Softwar e Configuration Management Related to Management of
Distributed Systems and Services and Advanced Service Creation

Vladimir Tosict, David Mennie?, Bernard Pagur ek?
! Network Management and Artificial Intelligence Lab
Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
{vladimir, bernie} @sce.carleton.ca
2 The Bulldog Group Inc., Toronto, Ontario, Canada
dmennie@bulldog.com

ABSTRACT

In this position paper, we briefly summarize three research
projects, conducted at the Network Management and Arti-
ficial Intelligence Lab at Carleton University, related to
software configuration management (SCM). These projects
are dynamic service composition from service components,
dynamic adaptation of service components with multiple
classes of service, and dynamic evolution of network man-
agement software. We then summarize some of the chal-
lenges for future research in SCM. Our research group is
particularly interested in two challenges: 1) managing dy-
namism and runtime change and 2) integration of SCM
with other management areas and domains.

Keywords

Software configuration management, component configu-
ration management, dynamic service composition, dynamic
service adaptation, dynamic software evolution

1 INTRODUCTION

In the past, our research group focussed on challenges par-
ticular to the domain of network management including
network configuration management. This included investi-
gating the use of mobile agent technologies and artificial
intelligence techniques to enhance how a network is con-
trolled and managed. However, in recent years our focus
has shifted more towards service management. Many of our
recent research projects have uncovered issues that are re-
lated to software configuration management (SCM).

We view SCM as part of the broader work on the manage-
ment of distributed systems, networks, applications, and
services. The International Organization for Standardiza-
tion (ISO) identifies configuration management as one of

five network and systems management functional areas,
which also include fault management, performance man-
agement, accounting management, and security manage-
ment. On the other hand, the management of software (i.e.,
applications) is becoming more tightly connected with the
management of computer systems (both stand-alone and
distributed), peripheral devices, networking infrastructure,
databases, and other resources. Integrated network and
systems management — also known as enterprise manage-
ment — strives to unify these management domains within
the overall computing/communication system. A further
unification is achieved with service management where
services (software- and/or hardware-based) are managed
from the business-centered (not technol ogy-centered) point
of view. This requires mapping technology-centered man-
agement activities and data into appropriate business issues
and data directly showing how the value provided to end
users and service providers' responsibilities stated in serv-
ice level agreements (SLAS) are affected.

Some of our research efforts have concentrated on service
components. A detailed discussion of how service compo-
nents differ from software components is beyond the scope
of this position paper. The central idea is a service compo-
nent is a type of software component that provides some
software-based services and optional hardware-based serv-
ices like memory, printing, network bandwidth, etc. In
short, the service component attempts to unify the concepts
behind the software component and the distributed object.
This means two or more service components, potentially
distributed, can be composed together to form a single new
service that can be deployed to an end user (human or
software). Component service providers (CSPs) differ from
application service providers (ASPs) since they do not pro-
vide monolithic applications and instead offer libraries of
composable service components. Despite the differences,
there are also many similarities between service compo-
nents and software components. Consequently, we believe
that there are important relationships that exist between the
creation and management of service components and the
work on component configuration management [4].

2 AN ARCHITECTURE TO SUPPORT DYNAMIC

COMPOSITION OF SERVICE COMPONENTS
Dynamic (i.e., runtime) composition of service components
focuses on adapting running applications and changing
their existing functionality by adding new features or ie-
moving features, usually in an automated process. There
are several key benefits to dynamic service composition.
The most immediate is the fact that applications have
greater flexibility since new services can be constructed to
address a specific problem if they do not already exist. An-
other benefit is users do not need to be interrupted during
upgrades or the addition of new functionality into a system.
In other words, virtually an unlimited set of services can be
created from a set of basic service components. Also, serv-
ices can be assembled based on the demands of an applica-
tion or a user. For example, if a user requires an Internet
search engine that will filter out advertising from the results
returned for a particular query, the service can be assem
bled at runtime and sent to the user. This service may not
have been designed or even conceived ahead of time.

Composing service components at runtime is a challenging
undertaking because of all the subtleties of the procedure
involved, the many exceptions to the compositional rules
that can occur, and the potential for error. The challenge
lies in dealing with many unexpected issues in arelatively
short period of time since all decisions must be made rel-
atively quickly or dynamic composition becomes impracti-
cal. Thereis aso alack of support for dynamic techniques
in programming languages and other development tools. In
dynamic composition, as we have defined it, it is extremely
difficult to predict beforehand the exact environmental
conditions that will exist in a system at the time a composi-
tion is performed. We call this unanticipated dynamic com-
position [3], meaning that all potential compositions are not
known and neither the service components nor the sup-
porting composition infrastructure are aware if a particular
composition will be successful until it is actually carried
out. While steps are taken to decrease the chance of afailed
composition, it cannot always be avoided. One of the
measures we have taken to avoid complicationsisto bundle
a service specification with each service component that
describes the dependencies, constraints, or potential incom-
patibilities for the component. This specification also con-
tains a list of the operations contained within the service
component that can be reused in a composite component.
These methods are referred to as composable methods. By
looking at the specification for each component of interest
before attempting to aggregate them in a composite service,
failed attempts can be minimized or recovered from. The
general rule followed isif a conflict is detected by the sup-
porting infrastructure, the composition is aborted. Locating
components at runtime for composition requires a comp o-
nent library or code repository that is integrated with the
software infrastructure performing the composition.

The fundamental challenge in composing services at run-
time is the design and implementation of an infrastructure

that will support the process. Recently, we designed and
implemented a general-purpose dynamic service composi-
tion architecture called the Infrastructure for Composability
At Runtime of Internet Services (ICARIS) [6]. The archi-
tecture provides all of the required functionality to form
composite services from two or more service components
that have been designed for composability.

There are three primary composition techniques that are
supported in the architecture [5, 6]. First, creation of a
composite service interface for several service components
is achieved by extracting and combining signatures of their
composable methods. Service components involved in the
composition remain distinct, while communicating with
clients through the common composite service interface.
The composite service interface redirects all incoming calls
to the appropriate service component for execution. Sec-
ond, creation of a new stand-alone composite service is
achieved by interconnecting service components using a
pipe-and-filter architecture. In essence, the pipe-and-filter
architecture chains the output of one service component to
the input of the next. While this is a fairly primitive con-
nection scheme, some complex constructions are also pos-
sible. One example is when the outputs of one component
are looped back into its inputs. Other connection schemes,
such as service components processing the same input in
parallel, are not supported in the ICARIS architecture be-
cause most applications do not require such specialized
configurations. Third, creation of a new stand-alone com
posite service with a single body of code is achieved by
extracting and assembling the composable methods from
software-based service components involved in the comp o-
sition. The corresponding method signatures are also
merged into a new composite service specification. Thisis
the most challenging type of service composition and one
motivation for its undertaking can be performance. In the-
ory, a composite service with a single body of code may
take longer to create than the other types of composite
services, but it should also execute much faster.

A prototype application using a Jini, JavaBeans, and XML-
based implementation of the ICARIS architecture was de-
veloped to illustrate a justifiable use of dynamic composi-
tion techniques. The prototype alows construction and
deployment of security associations between a client and
server in the network in order to enable security servicesto
be introduced into applications that do not already have
access to security. The specification of these security asso-
ciationsis carried out at runtime, so that the composite cli-
ent and server security services can be constructed dynami-
cally. The prototype is an accessible, robust infrastructure
that is capable of establishing many types of security asso-
ciations for any application. Additionally, it is both fast
enough to assemble and deploy these associations at run-
time and flexible enough to add or remove secure services
to meet the applications it serves. A more detailed descrip-
tion of the motivation for and the characteristics of this
prototypeisgivenin[6].

3 THE CONCEPT OF SERVICE COMPONENTS

WITH MULTIPLE SERVICE OFFERINGS
Another project in our research group investigates how to
provide additional support in service components for dy-
namic adaptation and management of service compositions.
The goal isto enable a composite service to adapt to many
possible changes in its environment. We are particularly
interested in the loose coupling of service components
when the composed service components are not very de
pendent, they can be distributed, and one service compo-
nent may be part of many different compositions and serve
many different clients. This work is related to the work on
dynamic service composition and to the work on adaptable
software presented in [8, 9].

Service components should be designed so they can be
used in a variety of different composite services. This d-
lows awider array of clients to take advantage of the serv-
ices provided by the component. To achieve this, each
variation of a service component can be represented by a
class of service. A class of service is associated with a spe-
cific utilization of system resources and therefore has a
different cost for the client. Differentiation of classes of
services enables a client to receive the exact service and
quality of service (QoS) it requires, within an acceptable
price. It aso alows the service component to balance its
limited hardware and software resources efficiently. Exam:
ples of different classes of service include different usage
privileges (e.g., access rights), different priorities, and dif-
ferent response times guaranteed to different classes of
clients. Note that for software components the benefits of
differentiating classes of service are not as strong as for
service components.

The benefits of formal specification of constraints in com-
ponent-based software engineering are widely recognized.
For service components, it is necessary to formally specify
functional constraints (preconditions, postconditions, and
invariants), non-functional (QoS) constraints, and authori-
zation policies. As an increased number of service compo-
nents offering similar functionality become available, the
QoS, price/performance ratio, and adaptability will become
the major criteria that differentiate the service components
from one another. Specifying functional constraints in a
formal way and bundling the specification with the service
component can improve the effectiveness of the dynamic
service (and software) composition process. Formal speci-
fication of non-functional constraints is also important for
application and service management because components
that have different levels of QoS can be dynamically recon-
figured or replaced with a less resource-intensive variant
should system resources become limited. Finaly, formal
specification of authorization policies can be used for pol-
icy-driven management.

In order to provide adequate support for the previously dis-
cussed issues, we are investigating the processes of service
creation and management using service components with a
slightly different structure. In this case, a service compo-

nent not only has multiple interfaces (units of service func-
tionality) but it also has multiple service offerings repre-
senting different classes of service. Service offerings within
an interface relate to the same functionality, but differ in
authorization rights, QoS constraints, and cost. Occasion-
aly, differences in functional constraints may exist ke-
tween service offerings but this is generally not the case.
By separating the concepts of an interface and a service
offering, we provide additional support for dynamic flex-
bility and adaptability within a service component.

We specify service components (including all interfaces
and service offerings) in a comprehensive XML-based
service specification format that describes the functionality,
the functional and non-functional (QoS) constraints, the
authorization policies, and the cost of the different options.
Such a comprehensive specification supports dynamic
service composition. It enables finding at runtime appropri-
ate service components and service offerings based on
functionality reguirements, constraints (functional, non-
functional, authorization rights), and cost.

Dynamic adaptation mechanisms are also required to na-
nipulate service offerings appropriately. These dynamic
adaptation mechanisms include switching between service
offerings, deactivation/reactivation of existing service d-
ferings, and creation of new appropriate service offerings.
Note that these mechanisms are under control of the service
components and therefore their use can be restricted to spe-
cific clients. The mechanism for dynamic creation of new
service offerings would be one example where access con-
trol is required. Dynamic creation of new service offerings
will generally be used by a service component when its
implementation is dynamically changed (e.g., in the case of
dynamic versioning) or when the services that it uses are
dynamically updated (e.g., offer better QoS).

Development of new service management algorithms based
on manipulating usage of service offerings is suitable for
several different situations. For example, if a service offer-
ing has to be dynamically deactivated while it is used by at
least one client, maybe the same or similar functionality
could be provided to the dependent client by a different
service offering of the same service component. Another
example is dynamic evolution of service components. We
are currently developing such service management algo-
rithms and appropriate architectural support for their im-
plementation. Some of the issues that we try to address are;
how to relate service offerings to better support automatic
switching between them, how to integrate the support for
deactivation/activation of service offerings into service
components, how to support rules governing creation of
new service offerings, etc.

4 DYNAMIC EVOLUTION OF
MANAGEMENT SOFTWARE
Our research group is aso investigating the issue of the
dynamic evolution of software without disrupting its qo-
eration. The evolution required can be corrective (fixing

NETWORK

bugs or problems), perfective (improving performance or
adding new functionality), and/or adaptive (adaptation to
new operation environments) [8]. Thisisan important issue
for high-availability and real-time systems. As noted in [8,
9], there are a number of different approaches taken by the
research institutions that are trying to address this issue.
The major efforts are based on the design of a software
architecture, a new programming language, a data-flow
architecture, a distributed system, a distributed object tech-
nology such as CORBA and COM, a compiler, an operat-
ing system, or areal-time system that will support software
evolution. Some of the issues that pertain to dynamic soft-
ware evolution are described in [2]. These include devel-
oping the appropriate infrastructure support, developing
dynamically upgradable software modules, defining the
module granularity, defining the scenarios where software
upgrading is allowed or not allowed, obeying the limits on
the allowed duration of the upgrading process, transferring
the state between module versions, and transactional issues.

We are particularly interested in the problem of dynamic
software evolution as it pertains to network management
software. A network management system is arelevant case
study that can be used to capture general software evolution
issues. Shutting down the entire network management sys-
tem to perform an upgrade is not an appropriate solution for
large mission critical networks. We have developed our
own infrastructure and experimentally applied it to a
modular SNMPv3 (Simple Network Management Protocol,
version 3) system implemented in Java[2].

Our approach to dynamic software evolution, called soft-
ware hot-swapping [1, 2], is based on the concept of swap-
pable modules (S-modules) and corresponding non-
swappable proxies (S-proxies). Only S-modules can be hot-
swapped in our architecture. Each S-module has an S-proxy
that is permanently associated with it and the S-proxy is
automatically generated. The S-module and the S-proxy
together constitute an S-component. Apart from S-
components, there can be a number of other non-swappable
modules in the application. An application supporting hot-
swapping must contain a Swap Manager that controls all
swapping transactions. Currently, all application modules
that are expected to be hot-swapped have to be manually
converted to S-modules prior to aswap. We have attempted
to automate the process of converting application modules
to S-modules and anticipate a solution in the near future.

When a new S-module version is transferred to the desired
location by means of mobile code, its currently executing
version has to be put into a swappable state before a hot-
swap can take place. The S-proxy gets the state of the cur-
rently executing version, initializes the new S-module ver-
sion with this state, and redirects all references from the
current version to the new version. If during this process,
the given swapping time limit is exceeded, the process is
terminated and rolled-back. Otherwise, the new S-module
version is started and the old S-module version is removed
from the system. In order for the hot swap to succeed, g-

propriate support for hot-swapping has to be integrated into
S-modules. Thisincludes the ability to extract the state of a
running S-module and to initialize an S-module with the
state extracted from the previous version. The mapping
rules between different versions have to be defined for
every S-module and can be implemented as part of the S-
module initialization methods.

Note that this proxy-based approach was chosen after a
study of the advantages and disadvantages of several possi-
ble solutions. Further detail on this study can be found in
[1]. While we found the proxy-based technique to be suit-
able and efficient enough for the dynamic evolution of
SNMPv3 modules [2], its applicability to other software
architectures is still under review. For some real-time sys-
tems that require even higher availability other approaches
to dynamic software evolution may be more appropriate.

5 CONCLUSIONS AND CHALLENGES

Managing dynamism and runtime change is the most im

portant challenge for SCM that we have focussed on in our
research. The archetypal problem we are addressing is how
to dynamically and autonomously (i.e., without explicit

human intervention) reconfigure and, if necessary, upgrade
software in order to minimize the effects of a fault (or a
performance problem) on an end user. This problem is a
very complex one with many open issues. We have broken

the problem down into sub problems and our different re-

search projects each investigate one or more sub problems

from different perspectives and in different environments.

An important aspect in all our research efforts is the
modular nature of software — we investigate dynamism and
runtime change issues on the level of software components
or modules. Consequently, our work has relevance to the
domain of component configuration management. As dis-
cussed in [4] and as we have experienced, the emphasisin
SCM has moved from development time to run time, from
source code management to the integration and version
management of the components, from management of im
plementation libraries to management of interfaces. The
possibility of runtime change supports valuable system
agility, flexibility, and adaptability, but it also givesrise to
anumber of problems, some of which can be aleviated by
applying SCM. Important examples are dependence man-
agement and ensuring consistency. The SCM work on de-
pendence management is good a starting point for future
research, but it should be re-evaluated in the context of
very frequent change and the crucial requirement of timely
reaction. Similarly, the SCM mechanisms for version
tracking and management have to be re-evaluated. With
frequent runtime change it becomes also harder to achieve
consistency, and SCM should research not only methods
that try to ensure consistency before the change occurs, but
also methods that enable successful system operation when
the change causes an inconsistency. It is not possible to
aways precisely predict or test the effects of runtime
change and therefore the runtime SCM mechanisms should
have mechanisms to discover inconsistency and recover

(e.g., rollback) from unsuccessful change. However, to
achieve a consistent state a system might have to pass
through intermediary inconsistent states and therefore
mechanisms for transactional changes are also needed.

Service components can encapsulate not only software, but
also hardware functionality. In this context, the issues like
balancing limited underlying hardware and software re-
sources during runtime and managing QoS become more
important. Such issues are traditionally beyond the scope of
SCM solutions. We believe that one of the main challenges
for SCM in the future will be its integration with other
management areas (fault, accounting, performance, and
security management) and domains (device, desktop, net-
work, system, enterprise, service management). Note that
enterprise management software suites like Hewlett-
Packard's OpenView, IBM's Tivoli, and Computer Associ-
ates Unicenter TNG aready include some SCM function-
ality and integrate it with other management applicationsin
the suite. However, we see the need for further work and
research in this direction, at least on three tightly interre-
lated topics:

- Mapping SCM solutions to service management, i.e.,
to business-related issues and data. In order to better
support this mapping, the price/performance ratio, un-
interrupted service availability, and other issues (both
technical and non-technical) relevant to end users must
be addressed.

Integration of SCM with system and network configu-
ration management.
Integration of configuration management and other
management areas.

The previously given example of dynamic reconfiguration
aso illustrates these issues, as will be briefly discussed
next. First, this dynamic reconfiguration problem requires
integration of configuration management and fault (or per-
formance) management. Further, the fault (or performance
problem) in question can be software-based, but it can also
be caused by an underlying computer hardware or network
infrastructure, so the integration of application management
with systems and network management is needed. Finally,
as the ultimate goal of management is to minimize impacts
on end users, thisis also a service management problem.

We also believe that the importance of the issues of flex-
bility, availability, scalability, and performance of man-
agement solutions (including SCM) will further increase.
Although our research is more focused on increasing flex-
bility and availability, we also examine scalability and per-
formance issuesin all our research projects.

Several recent industrial initiatives, like Microsoft .NET [7]
and Sun Open Net Environment (Sun ONE) [10], are based
on the concept of a Web service. Our research is compati-
ble with these industrial initiatives and explores issues that
they currently do not address. A Web service is a service
component (in our definition) that communicates by means
of XML-based standards. These initiatives show the trend

towards service-based software systems, where monolithic
applications are decomposed into distributed service com-
ponents, and towards the “software is a service” business
model, where software functionality is a service available
via a network and not anymore a product that is deployed
to consumers. This new situation in the software market
will open a number of new challenges for SCM, some of
which are already uncovered by our work.

REFERENCES

1. Feng, N., Ao, G., White,T., and Pagurek, B. Software
Hot-swapping Technology Design. Technical Report,
Systems and Computer Engineering, Carleton Univer-
sity, Ottawa, Canada, June 1999.

2. Feng, N., Ao, G., White, T., Pagurek, B. Dynamic
Evolution of Network Management Software by Soft-
ware Hot-Swapping. Accepted for the Seventh
IFIP/IEEE International Symposium on Integrated Net-
work Management - IM 2001 (Seattle, Washington,
USA, May 14-18, 2001).

3. Kniesel, G. Type-Safe Delegation for Run-Time Com-
ponent Adaptation. In R. Guerraoui (Ed.) Proc. of the
13th European Conference on Object-Oriented Pro-
gramming - ECOOP ' 99 (Lisbon, Portugal, June 1999),
Springer.

4. Larsson, M., Crnkovic, |. New Challenges for Configu-
ration Management. In Proc. of System Configuration
Management - SCM-9 (Toulouse, France, August 1999),
Springer.

5. Mennie, D., Pagurek, B. An Architecture to Support
Dynamic Composition of Service Components. Pre-
sented at the Fifth International Workshop on Compo-
nent-Oriented Programming — WCOP 2000, held in
conjunction with ECOOP 2000 (Sophia Antipolis,
France, June 2000). On-line at: http://www.ipd.hk-
r.se/bosch/WCOP2000/submi ssions/menni e.pdf

6. Mennie, D. W., An Architecture to Support Dynamic
Composition of Service Components and Its Applica-
bility to Internet Security. M.Eng. thesis, Carleton
University, Ottawa, Canada, October 2000.

7. Microsoft NET Web Site. On-line at:
http://www.microsoft.com/net/

8. Oreizy, P., Medvidovic, N., Taylor, R. N. Architec-
ture-Based Software Runtime Evolution. In Proc. of
the International Conference on Software Engineering
1998 - ICSE'98 (Kyoto, Japan, April 1998), pp. 177-
186.

9. Oreizy, P. Issuesin Modeling and Analyzing Dynamic
Software Architectures. In Proc. of the International
Workshop on the Role of Software Architecture in
Testing and Analysis (Marsala, Italy, June/July 1998).

10. Sun Open Net Environment (Sun ONE) Web Site. On-
line at: http://www.sun.com/software/sunone/

