of the interference

from the whole network as κm(IA,Rt), and mth cumulant of the interference from

the dominant region only as κm(IA,Rd), the approximation error can be expressed as

κm(IA,Rt) − κm(IA,Rd)

κm(IA,Rt)
≤ ǫκ, (7.5)

where ǫκ denotes the maximum acceptable error in approximating κm(IA,Rt) by

κm(IA,Rd). The error should be very small, i.e., ǫκ ≪ 1. The expression (7.5) is

established based on one of the common approximation error expressions known as

a relative error expression [79]. The difference is divided by κm(IA,Rt) for normal-

ization. The expressions for κm(IA,Rt) and κm(IA,Rd) are obtained from (7.1) by

letting L → ∞ and L = Ld, respectively. By inserting the expressions of κm(IA,Rt)

and κm(IA,Rd) into (7.5) and performing some mathematical manipulations, we get

(

ro

ro + Ld

)mn−2

≤ ǫκ, (7.6)

which leads to

Ld ≥
(

ǫ
1

2−mn
κ − 1

)

ro. (7.7)

The dominant region can be defined as the minimum Ld that satisfies the inequal-

ity in (7.7). From (7.7), it is observed that the dominant region is a function of the

cumulant order, i.e., m. As m increases, the dominant region shrinks. The dominant
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region for the mean (i.e., κ1) is bigger than the one for the variance, i.e., κ2. There-

fore, if a region provides a satisfactory approximation for the mean of IA, then it

also provides satisfactory approximations for higher cumulants. It is also clear from

(7.7) that a wider exclusion region (ro) leads to a larger value of Ld. Moreover, (7.7)

indicates that the higher the path-loss exponent is, the smaller the dominant region

becomes.

As an example, if ro = 1 m and n = 3, approximating the whole network by a

region of Ld = 10 m generates a maximum approximation error of 0.091 for the mean.

The same region, i.e., Ld = 10 m, provides a smaller approximation error of 10−4 for

the variance. Based on (7.7), Table 7.1 shows the values of Ld calculated for different

values of maximum approximation errors in the first three cumulants. The table also

reflects the effect of the exclusion region and the path-loss exponent on Ld.

It is worth noting that the dominant region from the cumulants’ perspective does

not depend on transmit power, antenna gains, or fading distributions. The results

on the dominant region from the perspective of cumulants give us some insight on

the dynamics of the aggregate interference. The results also give some hints on what

portion of the secondary network would dictate the spectrum sharing opportunities.

However, a solid investigation of the dominant region of the secondary network from

the perspective of spectrum sharing opportunities should be based on the interference

probability or on some other appropriate harmful interference metrics.

7.3.2 An Interference Probability-Based Approach

From the perspective of spectrum sharing, the dominant region could be defined as

the minimum portion of a secondary network that would provide approximately the

same spectrum sharing conclusions as those drawn by considering the whole secondary

network. In this chapter, we use the interference probability as the metric for the

spectrum sharing opportunity. This interference probability is mainly based on the
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Table 7.1: Ld calculated for different values of maximum approximation errors in the
first three cumulants. Calculations are repeated for different values of ro and n to
reflect their effects.

ro n ǫκ Ld for κ1 Ld for κ2 Ld for κ3

0.1 9 m 0.78 m 0.39 m

1 m 3 0.01 99 m 2.16 m 0.93 m

0.001 999 m 4.62 m 1.68 m

0.1 90 m 7.78 m 3.89 m

10 m 3 0.01 990 m 21.62 m 9.31 m

0.001 9990 m 46.23 m 16.83 m

0.1 21.62 m 4.68 m 2.59 m

10 m 4 0.01 90.00 m 11.54 m 5.85 m

0.001 306.23 m 21.62 m 9.95 m

CCDF of IA. However, Fig. 7.2 and 7.3 demonstrate that the CCDF of IA converges

to a limiting distribution as L increases. The convergence occurs faster for smaller

ro. Therefore, there is a dominant region that would satisfy the following condition:

Pint(Ith,Rt) − Pint(Ith, Rd)

Pint(Ith,Rt)
≤ ǫ, (7.8)

where Pint(IA,Rt) is the interference probability considering the aggregate interfer-

ence from the whole field and a threshold level of Ith. Pint(Ith,Rd) is the interference

probability considering the interference coming from Rd only with the same Ith. The

parameter ǫ denotes the maximum acceptable error in approximating Pint(IA,Rt) by

Pint(Ith,Rd).

Assuming that the aggregate interference power of Rt, and the one of Rd are

approximated by shifted lognormal random variables, (7.8) can be expressed as

1 −
Q
(

ln(Ith−b(Ld))−u(Ld)
s(Ld)

)

Q
(

ln(Ith−b)−u
s

) ≤ ǫ. (7.9)
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Figure 7.2: The CCDF of the aggregate interference power based on a shifted lognor-
mal approximation for different values of L (ro = 10 m, rc = 1 m, λ = 0.01 nodes/m2,
n = 3, Rayleigh fading, and 6 dB shadowing).

We use the notations b(Ld), u(Ld), and s(Ld) to indicate that these parameters

are obtained from the cumulants of the interference power IA coming from Rd. To

identify the boundary of the dominant region, (7.9) should be solved for Ld with

the equality. This dominant region should be sufficient to investigate the spectrum

sharing opportunities for the whole secondary networks. To demonstrate this, let us

assume that the PU or the regulator specifies that the spectrum of the PU can be

shared by the secondary network if P (IA ≥ Ith) ≤ 0.1, where Ith = 0.0233 (a nor-

malized value with respect to the transmit power, antenna gains and other constant

parameters). If the PU is insensitive to, or can tolerate an error in the interference

probability of 1% or less (i.e., ǫ ≤ 0.01), then according to Fig. 7.4 the minimum Ld

satisfying ǫ ≤ 0.01 is 1700 m which defines the boundary of the corresponding dom-

inant region. Fig. 7.4 is plotted based on (7.9) for system and channel parameters
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Figure 7.3: The CCDF of the aggregate interference power based on a shifted lognor-
mal approximation for different values of L (ro = 1 m, rc = 1 m, λ = 0.01 nodes/m2,
n = 3, Rayleigh fading, and 6 dB shadowing).

indicated in the caption of the figure including an exclusion region of 10 m. If the

PU can tolerate a larger error, e.g., ǫ ≤ 0.1, then Ld = 150 m for the same Ith and

the same system and channel parameters. If Ith is specified at a higher value, e.g.,

0.0604, then Ld decreases to 650 m and 50 m for ǫ = 0.01 and 0.1, respectively.

Before investigating the effect of ro on the dominant region by comparing Fig. 7.4

and 7.5, it is worth noting that we choose the values of Ith in these figures to have

identical interference probabilities. From Fig. 7.5 and for Ith = 0.374 (corresponding

to Pint(Ith,Rt) = 0.1), Ld = 34.6 m for ǫ = 0.01 and 2.44 m for ǫ = 0.1. These values

of Ld are smaller than those obtained from Fig. 7.4 when ro=10 m and Ith = .0233,

which corresponds to Pint(Ith,Rt) = 0.1.

In summary, the dominant region decreases as ǫ increases. On the other hand, it
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Figure 7.4: Relative approximation error in the interference probability for different
values of Ith (ro = 10 m, rc = 1 m, λ = 0.01 nodes/m2, n = 3, Rayleigh fading,
and 6 dB shadowing). The values of Ith are chosen to correspond to the interference
probability of 0.1 and 0.01, respectively, that a PU-RX would experience from an
infinite secondary network.

increases as ro increases. These observations are similar to the findings on the domi-

nant region from the perspective of cumulants in the previous subsection. However,

the dominant region from the perspective of the interference probability also depends

on the value of Ith, which does not appear in the formulations of the cumulant-based

dominant region.

7.3.3 Implications of the Dominant Region

Following are some implications of the results obtained for the dominant region.

• In interference limited systems, there might be a tendency to assume that per-

formance measures of the system are affected by a few interferers around a
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Figure 7.5: Relative approximation error in the interference probability for different
values of Ith (ro = 1 m, rc = 1 m, λ = 0.01 nodes/m2, n = 3, Rayleigh fading,
and 6 dB shadowing). The values of Ith are chosen to correspond to the interference
probability of 0.1 and 0.01, respectively, that a PU-RX would experience from an
infinite secondary network.

victim receiver. While this assumption could be valid for many scenarios, it

might be invalid for other scenarios. Therefore, it is advisable to verify this

assumption by identifying the dominant region around the victim receiver.

• Simulations of the interference and spectrum sharing opportunities in large

networks can be significantly simplified, without degrading the accuracy, by

simulating the dominant region only not the whole network.

• A PU-RX who is within a finite secondary network but away from the edge of

the network by a distance of Ld or more is practically receiving the same level of

interference as if it is located at the center of the secondary network. Hence, a

PU-RX has almost identical influence on spectrum sharing decisions regardless
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of its location within the secondary network as long as it is away from the edge

by a minimum distance of Ld.

• Any deployments of SU-TXs outside the dominant region has no effect on the

spectrum sharing decisions provided that the density of SU-TXs outside the

dominant region does not exceed the density of the SU-TXs within the dominant

region.

• We anticipate that our results in this chapter would inspire new ideas for de-

signing MAC protocols for secondary networks.

7.4 Conclusions

In this chapter, we investigated the dominant region that dictates the spectrum shar-

ing opportunities of a large secondary network. We identified the boundary of this

dominant region. We showed that as the exclusion region increases the dominant

region increases as well. However, the dominant region shrinks with the increase in

the path-loss exponent. The higher the required accuracy is, the wider the dominant

region becomes. In addition, we demonstrated that the boundary of the dominant

region shrinks with the increase of the interference threshold level. Results reported

in this chapter are anticipated to be useful for designing MAC protocols and algo-

rithms for large wireless secondary networks to create and maintain spectrum sharing

opportunities.
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Chapter 8

Conclusions and Suggested Future Work

8.1 Summary

In this thesis, we addressed the interference characterization and spectrum sharing

in large secondary networks. We started by characterizing the distribution of the

aggregate interference power based on its cumulants. We utilized these cumulants to

approximate the distribution of the aggregate interference power. We also investigated

the convergence of this distribution to a Gaussian distribution. Based on results

obtained for the interference characterization, we investigated the spectrum sharing

in large networks including the effect of the spatial size of the secondary network on

spectrum sharing opportunities. We then addressed the dominant interfering region in

large networks with the objective to draw a boundary for this region. In our analysis,

we rely on techniques borrowed from stochastic geometry especially the PPP that we

used to model the spatial distribution of active secondary users. Moreover, we used

the interference probability as the harmful interference metric to map the level of the

aggregate interference power to appropriate spectrum sharing decisions.
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8.2 Contributions

The following subsections highlight the major contributions of the work presented in

this thesis.

8.2.1 Cumulant-based Characterization of the Aggregate Interference Power

We introduced a simple yet comprehensive method to calculate the cumulants. Our

method is applicable for finite and infinite networks, and is flexible to encompass

different system and propagation parameters including large-scale fading, small-scale

fading, and composite fading. We also highlighted the behavior of these cumulants

with respect to changes in the network size and fading distributions. Moreover, we

discussed some cumulants-based approximations of the distribution of the aggregate

interference power.

8.2.2 Gaussianity of the Distribution of the Aggregate Interference Power

We studied the convergence of this distribution to a Gaussian distribution. Based

on the Berry-Esseen bound, we casted in a single mathematical framework some

observations scattered across the literature about the Gaussianity of the distribution

of the aggregate interference power. We showed that an increase in the size of the

exclusion region brings the distribution of the aggregate interference power closer to

the Gaussian distribution. Increasing the active node density has a similar effect.

However, the convergence is faster with increase in the size of the exclusion region

compared to the increase in the active node density. In contrast, channel fading

causes divergence from Gaussianity. Shadow fading typically causes more divergence

as compared to multipath fading.
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8.2.3 Impact of the Spatial Size of the Secondary Network on Spectrum

Sharing

One main contribution of this thesis is the study of the impact of the field size of

secondary users on spectrum sharing opportunities. The study shows that an increase

in the field size may eliminate the spectrum sharing opportunities. However, there are

some cases where the spectrum sharing opportunities are not reduced by the increase

in the field size even when the field size grows to infinity.

We demonstrated that asymptotic results obtained for an infinite field could be

applied for a finite field whose radial depth is much greater than the minimum distance

between the field and the primary user. Otherwise, these asymptotic results will be

too conservative and may lead to missing spectrum sharing opportunities.

The results also show that under certain conditions it is possible for a secondary

network to concurrently and continuously share the spectrum with a primary network

without the need for spectrum sensing techniques or other cognitive radio function-

alities. This observation hints a promising spectrum sharing solution for the wireless

sensor networks which are facing interference challenges in the crowded unlicensed

spectrum.

8.2.4 Dominant Regions in Large Secondary Networks

In this thesis, we investigated the dominant region that dictates the spectrum shar-

ing opportunities of a large secondary network. We identified the boundary of this

dominant region. We showed that as the exclusion region increases the dominant

region increases as well. However, the dominant region shrinks with the increase in

the path-loss exponent. The higher the required accuracy is, the wider the dominant

region becomes. In addition, we demonstrated that the boundary of the dominant

region shrinks with the increase of the interference threshold level. Results reported
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in this thesis are anticipated to be useful for designing MAC protocols and algo-

rithms for large wireless secondary networks to create and maintain spectrum sharing

opportunities.

8.3 Suggested Future Work

Following subsections provide some suggestions for possible extensions of the work

presented in this thesis.

8.3.1 Spatially Clustered Secondary Users

In this thesis we focused on modeling the spatial distribution of active secondary

networks by homogeneous PPP. While this modeling has many advantages, it might

lead to conservative decisions hiding some spectrums sharing opportunities especially

for clustered secondary users. An interesting extension of the work presented here

is to model secondary users by cluster processes [1, 2, 61, 101], and to investigate the

effect of this modeling on the conclusions deduced in this thesis.

8.3.2 Exact Analysis of Spectrum Sharing for a Secondary Network Over-

lapped with Spatially Distributed Many Primary Users

The focus of this thesis was on most of the cases on scenarios including a single primary

user. While we provided some generalization comments to account for scenarios

having many primary users, a thorough investigation is advised for the cases when

the secondary network is overlapped with a primary network whose (primary) users

are spatially distributed according to a point process. A possible starting point for

this investigation is to use Matern hard-core process [2, 10].
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8.3.3 Further Accurate Approximating Distributions for the Aggregate

Interference Power

While we have used an approximating distribution that provides an acceptable ac-

curacy in the region of interest, there are some techniques that could be explored to

further enhance the accuracy of the approximation. One of these techniques is to

approximate the distribution by a Gamma mixture. This technique allows the use of

more moments (cumulants) in the approximation, which is anticipated to enhance the

approximation accuracy. A starting point for exploring this technique is to apply the

approach proposed in [80]. Another possible technique is to explore the possibility

of approximating the distribution of the aggregate interference power by one of the

heavy tailed distributions discussed in [98].

8.3.4 Effect of Correlation among the Xi’s

An important assumption in our model is that Xi’s are independent. However, there

are some practical cases imposing the existence of correlation between Xi’s. Therefore,

it would be of an interest to investigate the effect of this correlation on the spectrum

sharing, in particular, to investigate the effect of spatial correlation between shadow

fading components in Xi’s. A suggested approach to tackle this research problem is

to use stochastic geometry techniques. In stochastic geometry, Xi’s can be modeled

as marks for the points that are distributed according to a point process, e.g., PPP.

Some guidance could be taken from [102] that discusses correlation between marks in

forestry statistics, which can be easily mapped to the problem in hand, i.e., correlated

Xi’s.
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Appendix A

The Berry-Esseen Theorem

The following theorem describes the Berry-Esseen bound in its basic form.

Theorem A.0.1 (Berry-Esseen Theorem [92]).

Let {Yj} be independent random variables with a common cumulative distribution

function (CDF) F , with zero mean, non-zero variance (σ2 > 0), and finite third

absolute moment (ρ = E[|Yj|3] < ∞). Then for all y and k

|Fk(y) − FN(y)| ≤ 3ρ

σ3
√

k
, (A.1)

where Fk is the CDF of the normalized sum Z = 1
σ
√

k
Σk

j=1Yj, and FN is the CDF of

the standard normal distribution, i.e., N (0, 1).

Proof.

The proof can be found in [92, p. 543].

According to [92], the factor 3 on the right is not claimed to be the optimal value.

Therefore, it is expected that different references may propose smaller values.
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Appendix B

Derivation of the Cumulant-Based Berry-Esseen

Bound

The shot noise considered in [99] is assumed to be generated by a stationary marked

point process defined in R
d × K where R

d is a d-dimensional Euclidian space and K

is a space of marks. This shot noise has the form

Ξ(t) =
∑

i

f(t − qi, xi), (B.1)

where f is a real-valued function denoting the effect at t ∈ R
d caused by an event at

a random position qi ∈ R
d with an independent random mark xi ∈ K. The marks

xi are assumed to be mutually independent. According to Theorem 7 in [99], the

Berry-Esseen bound for the normalized shot noise Z when the underlying process is

a stationary PPP can be written as

| FZ(y) − FN (y) |≤ 2.21
H3√

λ(H2)3/2
(B.2)

where H3 =
∫

Rd EX [|f(u, xi)|3]du and H2 =
∫

Rd EX [f 2(u, xi)]du. Within the context

of our thesis, the function f represents an individual interference power which is

positive. Therefore, H3 can be written without the absolute value function as H3 =
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∫

Rd EX [f 3(u, xi)]du.

To relate H3 and H2 to the cumulants of the shot noise in (B.1), the characteristic

function of Ξ should be determined first. Based on Campbell’s theorem [1], the char-

acteristic function of the sum in (B.1), which is over a stationary and independently

marked PPP, can be written as

φ(ω) = exp

(

λ

∫

Rd

∫

K

(exp(jωf(u, x)) − 1) fX(x)dxdu

)

, (B.3)

where fX is the PDF of X. From (B.3), the mth cumulant can be obtained by

κm =
1

jm

[

dm ln(φ(ω))

dωm

]

ω=0

=λ

∫

Rd

EX [fm(u, x)]du.

(B.4)

Comparing (B.4) to the expressions for H3 and H2 yields κ2 = λH2 and κ3 =

λH3. Thus, the Berry-Esseen bound can be written in terms of the second and third

cumulants as

| FZ(y) − FN(y) |≤ 2.21
κ3

κ
3/2
2

. (B.5)

It is worth noting that κ3/(κ2)
3/2 reflects the skewness of Ξ.
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Appendix C

Generalization of the Berry-Esseen Bound for a

d-dimensional Space

Results reported in [99] and [100] for the Berry-Esseen bound are applicable for a

multidimensional space. Therefore, we can use (6.1) to investigate the Gaussianity

of the aggregate interference power of a wireless network deployed in a d-dimensional

space. However, we need to evaluate cumulants of a d-dimensional space. To achieve

this, we utilize cumulants expressions provided in [58] and we extend them to our

problem. As a result, we have the following expression for the mth cumulant in a

d-dimensional space:

κm(IA) =
d bd λ

mn − d
rd−mn
o µ̃m(X), (C.1)

where bd is the volume of the unit ball in R
d, which is equal to π

d
2

Γ(1+
d
2
)
, and Γ(.) is the

gamma function. To avoid divergence of the interference, these results are applicable

for n > d. Using (6.1) and (C.1), the Berry-Esseen bound becomes

|FZ(y) − FN(y)| ≤ 2.21
(2n − d)

3
2

d
1
2 (3n − d)

1
√

λυd(0, ro)

µ̃3(X)

[µ̃2(X)]
3
2

. (C.2)

These expressions are applicable when ro ≥ rc. Expressions for the other case,

i.e., ro < rc, can be also obtained in a similar way.
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