Layered Queueing Network Solver and Simulator User Manual
Greg Franks Peter Maly Murray Woodside Dorina C. Petriu Aderobard
Martin Mroz
Department of Systems and Computer Engineering
Carleton University

Ottawa ON K1S 5B6
{cmw,greg }@sce.carleton.ca

May 31, 2011

Revision: 10243

Contents

[1_ The Lavered Queueing Network Model

©ConnahMwE

=
O ©

3.2.10 PrecedenceT’ = 31
[3.2.11 OutputResultTybe 31

[7.3 Advisory Messages o o 71

1 S e 72
‘ S 74

|§§ NE Eigorlthm for phased multiservers OPEN a,

ass.

B.A_OALQLLa.kLng probabilities are calculated usin =
i sses.

| onal l

A1

Input File Grammar

Abstract

The Layered Queuing Network (LQN) model is a canonical foondxtended queueing networks with a lay-
ered structure. The layered structure arises from sertensealevel making requests to servers at lower levels as a
consequence of a request from a higher level. LQN was deeédlégr modeling software systems, but it applies to
any extended queueing network with multiple resource Es$se, in which multiple resources are held in a nested
fashion.

This document describes the elements found in Layered Qugpietwork Model, the results produced when a
LQN model is solved, and the input and output file formatsIdbalescribes the method used to invoke the analytic
and simulation solvers, and the possible errors that cae afien solving a model. The reader is referred to “Tutorial
Introduction to Layered Modeling of Software Performanf@d] for constructing models.

Chapter 1

The Layered Queueing Network Model

Figure[1.1 illustrates the LON notation with an example ofoanline e-commerce system. In an LQN, software
resources are all called “tasks”, have queues and provadses of service which are called “entries”. The demand
for each class of service can be specified through “phase$dranore complex interactions, using “activities”. In
Figure[1.1, a task is shown as a parallelogram, containingllptbgrams for its entries and rectangles for activities
Processor resources are shown as circles, attached tosieetiat use them. Stacked icons represent tasks or pro-
cessors with multiplicity, making it a multiserver. A mérver may represent a multi-threaded task, a collection of
identical users, or a symmetric multiprocessor with a comseheduler. Multiplicity is shown on the diagram with a
label in braces. For example there are five copies of the Gekver’ in Figuré T11.

Entries and activities have directed arcs to other enttiks\er layers to represent service requests (or mesﬂages)
A request from an entry or an activity to an entry may returreply to the requester (a synchronous request, or
rendezvousindicated in Figur€I]1 by solid arrows with closed arroadt& For example, task Administrator makes a
request to task BackorderMgr who then makes a request tartasitoryMgr. While task InventoryMgr is servicing
the request, tasks BackorderMgr and Administrator aredeldcA request may be forwarded to another entry for later
reply, such as from InventoryMgr to CustAccMgr. Finally guest may not return any reply at all (an asynchronous
request osend-no-replyshown as an arrow with an open arrow head, for example, thest from task ShoppingCart
to CustAccMgr.

The first way that the demand at entries can be specified isghrphases. The parameters of an entry are the
mean number of requests for lower entries (shown as labpkranthesis on the request arcs), and the mean total host
demand for the entry (in units of time, shown as a label on ttigyén brackets). An entry may continue to be busy
after it sends a reply, in an asynchronous “second phasesroice [7] so each parameter is an array of values for the
first and second phase. Second phases are a common perferomimgization, for example for transaction cleanup
and logging, or delayed write operations.

The second way that demand can be specified is through adivictivities are the lowest level of granularity in
a performance model and are linked together in a directgghgrmindicate precedence. When a request arrives at an
entry, it triggers the first activity of the activity graphulSsequent activities may follow sequentially, or may fartoi
multiple paths which later join. The fork may take the formamf‘AND’ which means that all the activities on the
branch after the fork can run in parallel, or in the form of &R’, which chooses one of the branches with a specified
probability. In Figurd 111, a request that is received byyetSCES3” of task “ShoppingCart” is processed using an
activity called “SCE3A95” that represents the main threddanmtrol, then the main thread is OR-Forked into two
branches, one of which is later AND-forked into three theedthe three threads, starting with activities ‘AFBA109’,
‘AFBA130’ and ‘AFBA133’ respectively, runin parallel. THest thread replies to the entry through activity ‘OJA110’
then ends. The remaining two threads join into one threadtatity ‘AJA131’. When both ‘OJA110’ and ‘AJA13Y’
terminate, the task can accept a new request.

The holding time for one class of service is the entry sertiice, which is not a constant parameter but is
determined by its lower servers. Thus the essence of lagereuing is a form of simultaneous resource possession. In
software systems delays and congestion are heavily infagblog synchronous interactions such as remote procedure

Irequests may jump over layers, such as the request from tindsdrator task to the InventoryMgr task.

ARE
/ [1e+05] /

Administrator

1)

/

ShoppingCart {inf}

SCE3A95
[2¢-06]

0JAL10
[2e-06]

AFBA130 | | AFBA133
1 [1

~

AJAL31
[2e-06]

[1
@aD) (1) (50) (1D) (1D)
@ ®
X \
IME7 IME6 IME1 IME8 CAME5 | CAME2 CE1
[3e-06] 5] 21 [2] [3] [11 [10]
InventoryMgN:j\custAchgr Catalogue {inf} ‘

(25)

T
I
I
BookstoreProc :
I
|
I
I

Layer 5
b BookstoreProc ..
Layer 6

- > Forwarded request
—== Asynchronous request
—= Synchronous request

Figure 1.1: Notation

Layer 1

Layer 2

DE1
[20]

Database

DatabaseProc

DatabaseProc

calls (RPCs) or rendezvous, and the LQN model captures thedags by incorporating the lower layer queueing and
service into the service time of the upper layer server. Tdusive server” featuré [19] is the key difference between
layered and ordinary queueing networks.

1.1 Model Elements

Figure[1.2 shows theeta-modelised to describe Layered Queueing Networks. This modeliguerin that it is
more closely aligned with the architecture of a softwardéesysthat it is with a conventional queueing network model
such as Performance Model Interchange Format (PNIIE)[16,TI& latter consists of stations with queues and visits,
whereas a LQN has processors, tasks and requests.

A Layered Queueing Network is a directed graph. Nodes in thplgconsist of tasks, processors, entries, activi-
ties, and precedence. Arcs in the graph consist of requestsdne node to another. The model objects are described
below.

LayeredQueueing
Network

1.*

«use» 1
fffffffff = Processor

|

| {xor} Reference
: 1./ -~~~ ===~ 1.* Task

|

|

|

Semaphore

,,,,,,,,,,,,, Task
1. T E 0.

0.1 invokes 1

Entry Activity Precedence
src dst/\O..* sre 1.5\ 1.*
next
src X ;1 ‘next 0.1
Request 0.1 connects 1
forwards qu calls Pre next b Post
calls
0.* f 0.% 0.* / \ / \
Forward SendNoReply| | Rendezvous OrJoin AndJoin OrFork AndFork
Loop

Figure 1.2: LQN Meta Model

1.1.1 Processors

Processors are used by the activities within a performaruzieiio consuméme They arepure serversn that they
only accept requests from other servers and clients. Theyeactual processors in the system, or may simply be
place holders for tasks representing customers and otfjiealaesources.

Each processor has a single queue for requests. Requestsensalieduled using the following queueing disci-
plines:

FIFO First-in, first out (first-come, first-served). Tasks arevedrin the order in which they arrive.

PPR Priority, preemptive resume. Tasks with priorities higtiean the task currently running on the processor will
preempt the running task.

HOL Head-of-line priority. Tasks with higher priorities wilebserved by the processor first. Tasks in the queue will
not preempt a task running on the processor even though timngitask may have a lower priority.

PS Processor sharing. The processor runs all tasks “simwtesty’. The rate of service by the processor is inversely
proportional to the number of executing tasks. Esim, processor sharing is implementedrasnd-robin— a
guantunmust be specified.

RAND Random scheduling. The processor selects a task at random.

CFS Completely fair scheduling [9]. Tasks are scheduled wigrimups using round-robin scheduling and groups are
scheduled according to their shareg@antunmust be specified. This scheduling discipline is implemeote
the simulator only at present.

Priorities range from zero to positive infinity, with a piityrof zero being the highest. The default priority for all
tasks is zero.

1.1.2 Groups

Groups[9] are used to divide up a processor’s executiontimietoshares The tasks within a group divide the share
up among themselves evenly. Groups can only be created cagsars running the scheduling disciplewampletely
fair scheduling. .

Shares may either lpuaranteedr capped Guarantee shares act as a floor for the share that a groupaecé
surplus CPU time is available (i.e., the processor is ndy futilized), tasks in a guaranteed group can exceed their
share. Cap shares act as a hard ceiling. Tasks within thespgwill never receive more than their share of CPU
time.

Note: Completely fair scheduling is a form of priority scluéidg. With layered models, calls made by tasks within
groups to lower level servers can cayserity inversion Cap scheduling tends to behave better than guaranteed
scheduling for these cases.

1.1.3 Tasks

Tasks are used in layered queueing networks to represeniroes. Resources include, but are not limited to: actual
tasks (or processes) in a computer system, customersrguefal hardware devices. In essence, whenever some entity
requires some sort of service, requests between taskvé@u.ol

Atask has a queue for requests and runs on a processor. iteseraed from the queue in a first-come, first-served
manner. Different classes of service are specified ummges(c.f. {1.1.4). Tasks may also have internal concurrency,
specified usingctivities(c.f. 1.1.5).

Requests can be served using the following scheduling rdstho

FIFO First-in, first out (first-come, first-served). Requestssaeved in the order in which they arrive. This schedul-
ing discipline is the default for tasks.

PPR Priority, preemptive resume. Requests arriving at entidls priorities higher than entry that task is currently
processing will preempt the execution of the current entry.

HOL Head-of-line priority. Requests arriving at entries witgtrer priorities will be served by the task first. Requests
in the queue will not preempt the processing of the curretryday the task.

Priorities range from zero to positive infinity, with a piityrof zero being the highest. The default priority for all
entries is zero.
The subclasses tdskare:

Reference Task:Reference tasks are used to represent customers in thedageeueing network. They are like
normal tasks in that they have entries and can make requdsisever, they can never receive requests and
are always found at the top of a call graph. They typicallyegate traffic in the underlying closed queueing
model by making rendezvous requests to lower-level seniReserence tasks can also generate traffic in the
underlying open queueing model by making send-no-replyests instead of rendezvous requests. However,
open class customers are more typically represented ugemarrivals which is simply encoded as a parameter
to an entry.

Burstyreference tasks are a special case of reference tasks viteeservice time for the slices are random
variables with a&Paretodistribution (c.f.§1.1.3).

Semaphore Task:Semaphore tasks are used to model passive resources sutfees G hey always have two entries
which are used tgsignalandwait the semaphore. The wait entry must be called using a synchsorequest
whereas the signal entry can be called using any type of stq@mce a request is accepted by the wait entry,
no further requests will be accepted until a request is e by the signal entry. The signal and wait entries
do not have to called from a common task. However, the twaemitnust share a common call graph, and the
call graph must be deterministic. The entries themselvedeadefined using phases or activies and can make
requests to other tasks. Counting semaphores can be machahgda multiserver.

Synch Task: Synchronization tasks are used... Cannot be a multiserver.

1.1.4 Entries

Entries service requests and are used to differentiateahace provided by a task. An entry can accept either
synchronous, or asynchronous requests, but not both. Bymulis requests are part of thl®sedqueueing model
whereas asynchronous requests are part abpleemodel. Message types are described in Se€fion|1.1.7 below.

Entries also generate the replies for synchronous requdstsically, a reply to a message is returned to the
client who originally sent the message. However, entrieg atsoforward the reply. The next entry which accepts
the forwarded reply may forward the message in turn, or mplydeack to the originating client. For example, in
Figure[1.1, entry ‘IMES8’ on task ‘IventoryMgr’ forwards thequest from entry ‘BME2’ on task ‘BackorderMgr’ to
entry ‘CAMES’ on task ‘CustAccMgr’. The reply from ‘CAME2’ vl be sent directly back to ‘BME2'.

The parameters for an entry can be specified using eitheeprmsactivitielg. The activity method is typically
used when a task has complex internal behaviour such asdokpins, or if its behaviour is specified as an activity
graph such as those used by Smith and Willidms [17]. The phatieod is simply a short hand notation for specifying
a sequence of one to three activities, with the reply beimergted by the first activity in the sequence. Fiduré 1.3
shows both methods for specifying a two-phase client gabitwo-phase server.

Regardless of the specification method used for an entityehiaviour as a server to its clients isfilyase shown
in Figure[1.4. Phases consume time on processors and makestedo entries. Phase one isavice phasand
is similar to the service given by a station in a queueing petw Phase one ends after the server sends a reply.
Subsequent phases aretonomouphases which are launched by phase one. These phases apgatallel with
the clients which initiated them. The simulator and analgtlver limit the number of phases to three.

1.1.5 Activities

Activities are the lowest-level of specification in the merhance model. They are connected together using “Prece-
dence” (c.f1.1.8) to form a directed graph to represent more than jugtesgtial execution scenarios.

Activities consume time on processors. Begvice timas defined by a mean and variance, the latter thraog-
ficient of variation squareﬁ. The service time between requests to lower level servassismed to be exponentially
distributed (with the exception dfursty reference taskso the total service time is the sum of a random number of
exponentially distributed random variables.

2The meta-model in Figufed.2 only shows activities, phases aotational short-hand.
3The squared coefficient of variation is variance dividedhsygquare of the mean.

el sell2-1 Aelal
L.2] yelell?2 el Ae2al
se212-1

Atl
sall

1.2) sa22

yale21

. y o
(12 al —> a2

-1

At2
sall
sa22

_il[EZ] o

1 @

(a) Phases (b) Activities

Figure 1.3: Entry Specification

sd Phases)

_client:Task _server.:Task_

entry() |

***** r 1 Phase 1

«re ply» A Z

***** r 1 Phase 2

|
I
A N r 1 Phase 3
|
I

Figure 1.4: Phases for an Entry.

Activities also make requests to entries on other tasks.didtabution of requests to lower level servers is set by
the call order for the activity which is eithestochasticor deterministic If the call order is deterministic, the activity
makes the exact number of requests specified to the lowdrdemeers. The number of requests is integral; the order
of requests to different entries is not defined. If the callevris stochastic, the activity makes a random number of
requests to the lower level servers. The mean number of sexjisespecified by the value specified. Requests are
assumed to be geometrically distributed.

For entries which accept rendezvous requests, repliesheugtnerated. If the entry is specified using phases, the
reply is implicit after phase one. However, if the entry igsified using activities, one or more of the activities must
explicitly generate the reply. Exactly one reply must beegated for each request.

Slices

Activities consume time by making requests to the proceassociated with the task. The service time demand
specified for an activity is divided intslicesbetween requests to other entries, shown in the UML SequRiacgam

in Figure[I.b. The mean number of slices is always Y whereY is total total number of requests made by the
activity.

sd Slices)

N
«compute» N

Figure 1.5: Slices. Thslice timeis shown using the labél

By default, the demand of sliceis assumed to be exponentially distributed [19] but a vasamay be specified
through thecoefficient of variation squarettVv’ = o2 /3%) parameter for the entry or activity. The method used to
solve the model depends on the solver being used:

Analytic Solver: All servers withcv? # 1 use the HVFCFS MVA approximation from [112].

Simulator: The simulator uses the following distributions for genier@tandom variates for slice times provided that
the task imota bursty reference task.
cV? = 0: deterministic.
0 <cV? < 1: gamma.
¢V’ = 1. exponential.
c\v? > 1: bizarro...
If the task is a bursty reference task, then the simulatoeggas random variates for slice times according to

the Pareto distribution. The scalg, > 0 and shapé& > 0 parameters for the distribution are derived from the
service times and coefficient of variation squares? parameters for the corresponding activity (or phase).

1
ko= 4—+1+1
o T

7

Tym = SX

On-off behaviour can simulated by using two or more phaséiseatlient, where on phase corresponds to the
on period and makes requests to other servers, while the gitlase corresponds to the off period.

1.1.6 Precedence

Precedencés used to connect activities within a task to fromaamivity graph Referring to Figurg]2, precedence is
subclassed intdPre’ (or ‘join’) and Post (or ‘fork’). To connect one activity to another, the source activityraxts

to apre-precedence (or @in-list). Thepreprecedence then connects tp@stprecedence (or ork-list) which, in
turn, connects to the destination activity. Tabld 1.1 sunirea the precedence types.

| Name | Icon | Description |

Sequence ‘ Transfer of control from an activity to a join-list.

And-Join '/ A Synchronization point for concurrent activities.

Quorum-Join N A Synchromzaupn point for concurrent activities wherdyon
branches must finish.

Or-Join \QD/

Sequence l Transfer of control from fork-list to activity

And-Fork Start of concurrent execution. There can be any number of
forked paths.

Or-Fork /G.)\ A branching point where one of the paths is selected withprob

D L-p ability p. There can be any number of branches.
Loop m'/%>\ Repeat the activity an averagermofimes.
n2

Table 1.1: Activity graph notation.

The semantics of an activity graph are as follows. For ANEk$p AND-joins and QUORUM-joins, each branch
of a join must originate from a common fork, and each brandhefoin must have a matching branch from the fork.
Branches from AND-forks need not necessarily join, eithglietily by a “dangling” thread not participating in a jgin
or implicitly through a quorum join, where only a subset of iranches must join while ignoring the rest. However,
all threads started by a fork must terminate before the tallkaecept a new message (i.e., there is an implied join
collecting all threads at the end of a task’s cycle). Brasdhean AND-join do not necessarily have to originate from
a fork — for this case each branch must originate from a unéigy. This case is used to synchronize two or more
clients at the server.

For OR-forks, the sum of the probabilities of the branchestraum to one —there is no “default” operation. AND-
forks may join at OR-joins. The threads from the AND-fork iliafily join when the task cycle completes. OR-joins
may be called directly from entries. This case is analogousrining common code for different requests to a task.

LOOPs consist of one or more branches, each of which is rundora number of times with the specified mean,
followed by an optional deterministic branch exit whichafléwed after all the looping has completed.

Replies can only occur from activities preprecedenceand-join) lists. Activities cannot reply to entries from a
loop branch because the number of times that a branch is exkisua random number.

1.1.7 Requests

Service requests from one task to another can be one of ffpes: trendezvous, forwarded, and send-no-reply, shown
in Figure[1.6. A rendezvous request is a blocking synchremequest — the client is suspended while the server
processes the request. A send-no-reply request is an asyiatts request — the client continues execution after the
send takes place. A forwarded request results when the teplyclient is redirected to a subsequent server which,
may forward the request itself, or may reply to the origingttlient.

[BuE2] [Mes | [oaves|

| | | | |
Send ﬂ Send | \ Send
|
> m ‘ >
T |

Forward
<
Reply | I
| | Reply | |

(a) Rendezvous (b) Forwarding (c) Send-no-reply

Figure 1.6: Request Types.

1.2 Multiplicity and Replication

One common technique to improve the performance of a systeémadd copies of servers. The performance model
supports two techniques: multiplicity and replication. Ikflicity is the simpler technique of the two as a single gee

is served by multiple servers. Replication requires a miadecgate specification because the queues of the servers are
also copied, so requests must be routed to the various quklugis-servers can be replicated. Figlirel1.7 shows the
underlying queueing models for each technique.

i

(a) Multi-server (b) Replicated

Figure 1.7: Multiple copies of servers.

Replication reduces the number of nodes in the layered gugusodel by combining tasks and processors with
identical behaviour into a single object, shown in Figur@. 1The left figure shows three identical clients making
requests to two identical servers. The right figure is theesarndel, but specified using replication. Labels within
angle brackets in Figufe1.8(b) denote the number of replica

Replication also introduces the notionfah-in andfan-in, denoted using th®=n andl= n labels on the request
from t1 to t2 in Figuré_118(b). Fan-out represents the nunobeeplicated servers that a client task calls. Similarly,
fan-in represents the number of replicated clients thdtacakrver. The product of the number of clients and the
fan-out to a server must be the same as the product of the mah&ervers and the fan-in to the server. Further, both
fan-in and fan-out must be integral and non-zero.

The total number of requests that a client makes to a sertfee isroduct of the mean number of requests and the
fan-out. If the performance of a system is being evaluate¢hlnying the replication parameter of a server, the number
of requests to the server must be varied inversely with thebar of server replicas in order to retain a constant
number of requests from the client.

el 1 el 2 el 3

/ [1] / / [1] / f [1]
4.46 4.46 4.46
t1 1 t1 2

_ | 1.3
A=0.224,p=1 | A20.224,u=1 |~ A=0.224,u=1
(1) 1) (1) (6] (1), 0=2, 1=3
0728 (10728 0.728(y) 0728 0.646
0728 0.728
e2 1 e2 2 e2
[1] [1] [1]
1 1 1
t2_1 t2_2 12 <2>
\=0.673,u=0.673 \=0.673,u=0.673 A=0.699,p1=0.699
(a) Flat (b) Replicated

Figure 1.8: Replicated Model

1.3 A Brief History

LON [€] is a combination of Stochastic Rendezvous Netwdiié§ pnd the Method of Layers [1L3].

10

Chapter 2

Results

Both the analytic solver and the simulator calculate:

throughput bounds (Igns only),

e mean delay for rendezvous and send-no-reply requests,

e variances for the rendezvous and send-no-reply requestgi@tisim only),

e mean delay for joins,

e entry service times and variances,

e distributions for the service time Igsim
e task throughputs and utilizations,

e processor utilizations and queueing delays.

Figure[2Z:1 shows some of these results for the model showiyirdf11, after solving the model analytically using
Igns(1) The interpretation of these results are describe belove@i@2.2.
Results can be saved in three different formats:

1. in a human-readable form.

2. in a “parseable” form suitable for processing by othergpaons. The grammar for the parseable output is
described in Sectidn]A on paQel 76.

3. in XML (again suitable for by processing by other programshe schema for the XML output is shown in
Sectior 8 on pade 20.

Ifinput to the solver is in XML, then output will be in XML. Huan-readable output will be produced by default except
if outputis redirected using the outputflag and either XML or parseable output is being generatedv&wsion from
parseable output to XML, and from either parseable or XMlpatito the human-readable form, can be accomplished
usinglgn2ps(1)

2.1 Human-Readable Output

The human-readable output from the the analytic solver @andlator consists of three parts. Part 1 of the output
consists of solution statistics and other header inforwnadind is described in detail in Sectiéns 2.1.1[andP.1.2xbelo
Part 2 of the output lists the input and is not described &rrtiPart 3 contains the actual results. These results are
described in Section 2.2, starting on pagé 13. The chaptatihgs here correspond to the chapter headings in the
output file.

11

SET SE3 SE6
[4e-06] | [6e-06] | [8e-06] Entry demand
127 217 97.2

Sefrver {5}
A=0.0016,1}=0.189

Task multiplicity

Queueing delay SE1w=0.0611 (1) 1) «—Request rate
to processor > SE3w=00767 388e-10S——)
SE6 w=0/0511 Queueing delay

Entry service time

ShoppingCart {inf}

A Task throughput
7 A=0.000135,11=0.026!

and utilization

SCE3A95
[2e-06]
0.0255
Branch probability R
0.4 .95
OFBA146 OFBA97 ctivity demand
[1] [1] <7 . o
1.03 11.1 Activity service time
Y

AFBA109 | | AFBA112

i) [4e-06]
1.03 197
' Y

OJAT10 | [AFBAL30| [AFBAI33
[2e-06] [1] [1]
0.0255 1.03 1.03
Join delay
(&)1.53
AJAI3L
[2e-06]
0.0256
[
(1p) D)
3.83e-1 53>
SCE3A95 w=0.0255
OFBA97 w=0,0511
AFBA109 w>0.0255 CE1 CAME5 | CAME2
AFBA112(=0.0511 [10] 3] 1]
AFBA130 w=0.0255 10 79.7 52.7

Y

33 w=0.0255
A¥A131 w=0.0256
OFBA146 w=0.0255
0OJA110 w=0.0255

Catalogue {inf} CustAccMgr
=0.000263,u=0.00264] A=0.000359,1=0.025

CE AM
CAME2 w=0.0491

Processor utilization

Figure 2.1: Results.

12

2.1.1 Analytic Solver (Igns)

Figure[2.2 shows the header information output by the aicadptver. The first line of the output shows the version of
the solver and where it was run. This information is ofterfulsghen reporting problems with the solver. The lines
labeledinput andOutput are the input and output file names respectively. The linelletd Command line
shows all the arguments used to invoke the solver.Gtimmentfield contains the information found in the comment
field of the general information field of the input file (JA.1.7, 43.2.1). Next, optionally, the output lists any pragma
used. Much of this information is also present if the simui@ used to solve the model. The remainder of the header
lists statistics accumulated during the solution of the etahd is solver-specific.

conver gence test val ue: Theconvergence test value is the root of the mean of the squares of the
difference in the utilization of all of the servers from tlast two iterations of the solver. If this value is less than
theconvergence value (c.f. 3.2 1[A.1.1) specified in the input file, then the resultscanesidered valid.

nunber of iterations: Thenumber of iterations shows the number of times the solver has per-
formed its “outer iteration”. If the number of iterationsa®eds the iteration limit set by the model file, the
results are considered invalid.

MA sol ver infornmation: This table shows the amount of effort the solver expendeadrspkeach submodel.
The first column lists the submodel number. Next, the coluatelled ‘n’ indicates the number of times the
MVA solver was run on the submodel. The columns labelled #d ésrv’ show the number of chains and
servers in the submodel respectively. The next three cadishow the number of times the core Mééep()
function was called. The following three columns show thenber of time thewait() function, responsible
for computing the queueing delay at a server, is called. IKirthe last three columns list the time the solver
spends solving each submodel.

Finally, the solver lists the name of the machine the it wasam, the time spent executing the solver code, the time
spent by the system on behalf of Igns, and the total elapsed ti

2.1.2 Simulator (Igsim)

Figure[2.3 shows the header information output by the sitoulkfter execution is completed. The first line of the
output shows the version of the simulator and where it was Tine lines labelethput andOutput are the input
and output file names respectively. TBemmentfield contains the information found in the comment field o th
general information field of the input file (c§A11, §3.2.1). Next, optionally, the output lists any pragma uséte
remainder of the header lists statistics accumulated dguini@ solution of the model and is specific to the simulator.

Run ti nme: The total run time in simulation time units.

Nunber of Statistical Bl ocks: The number of statistical blocks collected (when produdcogfidence
intervals).

Run time per bl ock: The run time in simulation units per block. This value, npligd by the number of
statistical blocks and the initial skip period will total tiee run time.

Seed Val ue: The seed used by simulator.

Finally, the simulator lists the name of the machine thatiswun on, the time spent executing the simulator code, the
time spent by the system on behalf of Igsim, and the totalseldpime.

2.2 Model Results

The chapters that follow describe the actual results, tdgss of output format, in more detail. The order and heading
of the chapters correspond to the order and headings of thartueadable output.

13

14

Generated by Igns, version 3.9 (Darwin 6.8.Darwin Kernel Ve

Copyright the Real-Time and Distributed Systems Group,
Department of Systems and Computer Engineering
Carleton University, Ottawa, Ontario, Canada. K1S 5B6

Input: bookstore.lgn
Output: bookstore.out
Command line: Igns -p
Tue Nov 1 21:37:54 2005

Comment: Ign2fig -Lg bookstore.lgn

rsion 6.8: Wed Sep 10 15:20:55 PDT 2003; Power Macintosh)

#pragma multiserver = conway
Convergence test value: 7.51226e-07
Number of iterations: 5
MVA solver information:
Submdl n k srv step() mean stddev wait() mean stddev User Syst em Elapsed
1 5 2 4 44 8.8 1.4697 4776 955.2 299.82 0:00:00.01 0:00:00.00 O :00:00.00
2 9 1 1 51 5.6667 0.94281 594 66 22.627 0:00:00.00 0:00:00.00 O :00:00.00
3 9 8 3 240 26.667 9.4751 4.0365e+05 44850 32163 0:00:00.19 O0: 00:00.00 0:00:00.21
4 9 10 3 271 30.111 7.0623 7.7481e+05 86090 40554 0:00:01.15 O :00:00.00 0:00:01.19
5 9 2 1 70 7.7778 1.6178 3408 378.67 181.73 0:00:00.00 0:00:00 .00 0:00:00.00
6 5 0 O 0 0 0 0 0 0 0:00:00.00 0:00:00.00 0:00:00.00
Total 46 0 O 676 14.696 12.464 1.1872e+06 25809 41253 0:00:01 .35 0:00:00.00 0:00:01.40

greg-frankss-Computer.local. Darwin 6.8
User: 0:00:01.35
System: 0:00:00.00
Elapsed: 0:00:01.40

Figure 2.2: Analytic Solver Status Output.

Generated by Igsim, version 3.9 (Linux 2.4.20-31.9 i686),

Copyright the Real-Time and Distributed Systems Group,
Department of Systems and Computer Engineering,
Carleton University, Ottawa, Ontario, Canada. K1S 5B6

Wed Nov 2 11:42:25 2005

Input: bookstore.lgn
Output: bookstore.out
Comment: Ign2fig -Lg bookstore.lgn

Run time: 4.34765E+09

Number of Statistical Blocks: 15
Run time per block: 2.89651E+08
Max confidence interval: 7.32
Seed Value: 1130948006

epsilon-13.sce.carleton.ca Linux 2.4.20-31.9
User: 0:04:47.78

System: 0:00:00.07
Elapsed: 0:14:27.66

Figure 2.3: Simulator Status Output.

2.2.1 Type 1 Throughput Bounds

Igns
The Type 1 Throughput Boundse the “guaranteed not to exceed” throughputs for theemnlisted. The value is
calculated assuming that there is no contention delay tenlyidg servers.
2.2.2 Mean Delay for a Rendezvous
The Mean Delay for a Rendezvoissthe queueing time for a request from a client to a servelodis not include the
time the customer spends at the server (see Figulre 2.4). deohfaresidence timeresidence timedd the queueing
time to thephase one service tintd the request’s server.
2.2.3 Variance of Delay for a Rendezvous s
gsim

The Variance of Delay for a Rendezvoigsghe variance of the queueing time for a request from a tclethe server.
It does not include the variance of the time the customerdpan the server (see Figurel2.4). This result is only
available from the simulator.

2.2.4 Mean Delay for a Send-No-Reply Request

The Mean delay for a send-no-reply requésthe time the request spends in queue and in service in jpinasat the
destination. Phase two is treated as a ‘vacation’ at theeserv

15

2.2.5 Variance of Delay for a Send-No-Reply Request

Igsim

2.2.6 Arrival Loss Probabilities

TheArrival Loss Probabilities..

2.2.7 Mean Delay for a Join

The Mean Delay for a Joiris the maximum of the sum of the service times for each bramehfork. The source
activity listed in the output file is the first activity prioo the fork (e.g., AFBA112 in Figurg_2.1). Similarly, the
destination activity listed in the output file is the firstigity after the join (AJA131). The variance of the join time i
also computed.

2.2.8 Service Times

Theservice times the total time a phase or activity uses processing a réqlies time consists of four components,
shown in Figuré 2)4:

1. Queueing for the processor (shown as items 1, 4, 6 and gindfP.4.(b)).
2. Service at the processor (items 2, 5 and 9)

3. Queueing for serving tasks (item 6), and

4. Phase one service time at serving tasks (items 3 and 7).

Queuing at processors and tasks and can occur because efttomtfrom other tasks (items 1, 6, and 8), or from

second phases from previous requests. For example, en&ysSfueued at the processor because the processor is

servicing the second phase of entry SCE3.

Service Time
Receive y
SE3 - -4 KXXXIITII KXXX NSNS\ KXX
Send Send Reply
Receivey Reply
SCE3 ---%------ IIIIIIIIIl\IIlIIF ffffffffffffff FA-=-------
e
Receive Reply
CEf ==} CNSSSN -
BookstoreProc
2 3 4 5 6 7 8 9

SE3 blocked in queue

1
]
SE3 running of BookstoreProc
10 ses running on SCE3

(AR

SE3 running on CE1

Figure 2.4: Service Time Components for Entry ‘SCE3'.

Using the results shown in FigureP.1, the service time foryeBE3 21.7) is the sum of:

e the processor wait)(767),

16

it's own service time g x 107°),

the queueing time to entry SCE®)(

the phase one service time at entry SCEB(),

the queueing time to entry CE3.83 x 10~1°), and

¢ the phase one service time at entry CEQ)(

Queueing time for serving tasks is shown in Mean Delay for a Rendezvoakapter of the output. (c.f2.2.2).
Queueing time for the processor is shown in théization and Waiting per Phase for Processoir the output (c.f.

§2.2.13).

2.2.9 Service Time Variance

TheService Time Variancehapter lists the variance of the service time (2f2.8) for the phases and activities in the
model.

2.2.10 Probability Maximum Service Time Exceeded s
gsim

Theprobability maximum service time exceededutput by the simulator for all phases and activities \&ithax-service-time

This result is the probability that the service time is geedlhan the value specified. In effect, it is a histogram with

two bins.

2.2.11 Service Time Distributions for Entries and Activities lqsim

Service Time Distributionare generated by the simulator by settinggkevice-time-distribution param-
eter (c.f.§3.2.8,9A.1.3, JA.1.6) for an entry or activity. A histogram afumber-bins bins betweemin andmax

is generated. Samples that fall either under or over thigeamre stored in their own under-flow or over-flow bins
respectively. The optionatsamples parameter can be used to set the sampling behaviour to one of:

linear Each bin is of equal width, found by dividing the histogramge by the number of bins. If thesamples
is not set, this behaviour is the default.

log The logarithm of the range specified is dividedrymber-bins . This has the effect of making the width of the
bins small neamin, and large neamax. A minimum value of zero isot allowed.

sqrt The square root of the range specified is dividechbynber-bins . Bins are smallest nedain are smaller
than those neanax.

The results of the histogram collection, shown in Fiduré 2dnsist of the mean, standard deviation,, skew and
kurtosis of the sampled range, followed by the histograedfitéach entry of the histogram contains the probability
of the sample falling within the bucket, and, if availablee tonfidence intervals of the sample.

The statistics for the histogram are found by multiplying thid-point of the range defined bggin andend, not
counting either the overflow or underflow bins. If the mearuealeported by the histogram is substantially different
than the actual service time of the phase or activity, therrdinge of the histogram is not sufficiently large.

2.2.12 Throughputs and Utilizations per Phase

The Throughputs and Utilizations per Phaskapter lists the throughput by entry and activity, and ttiezation by
phase and activity. The utilization is thesk utilization i.e., the reciprocal of the service time for the task [C2.8).
The processor utilization for the task is listed undéilization and Waiting per Phase for Process@eedZ.2.13).

17

8T

Service time distributions for entries and activities:

SCE3
Mean =
Begin

©CoOo~NOoOOUhr~,WNEO

PHASE 1.
11.58, Stddev = 8.457, Skew = 0.8501, Kurtosis = -0.249
End Prob. +/-95% +/-99%
1 0.03355 0.001048 0.001412 |
2 0.03786 0.001605 0.002163 |
3 0.05406 0.002026 0.002731 |
4 0.06333 0.002031 0.002737 |
5 0.06545 0.001631 0.002199 |
6 0.06369 0.001578 0.002127 |
7 0.06049 0.001692 0.00228 |
8 0.05591 0.001822 0.002456 |
9 0.05133 0.001272 0.001714 |
10 0.0472 0.001767 0.002382 |
11 0.04318 0.001618 0.002181 |
12 0.03931 0.001185 0.001597 |
13 0.03579 0.001073 0.001446 |
14 0.03231 0.001654 0.002229 |
15 0.02952 0.001033 0.001392 |
16 0.02677 0.001189 0.001603 |
17 0.0243 0.001058 0.001425 [
18 0.02214 0.001087 0.001466 |
19 0.02001 0.001122 0.001512 |
20 0.01806 0.001016 0.001369 |
21 0.01653 0.0009079 0.001224 | *
22 0.01499 0.001018 0.001372 | *
23 0.01365 0.0007152 0.0009639 | *
24 0.01229 0.000955 0.001287 | *
25 0.0112 0.0008691 0.001171 | *
26 0.009997 0.0006182 0.0008331 | *
27 0.009227 0.0007344 0.0009898 | *
28 0.008282 0.0006896 0.0009293 | *
29 0.007444 0.0005936 0.0007999 | *
30 0.006802 0.0005752 0.0007751 | *
overflow 0.06532 0.001561 0.002104 | *

Figure 2.5: Histogram output

2.2.13 Arrival Rates and Waiting Times

TheArrival Rates and Waiting Timeshapter is only present in the output whegren arrivalsare present in the input.
This chapter shows the arrival rateafnbdg and the waiting time. The waiting time includes the servioe at the
task.

2.2.14 Utilization and Waiting per Phase for Processor

The Utilization and Waiting per Phase for Procesdlists the processor utilization and the queueing time fargv
entry and activity running on the processor.

19

Chapter 3

XML Grammar

The definition of LQN models using XML is an evolution of théginal SRVN file format (c.f. Appendik’/A]1). The
new XML format is based on the work done in[21], with furthefinement for general usage. There are new features
in the XML format to support new concepts for building andeasbling models using components. The normal LQN
tool suite (likelgns(1)andlgsim(1) do not support these new features, however other toolgeutse suite are being
written to utilize the new parts of the XML format.

3.1 Basic XML File Structure

In XML, layered models are specified in a bottom-up order,chtis the reverse of how layered models are typically
presented. First, a processor is defined, then within thegssor block, all the tasks than run on it are defined.
Similarly, within each task block all the entries that areaxsated with it are defined, etc. A simplified layout of an
incomplete LQN model written in XML is shown in Figure 8.1.

Activity graphs (specified by task-activities) belong t@sk, and hence are siblings to entry elements. The element
entry-activity-graph specifies an activity graph contdimégthin one entry, but is not supported by any of the LQN
tools. The concept of phases still exists, but now each pkaseactivity, and is defined in the entry-phase-activities
element.

3.2 Schema Elements

The XML definition for layered models consists of three files:

I gn. xsd: Ign.xsd is the root of the schema.

[gn- sub. xsd ...

I gn- cor e. xsd Ign-core is the actual model specfication and is includedjhyxd.

All three files should exist in the same location. If the solv@nnot located thign.xsd file, it will emit an errof]
and stop.

Figure[3.2 shows the schema for Layered Queueing Netwoikg umified Modeling Language notation. The
model is defined starting frogn-model . Unless otherwise specified in the figure, the order of elésienthe
model is from left to right, i.e.<solver-params> always preceedsprocessor> in the input file. Optional
elements are shown using a multiplicity of zero for an asgam. Note that results (optional, shown in blue) are part
of the schema.

1See the error message “The primary document entity could@opened” of@9.

20

<lgn-model>

> <solver-params>
3 <pragma/>

4+ </solver-params>
s <processor>

6 <task>

7 <entry>

8 <entry-phase-activities>
9 <activity>

10 <synch-call/>

1 <asynch-call/>
12 </activity>

13 <activity> ... </activity>
1 </entry-phase-activities>
15 </entry>

16 <entry> ... </entry>

7 <task-activities>

18 <activity/>

19 <precedence/>

20 </task-activities>

2 </task>

2 <task> ... </task>

23 </processor>
2 <processor> ... </processor>
s/lgn-model>

Figure 3.1: XML file layout.

21

Ign-model

? {ordered}

0.1 0.1 1 1.0 0.’ 0.1
run-control plot-control solver-params processor slot lgx
{ordered} ? {ordered} ’
0.1 l0.r lo.r o 1.
result-general pragma result-processor group
{ordered} ’
0.* 1.* 1.*
result-group task
{ordered} ?
0.1 1.0 1.0 %
result-task entry service task-activities
{ordered}
0.* 0.* lo0.r 0.1 0.1
service-time- . entry-phase- entry-activity-
result-entry distribution forwarding activities graph
’ {ordered} ’
1.3 1l [0 0] Jor 0."
activity precedence| |reply-entry
{ordered} ?{ordered}
lo.r 0. [0. {uribidered] 0. Ik Jo.1 1.4 0.
. |[service-time- oo] reply-
result-activity distribution synch-call | | |asynch-call L ,,)r,e,) J B 7pfOft7) J activity
s | | | | | | |
result-call pre pre-or pre-and post post-or post-and || post-loop

!

!

!

!

!

0. {ordered}

—_

1.*

result-join-

delay

activity

Figure 3.2: Top-level LQN Schema. Elements showblireare results found in the output. Elements showreit
are not implemented. Unless otherwise indicated, all efesnare ordered from left to right.

22

3.2.1 LgnModelType

The first element in a layered queueing network XML input fédgn-model , which is of typeLgnModel-
Type and is shown in Figure_3.3.qnModelType has five elements, namelyun-control , plot-control ,
solver-params ,processor andslot .Run-control andplot-control are not notimplemented@rocessor
is described under Sectibn 3RZot is described in[21]. The attributes fognModelType are shown in Table 3/ 1.

LgnModelType

name: string
description: string
lgn-schema-version: float

T

Ign-model
{ordered}
0.1 0.1 1 1.7 0.* 0.1
run-control plot-control solver-params processor slot lgx

comment: string
conv_val: float

it_limit: unsigned
print_int: unsigned
underrelax_coeff: float

{ordered}
0.1 0.*
result-general pragma
param: string
value: string

Figure 3.3: Top-level LQN Schema.

Name Type Use Default | Comments

name string optional The name of the model.

description string optional A description of the model.
Ign-schema-version integer | fixed 1.0 The version of the schema (used by the solver

in case of substantial schema changes |for
model conversion.)

Igncore-schema-version integer | fixed 1.0
xml-debug boolean| optional | false

Table 3.1: Attributes for elements of tyhenModelType from Figure 3.3.

The elemensolver-params is used to set various operating parameters for the analgher, and to record

various output statistics after a run completes. It costdire elementsesult-general andpragma. The
attributes forsolver-params are shown in TablEZ3/2. These attributes are mainly usedntraiche analytic
solver. Refer to Section 3.3 for more information. The htités forresult-general are shown in TablE—3.3.

Refer to Sections 2.1.1 abhd 2]1.2 for the interpretationeaidler information. The attributes fpragma are show in
Table[3.3. Refer to Sectidn 5.2 for the pragmas supportedsy &and to Sectidn 8.3 for the pragmas supported by
lgsim.

23

Name Type Use Default | Comments

conv _val float optional | 1 Convergence value for Igns (cgb.3). Ignored by
Igsim.

it _limit integer | optional | 50 Iteration limit for Igns (c.fd5.3). Ignored by Igsim.

print _int integer | optional | 0O Print interval for intermediate results. The print

must be specified to Igns to generate output after
it_limit iterations. Blocked statistics must be specified
to Igsim using theA n, -B n, or-Cnflags.

underrelax _coeff float optional | 0.5 Under-relaxation coefficient for Igns (cgg.3). Ig-
nored by Igsim.

Table 3.2: Attributes of elemesblver-params from Figure 3.B.

Name | Type | Use | Default | Comments |
conv-val float required Convergence value (c[f. 2.1.1)
valid enumeration| required EitherYESor NQ
iterations float optional The number of iterations of the analytic solver jor
the number of blocks for the simulator.
elapsed-time string optional The wall-clock time used by the solver.
system-cpu-time string optional The CPU time spent in kernel-mode.
user-cpu-time string optional The CPU time spent in user mode.
platform-info string optional The operating system and CPU type.
solver-info string optional The version of the solver.
Table 3.3: Attributes of elemengsult-general from Figurd 3.8.
| Name | Type | Use | Default | Comments
param | string | required The name of the parameter. (€.1.]548.3)
value string | required the value assigned to the pragma.

Table 3.4: Attributes of elemepragma from Figurd 3.B.

24

3.2.2 ProcessorType

Elements of typd’rocessorType shown in Figuré 3]4 are used to define the processors in tldelm®hey contain

an optionalresult-processor element and elements of eith@&roupType or TaskType. Thescheduling

attribute must by set tofs , for completely fair scheduling, iBroupType elements are present and to any other type

if GroupType are not foundGroupType andTaskType elements may not be both be defined in a processor.
Elementresult-processor is of typeOutputResultType and is described in Sectién 3.2111. Elemiask

is described in Sectidn 3.2.4. The attribute®obcessorType described il A. 112, are shown in Table]3.5.

ProcessorType

name: string

speed-factor: float
scheduling: SchedulingType
multiplicity: unsigned
replication: unsigned
quantum: float

T

processor
{ordered} fxor)
X T -
result-processor GroupType
name: string
cap: boolean
share: float
Z% $1 “* 1 “*
group TaskType
task

Figure 3.4: Processor Schema.

Name Type Use Default | Comments

name string required

multiplicity integer optional | 1 Seefl.2

speed-factor float optional | 1.0 Scaling factor for the processor.

scheduling enumeration| optional | fcfs The allowed scheduling types afefs , hol , pp,
rand ,inf , ps-hol ,ps-pp andcfs . SeefI.1.1.

replication integer optional | 1 Seefl1.2

guantum float optional | 0.0 Mandatory for processor sharing scheduling when|us-
ing lgsim.

Table 3.5: Attributes for elements of typeocessorType

25

3.2.3 GroupType

Optional elements of typ&roupType, shown in Figur€3]4, are used to define groups of tasks fagssors running
completely fair scheduling. Each group must contain a mimnof one task. The attributes GroupType are shown

in Table[3.6.

Name | Type Use Default | Comments

name | string required

share | float required The fraction of the processor allocated to this
group.

cap boolean| optional | false If true, shares areaps (ceilings). Otherwise
shares are guarantees (floors)

Table 3.6: Attributes for elements of ty@oupType

3.2.4 TaskType

Elements of typdaskType, shown in Figuré 315, are used to define the tasks in the mddielse elements contain

an optionatesult-task element, one or more elementsiftry Type, and optionally, elements skrvice and
task-activities . Elementresult-task is of type OutputResultType, and is described in Section 3.2.11.

Elemententry is described in Sectidn 3.2.5. The attributeSa$kType, described in Sectidn A..4, are shown in
Table[37.

TaskType

rmame:string
multiplicity: unsigned
replication: unsigned
scheduling: SchedulingType
think-time: float
priority: unsigned
queue-length: unsigned
activity-graph: bool
intially: unsigned

EntryType task TaskActivityGraph
{ordered}
0.* 0.* 1. 1. 0.
service-time- entr . -
result-task distribution y service task-activities

Figure 3.5: TaskType

3.2.5 EntryType

Elements of typ&ntryType, shown in Figur&316, are used to define the entries of taskisieg can be specified one
of three ways, based on the attribtijgpe of anentry element, namely:

phlph2 The entry is specified using phases. The phases are spedfiagl anentry-phase-activities
element which is of théctivityPhasesTypetype. Activities defined within this element must have a ueiq
phase attribute.

26

{unordered}

0.

0.”

synch-c

asynch-call

Figure 3.6: Schema for tydentryType.

27

Name Type Use Default Comments
name string required
multiplicity integer optional | 1 Seefl.2.
priority integer optional | O The priority used by the processor for scheduling.
See{I.1.1.
queue-length integer optional | O Maximum queue size (for open-class requests
only). Seef1.1.3.
replication integer optional | 1 See{1.2
scheduling enumeration| optional | FCFS The scheduling of requests at the task. The allowed
scheduling types amef , fcfs , hol ,pri ,inf
burst ,andpoll andsemaphore . SeefT.1.3.
activity-graph enumeration| required yes orno
| think-time | float | optional | 0 | Reference tasks only. Customer think time. |
initially integer optional | multiplicity | Semaphore tasks only. Set the initial number| of
semaphore tokens to zero. By default, the number
of tokens is set to the multiplicity of the task.
Table 3.7: Attributes for elements of typgaskType
MakingCallType EntryType
dest: string name: string
fanout: unsigned open-a(rlval—rate: float
fanin: unsigned priority: integer
semaphore: SemaphoreType . Activity
type: enumeration ActivityDefBase GraphBase
name: string ’
host-demand-mean: float
EntryMaking host-demand-cvsaq: float
CallType think-time: floqt EntryActivity
entry Phase max-service-time: float Graph
prob: float Activities | | call-order: CallOrderType ’ rap
0.r 0.* 0.1 0.1
_ service-time- . entry-phase- Activity entry-activity-
result-entty | | gistribution || T"Warding activities PhasesType graph
<@ phase: 1.3
ActivityMaking % B «
CallType 1.3 1 0. 0.
calls—mean: float activity activity precedence | | reply-entry

graph The entry is specified as an activity graph defined within thteye The demand is specified using elements
of type ActivityEntryDefType . This method of defining an entry is not supported currently.

none The entry is specified using an activity graph defined witlia task. Atask-activities element
of type ActivtyDefType must be present and one of the activities defined within tl@ment must have a
bound-to-entry attribute. TheTaskActivityGraph type is defined in Sectidn 3.2.7.

ActivityPhasesType ActivityEntryDefType and ActivtyDefType are all based odctivityDefBase, described in
Sectior 3.28. They only differ in the way the start of thepdras identified, and in the case AttivityPhasesType
the way the activities are connected.

The attributes foEntryType, described in Sectidn A.1.5, are shown in Tdblé 3.8. Theaptielementesult-entry
is of typeOutputResultType, and is described in Sectibn 3.2.11. The optional elerfeemtarding s used to de-
scribe the probability of forwarding a request to anotheneiit is described in Sectidn 3.2.9.

Name Type Use Default | Comments

name string required The entry name

type enumeration| required PH1PH2 GRAPHor NONE
open-arrival-rate float optional

priority integer optional (c.f.113)

sempahore enumeration| optional signal orwait (c.f.[1.1.3)

Table 3.8: Attributes for elements of tyjfmtry Type.

3.2.6 ActivityGraphBase

Elements of typé\ctivityGraphBase, shown in Figur€3]7, are used to define activities [C.f5).And their relation-
ships to each other. They are used by elements of Biotty Type andTaskActivityGraph types.

Elements of theActivityGraphBase consist of a sequence of one or mativity elements followed by
a sequence gbrecedence elements.Activity elements are used to store the demand for an activity and re-
quests to other servers (through thetivityDefType) and, optionally, results through elementsAativityDefType.
Precedence elements are defined by tReecedenceTypen Sectior 3.2.710.

3.2.7 TaskActivityGraph

Task Activity Graphs, defined using elements of tfpskActivityGraph and shown in Figule 3.7, are used to specify
the behaviour of a task using activities. This type is alntlostsame a&ntryActivityGraph , except that the activity
that replies to an entry must explicitly specify the entry fdhich the reply is being generated. The actual activity
graph is defined using elements of typetivityGraphBase, described in Sectidn 3.2.6. The attributes for elements

reply-entry andreply-activity are shown in Tablds 3.9 ahd 3110 respectively.
Name | Type | Use Default | Comments
name | string | required The name of the entry for which the list of
reply-activity elements generate replies.

Table 3.9: Attributes of elemeneply-entry from Figurd 3.7.

3.2.8 ActivityDefBase

The typeActivityDefBase, shown in Figur€ 3]7, is used to define the parameters fortantgcsuch as demand and
call-order. This type is extended BctivityPhasesType EntryActivityDefType , and ActivityDefType to define
the requests from an activity to an entry, and to connect thigity graph to the requesting entry. Talhle 3.11 lists

28

ActivityDefBase

—
] name: string Activity
MakingCallType host-demand-mean: float > GraphBase
—— host-demand-cvsq: float
dest: string think-time: float
fanin: unsigned max-service-time: float
fanout: unsigned call-order: CallOrderType
TaskActivity EntryActivity
Graph Graph
ActivityMaking Activity ActivitvDefTvpe EntryActivity Z%
CallType PhasesType yoeriyp DefType . entry-activity-
calls—mean: float phase: 1.3 bound—to—entry: string | | first-activity: string || | task-activities graph
? ﬁ {ordered}
| {ordered} | | orderedf |
{) ‘1* {) 0.x 0.
activity activity precedence reply-entry
name:string
{unordered}
.- fordered) 4 - ‘ 0.* ‘ 0.*
-, service-time- 0."
result-activity —_— synch-call asynch-call .
distribution reply-activity

Figure 3.7: Schema diagram for the tyfetivityGraphBase

name:string

Name Use

Type

Default

Comments

name | string | required

The name of the activity which generates a reply. T
entry is either implicitly defined if this element is de
fined within anEntryType, or part of list defined
within areply-element

'he

U
]

Table 3.10: Attributes of elemengply-activity

29

from Figurd 3.V.

the parameters used as attributes and the attributes usbe byree sub-types. Refer to Section Al.1.6 for more in-

formation on these parameters. RefeMakingCallType (§3.2.9) for theActivity-CallGroup used to make
requests to other entrfes Refer toOutputResultForwardingANDJoinDelay (§?7?) for result-join-delay
andresult-forwarding for join-delay and forwarding results respectively. RefeOutputDistributionType
(§8.2.13) forservice-time-distribtion . Finally, refer toOutputResultType (§3.2.11) forresult-activity
This element contains most of the results for an activitylwage.
Name Type Use Default Comments
name string required
host-demand-mean float required The mean service time demand fpr
the activity.
host-demand-cvsq float optional | 1.0 The squared coefficient of varia-
tion for the activity.
think-time float optional | 0.0
max-service-time float optional | 0.0
call-order enumeration| optional | STOCHASTIC | STOCHASTIC or
DETERMINISTIC
ActivtyPhasesType
phase | integer | required| |1,2,0r3
ActivtyEntryDefType
first-activity | string | required| |
ActivtyDefType
bound-to-entry string optional If set, this activity is the start of an
activity graph.

Table 3.11: Attributes for elements of typetivityDefBase.

3.2.9 MakingCallType

The typeMakingCallType, shown in Figur€ 318, is used to define the parameters foesgto entries. This type is
extended byActivityMakingCallType andEntryMakingCallType to defined requests from activities to entries and
for forwarding requests from entry to entry respectivelggRests from activities to entries can be either synchranou
(i.e., arendezvous through async-call element, or asynchronous (i.e send-no-reply, through aasync-call
element. Section 1.1.7 defines the parameters for a redadse[3. 1P lists the attributes for the types.

Name Type Use Default | Comments
dest string | required The name of the entry to which the requests are made.
fanout integer | optional | 1 (Seedl.2)
fanin integer | optional | 1 (Seedl.2)
| ActivityMakingCallType |
| calls-mean | float | required] | The mean number of requests. |
| EntryMakingCallType |
| prob | float | required] | The probability of forwarding requests. |

Table 3.12: Attributes for elements of typakingCallType .

2Call-List-Group is not defined at present.

30

MakingCallType

dest: string
fanout: unsigned
fanin: unsigned

EntryMaking ActivityMaking i
CallType entry CallType activity
prob: float calls-mean: float ’
‘ {unordered}
forwarding ‘ 0.* 0.*
synch-call asynch-call

Figure 3.8: Schema diagram for the grddpkingCallType.

3.2.10 PrecedenceType

The typePrecedenceTypeshown in Figuré 319, is used to connect one activity to agrothithin an activity graph.

Each element of this type contains exactly gme element and, optionally, ongost element. The pre elements

are referred to ain-lists as all of the branches associated with the activitighe join-list must finish (i.e. “join”)

before the activities in the subsequent post element can $tee post element itself is referred to afoek-list.
Elements oPrecedenceType&an be of one of five types:

SingleActivityListType: Elements of this type have no attributes and a sequence cfigraeactivity element
of Activity Type.

ActivityListType: Elements of this type have no attributes and a sequence on®i@activity elements of
Activity Type .

AndJoinListType: Elements of this type have an optiomgiorum element and a sequence of one or more or more
activity elements ofActivity Type . Tabld 3.1B show the attributes AhdJoinListType.

OrListType: Elements of this type have no attributes and a sequence aneregctivity elements ofActivity-
OrType. These elements specify an activity name and a branch pitispabable[3.14 show the attributes of
ActivityOrType .

ActivityLoopListType: Elements of this type have one optional attribute and a sesuene or moractivity
elements ofActivityLoopType. These elements specify an activity name and a loop coune optional
attribute is used to specify the activity that is executeerafll the loop branches complete. Taliles B.19and 3.16
show the attributes dhctivityLoopListType andActivityLoopType respectively.

3.2.11 OutputResultType

The typeOutputResultType, shown in Figuré_3.10, is used to create elements that stsidts described earlier
in Section 2. OutputResultType is a subtype oResultContentType This latter type defines the result element’s
attributes. Elements of thidutputResultType can contain two elements of tyesultContentTypg which contain
the £95% and +99% confidence intervals, provided that these results areableail The attributes for elements of
ResultContentTypeare listed in Table_3.17 and are used to store the actuatsgsalduced by the solver. Note that
all the attributes are optional: elements of this type willyohave those attributes which are relevant.

31

PrecedenceType

1

precedence
{ordered}
AndJoin 1 0.1 ActivityLoop
SingleActivity ListType o ’,;r; ho ;);ti [Activity or ListType
ListType quorum:unsigned |+ " J L 7pi T J ListType || ListType ||end:string
pre pre-AND pre-OR post post-AND post-OR || |post-LOOP
{ordered}
ENERER
ActivityType i w
name: string ActivityOr ActivityLoop
Type Type
o ‘ prob: float count: float
result-join- .
delay activity ‘ ‘
activity activity

Figure 3.9: Schema diagram for the typeecedenceType

Name Type Use Default | Comments
name string | required
quorum | integer| optional | O The number of branches which must complete for the
join to finish. If this attribute is not specified, then all
of the branches must finish, which makes this object
an AND-Join
Table 3.13: Attributes for elements of typ@dJoinListType.
Name | Type | Use Default | Comments
name | string | required
prob | float | optional | 1.0 The probability that the branch is taken, on average
(c.f. I.1.8)
Table 3.14: Attributes for elements of typetivityOrType .
Name | Type | Use Default | Comments
end string | required

Table 3.15: Attributes for elements of typetivityLoopListType .

32

Name | Type | Use Default | Comments
count | float | optional | 1.0 The number of times the loop is executed, on averpge

(c.f. 1.1.8)
Table 3.16: Attributes for elements of typetivityLoopType .

Result
ContentType
Output
ResultType
result-processor | | result-group result-task result-entry result-activity result-call
0.1 0.1
result-95-conf result-99-conf

Figure 3.10: Schema diagram for tyPeitputResultType

| Name | Type | Comments | (xref) |
proc-utilization float | Processor utilization for a task, entry, or dc<2.2.14
tivity.
proc-waiting float | Waiting time at a processor for an activity. | §2.2.14
phaseX-proc-waiting float | Waiting time at a processor for pha¥ef an | §2.2.14)
entry.
open-wait-time float | Waiting time for open arrivals. §2.2.13
service-time float | Activity service time. §2.2.8
loss-probability float | Probability of dropping an asynchronous §2.2.2
message.
phaseX-service-time float | Service time for phase X of an entry. §2.2.8
service-time-variance float | Variance for an activity. 42.2.9
phaseX-service-time-variance float | Variance for phasX of an entry. §2.2.9
phaseX-utilization float | Utilization for phasex of an entry. §2.2.12
prob-exceed-max-service-time float §2.2.11
squared-coeff-variation float | Squared coefficient of variation over all §2.2.9
phases of an entry
throughput-bound float | Throughputbound for an entry. §2.2.1
throughput float | Throughputfor a task, entry or activity. §2.2.12
utilization float | Utilization for a task, entry, activity. §2.2.12
waiting float | Rendezvous delay §2.2.2
waiting-variance float | Variance of delay for a rendezvous 42.2.3

Table 3.17: Attributes for elements of tyResultContentType

33

3.2.12 OutputResultJoinDelayType

The typeOutputResultJoinDelayTypeis similar to OutputResultType. The attributes of this type are shown in
Table[318.

'ResultJoinDelay
' ContentType |

oenpe

OutputResult
JoinDelayType

O. .*
result-join-
delay
0.1 0.1
result-95-conf result-99-conf

Figure 3.11: Schema diagram for tyPeitputResultJoinDelayType

| Name | Type | Comments | (xref) |
join-waiting float | Join delay §2.2.7
join-variance float | Join delay variance §2.2.7

Table 3.18: Attributes for elements of ty@aitputResultJoinDelay Type

3.2.13 OutputDistributionType

Elements of typeutputDistributionType , shown in Figuré¢ 3.12, are used to define and store histogpmisase
and activity service times. The optionahderflow-bin , overflow-bin andhistogram-bin elements, all
the elements are of tygeéistogramBinType, are used to store results.

The attributes oDutputDistributionType elements are used to both store the parameters for the tastpgnd
output statistics. Refer to Talle 3119

3.2.14 HistogramBinType

3.3 Schema Constraints

The schema contains a set of constraints that are checkd betrces XML parset]1] to ensure that the model file
is valid. XML editors can also enforce these constrainthabd the model is somewhat correct before being passed to
the simulator or analytic solver. The constraints are deviol

e All processor must have a unique name.
e All tasks must have a unique name.

e All entries must have a unigue name.

34

Output
DistributionType

min: float

max: float

bin-size: float
number-bins: unsigned

std-dev: float

mean: float

OutputEntry Histogram
DistributionType BinType
phase: unsigned begin: float
end: float
prob: float
conf-95: float
conf-99: float
entry activity
0. 0. 0.1 0. 0.1
service-time- service-time-
distribution distribution underflow-bin histogram-bin overflow-bin
Figure 3.12: Schema for tyg@utputDistributionType .

Name Type Use Default | Comments

min float required The lower bound of the collected histogram data.

max float required The upper bound of the collected histogram datg.

number-bins integer | optional | 20 The number of bins in the distribution.

mid-point float optional

bin-size float optional

mean float optional The mean of the distribution.

std-dev float optional The standard deviation of the distribution.

skew float optional The skew of the distribution.

kurtosis float optional The kurtosis of the distribution.

| OutputEntryDistributionType |
| phase | integer | required] | Phase... |

Table 3.19: Attributes for elements of ty@atputDistributionType .

| Name | Type | Comments | (xref) |
begin float | Lower limit of the bin.
end float | Upper limit of the bin.
prob float | The probability that the measured value lies
within begin andend.
conf-95 float
conf-99 float

Table 3.20: Attributes for elements of typistogramBinType.

35

e All activities must have a unique name within a given task.

e All synchronous requests must have a valid destination.

e All asynchronous requests must have a valid destination.

e All forwarding requests must have a valid destination.

e All activity connections (in precedence blocks) must refevalid activities.
e All activity replies must refer to a valid entry.

e All activity loops must refer to a valid activities.

e Each entry has only one activity bound to it.

e Phases are restricted to values one through three.

e All phase attributes within an entry must be unique.

Further validation is performed by the solver itself. ReteSectiorl ¥ for the error messages generated.

One downside of using the Xerces XML parser library is thatXlerces tends to give rather cryptic error messages
when compared to other tools. If an XML file fails to pass thikdedion phase, and the error looks cryptic, chances
are very good that there is a genuine problem with the XML firfije. Xerces has a bad habit of coming back with
cryptic errors when constraint checking fails, and onlyegiyou the general area in the file where the actual problem
is.

One easy and convenient solution around this problem islidata the XML file using another XML tool. Tools
that have been found to give more user friendly feedback &eSpy (any edition), and XSDvalid (Java based, freely
available). Another solution is to check if a particularltoan de-activate schema validation and rely on the actual
tool to do its own internal error checking. Currently thisnist supported in any of the LQN tools which are XML
enabled, but it maybe implemented later on.

If the XML file validates using other tools, but fails validat with Xerces, or if the XML file fails validation on
other tools, but passes with Xerces then please report di#gm. The likelihood of validation passing with Xerces
and not other tools will be much higher then the reverse saertsecause Xerces does not rigorously apply the XML
Schema standard as other tools. Other sources of problerdusmerrors in the XML schema itself, or some unknown
bug in the Xerces library.

36

Chapter 4

LQX Users Guide

4.1 Introduction to LQX

The LQX programming language is a general purpose programtanguage used for the control of input parameters
to the Layer Queueing Network Solversystem for the purpogesensitivity analysis. This language allows a user to
perform a wide range of different actions on a variety ofatiéint input sources, and to subsequently solve the model
and control the output of the resulting data.

4.1.1 Input File Format

The LQX programming language follows grammar rules whiah\ary similar to those of ANSI C and PHP. The
main difference between these languages and LQX is that lS@Xldosely typed language with strict runtime type-
checking and a lack of variable coercion (“type casting”ddiionally, variables need not be declared before their
first use. They do, however, have to be initialized. If they an-initialized prior to their first use, the program will
fail.

Comment Style

LQX supports two of the most common commenting syntaxessty@®” and “C++-style.” Any time the scanner
discovers two forward slashes side-by-sifle), it skips any remaining text on that line (until it reachesseavline).
These are “C++-style” comments. The other rule that thersgianses is that should it encounter a forward slash
followed by an asterisk (“/*"), it will ignore any text it finslup until a terminating asterisk followed by a slash (“*/”).
The preferred commenting style in LQX programs is to use “Gtyte” comments for single-line comments and to
use “C-style” comments where they span multiple lines. Th@matter of style.

Intrinsic Types

There are 5 intrinsic types in the LQX programming languages

e Number: All numbers are stored in IEEE double-precision floatinghpormat.

String: Any literal values between (*) and (") in the input.

Null: This is a special type used to refer to an “empty” variable.

e Boolean A type whose value is limited to either “true” or “false.”

Object: An semi-opaque type used for storing complex objects. Sdgects.”

File Handle File handles to open files for writing/appending or readige “File Handles.

37

LQX also supports a pseudo-intrinsic “Array” type. Wheré&asany other object types, the only way to interact
with them is to explicitly invoke a method on them, objectdygfe Array may be accessed witperator [] and
with operator []= ,in afamiliar C- and C++-style syntax.

The Object type also allows certain attributes to be expasetbroperties.” These values are accessed with the
traditional C-styleobject.property syntax. An example property is tt#éze property for an object of type
Array, accessed amray.size Only instances of type Object or its derivatives have priger Number, String,
Null and Boolean instances all have no properties.

Arrays and Iteration

The built-in Array type is very similar to that used by PHRslactually a hash table, also known as a “Dictionary” or
a “Map” for which you may use any object as a key, and any olgset value. It is important to realize that different
types of keys will reference different entries. That is tg gatinteger 0 andstring “0” will not yield the
same value from the Array when used as a key.

The Array object exposes a couple of convenience APIs, asle@tin Sectiom 4]2. These methods are simply
short-hand notation for the full function calls they re@aeand provide no additional functionality. Arrays may be
created in three different ways:

e array _create(...) andarray _create _map(key,value,...)
The explicit, but long and wordy way of creating an array gealts or a map is by using the standard functional
API. array _create(...) takes an arbitrary number of parameters (from 0 up to the maxi specified,
for all practical purposes infinity), and returns a new Ariagtance consisting dd=>arg1, 1=>arg2,
2=>arg3, ..

The other functionarray _create _map(key,value,...) takes an even number of arguments, from O
to 2n. The first argument is used as the key, and the seconthargused as the value for that key, and so on.
The resulting Array instance consistsjafgl=>arg2, arg3=>arg4, ...] . Both of these methods are
documented in Sectidn 4.2.

e [argl, arg2, ...]: Shorthand notation faarray _create(...)

e {kl=>vl, k2= >v2, ... }: Shorthand notation faarray _create _map(...)

The LQX language supports two different methods of itecatimer the contents of an Array. The first involves
knowing what the keys in the array actually are. This is aditianal” iteration.

1 /x Traditional Array Iteration =/

2 for (idx = 0; key < array.size; idx=idx+1){
3 print("Key " , idx, " =>" | array[idx]);

“« }

In the above code snippet, we assume there exists an arraf whitaing values, stored at indexes 0 through
n-1 , continuously. However, the language provides a more atagathod for iterating over the contents of an array
which does not require prior knowledge of the contents ofairay. This is known as afdreach " loop. The
statement above can be rewritten as follows:

1 /x More modern array itterationx/
> foreach (key, value in array)X

3 print("Key " , key, " =>" | value);
a}

This method of iteration is much cleaner and is the recommeéndhy of iterating over the contents of an array.
However, there is little guarantee of the order of the resultaforeach loop, especially when keys of multiple
different types are used.

38

Type Casting

The LQX programming language provides a number of built-ethnods for converting between variables of different
types. Any of these methods support any input value typeptoethe Object type. The following is a non-extensive
list of use cases for each of the different type casting nustlamd the results. Complete documentation is provided in

Sectiol4.p.

str(...) double(?)

str() double(1.0) 1.0
str(1.0) “1” double(null) 0.0
str(1.0, "+", “1+true” double("9") 9.0
true) double(true) 1.0
str([1.0, "t') “[0=>1, 1=>1]" double([0]) null
str(null) “(nully”

boolean(?)

boolean(1.0) true

boolean(17.0) true

boolean(-9.0) true

boolean(0.0) false

boolean(null) false

boolean("yes") true

boolean(true) true

boolean([0]) null

User-Defined Functions

The LQX programming language has support for user-definections. When defined in the language, functions do
not check their arguments types so every effort must be takensure that arguments are the type that you expect
them to be. The number of arguments will be checked. Variigth argument lists are also supported with the
use of the ellipsis.(.) notation. Any arguments given that fall into the ellipsis aonverted into an array named
(Lva_list) in the functions’ scope. This is a regular instance of Arcapsisting of O or more items and can be
operated on using any of the standard operators.

User-defined functions daot have access to any variables except their arguments anch&k(#-prefixed) and
Constant (@-prefixed) variables. Any additional variabitesst be passed in as arguments, and all values must be
returned. All arguments are ionly. There are no out or inout arguments supported. All argusnarg copied,
pass-by-value. The basic syntax for declaring functiorss i®llows:

1 function <name-(<argl>, <arg2>, ...) {
2 <body>
3 return (value);

« }

You can return a value from a function anywhere in the bodypaishereturn function. A function which
reaches the end of its body without a call to return will audtially return NULL.return() is a function, not a
language construct, and as such the brackets are requinednuimber of arguments is not limited, so long as each
one has a unique name there are no other constraints.

4.1.2 Writing Programs in LQX

Hello, World Program

A good place to start learning how to write programs in LQXfigaurse the traditional Hello World program. This
would actually be a single line, and is not particularly neting. This would be as follows:

1 println ("Hello, World!");

39

The “printin() " function takes an arbitrary number of arguments of any gpe will output them (barring a
file handle as the first parameter) to standard output, feltblay a newline.

Fibonacci Sequence

This particular program is a great example of how to perfoaw ftontrol using the LQX programming language. The
Fibonacci sequence is an extremely simple infinite sequehazh is defined as the following piecewise function:

1 z=0,1
fib(X) = { fib(x — 1) + fib(x —2) otherwise

Thus we can see that the Fibonacci sequence is defined asrsive@equence. The naive approach would be to
write this code as a recursive function. However, this isarely inefficient as the overhead of even simple recursion
in LQX can be substantial. The best way is to roll the algoniihto into a loop of some type. In this case, the loop is
terminated when we have reached a target number in the Ribiossequencé 1, 1, 2, 3, 5, 8, 13, 21, }.

(4.1)

/x Initial Values x/

1
2 fib_n_minus.two = 1;
3 fib_n_minus_.one = 1;
4 fib_n = 0;
5
e /x Loop until we reach 21x/
7 while (fib_n < 21) {
8 fib_n = fib_n_minus_one + fib_.n_minus_two;
9 fib_n_minus_.two = fib_n_minus_one;
10 fib_n_minus_.one = fib_n;
1 printlin ("Currently: " , fib_n);
12
}

As you can see, this language is extremely similar to C or [BHie. of the few differences as far as expressions are
concerned is that pre-increment/decrement and postrremmg#decrement are not supported. Neither are short form
expressionssuch as, -=, =, /= | etc.

Re-using Code Sections

Many times, there will be code in your LQX programs that yownddike to invoke in many places, varying only the
parameters. The LQX programming language does providettymtandard functions system as described earlier.
Bearing in mind the caveats (some degree of overhead iniumcalls, plus the inability to see global variables
without having them passed in), we can make pretty ingeniseof user-defined functions within LQX code.

When defining functions, you can specify only the number gliarents, not their types, so you need to make sure
things are what you expect them to be, or your code may novperés you expect. We will begin by demonstrating
a substantially shorter (but as described earlier) muchdéfcient implementation of the Fibonacci Sequence using
functions and recursion.

function fib(n) {
if (n==201] n==1){ return (1); }
return (fib(n-2) + fib(n—1));

}

Once defined, a function may be used anywhere in your coda,iev@her user defined functions (and itself —
recursively). This particular example functions very wel the first 10-11 fibonacci numbers but becomes substan-
tially slower due to the increased number of relatively exgdee function invocationdRemembereturn() isa
function, not a language construct. The brackets are reguir

A much more interesting use of functions, specifically thegh variable length argument lists, is an implemen-
tation of the formula for standard deviation of a set of value

EN A

40

1 function average(xArray<double>x/ inputs) {

2 double sum = 0.0;
3 foreach (v in inputs){ sum = sum + v;}
4 return (sum / inputs.size);
s }
6
7 function stdev (xboolean</ sample, ...){
8 x_bar = average(va_list);
9 sum_of_diff = 0.0;
10
1 /x Figure out the divisor=x/
12 divisor = _va_list.size;
13 if (sample ==true) {
14 divisor = divisor — 1;
15 }
16
17 /x Compute sum of differencex«/
18 foreach (v in _va_list) {
19 sum_of_diff = sum_of_diff + pow(v — x_bar, 2);
20 }
21
2 return (pow(sumof_diff / divisor, 0.5));
23
}

You can then proceed to compute the standard deviation ofatiable length of arguments for either sample or
non-sample values as follows, from anywhere in your progaétar it has been defined:

1 stdev (true, 1, 2, 5, 7, 9, 11);
> stdev (false, 2, 9, 3, 4, 2);

Using and Iterating over Arrays

As mentioned in the “Arrays and lteration” under section @flthe Manual, LQX supports intrinsic arrays and
foreach iteration. Additionally, any type of object may be used dabexi a key or a value in the array. The fol-
lowing example illustrates how values may be added to aty,aara how you can iterate over its contents and print it
out. The following snippet creates an array, stores some/&lye pairs with different types of keys and values, looks
up a couple of them and then iterates over all of them.

/x Create an Arrayx/

1

2 array = array,-create ();

3

4+ /+ Store some keyvalue pairs %/
s array[0] = "Slappy" ;

e array[1l] = "Skippy"

7 array[2] ="Jimmy" ;

8

9

/x lIterate over the names/
foreach (index ,name in array J

[
15

1 print ("Chipmunk #' , index, " =" , name);

12 }

13

14 /x Store variables of different types, shorthand

s array = {true => 1.0, false => 3.0, "one" => true, "three" => false}

i
o

/« Shorthand indexed creation with iteration/
foreach (value in [1,1,2,3,5,8,13])
print ("Next fibonacci is " , value);

}

[
]

-
©

i
©

N
S

41

4.1.3 Program Input/Output and External Control

The LQX language allows users to write formatted output temmal files and standard output and to read input data
from external files/pipes and standard input. These festmay be combined to allow LQNX to be controlled by a
parent process as a child process providing model solvingtionality. These capabilities will be described in the
following sections.

File Handles

The LQX language allows users to open files for program inpdt@utput. Handles to these open files are stored in
the symbol table for use by the print() functions for file auttand the readiata() function for data input. Files may
be opened for writing/appending or for reading. The LQXipteter keeps track of which file handles were opened
for writing and which were opened for reading.

The following command opens a file for writing. If it existsistoverwritten. It is also possible to append to an
existing file. The three options for the third parametervariée , append , andread .

1 file_open(outputfilel , "test output 99-peva.txt" , write);
To close an open file handle the following command is used:

1 file_close(output _filel);

File Output

Program output to both files and standard output is possilite tive print functions. If the first parameter to the
functions is an existing file handle opened for writing outisudirected to that file. If the first parameter is not a file
handle output is sent to standard output. Standard outpiseifl when it is desired to control LQNX execution from
a parent process using pipes. If the given file handle has tyeemed for reading instead of writing a runtime error
results.

There are four variations of print commands with two optioBge option is a newline at the end of the line. Itis
possible to specify additional newlines with tedl parameter. The second option is controlling the spacingedst
columns either by specifying column widths in integers qying a text string to be placed between columns.

The basic print functions amint() andprintin() with theln specifying a newline at the end.

1 println(outputfilel , "Model run # " | i, " tl.throughput: " , tl1.throughput);
2

3 print(outputfilel , "Model run # " , i, " tl.throughput: " , t1.throughput, endl);

It should be noted that with the exteandl parameter both of these calls will produce the same outpbe T
acceptable inputs to all print functions are valid file hasduoted strings, LQX variables that evaluate to numlerica
or boolean values (or expressions that evaluate to nunifocdean values) as well as the newline speciied! .
Parameters should be separated by commas.

To print to standard output no file handle is specified asWalo

1 println ("subprocess Igns run \#: " , 1, " tl.throughput: " , tl.throughput);

To specify the content between columns the print functimng _spaced() andprintin _spaced() are
used. The first parameter after the file handle (the secorasher when a file handle is specified) is used to specify
either column widths or a text string to be placed betweeunrnok. If no file handle is specified as when printing to
standard output then the first parameter is expected to tsptueing specifier. The specifier must be either an integer
or a string.

The following printin ~ _spaced() command specifies the stririg
could be used to create comma separated value (csv) files.

to be placed between columns. It
1 println_spaced(outputfile2 , ", " , $pl, $p2, $yl, $y2, tl.throughput);
Example output: 0, 2, 0.1, 0.05, 0.0907554

The followingprintin ~ _spaced() command specifies the integer 12 as the column width.

42

1 println_spaced(outpu{_file3 , 12, \$pl, \$p2, \$yl, \$y2, tl.throughput);

Reading Input Data from Files/Pipes

Reading data from input files/pipes is done with tead _data() function. Data can either be read from a valid
file handle that has been opened for reading or from standard.i Reading data from standard input is useful when
is useful when it is desired to control LQNX execution fromaagnt process using pipes. If the given file handle has
been opened for writing rather than reading a runtime egsults. The first parameter is either a valid file handle
for reading or the stringstdout or- specifying standard input. The data that can be read carnter @umerical
values or boolean values.

There are two forms in which thead _data() function can be used. The first is by specifying a list of LQX
variables which correspond to the expected inputs from tpiipe. This requires the data inputs from the pipe to be
in the expected order.

1 read.data(inputfile , y, p, keeprunning);

The second form in which theead _data() function can be used is much more robust. It can go into a loop
attempting to read string/value pairs from the input pip8l @ntermination stringSTORPREAD is encountered. The
string must corespond to an existing LQX variable (eithenatic or boolean) and the corresponding value must be
of the same type.

1 read.data(stdin, readoop);
Sample input:

1y 10.0 p 1.0 STOREAD
2 continue.processing false STORPREAD

Controlling LQNX from a Parent Process

The file output and data reading functions can be combinelibie an LQNX process to be created and controlled by
a parent process through pipes. Input data can be read indifmas, be used to solve a model with those parameters
and the output of the solve can be sent back through the piptetparent process for analysis. A LQX program
can easily be written to contain a main loop that reads ingnitjes the model, and returns output for analysis. The
termination of the loop can be controlled by a boolean flag¢ha be set from the parent process.

This section describes an example of how to control LQNX eten from a parent process, in this casgesl
script which uses thepen2() function to create a child process with both the standardtiapd output mapped to
file handles in th@erl parent process. This allows data sent from the parent tcaseweghread _data(stdin,
...) and output from the LQX print statements sent to standarouttib be received for analysis in the parent.

This also provides synchronization between the parentfandhild LQNX processes. Thead _data() func-
tion blocks the LQNX process until it has received its expdatata. Similarly the parent process can be programmed
to wait for feedback from the child LQNX process before it tones.

The following is an example perl script that can be used tdroba LQNX child process.

#!/usr/bin/perl—w
script to test the creation and control of an Igns solver pudcess
using the LQX language with synchronization

use FileHandle;
use IPC::Open2;

© ® N o U A W N B

@phases = (0.0, 0.25, 0.5, 0.75, 1.0);
@calls = (0.1 ;

[
15

run Ignx as subprocess receiving data from standard input
open2(xlgnxOutput , xlgnxIinput , "lgnx 99-peva-pipe.lgnx");

=
NP

43

1 for $call (@calls) {
15 for $phase (@phases]

16 print (IgnxInput "y " , $call, " p " , $phase," STOP_READ ");
17 while($response =<lgnxOutput>) !~ m/subprocess Iqns run/{}
18 print ("Response from Ignx subprocess: " , $response);

19 }

20 }

21

» # send data to terminate Iqnx process

23 print (lgnxInput "continue_processing false STOP_READ");

The above program invokes the Ignx program with its input#e child process withpen2() . Two file handles
are passed as parameters. These will be used to send datleopigre to the LQNX process to be received as standard
input and to receive feedback from the LQX program whichiitdseas standard output.

The while loop at line 17 waits for the desired feedback frtwa inodel solve before continuing. This example
uses stored data but a real application such as optimizatoid need to analyze the feedback data to decide which
data to send back in the next iteration therefore this syorghation is important.

When the data is exhausted the LQNX process needs to be tqldttdrhis is done with the final print statement
which sets the continuprocessing flag to false. This causes the main loop in the L@¥nam which follows to quit.

1 <lgx ><![CDATA[

0;
0;
ue_processing =true;

1
0
0

i
p .
y .
contin

=)

while (continue.processing){

© ® N o o A~ W N

[
15

read.data(stdin, readoop); /« read data from input pipex/

-
s

if (continue_processing){

-
N

i
w

14 $pl = 2.0 % p;

15 $p2 = 2.0 (1 — p);
16 $yl = vy;

17 $y2 = 0.5 x y

18 solve ();

i
©

/x send output of solve through stdout through pip€
println ("subprocess Igns run #: " , 1, " tl.throughput: " , tl1.throughput);
=i+ 1;
}
}

s 11> </lgx>

N
o

N
=

N
N

N
@

N
EN

The variables, y, andcontinue _processing all need to be initialized to their correct types before the
loop begins as they need to exist when thad _data() function searches for them in the symbol table. This is
necessary as they are all local variables. External vasabht exist in the LQN model such$s and$y don't need
initialization.

4.1.4 Actual Example of an LQX Model Program

The following LQX code is the complete LQX program for the rebdesignate@eva-99 . The model itself contains
a few model parameters which the LQX code configures, nothply, $p2, $yl and$y2. The LQX program is

44

responsible for setting the values of all model parametelsast once, invoking solve and optionally printing out
certain result values. Accessing of result values is doa¢he LQNS bindings API documented in Section 3.

The program begins by defining an array of values that it wllsketting for each of the external variables. By
enumerating as follows, the program will set the variabbegtie cross product gghase andcalls

1 phase = [0.0, 0.25, 0.5, 0.75, 1.0 J;
. calls = [0.1, 3.0, 10.0];

s foreach (idx,p in phase)

4 foreach (idx,y in calls){

Next, the program uses the input valyeandy to compute the values &pl, $p2, $yl and$y2. Any assign-
ment to a variable beginning withfarequires that variable to have been defined externallyjmitie model definition.
When such an assignment is made the value of the right-hdedsseffectively put everywhere the left-hand side is
found within the model.

5 $pl = 2.0 * p;

6 $p2 = 2.0x (1 — p);
7 $yl = vy;

8 $y2 = 0.5 * y;

Since all variables have now been set, the program involesdlve function with its optional parameter, the
suffix to use for the output file of the current run. This pariéc program outputi.out-$pl-$p2-$y1-$y2
files, so that results for a given set of input values caneasilfound. As shown in the documentation in Section 3,
solve(<opt> suffix) will return a boolean indicating whether or not the soluttmmverged, and this program
will abort when that happens, although that is certainlyanequirement.

9 if (solve(str($pls-" ,$p2 " ,$yl,"-" ,$y2)) == false) {

10 println ("peva-99.xml:LQX: Failed to solve the model properly.");
1 abort (1, "Failed to solve the model.");

12 1 else {

The remainder of the program outputs a small table of refrtsertain key values of interest to the person running
the solution using the APIs in Section 3.

13 t0 = task(t0");

14 pO = processorpo");

15 e0 = entry(e0");

16 phl = phase(e0, 1);

17 ctoel = call(phl,"el");

18 println ("+ +");
19 printlin ("t0 Throughput: , t0.throughput);
20 println ("t0 Utilization: " , tO.utilization);
2 println("™+ +");
22 printlin ("e0 Throughput: , €0.throughput);
23 printin ("e0 TP Bound: , e0.throughputbound);
2 println ("e0 Utilization: " , e0.utilization);
25 println("™+ - +");
26 println ("ph Utilization: " , phl.utilization);
27 println ("ph Svt Variance:" , phl.servicetime_variance);
28 println ("ph Service Time:" , phl.servicetime);
29 printlin ("ph Proc Waiting:" , phl.procwaiting);
30 println("™+ +");
31 println ("call Wait Time: " , ctoel.waittime);
32 println ("+ +");
33 }

34 }

s)

45

4.2 API Documentation

4.2.1 Built-in Class: Array

Summary of Attributes

numeric

| size

The number of key-value pairs stored in the array.

Summary of Constructors

object[Array]

object[Array]

array _create(...)

array _create _map(k,v,...)

This method returns a new instance of the Array clg
where each the first argument to the method is map

1SS,
ped

to index numeric(0), the second one to numeric(1) and

so on, yieldind0= >arg0, 1= >argl, ..]

This method returns a new instance of the Array cl
where the first argument to the constructor is u
as the key, and the second is used as the value,
so on. The result is a n arrgrg0= >argl,
arg2= >arg3,...]

ASS
sed
and

Summary of Meth

ods

null

ref<?>

boolean

array _set(object[Array]
a, ? key, ? value)

array _get(object[Array]
a, ? key)

array _has(object[Array]

a, ? key)

This method sets the valwalue of any type for the
keykey of any type, for array. The shorthand nota
tion for this operation is to use ttoperator ||

This method obtains a reference to the slot in the a
a for the keykey . If there is no value defined in th
array yet for the given key, a new slot is created

that key, assigned to NULL, and a reference return
Returns whether or not there is a value defined on a

ray
e
for
ed.
rray

a for the given keykey .

4.2.2 Built-in Global Methods and Constants

Intrinsic Constants

Summary of Constants

double
double
double
double
double
double

@infinity
@type _un
@type _boolean
@type _double

@type _string

@type _null

IEEE floating-point numeric infinity.
The typeid for an Undefined Variable.
The typeid for a Boolean Variable.
The typeid for a Numeric Variable.
The typeid for a String Variable.

The typeid for a Null Variable.

46

General Utility Functions

Summary of Methods

null

null

null

null

numeric

null

abort(numeric n, string

r

copyright()

print _symbol _table()

print _special _table()

type _id(? any)

return(? any)

This call willimmediately halt the flow of the program,

with failure coden and description string. This can-

not be “caught” in any way by the program and wiill

result in the interpreter not executing any more of
program.

Displays the LQX copyright message.

This is a very useful debugging tool which output t
name and value of all variables in the current int
preter scope.

This is also a useful debugging tool which outputs

he

he
er-

he

name and value of all special (External and Constant)

variables in the interpreter scope.
This method returns the Type ID of any variable,
cluding intrinsic types (numeric, boolean, null, et

n_

C.)

and the result can be matched to the constants prefixed

with @type (@typenull, @typeun, @typedouble,
etc.)
This method will return any value from a user-defin

ed

function. This method cannot be used in global scope.

Numeric/Floating-Point Utility Functions

Summary of Methods

numeric
numeric
numeric
numeric

abs(numeric n)
ceil(numeric n)
floor(numeric n)

pow(numeric bas, numeric

X)

Returns the absolute value of the argunment
Returns the value af rounded up.

Returns the value af rounded down.
Returnshas to the poweix.

Type-casting Functions

Summary of Methods

string

numeric

boolean

str(...)

double(? x)

bool(? x)

This method will return the same value as the funct
print(...) would have displayed on the screg
Each argument is coerced to a string and then adja|
values are concatenated.

This method will return 1.0 or 0.0 if provided
boolean oftrue or false respectively. It will re-
turn the passed value for a double, 0.0 for a null g

fail (NULL) for an object. If it was passed a string,

it will attempt to convert it to a double. If the whol
string was not numeric, it will return NULL, otherwis
it will return the decoded numeric value.

This method will returrtrue for a numeric value of|
(not 0.0), a booleatrue or a string “true” or “yes”.
It will return false for a numeric value 0.0, a NULL
or a string “false” or “no”, or a booleaialse . It will
return NULL otherwise.

47

on
n.
cent
a

and

e
e

4.3 API Documentation for the LQN Bindings
4.3.1 LON Class: Document

Summary of Attributes

double
double
double
double
double
boolean

iterations
invocation
system _cpu _time
user _cpu _time
elapsed _time
valid

The number of solver iterations/simulation blocks
The solution invocation number

Total system time for this invocation

Total user time for this invocation

Total elapsed time for this invocation

True if the results are valid

Summary of Constructors

Document

| document()

Returns the Document object

4.3.2 LQON Class: Processor

Summary of Attributes

double

| utilization

The utilization of the Processor

Summary of Constructors

Processor

processor(string name)

Returns an instance of Processor from the current L
model with the given name.

QN

4.3.3 LON Class: Task

Summary of Attributes

double
double
double
Array

throughput
utilization

proc _utilization
phase _utilizations

The throughput of the Task

The utilization of the Task

This Task’s processor utilization
Individual phase utilizations

Summary of Constructors

Task

task(string name)

Returns an instance of Task from the current L(

DN

model with the given name.

48

4.3.4 LON Class: Entry

Summary of Attributes

boolean
boolean
boolean
boolean
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

has _phase _1

has _phase _2

has _phase _3

has _open _wait _time
open _wait _time
phasel _proc _waiting
phasel _service
phasel _service
phasel _utilization
phase2 _proc _waiting
phase2 _service
phase2 _service
phase2 _utilization
phase3 _proc _waiting
phase3 _service
phase3 _service
phase3 _utilization
proc _utilization
squared _coeff _variation
throughput _bound
throughput

utilization

_time

_time

_time

_time _variance

_time _variance

_time _variance

Whether the entry has a phase 1 result
Whether the entry has a phase 2 result
Whether the entry has a phase 3 result
Whether the entry has an open wait time
Entry open wait time

Phase 1 Processor Wait Time

Phase 1 Service Time Variance

Phase 1 Service Time

Phase 1 (task) Utilization

Phase 2 Processor Wait Time

Phase 2 Service Time Variance

Phase 2 Service Time

Phase 2 (task) Utilization

Phase 3 Processor Wait Time

Phase 3 Service Time Variance

Phase 3 Service Time

Phase 3 (task) Utilization

Entry processor utilization

Squared coefficient of variation

Entry throughput bound

Entry throughput

Entry utilization

Summary of Constructors

Entry

entry(string name)

Returns the Entry object for the model entry whqa

name is given as name

4.3.5 LON Class: Phase

Summary of Attributes

double
double
double
double

_time
_time _variation

service
service
utilization
proc _waiting

Phase service time

Phase service time variance
Phase utilization

Phases’ processor waiting time

Summary of Constructors

Phase

phase(object entry,
numeric _int nr)

Returns the Phase object for a given entry’'s ph

ase

number specified as nr

4.3.6 LON Class: Activity

Summary of Attributes

double
double
double
double
double
double
double

proc _utilization
proc _waiting

service _time _variance
service _time

squared _coeff _variation
throughput

utilization

The activities’ share of the processor utilization
Activities’ processor waiting time

Activity service time variance

Activity service time

The square of the coefficient of variation

The activity throughput

Activity utilization

49

Summary of Constructors

Activity

activity(object task,
string name)

Returns an instance of Activity from the current LQ
model, whose name corresponds to an activity in
given task.

N
the

4.3.7 LON Class: Call

Summary of Attributes

double
double
double

waiting
waiting _variance
loss _probability

Call waiting time
Call waiting time
Message loss probability for asynchronous messag

jes

Summary of Constructors

Call

call(object phase,
string destinationEntry)

Returns the call from an entry’s phase (phase) to

the

destination entry whose name is (dest)

4.3.8 Confidence Intervals

Summary of Constructors

contfint

conf _int(object, int
level)

Returns thet (level) for the attribute for the object

50

Chapter 5

Invoking the Analytic Solver “lgns”

The Layered Queueing Network Solver (LQNS) is used to sohaygkred Queueing Network models analytically.
Lgns reads its input fronfilename , specified at the command line if present, or from the stahdgut oth-
erwise. By default, output for an input fildlename specified on the command line will be placed in the file
filename.out . If the-p switch is used, parseable output will also be written filtmame.p . If XML input

or the-x switch is used, XML output will be written thlename.lgxo . This behaviour can be changed using the
-ooutput switch, described below. If several files are named, theh eateated as a separate model and output
will be placed in separate output files. If input is from theenstard input, output will be directed to the standard output
The file name- ' is used to specify standard input.

The-ooutput option can be used to direct output to the 6lgput regardless of the source of input. Output
will be XML if XML input or if the -x switch is used, parseable output if thee switch is used, and normal output
otherwise. Multiple input files cannot be specified when gghis option. Output can be directed to standard output
by using-o- (i.e., the output file nameis'.)

5.1 Command Line Options

-b,--bounds-only
This option is used to compute the “Type 1 throughput boundsy. These bounds are computed assuming no
contention anywhere in the model and represent the gua@nte to exceed values.

-d, - - debug=arg
This option is used to enable debug outpArg can be one of:
activities Activities — not functional.
all Enable all debug output.
calls Print out the number of rendezvous between all tasks.
forks Print out the fork-join matching process.
interlock Print out the interlocking table and the interlocking betwall tasks and processors.
joins Joins — not functional.
layers Print out the contents of all of the layers found in the model.
lgx Debug LQX parser.
overtaking Overtaking — not functional.
quorum Print out results from pseudo activities used by quorum.
xml Debug XML.

51

-e,--error=arg
This option is to enable floating point exception handliAgy must be one of the following:
1. a Abort immediately on a floating point error (provided the flog point unit can do so).
2. d Abort on floating point errors. (default)
3. i Ignore floating point errors.
4. w Warn on floating point errors.
The solver checks for floating point overflow, division by @@nd invalid operations. Underflow and inexact
result exceptions are always ignored.
In some instances, infinities will be propogated within tbéver. Please refer to the&top-on-message-loss
pragma below.

- H, - - hel p=arg

-n,--no-execute
Read input, but do not solve. The input is checked for validilo output is generated.

- 0, - - out put =arg
Direct analysis results toutput A filename of * ’ directs output to standard output.ltfns is invoked with this
option, only one input file can be specified.

-p,--parseabl e
Generate parseable output suitable as input to other presgsach asqn2ps(1) and srvndiff(1). If input is
from filename , parseable output is directed fiename.p . If standard input is used for input, then the
parseable output is sent to the standard output devicee tbthutput option is used, the parseable output is
sent to the file nameutput . (In this case, only parseable output is emitted.)

- P, - - pragma=arg
Change the default solution strategy. Refer to the PRAGM&&ien below for more information.

-t,--trace=arg
This option is used to set tracing options which are useditd put various intermediate results while a model
is being solvedarg can be any combination of the following:
activities Print out results of activity aggregation.

convergencearg Print out convergence arg after each submodel is solveds djftion is useful for tracking
the rate of convergence for a model. The optional numerigraemt supplied to this option will print out
the convergence value for the specified mva submodel, otberthhe convergence value for all submodels
will be printed.

deltawait Print out difference in entry service time after each subeh@solved.
forks Print out overlap table for forks prior to submodel solution

idle_time Print out computed idle time after each submodel is solved.

interlock Print out interlocking adjustment before each submodedligesl.

joins Print out computed join delay and join overlap table priosiddmodel solution.

mva=arg Print out the MVA submodel and its solution. A numeric argmtrgupplied to this option will print
out only the specified mva submodel, otherwise, all subnsod#l be printed.

overtaking Print out overtaking calculations.

print Print out intermediate solutions at the print interval sfied in the model. The print interval field in the
input is ignored otherwise.

52

qguorum Print quorum traces.

throughput Print throughputs values.

variance Print out the variances calculated after each submodehisdo

wait Print waiting time for each rendezvous in the model aftea heen computed.
-V,--verbose

Generate output after each iteration of the MVA solver arel dbnvergence value at the end of each outer
iteration of the solver.

-V,--version
Print out version and copyright information.

- W, - - NO- wWar ni ngs
Ignore warnings. The default is to print out all warnings.

- X, --xm
Generate XML output regardless of input format.

-z,--speci al =arg
This option is used to select special options. Arguments@fdrmnnare integers while arguments of the form
nn.nare real numberdrg can be any of the following:
convergencevalue=arg Set the convergence valuedaay. Arg must be a number between 0.0 and 1.0.
full _reinitialize For multiple runs, reinitialize all processors.

generatequeueingmodekarg This option is used for debugging the solver. A directory edmarg will be
created containing source code for invoking the MVA sohiezctly.

ignore_overhangingthreads Ignore the effect of the overhanging threads.

iteration_limit=arg Set the maximum number of iterationsday. Arg must be an integer greater than 0. The
default value is 50.

man=arg Output this manual page. If an optioraay is supplied, output will be written to the file namesdj.
Otherwise, output is sent to stdout.

min_stepsarg Force the solver to iterate min-steps times.

mol_ms.underrelaxation=arg Set the under-relaxation factor &og for the MOL multiserver approximation.
Arg must be a number between 0.0 and 1.0. The default value is 0.5.

overtaking Print out overtaking probabilities.

print_interval=arg Set the printing interval targ. The-d or -v options must also be selected to display
intermediate results. The default value is 10.

single_step Stop after each MVA submodel is solved. Any character typeti@terminal except end-of-file
will resume the calculation. End-of-file will cancel singdeepping altogether.

skip_layer=arg Ignore submodedrg during solution.

tex=arg Output this manual page in LaTeX format. If an optioard is supplied, output will be written to the
file namedarg. Otherwise, output is sent to stdout.

underrelaxatiorFarg Set the underrelaxation #rg. Arg must be a number between 0.0 and 1.0. The default
value is 0.9.

If any one ofconvergencgteration-limit, orprint-intervalare used as arguments, the corresponding value spec-
ified in the input file for general information, ‘G’, is ignate

- -conver gence=arg
Set the convergence valueday. Arg must be a number between 0.0 and 1.0.

53

--exact-nva
Use Exact MVA to solve all submodels.

--hwsw | ayeri ng

--iteration-limt=arg
Set the maximum number of iterationsany. Arg must be an integer greater than 0. The default value is 50.

--1 oose-1ayering
Solve the model using submodels containing exactly oneeserv

--processor-sharing

--st op-on- nessage- | oss
Do not stop the solver on overflow (infinities) of open arréval send-no-reply messages.

--schweitzer-anva
Use Bard-Schweitzer approximate MVA to solve all submadels

--trace-nva

--underrel axati on=arg
Set the underrelaxation tog. Arg must be a number between 0.0 and 1.0. The default value is 0.9.

--no-variance
Do not use variances in the waiting time calculations.

--rel oad- 1 gx
Re-run the LQX program without re-solving the models. Rissoiust exist from a previous solution run. This
option is useful if LQX print statements are changed.

- -debug- 1 gx
Output debugging informtion as an LQX program is being pairse

- - debug- xm
Output XML elements and attributes as they are being parSétce the XML parser usually stops when it
encounters an error, this option can be used to localizertbe e

Lgns exits with 0 on success, 1 if the model failed to converge,théfinput was invalid, 4 if a command line
argumentwas incorrect, 8 for file read/write problems arfdrfatal errors. If multiple input files are being processed
the exit code is the bit-wise OR of the above conditions.

5.2 Pragmas

Pragmasare used to alter the behaviour of the solver in a variety ofswalhey can be specified in the input file
with “#pragma”, on the command line with thB option, or through the environment variall@NSPRAGMAS
Command line specification of pragmas overrides those dkfméhe environment variable which in turn override
those defined in the input file. The following pragmas are sufgpl. Invalid pragma specification at the command
line will stop the solver. Invalid pragmas defined in the eswiment variable or in the input file are ignored as they
might be used by other solvers.

cyclessarg
This pragma is used to enable or disable cycle detectioreicdli graph. Cycles may indicate the presence of
deadlocksArg must be one of:

54

allow Allow cycles in the call graph. The interlock adjustmentiisadled.
disallow Disallow cycles in the call graph.

The default is disallow.

interlocking=arg
The interlocking is used to correct the throughputs at@tatas a result of solving the model using layEfs [5].
This pragma is used to choose the algorithm uged must be one of:
none Do not perform interlock adjustment.
throughput Perform interlocking by adjusting throughputs.

The default is throughput.

layering=arg
This pragma is used to select the layering strategy usedebsaiverArg must be one of:
batched Batched layering — solve layers composed of as many sersgrssasible from top to bottom.

batched-backBatched layering with back propagation — solve layers caagmf as many servers as possible
from top to bottom, then from bottom to top to improve solatgpeed.

loose Loose layers — solve layers composed of only one server. mathod of solution is comparable to the
technique used by thervn solver. See alseP mva

squashedSquashed layers — All the tasks and processors are placedristsubmodel. Solution speed may
suffer because this method generates the most number afsdhghe MVA solution. See als® mva

strict Strict layers — solve layers using the Method of Layérs [13jyer spanning is performed by allowing
clients to appear in more than one layer.

strict-back Strict layers — solve layers using the Method of Layers. \8arfé submodels are solved top-down
then bottom up to improve solution speed.
The default is batched-back.

multiserverarg
This pragma is used to choose the algorithm for solving isentiers Arg must be one of:
bruell Use the Bruell multiservel[2] calculation for all multisers.
conway Use the Conway multiserverl[4, 3] calculation for all muétigers.
reiser Use the Reiser multiserver [[12] calculation for all multisars.

reiser-ps Use the Reiser multiserver calculation for all multisesveFor multiservers with multiple entries,
scheduling is processor sharing, not FIFO.

rolia Use the Rolial[14, 13] multiserver calculation for all msétvers.

rolia-ps Use the Rolia multiserver calculation for all multiserverBor multiservers with multiple entries,
scheduling is processor sharing, not FIFO.

schmidt Use the Schmidt multiserver [[15] calculation for all migtigers.

The default multiserver calculation uses the the Conwaytisaunlzer for multiservers with less than five servers,
and the Rolia multiserver otherwise.

mva=arg
This pragma is used to choose the MVA algorithm used to sblwestibmodelsArg must be one of:

exact Exact MVA. Not suitable for large systems.
fast Fast Linearizer

55

linearizer Linearizer.

one-stepPerform one step of Bard Schweitzer approximate MVA for etarfation of a submodel. The default
is to perform Bard Schweitzer approximate MVA until convemge for each submodel. This option,
combined with-P layering=loosemost closely approximates the solution technique used bystm
solver.

one-step-linearizerPerform one step of Linearizer approximate MVA for eachati®n of a submodel. The
default is to perform Linearizer approximate MVA until camgence for each submodel.

schweitzerBard-Schweitzer approximate MVA.
The default is linearizer.

overtaking=arg
This pragma is usesd to choose the overtaking approximaiigrmust be one of:
markov Markov phase 2 calculation.

none Disable all second phase servers. All stations are modslee\dng a single phase by summing the phase
information.

rolia Use the method from the Method of Layers.
simple Simpler, but faster approximation.
special ?

The default is rolia.

processorarg
Force the scheduling type of all uni-processors to the tpeefied.

fcfs All uni-processors are scheduled first-come, first-served.
hol All uni-processors are scheduled using head-of-line ftyior

ppr All uni-processors are scheduled using priority, pre-évepesume.
ps All uni-processors are scheduled using processor sharing.

The default is to use the processor scheduling specifieceimtidel.

stop-on-message-losarg
This pragma is used to control the operation of the solvermvthe arrival rate exceeds the service rate of a
server.Arg must be one of:
false Stop if messages are lost.
true Ignore queue overflows for open arrivals and send-no-regfiyests. If a queue overflows, its waiting
times is reported as infinite.
The default is false.

tau=arg
Set the tau adjustment factor &og. Arg must be an integer between 0 and 25. A valug@bdisables the
adjustment.

threads=arg
This pragma is used to change the behaviour of the solver adlging models with fork-join interactions.

exponential Use exponetial values instead of three-point approximatin all approximations|8].
hyper Inflate overlap probabilities based on arrival instantreates.
mak Use Mak-Lundstroni[10] approximations for join delays.

56

none Do not perform overlap calculation for forks.
The default is hyper.

variance=arg
This pragma is used to choose the variance calculation ysttklsolver.

init-only Initialize the variances, but don’t recompute as the masgisbived.
mol Use the MOL variance calculation.

no-entry By default, any task with more than one entry will use theamce calculation. This pragma will
switch off the variance calculation for tasks with only omerg.

none Disable variance adjustment. All stations in the MVA subrlsdre either delay- or FIFO-servers.
stochastic ?

5.3 Stopping Criteria

Lgns computes the model results by iterating through a set of sdlefs until either convergence is acheived, or the
iteration limit is hit. Convergence is determined by takihg root of the mean of the squares of the difference in
the utilization of all of the servers from the last two itéoats of the MVA solver over the all of the submodels then
comparing the result to the convergence value specifieceimibut file. If the RMS change in utilization is less than
convergence value, then the results are considered valid.

If the model fails to converge, three options are available:

1. reduce the under-relaxation coefficient. Waiting and tithes are propogated between submodels during each
iteration. The under-relaxation coefficient determinesamount a service time is changed between each itera-
tion. A typical value is 0.7 - 0.9; reducing it to 0.1 may help.

2. increase the iteration limit. The iteration limit sets thpper bound on the number of times all of the submodels
are solved. This value may have to be increased, espeditily under-relaxation coefficient is small, or if the
model is deeply nested. The default value is 50 iterations.

3. increase the convergence test value. Note that the ageves value is the standard deviation in the change in
the utilization of the servers, so a value greater than 1 Kesao sense.

The convergence value can be observed ugingpnvergencéag.

5.4 Model Limits

The following table lists the acceptable parameter typekfes. An error will be reported if an unsupported parameter
is supplied except when the value supplied is the same azthald

5.5 Diagnostics

Most diagnostic messages result from errors in the input filéhe solver reports errors, then no solution will be
generated for the model being solved. Models which generateings may not be correct. However, the solver will
generate output.

Sometimes the model fails to converge, particularly if éhare several heavily utilized servers in a submodel.
Sometimes, this problem can be solved by reducing the vdltleeounder-relaxation coefficient. It may also be
necessary to increase the iteration-limit, particulartheére are many submodels. With replicated models, it may be
necessary to use ‘loose’ layering to get the model to corveCgnvergence can be tracked using-theonvergence
option.

57

Parameter Igns

Phases 3

Scheduling FIFO, HOL, PPR
Open arrivals yes

Phase type stochasic, deterministic
Think Time yes

Coefficient of variation yes
Interprocessor-delay yes
Asynchronous connections yes
Forwarding yes
Multi-servers yes
Infinite-servers yes

Max Entries 1000

Max Tasks 1000

Max Processors 1000

Max Entries per Task 1000

Table 5.1: LQNS Model Limits.

The solver will sometimes report some servers with ‘higlilizgtion. This problem is the result of some of the
approximations used, in particular, two-phase serveridiztions in excess of 10% are likely the result of failunes
the solver. Please send us the model file so that we can imgrexadgorithms.

58

Chapter 6

Invoking the Simulator “lgsim”

Lgsim is used to simulate layered queueing networks usiad®%RASOL [11] simulation system. Lgsim reads its
input from files specified at the command line if present, onfithe standard input otherwise. By default, output for
an input filefilename specified on the command line will be placed in thefilename.out . If the -p switch

is used, parseable output will also be written ifilename.p . If XML input is used, results will be written back to
the original input file. This behaviour can be changed udiregd outputswitch, described below. If several files are
named, then each is treated as a separate model and outphg wiaced in separate output files. If input is from the
standard input, output will be directed to the standard aiifphe file name-"" is used to specify standard input.

The -0 outputoption can be used to direct output to the file or directory @doutputregardless of the source
of input. Output will be XML if XML input is used, parseable tput if the-p switch is used, and normal output
otherwise; multiple input files cannot be specified.olftputis a directory, results will be written in the directory
namedoutput . Output can be directed to standard output by using (i.e., the output file name is '.)

6.1 Command Line Options

- A - - aut omat i c=run-time[,precision[,skip]]
Use automatic blocking with a simulation block sizerof-time Theprecisionargument specifies the desired
mean 95% confidence level. By default, precision is 1.0%. Sitmailator will stop when this value is reached,
or when 30 blocks have rurskipspecifies the time value of the initial skip period. Statstjathered during
the skip period are discarded. By default, its value is 0. k\the run completes, the results reported will be the
average value of the data collected in all of the blocks. éf-R flag is used, the confidence intervals will for
the raw statistics will be included in the monitor file.

- B, - - bl ocks=blocks][,run-time][,skip]]
Use manual blocking witblocksblocks. The value adblocksmust be less than or equal to 30. The run time for
each block is specified wittun-time Skipspecifies the time value of the initial skip period.

- C, - - conf i dence=precision],initial-loops[,run-time]]
Use automatic blocking, stopping when the specified pracis met. The run time of each block is estimated,
based orinitial-loops running on each reference task. The default valuenitial-loopsis 500. Therun-time
argument specifies the maximum total run time.

-d, - - debug
This option is used to dump task and entry information shgvimternal index numbers. This option is useful
for determining the names of the servers and tasks whemgréogé execution of the simulator since the Parasol
output routines do no emit this information at present. Qtigpdirected to stdout unless redirected usimgjle.

-e,--error=error
This option is to enable floating point exception handling.

59

a Abortimmediately on a floating point error (provided the flng point unit can do so).
b Abort on floating point errors. (default)

i Ignore floating point errors.

w Warn on floating point errors.

The solver checks for floating point overflow, division by aand invalid operations. Underflow and inexact
result exceptions are always ignored.

In some instances, infinities will be propogated within tlodver. Please refer to thgtop-on-message-loss
pragma below.

- houtput
Generate comma separated values for the service timebdisom data. Ifoutputis a directory, the output file
name will be the name of a the input file with@v extension. Otherwise, the output will be written to the
named file.

- nfile
Direct all output generated by the various debugging arartgaoptions to the monitor filéle, rather than to
standard output. A filename of * directs output to standard output.

-n,--no-execute
Read input, but do not solve. The input is checked for validilo output is generated.

- 0, - - out put =output
Direct analysis results to output. A file name of directs output to standard output. dlitputis a directory,
all output from the simulator will be placed there with filemes based on the name of the input files processed.
Otherwise, only one input file can be processed; its outplibeiplaced inoutput

-p,--parseabl e
Generate parseable output suitable as input to other prsggach asiultiSRVN(1)andsrvndiff(1) If input is
from filename , parseable output is directed fiename.p . If standard input is used for input, then the
parseable output is sent to the standard output device e Hotloutputoption is used, the parseable output is
sent to the file name output. (In this case, only parseabfgubig emitted.)

- P, - - pragma=pragma
Change the default solution strategy. Refer to the PRAGMA&hter (6.3) below for more information.

-R--rawstatistics
Print the values of the statistical counters to the moniter fif the-A, -B or -C option was used, the mean
value, 95th and 99th percentile are reported. At presatissts are gathered for the task and entry, cycle time
task, processor and entry utilization, and waiting timenf@ssages.

- S, - - seed=seed
Set the initial seed value for the random number generatgprdeBault, the system time from tinteme(3)is
used. The same seed value is used to initialize the randorbenugenerator for each file when multiple input
files are specified.

-t,--trace=traceopts
This option is used to set tracing options which are useditd put various steps of the simulation while it is
executing.Traceoptds any combination of the following:
driver Print out the underlying tracing information from the Palasmulation engine.

processorregex Trace activity for processors whose name magex If regexs not specified, activity on all
processors is reporteRegexs regular expression of the type acceptedgsep(1)

task=regex Trace activity for tasks whose name mategex If regexis not specified, activity on all tasks is
reported. pattern is regular expression of the type acddptegrep(1)

60

eventsegex[:regex] Display only events matching pattern. The events are: rsggea msg-send, msg-receive,
msg-reply, msg-done, msg-abort, msg-forward, workepatish, worker- idle, task-created, task-ready,
task-running, task-computing, task-waiting, threadtsthread-enqueue, thread-dequeue, thread-idle, thread
create, thread-reap, thread-stop, activity-start, eigt@xecute, activity-fork, and activity-join.

msgbuf Show msgbuf allocation and deallocation.
timeline Generate events for the timeline tool.
-T,--run-tinme=run-time
Set the run time for the simulation. The defaultis 10,00@ur8pecifying T after eitherA or-B changes the
simulation block size, but does not turn off blocked statsstollection.

-V,--verbose
Print out statistics about the solution on the standarduwpvice.

-V,--version
Print out version and copyright information.

- W, - - N0- war ni ngs
Ignore warnings. The default is to print out all warnings.

-X,--xm
Generate XML output regardless of input format.

- zspecialopts
This flag is used to select special options. Arguments of ¢ine f» are integers while arguments of the form
n.n are real numbersSpecialopt$s any combination of the following:

print-interval=nn Set the printing interval ta. Results are printed aftem blocks have run. The default value
is 10.

global-delayn.n Setthe interprocessor delay to nn.n for all tasks. Delagsifipd in the input file will override
the global value.

--gl obal - del ay
Set the inter-processor communication delay to n.n.

--print-interval
Ouptut results after n iterations.

--restart
Re-run the LQX program without re-solving the models unkesslid solution does not exist. This option is
useful if LQX print statements are changed, or if a subsetmfikgtions has to be re-run.

- -debug- 1 gx
Output debugging informtion as an LQX program is being pawrse

- - debug- xm
Output XML elements and attributes as they are being parSéuce the XML parser usually stops when it
encounters an error, this option can be used to localizertbe e

6.2 Return Status

Lgsim exits O on success, 1 if the simulation failed to meetdbnvergence criteria, 2 if the input was invalid, 4 if a
command line argument was incorrect, 8 for file read/writgbpgms and -1 for fatal errors. If multiple input files are
being processed, the exit code is the bit-wise OR of the aborditions.

61

6.3 Pragmas

Pragmas are used to alter the behaviour of the simulator ariaty of ways. They can be specified in the input file
with “#pragma”, on the command line with th® option, or through the environment variabl®SIM PRAGMAS
Command line specification of pragmas overrides those dkfméhe environment variable which in turn override
those defined in the input file.

The following pragmas are supported. An invalid pragma ifigation at the command line will stop the solver.
Invalid pragmas defined in the environment variable or initipait file are ignored as they might be used by other
solvers.

scheduling=enum
This pragma is used to select the scheduler used for praseEsmmis any one of the following:

default Use the scheduler built into parasol for processor scheglu(faster)

custom Use the custom scheduler for scheduling which permits ntatestcs to be gathered about processor
utilization and waiting times. However, this option invekmaore internal tasks, so simulations are slower
than when using the default scheduler.

default-natural Use the parasol scheduler, but don’t reschedule after thefaach phase or activity. This
action more closely resembles the scheduling of real agijdics.

custom-natural Use the custom scheduler; don’t reschedule after the enalobf ghase or activity.

messages=n
Set the number of message buffersitorhe default is 1000.

stop-on-message-loss=bool
This pragma is used to control the operation of the solvermvthe arrival rate exceeds the service rate of a
server. The simulator can either discard the arrival, oaiit lealt. The meanings @bolare:

false Ignore queue overflows for open arrivals and send-no-reggyests. If a queue overflows, its waiting
times is reported as infinite.

true Stop if messages are lost.

reschedule-on-async-send=bool
In models with send-no-reply messages, the simulator doe®achedule the processor after an asynchronous
message is sent (unlike the case with synchronous messagesneanings diool are:

true reschedule after each asynchronous message.
false reschedule after each asynchronous message.

6.4 Stopping Criteria

It is important that the length of the simulation be chosespprly. Results may be inaccurate if the simulation run is
too short. Simulations that run too long waste time and nessu

Lgsim usedatch meangor the method of samples) to generate confidence inter\dih automatic blocking,
the confidence intervals are computed after the simulatioms for three blocks plus the initial skip period If the root
or the mean of the squares of the confidence intervals forrttrg service times is within the specified precision, the
simulation stops. Otherwise, the simulation runs for aaotiock and repeats the test. With manual blocking, Igsim
runs the number of blocks specified then stops. In either, dasasimulator will stop after 30 blocks.

Confidence intervals can be tightened by either runningtiahdil blocks or by increasing the block size. A rule
of thumb is the block size should be 10,000 times larger tharargest service time demand in the input model.

62

6.5 Model Limits

The following table lists the acceptable parameter typeklianits for Igsim. An error will be reported if an unsup-
ported parameter is supplied except when the value suppltéé same as the default.

Parameter lgsim

Phases 3

Scheduling FIFO, HOL, PPR, RAND
Open arrivals yes

Phase type stochastic, deterministic
Think Time yes

Coefficient of variation yes
Interprocessor-delay yes

Asynchronous connections yes

Forwarding yes

Multi-servers yes

Infinite-servers yes

Max Entries unlimited

Max Tasks 1000

Max Processors 1000

Max Entries per Task unlimited

Table 6.1: Lgsim Model Limits

63

Chapter 7

Error Messages

Error messages are classified into four categories rangarg fhe most severe to the least, they are: fatal, error,
advisory and warning. Fatal errors will cause the prograrexioimmediately. All other error messages will stop
the solution of the current model and suppress output geéarrdiowever, subsequent input files will be processed.
Advisory messages occur when the model has been solvedhduesults may not be correct. Finally, warnings
indicate possible problems with the model which the sohaerignored.

7.1

7.2

Fatal Error Messages

Internal error
Something bad happened...

No more memory
A request for memory failed.

Model has no (activitylentryjtaskKprocessor)
This should not happen.

Activity stack for " identifier" is full.
The stack size limit for taskdentifierhas been exceeded.

Message pool is empty. Sending from identifier" to " identifier".
Message buffers are used when sending asynchronous saegiponessages. All the buffers have been used.

Error Messages

(tasKprocessor) " identifier: Replication not supported. Igsim
The simulator does not support replication. The model cdffl@igened” usingep2flat(1)

n.nReplies generated by Entry " identifier".

This error occurs when an entry is supposed to generateyalvephuse it accepts rendezvous requests, but the
activity graph does not generate exactly one reply. Comrnaoses of this error are replies being generated by
two or more branches of an AND-fork, or replies being gerestais part of a Lodp

1Replies cannot be generated by branches of loops becauserttier of iterations of the loop is random, not determiaisti

64

Activity " identifier" is a start activity.

The activity nameddentifier is the first activity in an activity graph. It cannot be usedaipostprecedence
(fork-list).

Activity " identifier" previously used in a fork."

The activityidentifierhas already been used as part of a fork expression. Forltistsn the right hand side of
the-> operator in the old grammar, and are fiestprecedence expressions in the XML grammar. This error
will cause a loop in the activity graph.

Activity " identifier" previously used in a join."

The activityidentifierhas already been used as part of a join list. Join lists arb@feft hand side of the>
operator in the old grammar, and are five-precedence expressions in the XML grammar. This erroroailise

a loop in the activity graph.

Activity " identifier" requests reply for entry " identifie but none pending. Igsim
The simulator is trying to generate a reply from ertgntifier, but there are no messages queued at the entry.
This error usually means there is a logic error in the sinoulat

An error occured while compiling the LQX program found in fil e: filenamé. lgx
A syntax error was found in the LQX program found in the filename Refer to earlier error messages.

An error occured executing the LQX program found in file: filename lgx
A error occured while executing the the LQX program foundimfilefilename Refer to earlier error messages.

Attribute " attribute' is missing from typ€' element.

The attribute namedttributefor thetype -elementis missing.

Attribute ’ attributé is not declared for element '’ element
The attribute namedittributefor elemenis not defined in the schema..

Cannot create (processojprocessor for tagkask " identifier". Igsim
Parasol could not create an object such as a task or processor

Cycle in activity graph for task " identifier’, back trace is " list".
Thereis a cycle in the activity graph for the task nandeahtifier. Activity graphs must be acyclid.ist identifies

the activities found in the cycle.

Cycle in call graph, backtrace is " list".
There is a cycle in the call graph indicating either a possitdadlock or livelock condition. A deadlock can
occur if the same task, but via a different entry, is callethacycle of rendezvous indentified list. A livelock

can occur if the same task and entry are found in the cycle.

In general, call graphs must be acyclic. If a deadlock cémdlits identified, thecycles=allowpragma can be
used to suppress the error. Livelock conditions cannot ppressed as these indicate an infinite loop in the call
graph.

Data for n phases specified. Maximum permitted is m.
The solver only supports phases (typically 3); data forphases was specified. If more tharphases need to
be specified, use activities to define the phases.

Datatype error: Type:lnvalidDatatypeValueException, Me ssage: message

Delay from processor identifier" to processor identifier" previously specified. Igsim

Inter-processor delay...

65

Derived population of n.n for task " identifier' is not valid." Igns

The solver finds populations for the clients in a given subehbg traversing up the call graphs from all the
servers in the submodel. If the derived population is indinihe submodel cannot be solved. This error usually
arises when open arrivals are accepted by infinite servers.

Destination entry " dst-identifiet must be different from source entry src-identifief'.

This error occurs whesrc-identifieranddst-identifierspecify the same entry.

Deterministic phase
entry dst-identifier

This error occurs when a deterministic phase or activity @sak non-integral number of calls to some other
entry.

src-identifief makes a non-integral number of calls (n.n to

Duplicate unique value declared for identity constraint of element ' task.

One or more activities are being bound to the same entry. i$hist allowed, as an entry is only allowed to
be bound to one activity. Check dbund-to-entry attributes for all activities to ensure this constraint is
being met.

Duplicate unique value declared for identity constraint of element ' Ign-model.

This error indicated that an element has a duplicate name pdinser gives the line number to the start of
the second instance of duplicate element. The followinghelgs must have unique name attributes, but the
uniqueness does not span elements. Therefore a process@asirelement can have the same name attribute,
but two processor elements cannot have the same name tattribu

The following elements must have a unicpeme attribute:

— processor
— task
— entry

Empty content not valid for content model’ elemenit
(result-processor,task)

Entry " identifier" accepts both rendezvous and send-no-reply messages.

An entry can either accept synchronous messages (to whiemérates replies), or asynchronous messages (to
which no reply is needed), but not both. Send the requestgacéparate entries.

Entry " identifier" has invalid forwarding probability of n.n

This error occurs when the sum of all forwarding probaleiitirom the entrydentifieris greater than 1.

Entry " entry-identifief is not part of task " task-identifiet.

An activity graph part of taskask-identiferreplies toentry-identifier However,entry-identifierbelongs to
another task.

Entry " identifie" is not specified.

An entry is declared but not defined, either using phasegvitaes. An entry is “defined” when some parameter
such as service time is specified.

Entry " identifier' must reply; the reply is not specified in the activity graph

The entryidentifieraccepts rendezvous requests. However, no reply is speicified activity graph.

Entry " identifier" specified using both activity and phase methods.
Entries can be specified either using phases, or usingtiesivibut not both..

66

Entry " identifie" specified as both a signal and wait.
A semaphore task must have exactly one signal and one wajt 8uth entries have the same type..

Expected end of tag ’ element
The closing tag foelementvas not found in the input file.

External synchronization not supported for task " identifier" at join join-list". Igns
The analytic solver does not implement external synchediun.

External variables are present in file filename but there is no LQX program
to resolve them. lgx

The input model contains a variable of the for@var ” as a parameter such as a service time, multiplicty,
or rate. The variables are only assigned values when an LQ¥ram executes. Since no LQX program was
present in the model file, the model cannot be solved.

Fan-ins from task " from-identifief' to task " to-identifiet' are not identical for all

calls. Igns
All requests made from tagkom-identifierto taskto-identifiermust have the same fan-in and fan-out values.
Fan-out from (activitylentryjtask) " src-identifief (n * n replicas) does not match fan-in

to (entryprocessor)" dst-identifief (n * n). Igns
This error occurs when the number of replicasratidentifiermultiplied by the fan-out for the request dst-
identifier does not match the number of replicaglat-identifiermultiplied by the fan-in for the request from
src-identifier A fan-in or fan-out of zero (a common error case) can arisenthe ratios of tasks to processors

is non-integral.

Fewer entries defined (n) than tasks (m).

A model was specified with more tasks than entries. Since @s&hmust have at least one entry, this model is
invalid.

Group " identifief' has no tasks.

The group named biglentifierhas no tasks assigned to it. A group requires a minimum ofasie t

Group " identifief' has invalid share of n.n

The share value af.nfor groupidentifieris not between the range 0f< n.n <= 1.0.

Infinite throughput for task " identifier". Model specification error. Igns
The response time for the taglentifieris zero. The likely cause is zero service time for all callglmby the

task.

Initial delay of n.n is too small, n client(s) still running. Igsim
This error occurs when thaitial-loops parameter for automatic blocking is too small.

Invalid fan-in of n: source task " identifier" is not replicated. Igns
The fan-in value for a request specifies the number of retglicaource tasks making a call to the destination.
To correct this error, the source task needs to be replidatedmultiple ofn.

Invalid fan-out of n: destination task " identifie" has only m replicas. Igns

The fan-out valuer is larger than the number of destination tasksin effect, the source will have more than
one request arc to the destination.

67

Invalid path to join " join-list" for task " identifier': backtrace is " list".

The activity graph for tasldentiferis invalid because the branches to the joim-list do not all originate from
the same forkList is a dump of the activity stack when the error occurred.

Invalid probability of n.n.

The probability ofn.nis not between the range of zero to one inclusive. The likalyse for this error is the
sum of the probabilities either from an OR-fork, or from f@mding from an entry, is greater than one.

Name "identifier" previously defined.

The symboidentiferwas previously defined. Tasks, processors and entries thbstamed uniquely. Activi-
ties must be named uniquely within a task.

Model has no reference tasks.

There are no reference tasks nor are there any tasks withaspeals specified in the model. Reference tasks
serve as customers for closed queueing models. Openiaseme as sources for open queueing models.

No calls from (entrylactivity) " from-identifief' to entry " to-identifief'. Igns

This error occurs when the fan-in or fan-out parameter f@vgest are specifidseforethe actual request type.
Switch the order in the input file.

No group specified for task " taskidentifie' running on processor
fair share scheduling.

proc_identifier using

Tasktaskidentifier has no group specified, yet it is running on procegsoc_identifier which is using com-
pletely fair scheduling.

No signal or wait specified for semaphore task " identifier".

Taskidentifierhas been identified as a semaphore task, but neither of iteehas been designated as a signal
or a wait.

Non-reference task " identifie cannot have think time.

A think time is specified for a non-reference task. Think i@ non-reference tasks can only be specified by
entry.

Non-semaphore task " identifer' cannot have a (signal—wait) for entry " entry'.

Theentryis designated as either a signal or a wait. Howedentifieris not a semaphore task.

Number of (entriestasks$processors)is outside of program limits of (1, n).

An internal program limit has been exceeded. Reduce the auaflobjects in the model.

Number of paths found to AND-Join " join-list" for task " identifie' does not match

join list."

During activity graph traversal, one or more of the brandbeate joinjoin-list either originate from different
forks, or do not originate from a fork at all.

Open arrival rate of n.n to task " identifier is too high. Service time is n.n. Ilgns

The open arrival rate af.n to entryidentifieris too high, so the input queue to the task has overflowed. This
error may be the result of a transient condition, sostog-on-message-lopsagma (c.f.45.2) may be used to
suppress this error. If the arrival rate exceeds the setwieeat the time the model converges, then the waiting
time results for the entry will show infinity. Note that if astaaccepts both open and closed classes, an overflow
in the open class will result in zero throughput for the ctbskasses.

68

e OR branch probabilities for OR-Fork " list" for task " identifier do not sum to 1.0;
sum is n.n

All branches from an or-fork must be specified so that the stitheoprobabilities equals one.

e Parse error.
An error was detected while processing the XML input file. Seelist below for more explantion:

— The primary document entity could not be opened. Id= URI while parsing file-
name
This error is generated by the Xerces when the Uniform resoindicato(URI) specified as the argument
to thexsi:noNamespaceSchemalocation attribute of thdgn-model element cannot be opened.

This argument must refer to a valid location containing tEN_schema files.

— The key for identity constraint of element ’ Ign-model is not found.

When this message appears, Xerces dugrovide many hints on where the actual error occurs be-
cause it always gives a line number which points to the endhefiite (i.e. where the terminating tag
</lgn-model> is).
In this case, the following three points should be inspetdezhsure validity of the model:

1. All synchronous calls havedest attribute which refers to a valid entry.

2. All asynchronous calls havedest attribute which refers to a valid entry.

3. All forwarding calls have dest attribute which refers to a valid entry.
If it is not practical to manually inspect the model, run thXfile through another tool like XMLSpy or
XSDvalid which will report more descriptive errors.

— The key for identity constraint of element ’ task is not found.

When this error appears, it means there is something wrothinthetask element indicated by the line
number. Check that:

«x The nameattribute of all reply-entry elements refers to a valid entry name, which exists

within the same task as the task activity graph.

« All activities which contain the attributbound-to-entry have a valid entry name that exists
within the same task as the task activity graph.

— The key for identity constraint of element ’ task-activities is not found.
When this error appears, it means there is something wrotignathe task-activities element
indicated by the line number.
Check that:

« All activities referenced within therecedence elements refer to activities which are defined for
that particular task activity graph.

x Thename attribute of allreply-activity elements refers to an activity defined within the men-
tionedtask-activities element.
x The head attribute of ajpost-loop elements refers to an activity defined within the mentioned
task-activities element.
x All post-LOOP elements which contain the optional attréeend , refers to an activity defined within
the mentionedask-activities element.
— Not enough elements to match content model : elements

((run-control,plot-control,solver-params,processbo))

e Processor identifier' has invalid rate of n.n

The processor rate parameter is used to scale the speedobtiessor. A value greater than zero must be used.

69

e Processor identifier" using CFS scheduling has no group."

If the completely fair share scheduler is being used, tharstive at least one group defined for the processor.

e Reference task " identifier' cannot forward requests.
Reference tasks cannot accept messages, so they cannatdorw

e Reference task " task-identifiet, entry " entry-identifief cannot have open arrival stream.
Reference tasks cannot accept messages.

e Reference task " task-identifiet, entry " entry-identifiel receives requests.
Reference tasks cannot accept messages.
e Reference task " task-identifiet, replies to entry " entry-identifiet from activity " activity-
identifien".
Reference tasks cannot accept messages, so they cann@itgeaplies. The activitgctivity-identifierreplies
to entryentry-identifier

e Required attribute attribute¢ was not provided

The attribute namedittributeis missing for the element.

e Semaphore "wait" entry " entry-identifief cannot accept send-no-reply requests.
An entry designated as the semaphore “wait” can only acegptazvous-type messages because send-no-reply
messages and open arrivals cannot block the caller if thejsleone is busy.

e Start activity for entry " entry-identifief is already defined. Activity " activity-
identifier" is a duplicate.
A start activity has already been defined. This one is a dafgic

e Symbol
All identifiers must be declared before they can be used.

identifie" not previously defined.

e Task " identifier" cannot be an infinite server."

This error occurs whenever a reference task or a semaplahréstdesignated as an infinite server. Reference
tasks are the customers in the model so an infinite referaskaxtould imply an infinite number of custoniérs
An infinite semaphore task implies an infinite number of bigffe no blocking at the wait entry would ever
occur.

e Task " identifie" has activities but none are reachable.

None of the activities foidentifieris reachable. The most likely cause is that the start agliwinissing.

e Task " identifier" has no entries.
No entries were defined fadentifier.

e "Task " identifier' has n entries defined, exactly m are required.
The taskidentifierhasn entries,m are required. This error typically occurs with semaphos&savhich must
have exactly two entries.

e Task " task-identifiet, Activity " activity-identifet' is not specified.

An activity is declared but not defined.. An activity is “dedi when some parameter such as service time is
specified.

2An infinite source of customers should be represented by ap@als instead.

70

7.3

Task " task-identifiet, Activity " activity-identifef makes a duplicate reply for Entry
" entry-identifiel.

An activity graph is making a reply to ententry-identifiereven though the entry is already in phase two. This
error usually occurs when more than one replgmiry-identifieris specified in a sequence of activities.

Task " task-identifiet, Activity " activity-identifef makes invalid reply for Entry " entry-
identifier".

An activity graph is making a reply to entgntry-identifiereven though the activity is not reachable..

Task " task-identifiet, Activity " activity-identifef' replies to Entry " entry-identifief which
does not accept rendezvous requests.

The activity graph specifies a reply to enemtry-identifiereven though the entry does not accept rendezvous
requests. (The entry either accepts send-no-reply rexjaeepen arrivals).

Unknown element ’ element

Theelements not expected at this point in the input filElementmay not be spelled incorrectly, or if not, in
an incorrect location in the input file.

Advisory Messages

Invalid convergence value of n.n, using m.m Igns
The convergence value specified in the input file is not valite analytic solver is using:.m instead.

Invalid standard deviation: sum= n.n, sum _sgr= n.n, n= n.n.

When calculating a standard deviation, the difference efsiiim of the squares and the mean of the square of
the sum was negative. This usually implies an internal émrtite simulator.

Iteration limit of n is too small, using m. Igns
The iteration limit specified in the input file is not valid. &lanalytic solver is using: instead.

Messages dropped at task identifier for open-class queues.

Asynchronous send-no-reply messages veseat the taskask This message will occur when tis¢op-on-
message-logsragma (c.f§5.2) is set to ignore open class overflows. Note that if a taskpts both open and
closed classes, an overflow in the open class will resultiia teoughput for the closed classes.

Model failed to converge after n iterations (convergence test is n.n, limit is
n.n). Igns

Sometimes the model fails to converge, particularly if ¢hare several heavily utilized servers in a submodel.
Sometimes, this problem can be solved by reducing the vdltteeaunder-relaxation coefficient. It may also
be necessary to increase the iteration-limit, particyléithere are many submodels. With replicated models,
it may be necessary to use ‘loose’ layering to get the modebtwerge. Convergence can be tracked using
-t convergence

No solve() call found in the Igx program in file: filename solve() was invoked
implicitly.

An LQX program was found in filéilename However, the functiosolve() was not invoked explictity. The
program was executed to completion, after wrgohve() was called using the final value of all the variables
found in the program.

71

7.4

Replicated Submodel n failed to converge after n iterations (convergence test
is n.n, limit

is m.n. Igns
The inner “replication” iteration failed to converge....

Service times for (processor) identifierhave a range of n.n - n.n. Results may not

be valid. Igns

The range of values of service times for a processor usingegsmr sharing scheduling is over two orders of
magnitude. The results may not be valid.

Specified confidence interval of n."% not met after run time of n.n. Actual
value is n.n%. Igsim
Submodel n is empty. Igns

The call graph is interesting, to say the least.

Underrelaxation ignored. n.n outside range [0-2), using m.m Igns
The under-relaxation coefficient specified in the input Bl@ot valid. The solver is using.m insteaf.

The utilization of n.n at (taskprocessor) identifierwith multiplicity mis too high.

This problem is the result of some of the approximations usethe analytic solver. The common causes are
two-phase servers and the Rolia multiserveidéntiferis a multiserver, switching to the Conway approxima-
tion will often help. Values ofi.n in excess of 10% are likely the result of failures in the splRéease send us
the model file so that we can improve the algorithms.

Warning Messages

(activitylentryitaskprocessor) " identifier' is not used.
The object is not reachable. This may indicate an error irsgieeification of the model.

(ProcessofTask) " identifier' is an infinite server with a multiplicity of n.

Infinite servers must always have a multiplicty of one. Thi®eis caused by specifying bottelayscheduling
and a multiplicity for the named task or processor. The rplitiity attribute is ignored.

schedscheduling specified for (processojtask) " identifier' is not supported.

The solver does not support the specified scheduling typst-ifi first-out scheduling will be used instead.

Activity " identifier has no service time specified.

No service time is specified fadentifier.

Coefficient of variation is incompatible with phase type at (entryitask)" identifier"
(phaseéactivity)" identifier". Igns
A coefficient of variation is specified at a using stochastiage or activity.

Entry " identifier' does not receive any requests.

Entryidentifieris part of a non-reference task. However, no requests are todtlis entry.

Entry " identifier' has no service time specified for any phase.
No service time is specified for entigentifier.

3Values of under-relaxation frorh < n < 2 are more correctly called over-relaxation.

72

Entry " identifier' has no service time specified for phase n.
No service time is specified for entigentifier, phasen.

Histogram requested for entry " identifier', phase n -- phase is not present. Igsim
A histogram for the service time of phas@f entryidentifierwas requested. This entry has no corresponding
phase.

Priority specified (n) is outside of range (n, n). (Value has been adjusted

to n). Igsim
The priorityn is outside of the range specified.

No quantum specified for PS scheduling discipline. FIFO use d." Igsim
A processor using processor sharing scheduling needs aup&alue when running on the simulator.

No requests made from from-identifier to to-identifier. Igns
The input file has a rendezvous or send-no-reply requestantiue of zero.

Number of (processorgasksentries) defined (n) does not match number specified (m).
The processor task and entry chapters of the original inpargar can specify the number of objects that
follow. The number specified does not match the actual nuwi@bjects. Specifyingeroas a record count is
valid.

Parameter is specified multiple times.

A parameter is specified more than one time. The first occerasnesed.

Processor " identifier" is not running fair share scheduling.”

A group was defined in the model and associated with a processng a scheduling discipline other than
completely fair scheduling.

Processor " identifier' has no tasks.

A processor was defined in the model, but it is not used by akstalhis can occur if none of the entries or
phases has any service time.

Queue Length is incompatible with task type at task identifier. Igns
A queue length parameter was specified at a task which doesippbrt bounded queues.

Reference task " identifier' does not send any messages."

Reference tasks are customers in the model. This referaskedbes not visit any servers, so it serves no
purpose.

Reference task " identifier' has more than one entry defined.

Reference tasks typically only have one entry. The namesterte task has more than one. Requests are
generated in proportion to the service times of the entries.

Task " task-identifiet with priority is running on processor
does not have priority scheduling.

processor-identifiérwhich

Processors running with FIFO scheduling ignore priorities

Value specified for (fanin/fanout) n, is invalid. Igns
The value specified for a fan-in or fan-out is not valid and & ignored.

The x feature is not supported in this version.
Featurex is not supported in this release.

73

7.5 LQX Error messages

e Runtime Exception Occured: Unable to Convert From: ‘iiuninitialized¢, ¢’ To: ‘Array’
An unitialized variable is used where an array is expecikd {h a foreach loop).

74

Chapter 8

Known Defects

8.1 MOL Multiserver Approximation Failure

The MOL multiserver approximation sometimes fails whendbevice time of the clients to the multiserver are signif-
icantly smaller than the service time of the server itselife Ttilization of the multiserver will be too high. Sometispe
the problem can be solved by changing the mol-underrelaxatdtherwise, switch to the more-expensive Conway
multiserver approximation.

8.2 Chain construction for models with multi- and infinite-servers
8.3 No algorithm for phased multiservers OPEN class.
8.4 Overtaking probabilities are calculated using CV=1

8.5 Need to implement queue lengths for open classes.

75

Appendix A

Traditional Grammar

This chapter gives the formal description of Layered Quegidletwork input file and parseable output file grammars
in extended BNF form. For the nonterminals the notatjoonterminalid) is used, while the terminals are written
without brackets as they appear in the input text. The randti- -}, wheren < m means that the part inside the
curly brackets is repeated at leastimes and at most, times. Ifn = 0, then the part may be missing in the input
text. The notatiori- -), means that the non-terminal is optional.

A.1 Input File Grammar

(LQNLinputfile) — (generalinfo) (processorinfo) (group.info)

{(activity_info) }o

opt (taskinfo) (entry.info)

A.1.1 General Information

(generalinfo) — G (comment (conuvval) (it_limit) (print.int) . (underrelaxcoeff) . (endlist)
(commerit — (string) /* comment on the modet/
(conwvval) — (real) /* convergence valuex/
(it_limit) — (integen /* max. nb. of iterationsx/
(print_int) — (integen

/* intermed. res. print intervalx/
(underrelaxcoeffy — (real) /* undecrelaxation coefficientx/
(endlist) - -1 /+ endof_list mark x/
(string) — (texty "

A.1.2 Processor Information

(processorinfo) — P (np) (p-decllist)

(np) — (integen /+ total number of processors/

(p_decllist) — {(p_dech}1? (endlist)

(p_decl — p (proc.id) (schedulingflag) (quantum, (multiservetflag) .
(replicationflag) . (procrate), .

(proc.id) — (integer) | (identifier)

(schedulingflag) —

76

/* processor identifierx/

/+ First come, first servedk/
/+ Head Of Line x/
/* Priority, preemeptivesx/

(quantum
(multi_serverflag)

replication flag)
proc.rate)
copies

o~ o~~~

ratio)

(group.info)
(ng)
(g-decllist)
(g-dech
(group.id)
(group.share
(

task.info)
nt)
t_decllist)
t_dec)

o~ o~~~

(t_dec)
(taskid)

(task schedtype

(entry_list)
(entry.id)

(queuelength
(taskpri)
(group-flag)

1

L4 4L Ll

Lol bl

1

L —————

1

1

—

/+ completely fair schedulingx/
/* processor sharingx/
/* Infinite or delay */

i

r /* Random s/
(real)

m (copies /+ number of duplicatesx/
i /* Infinite server x/
r (copies /+ number of replicasx/
R (ratio) /+ Relative proc. speedk/
(integer

(real)

A.1.3 Group Information

U (ng) (g-decllist) (endlist)

(integer)

{(g-dech}1? (endlist)

g (groupid) (groupsharg (capflag), . (proc.id)
(identifier)

(real)

/+ total number of groups«/

c

A.1.4 Task Information

T (nt) (t_decllist)
(integer)
{{t_dech}?* (endlist)

/+ total number of tasksx/

(taskid) (taskschedtype (entrylist) (queuelength . (proc.id) (taskpri)
think timeflag),, . (multi_servetflag), , (replicationflag), , (groupflag),,,

t
(
t (taskid) S (entrylist) (proc.id) (taskpri)
(
(

opt

(multi_serverflag)

opt opt

replicationflag),,

integen | (identifier)
/* task identifier «/

/* reference taskx/

/* non-reference taskx/

/+ Head of line x/

/* FIFO Scheduling */

/* Infinite or delay servers/

/+ Polled scheduling at entries:/
/+ Bursty Reference task/

oo T ™o oS

{(entry.id) }7“* (endlist)

/* taskt hasne; entries x/
(integen | (identifier)
/* entry identifier x/

g (integen /* open class queue length/
(integern /x task priority, optional x/
g (identfier /+ Group for schedulingx/

77

A.1.5 Entry Information

/+ total number of entries«/

/* k=maximum number of phases/

(histmay (histbins) (histtype

/+ Signal Semaphorex/
/* Wait Semaphorex/

/* open arrival rate to entryx/

/+ squared service time coefficient of variatiary
/* fanin to this entry x/

/+ fan out of this entryx/

/* Source of a message/

/* Number of bins in histograms/
/* Median service timex/

/+ Median service timex/

/* bintype. %/

/+ Median service timex/

/* probability of forwarding =/

/+ phase of entryx/

/+ stochastic phasex/
/+ deterministic phasex/

/* nb. of calls per arrival x/

/* mean number of RNVs/pk/

/* mean nb.of non-blck.sends/pk/
/* mean phase service time/

/* Think time for phasex/

(entry.info) — E (ne (entry.decllist)
(ne) — (integen
(entry_declLlist) — {(entry.dech}; (endlist)
(entry_dec)) — a (entry.id) (arrival_rate)
| A (entryid) (activity.id)
| F (fromentry) (to_entry) (p_forward)
| H (entryid) (phase (histmin) "’
| M (entryid) {(maxservicetime)}¥ (endlist)
| P (entry.id)
| V (entry.id)
| Z (entryid) {(thinktime)}} (endlist)
| ¢ (entryid) {(coeffof.variation)}} (endlist)
| f (entryid) {(phtypeflag)}} (endlist)
| i (fromentry) (to_entry) {(fan.in)}¥ (endlist)
| o (fromentry) (to_entry) {(far.out}} (endlist)
| p (entryid) (entrypriority)
| s (entryid) {(servicetime)}¥ (endlist)
| y (fromentry) (to_entry) {(rendezvous?’ (endlist)
| z (fromentry) (to_entry) {(sendno.reply)}; (endlist)
(arrival rate) — (real)
(coeffof_variation) — (real)
(farin) — (integen
(fan_out) — (integen
(from_entry) — (entry.id)
(histbins) — (integen
(histmax — (real)
(histmin) — (real)
(histtype — log | linear | sqrt
(maxservicetime) — (real)
(p_forward) — (real)
(phase - 1123
(ph.typeflag) - 0
| 1
(rate) — (real)
(rendezvous — (real)
(sendno_reply) — (real)
(servicetime) — (real)
(think time) — (real)
(to_entry) — (entry.id)

A.1.6 Activity Information

(activity_info) —

(activity_defnlisty — {(activity.defn}1*

(activity_defnlist) (activity_connectiong,

/+ Destination of a message/

(endlist)
/* Activity definition. x/

78

(activity_defr) —
|
|
|
|
|
|
|
|
|

(activity_.connections —

(activity_conn.list)
(activity_conr)

(join_list)

(fork_list)

andjoin_list)
or_join_list)
and-fork_list)

loop_list)
loop_activity)
endactivity)

reply_activity)

N
-
|
N
I
N
|
I
N
-
-
or_fork_list) —
N
-
-
N
N
reply_list) —
-

(
(
(
(
(
(prob_activity)
(
(
(
(
(

quorumcount

A.1.7 Expressions

(integern —
|
(real) —
|
(expressioh —
|
|
(term) —
|
|
(factor) —
|

c (activity_id) (coeffof_variation)

f (activity.id) (ph.typeflag)

H (entry.id) (histmin)

M (activity_id) (maxservicetime)

s (activity_id) (ph.serctime)

Z (activity_id) (think.time)

i (activity_id) (to_entry) (far.in)

o (activity.id) (to_entry) (fan_out)

y (activity_id) (to_entry) (rendezvous
z (activity_id) (to_entry) (sendno_reply)

(activity_conn.list)

(activity.conny {; (activity_.conn}*

join_list)
join_list) -> (fork list)
reply_activity)
andjoin_list)
or_join_list)

activity_id)
and.fork_list)
or_fork_list)

reply_activity) {& (reply.activity)}7* (quorumcoun

reply_activity) {+ (reply.activity)}7*
activity.id) {& (activity.id) }7*
prob_activity) {+ (prob_activity)}7¢

/+ Sqr. Coeff. of Var. */
/+ Phase type %/

(histmax (histbins) (histtype

/* Service time x/
/* Thinktime x/

/* Rendezvousx/
/* Send-no-reply x/

/* Activity Connections. x/

opt

loop.activity) {, (loop.activity)}¢* (endactivity),

(real))
real) * (activity.id)

(

{

(

(

(

(

(

(
(loop_list)
(

(

(

(

(

((activity_id)
(

., (activity_id)
(activity_id) (reply_list)
[(entryid) {,

((integen)

opt

(entryid) }5°]

(int)

{ (expressioh }
(double

{ (expressioh }
expressioh + (term)
expressioh — (term)
term)

term) » (factor)
term) / (factor)
term) % (factor)
factor)

primary) ~
primary)

(factor)

o~ o~ o~ o~ o~ o~ o~~~

79

/*

/* Quorum x/

/ integer result only. x/

/+* Modulus =/

Exponentiation, right associative/

(primary)

(int)

—
|
|
(atom) —
|
-
(double —

A.1.8 Identifiers

+ (atom
— (atom)
(atom)

((expressioh)
(double

/+ Non negative integerx/
/+ Non negative double precision number/

Identifiers may be zero or more leading underscores followed by a character, followed by any number of charac
ters, numbers or underscores. Punctuation characterslaadspecial characters such as the dollar-sign (‘$’) ate no
permitted. The following,pl, foo _bar , and__P_21 _proc are valid identifiers, while21 and$proc are not.

A.2 Output File Grammar

(LQN.outputfile) —

from_entry)
to_entry)
entry.name

proc_.name
float phaselist)

(
(
(
(taskname
(
(
(

Ll

real)

(genera} (bound, . (waiting), , (waitvar) . (snrwaiting) . (snrwaitvar)

opt
(drop_prob) , . (join)_ . (service . (variancg <exceeded> op¢ ’

{<distribution> }o (thptut) (openarrivals), (processoy

(entry_.name /* Source entry id.x/
(entry.name /+ Destination entry id.x/
(identifier)

(identifier)

(identifier)

{(real)} (endlist)
(float) | (integer

A.2.1 General Information

1

genera)
valid)
yesor_no)

iterations

(
(
(
(convergence
(
(n_processors
(

A

n_phases

(valid) (convergencg (iterations (n_processors (n_phases
V (yesor_no)

y Y|n|N

C (real)

I (integen

PP (integer

NP (integer

A.2.2 Throughput Bounds

(bound —
(boundsentry) —
(nt) —

A.2.3 Waiting Times

(waiting) —
(waiting_t_tbl) —

B (nt) {{boundsentry)}7* (endlist)
(taskname (real)

(integer) /+ Total number of tasksk/

W (ne) {(waiting_t_tbl)}7* (endlist)
(taskname : (waitinge_thl) (endlist) (waitinga_tbl)

opt

80

waiting_e_tbl) {(waiting_entry) }¢°
waiting_entry) (from_entry) (to_entry) (floatphaselist)
ne) (integer /+ Number of Entriesx/

waiting_a_tbl) {{waiting_activity) }¢* (endlist)
(from_activity) (to_entry) (floatphaselist)

(integer) /* Number of Activitiesx/

waiting_activity)

o~ o~ o~ o~~~

L4 4L Ll

na)

A.2.4 Waiting Time Variance

(waitvar) — VARW(ne) {(waitvartthl)}7* (endlist)

(wait.var_t_tbl) — (taskname¢ : (waitvaretbl) (endlist) (waitvaratbl) .
(wait.var_e_tbl) — {(waitvar_entry) }7°

(wait.var_entry) — (from.entry) (to_entry) (floatphaselist)

(wait.var_a_tbl) — {{wait.var_activity) }¢* (endlist)

(waitvar_activity) — (from_activity) (to_entry) (floatphaselist)

A.2.5 Send-No-Reply Waiting Time

(snrwaiting) — Z (ne {(snrwaiting t_thl)}7* (endlist)
(snrwaiting t-thl) — (taskname : (snrwaitinge.tbl) (endlist) (snrwaitingatbl) .
(snrwaitingetbl) — {(snr.waiting_entry) }¢°
(snrwaitingentry) — (from_entry) (to_entry) (floatphaselist)
(snrwaiting_a_tbl) — {(snr.waiting.activity) }¢* (endlist)
(snrwaiting_activity) — (from_activity) (to_entry) (floatphaselist)
A.2.6 Send-No-Reply Wait Variance
(snr_wait.var) — VARZ (ne) {(snr.waitvar_t_tol)}7* (endlist)
(snrwaitvarttbl) — (taskname : (snrwaitvaretbl) (endlist) (snrwaitvaratbl) .
(snrwaitvar_ethl) — {(snrwaitvar_entry)};°
(snrwaitvar_entry) — (from_entry) (to_entry) (floatphaselist)
(snrwaitvar_athl) — {(snr.wait.var_activity) }3* (endlist)
(snrwaitvar_activity) — (from.activity) (to_entry) (floatphaselist)

A.2.7 Arrival Loss Probabilities

(drop_prob) — DP (ne) {(drop_prob.ttbl)}7* (endlist)

(drop_proh_t_tbl) — (taskname : (drop.prob.e.tbl) (endlist) (drop_prob.atbl) .
(drop_prob_e_tbl) — {{(drop_prob_entry) }*

(drop_prob_entry) — (from.,entry) (to_entry) (floatphaselist)

(drop_prob_a_tbl) — {(drop_prob_activity) }¢* (end.list)

(drop_prob_activity) — (from_activity) (to_entry) (floatphaselist)

A.2.8 Join Delays
(join) — J (ne {(join_t_tbl)}7* (endlist)

81

(join_t_tbl) — (taskname : (join_a_tbl) (endlist)
(join_a_tbl) — {{(join_entry) }3*

(join_entry) — (from.activity) (to_activity) (real) (real)

A.2.9 Service Time

A.2.10 Service Time Variance

A.2.11 Probability Service Time Exceeded

(variance — VAR (ne) {(variancet thl)}7* (endlist)

A.2.12 Service Time Distribution

(distribution) — D (entry.name (statistics {(histbin)}, (endlist)

(service — X (ne) {(servicettbl)}7* (endlist)

(servicet_tbl) — (taskname¢ : (serviceetbl) (endlist) (serviceatbl) .
(servicee_thl) — {(serviceentry) }¢°

(serviceentry) — (entry.name (float phaselist)

(servicea_tbl) — {(serviceactivity) }p* (endlist)

(serviceactivity)y =~ — (activity.name (floatphaselist)

(variance — VAR (ne) {(variancet thl)}7* (endlist)

(variancet_tbl) — (taskname¢ : (variancee.tbl) (endlist) (varianceatbl)
(variancee tbl) — {(varianceentry) }¢°

(varianceentry) — (entry.name (float phaselist)

(variancea_tbl) — {{varianceactivity) }7* (endlist)

(varianceactivityy — (activity.namé (float phaselist)

| D (taskname (activity.name (statistics {(histbin)}, (endlist)

(statistics — (phasé (mean (stddey (skew (kurtosig
(hist.bin) — (begin (end (probability) {(bin_conf)}2
(mear) — (real)

(stddey — (real)

(skevy — (real)

(kurtosig — (real)

(probability) — (real)

(bin_conf) — % (contlevel) (real)

A.2.13 Throughputs and Utilizations

82

(thpt.ut) — FQ (nt) {(thptuttask}?* (endlist)

(thptuttask — (tasknamé (net {<thpt _ut _entry> }7°* (endlist) (thptuttasktotal)
(thptutentry) — (entry.name (entry.info) {(thptutconfidencg},

(entry.info) — (throughpu} (utilization) (endlist) (total_util)

(throughpuj — (real)

(utilization) — (floatphaselist)

/* Distribution mean x/

/+ Distribution standard deviationx/

/* Distribution skew s/

/+ Distribution kurtosis */

/* 0.0-1.0 x/

opt

/* Task Throughputs/
/+ Per phase task util.«/

(

(thptut_task total)

(
(

total_util)

thpt.ut_conf)
contleve)

—

4

(real)

(entry.info)
{(thptutconf) },

% (contlevel) (entry.info)
(integer)

A.2.14 Arrival Rates and Waiting Times

(
(
(

openarrivals)
no)
openarvl_entry)

—
_)

—

R (no) {(openarvl_entry)}7° (endlist)
(integer) /+ Number of Open Arrivals«/

(from_entry) (to_entry) (real) (real)
(from_entry) (to_entry) (real) Inf

A.2.15 Utilization and Waiting per Phase for Processor

(
(
(
(
(
(
(
(
(
(
(
(
(

processoy
proc_group)
proc._task
proc.task.info)
priority)
multiplicity)
proc.info)
proc_entry.info)
scheddelay)
proc_entry_conf)
task total)
proc._total)
proc._total_conf)

1

A A

{(proc_group) }7P"?°***°"* (endlist)
P (proc.name (nt) {(proctask}?* (endlist) (proc-total)
(taskname (proc.taskinfo) {(proc.entry.info)}“ (endlist) (tasktotal),

ne (priority) (multiplicity)

< opt

(integern /* Prio. of task x/
(integer) /+ Number of task instances/
(entry.name (proc_entry.info) {(proc_entry_conf)}

(utilization) (scheddelay) (endlist)

(float phaselist) /+ Scheduling delay:/

% (integen (proc_entry.info)

(real) {(proc_total_conf)},

(realy {(proc_total_conf)}, (endlist)
% (integen (real)

83

Bibliography

[1] The Apache Software Foundatiokerces C++ Documentatian

[21 S. C. Bruell, G. Balbo, and P. V. Afshari. Mean value ams#y of mixed, multiple class
BCMP networks with load dependent service centerd?erformance Evaluation4(4):241-260, 1984.
doi:10.1016/0166-5316(84)90010-5

[3] Adrian E. Conway. Fast approximate solution of queuairgvorks with multi-server chain-dependent FCFS
gueues. In Ramon Puigjaner and Dominique Potier, editdmjeling Techniques and Tools for Computer
Performance Evaluatigmppages 385-396. Plenum, New York, 1989.

[4] Edmundo de Souza e Silva and Richard R. Muntz. Approxémablutions for a class of
non-product form queueing network models. Performance Evaluatign 7(3):221-242, 1987.
doi:10.1016/0166-5316(87)90042-3

[5] Greg Franks. Traffic dependencies in client-serveresystand their effect on performance predictionlHEE
International Computer Performance and Dependability Bgsium pages 24-33, Erlangen, Germany, April
1995. IEEE Computer Society Presmi:10.1109/IPDS.1995.395840

[6] Greg Franks, Tarig Al-Omari, Murray Woodside, Olivia aand Salem Derisavi. Enhanced modeling and
solution of layered queueing networkEEEE Transactions on Software Engineerirg$(2):148-161, March—
April 2009./doi:10.1109/TSE.2008.74

[7]1 Roy Gregory FranksPerformance Analysis of Distributed Server SysteRttD thesis, Department of Systems
and Computer Engineering, Carleton University, Ottawaa@o, Canada, December 1999.

[8] Xianghong Jiang. Evaluation of approximation for respe time of parallel task graph model. Master’s thesis,
Department of Systems and Computer Engineering, Carletavetsity, Canada, April 1996.

[9] Lianhua Li and Greg Franks. Performance modeling ofaystusing fair share scheduling with layered queue-
ing networks. InProceedings of the Seventeenth IEEE/ACM Internationalp®gium on Modeling, Analysis,
and Simulation of Computer and Telecommunications SystdiSCOTS 2009pages 1-10, London, Septem-
ber 21-23 2009d0i:10.1109/MASCQOT.2009.5366689

[10] Victor W. Mak and Stephen F. Lundstrom. Predicting perfance of parallel computation&EE Transactions
on Parallel and Distributed Systemb(3):257-270, July 199@0i:10.1109/71.80155

[11] John E. Neilson. PARASOL: A simulator for distributedcdor parallel systems. Technical Report SCS TR-192,
School of Computer Science, Carleton University, Ottawata@o, Canada, May 1991.

[12] Martin Reiser. A queueing network analysis of computssmmunication networks with win-
dow flow control. IEEE Transactions on Communication®27(8):1199 — 1209, August 1979.
doi:10.1109/TCOM.1979.1094531

[13] J. A. Roliaand K. A. Sevcik. The method of layellSEE Transactions on Software Engineeri2d(8):689—-700,
August 1995/doi:10.1109/32.403785

84

http://dx.doi.org/10.1016/0166-5316(84)90010-5
http://dx.doi.org/10.1016/0166-5316(87)90042-3
http://dx.doi.org/10.1109/IPDS.1995.395840
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1109/MASCOT.2009.5366689
http://dx.doi.org/10.1109/71.80155
http://dx.doi.org/10.1109/TCOM.1979.1094531
http://dx.doi.org/10.1109/32.403785

[14] Jerome Alexander RoliaPredicting the Performance of Software Syste®kD thesis, Univerisity of Toronto,
Toronto, Ontario, Canada, January 1992.

[15] Rainer Schmidt. An approximate MVA algorithm for expanial, class-dependent multiple servéatformance
Evaluation 29(4):245-254,199710i:10.1016/S0166-5316(96)00048- X

[16] C. U. Smith and L. G. Williams. A performance model irdleange formatJournal of Systems and Software
49(1):63-80, 1999d0i:10.1016/S0164-1212(99)00067-9

[17] C. U. Smith and L. G Williams.Performance Solutions: A Practical Guide to Creating Rewspee, Scalable
Software Object Technology Series. Addison Wesley, 2002.

[18] Connie U. Smith and Catalina M. Lladé. Performance siadterchange format (PMIF 2.0): XML definition
and implementation. IiProceedings of the First International Conference on theaQative Evaluation of
Systems (QESTpages 38-47, Enschede, the Netherlands, September 20830 I1EEE Computer Society
Press|doi:10.1109/QEST.2004.1348017

[19] C. Murray Woodside, John E. Neilson, Dorina C. Petrind &hikharesh Majumdar. The stochastic rendezvous
network model for performance of synchronous client-selite distributed software.|EEE Transactions on
Computers44(8):20—-34, August 199%810i:10.1109/12.368012

[20] Murray Woodside and Greg Franks. Tutorial introductio layered modeling of software performance. Revision
6554.

[21] Xiuping Wu. An approach to predicting peformance fongmonent based systems. Master’s thesis, Department
of Systems and Computer Engineering, Carleton Univer@itigwa, Ontario, Canada, August 2003. Available
from: ftp://ttp.sce.carleton.ca/pub/cmw/xpwu-mthesis.pdf

85

http://dx.doi.org/10.1016/S0166-5316(96)00048-X
http://dx.doi.org/10.1016/S0164-1212(99)00067-9
http://dx.doi.org/10.1109/QEST.2004.1348017
http://dx.doi.org/10.1109/12.368012
ftp://ftp.sce.carleton.ca/pub/cmw/xpwu-mthesis.pdf

Index

--automatic ,[59 -R,[59,[60

--blocks ,[59 -S B0

--bounds-only ,[51 -T,[61

--confidence 659 -v,B3[61

--convergence ,[53 -b ,[51

--debug 1,59 -d ,B1[53[5D

--debug-lgx ,[54,[61 -e ,(2[59

--debug-xml ,[54,[61 -h ,[60

--error 62,59 -m,[59,[60

--exact-mva 54 -n ,[52,60

--global-delay 61 -0 ,[11,[51[5P(59,60

~help 52 -p ,[51 52059060

--hwsw-layering ,[54 -t 24 [52[5V6d 11

--iteration-limit ,[54 -v ,B3[61

--loose-layering B4 -w,[53,[61

--no-execute ,[52,[60 -x ,[B1,[53[61

--no-variance ,[54 -z ,[B3[61

--no-warnings ,[G3,[61 -> [683

--output ,[52,[60

--parseable ,[52,[60 asynchronous connectiofs] 58

--pragma ,[52,[60 coefficient of variatior, 58

--print-interval 61 entry .

--processor-sharing (54 maxium[58

--raw-statistics ,[60 forwarding[58

--reload-lgx NIsY: infinite server 5B

--restart ,[61 interprocessor delaly, b8

--run-time ,[61 multi-server 5B

--schweitzer-amva ,[54 open arrival 58

--seed ,[60 phase

--special ,[53 maximum[58

--stop-on-message-loss 54 type[58

--trace ,[53,[60 processor

--trace-mva ,[54 maximum[58

--underrelaxation (52 scheduling 58

--verbose ,[B3,[61 task

--version ,[53,[61 maximum[58

-xml ,BE3[61 think time [58

-> ,[65, seeprecedence _

-A 2459561 act!vg_serveEIS

-B 2459561 act!v!tles 51,52

-C 459 acuwty,l]],Bl_] B.[28

-H,B2 connection, 36seeprecedencé. 79

-P 52535586082 defined[7D
demand_28

86

error[70
not reachable
error[71
reply,[T[8
error[66
rescheduld, 82
results[3D
service timel_16
start[70
activity,[28,[31
activity graph[Jll B, 28, 31
connection 28
error[68[6D
semanticd,]8
start[30
task[28
Activity-CallGroup[3d
activity-graph 24
ActivityDefBase,[28,[30
ActivityDefType,[28
ActivityEntryDefType ,[28
ActivityGraphBase,[28,[29
ActivityListType ,[31
ActivityLoopListType ,[31,[32
ActivityLoopType ,[31,[33
ActivityMakingCallType ,[30
ActivityOrType ,[31,32
ActivityPhasesType[28,[28
Activity Type ,[31
ActivtyDefType,[28,[30
ActivtyEntryDefType ,[30
ActivtyPhasesType[30
all,
allow,
AND-fork, @,
reply
error[64
and-fork[79
AND-join, 8, [79
AndJoinListType, [31,[32
and fork[3
and join[8
arcs[1[B
arrival loss probabilitie$, 16
arrival rate[5B, 62
async-call2d
asynchronous connectiofis] 63
attribute
activity-graph[2l
attribute[69
begin[35
bin,[17

87

bin-size[3b
bound-to-entry, 28, 30, 66. 69
call-order[30
calls-mear_30
cap[26
conf-95[3%
conf-99[3b
conv-val[24
conwv.val,[24
count[38
description[2B
dest[30[6D
elapsed-timd, 24
end[32[3H. 69
fanin,[30
fanout[30
first-activity,[30
host-demand-cvsf, BO
host-demand-mean,130
initially,
it_limit,
iterations[24
join-variance[3%
join-waiting,[33
kurtosis[3b
loss-probability 3B
Ign-schema-versioh, 23
Igncore-schema-versidn,]23
max,[17[3b
max-service-time, 17,30
mean[3b
mid-point[3%
min,[173%
missing

error[65[70
multiplicity, P5,[27
name[2B, 29-30. 3P, §6.169
not declared

error[65
number-bind 117,35
open-arrival-rat¢, 28
open-wait-time_33
param[24
phasel 2d, 30,35
phaseX-proc-waiting, 33
phaseX-service-timg, 83

phaseX-service-time-varian€e] 33

phaseX-utilization, 33
platform-info[24
printint,[24
priority,[274,[28

prob [30[3P 35

prob-exceed-max-service-tinie] 33
proc-utilization[38
proc-waiting[38
guantum[_2b
queue-length, 27
quorum[3P
replication[2527
scheduling 24, 27
sempahoré, 28
service-time_33
service-time-distributio, 17
service-time-variancg, 83
share[2b
skew[3b
solver-info[2%
speed-factof, 25
squared-coeff-variatiop, B3
std-devi:3b
system-cpu-timé, 24
think-time [2T[3D
throughput 3B
throughput-bound, 33
type [26[28
underrelaxcoeff,[24
unigue name, 86
unique phasé,_36
user-cpu-time,, 24
utilization [33
valid,[22
value[Z4
waiting,[33
waiting-varianced,_33
x-sampled, 17
xml-debug[2B
xsi:noNamespaceSchemalocatfor, 69

attribute ,[69

automatic blockind, 59, 62, 67

autonomous phadg, 5

Bard-Schweitzef[, 56

batch mean§. 62

batcheq55

batched layer§, 55

batched-bac/t]

begin ,[33

bin ,[17

bin-size ,[35

block
automatic[59, 62, 67
manual[5B 62
simulation[[IB[50
size[59[6P

bound-to-entry ,[28,[30[6660
bounds
throughputi 5t
branch
AND, [1[8,[68
deterministicl B
exit,[3
loop count[B[31
OR,[1[69
probability[1[B[3N[68. 69
bruell,[55
buffers[4

call graph[[BH_712
call order[T[2B
Call-List-Group[3d
call-order B0

calls,
calls-mean ,[30
cap,26
chain[18
class
closed[6871
open[68[71

closed mode[.]5
coefficient of variatior, H7 [30,[33[68[74, 49
error[72
command line. 59, 62
incorrect[G4 6l
component$, 20
concurrency, 4
conf-95 ,[33
conf-99 | [35
confidence interval§. 5B, 62
confidence level 89
constraint checking, 36
contention delay, 15
conv-val ,[24
conv _val ,[24
convergence, 57
error[71
failure [54[57[6l
test valuel_1i3
value[5357 54,76
error[71
convergencdsZ
convergenceralug 53
conway[b5
copyright[G3[6l
count ,[33
counters
statistical[6D

88

customefl 4. 15

histogram-bin 34

cycle Ign-model[2B 6P
activity graph overflow-bin[3%
error[6% plot-control[23
call graph post[31
error[6% post-loop[6P
detection[5¥ pragmal 24, 24
cycle-time pre[31
entry[G0 precedencé, 28. 69
task[60 processof, 23
cyclesb4 quorum[31
cycles=allow[6d reply-activity[28[29 609
reply-elemen{. 29
deadlock{ 54, @5 reply-entry[2860
debug[5lL result-activity[3D
delay . result-entry[2B
contention[15 result-forwarding. 30
interprocessok, 61 result-general 28,24
deltawait, result-join-delay-30
demand I 28 result-processdr, 25
description ,[23 result-task_26
dest ,[30,[69 run-control[28
deterministic[service[2b

directed grapH.]15

service-time-distribtiorl, 30

disallow;[583 slot,[23
distribution solver-param$, 28,24
exponential 17 sync-call[30
gammallr task[25[6P
Pare_toDZ task-activitied, 2d, 28. 69
service time[_ 60 underflow-bin[3%
driver, unkown
duplicate error[71
identifier end,[32,[35[69
error[68 entry[1 [B[#5H7
parameter activity,[68
error,m defined[6b
start activity different
grror,lﬂ) error[66
unigue value error[66[7D
error[G6 maximum[63
message type
egrep[6D error[66
elapsed-time (24 paraméterﬂ 1
element
- hasel_66
activity,[28,[31 Eriority @
Activity-CallGroup . i
| signal [B[6V 618
async-callz3D ty?)e o
Call-List-Group[3D error [6B6[6V
duplicate name wait.[§ @ 6370
error[66 entry, 28
entry[26 ’

entry-phase-activitie®2d

entry-phase-activitieg, 26 EntryActivityDefType ,[28

forwarding

89

EntryActivityGraph ,[28
EntryMakingCallType ,[30
EntryType 2629
environment variable
override[6P
environment variablé, 5%, 62
error[69
activity,[70
not reachabl¢, 71
reply,[66
activity graph[(68, 619
AND-fork
reply,[64
attribute
missing[65[_70
not declared. 85
coefficient of variatior[_72
convergencé, 11
value[71
cycle
activity graph[[6b
call graph[6b
duplicate
identifier[68
parametef_13
start activity[70
unique valud,_66
element
duplicate namé, 66
unkown[71
entry[66[70
different[66
message type, 66
type [66[6V
external variabld, 87
fan-in [67[68[7B
fan-out[6T[6H. 73
fatal,[(54[61
fork,[68
fork-list,[659
forward [69[7D
forwarding
probability[66
group[70[7B
share[67
tasks[6F
infinite server 6
iteration limit,[71
join,[68
join-list,[63
LOOP
reply,[64

90

LQX,

execution 67
maximum phasek, 65
message

pool,[64
model[6T
multiplicity, [72
not defined_70
not reachablé¢,_70, 72
open arrival 64, 88, 70
OR-fork,[69
Parasol, 65
phase

deterministic 6b
population

infinite,[68
post-precedence, b5
pre-precedenck, b5
primary documenf, 20, 69
priority,[73
probability[68
processor

creation[6b

not used_73

rate[69

sharing[7P[_ 713
program limit[68
queue length, 73
reference task,_68, V0, 112173
rendezvous. 89, 13
replication[[GH[67

iteration[72
reply,[64[65[7D

duplicate[71L

invalid,[71
reply-activity[69
response timé,_67
scheduling 72

completely fair[68, 70, 713
schemd 89
semaphore task, 68,170
send-no-reply, 84, 69, VI 173
server

task[72
service time[_74, 43
stack size[_ 64
standard deviatiof, 71
start activity[65 70
synchronizatiorf, 87
tag

end[6Y
task creatiorf, 85

think time [68
throughput
infinite,[67

under-relaxation coefficiedf, 72

utilization
high,[72
wait,[70
Xerces[6P
eventslcl
exact54
exit
succesd, 34, 61
exponentialbg
expressior,_49
external variable

error[67

false
fan-in,@ [78,[79
error[6T[68713
fan-out[9 [78,[79
error[67[68, 713
fanin ,[30
fanout ,[30
fast 54
fcfs
file
debug[6D
monitor[59[6D
tracing[G0
first-activity 30
floating point
exception[54, 59
infinity, 52,60
fork,[d,[3,[56
error[68
precedencé]8
fork-list,[8,[31
error[65%
forks 51,52
forward
error[69[70
forwarding[1[b[P30, 63. 68
probability[68
error[66
forwarding 28
forwarding probability[7B
full _reinitialize, 53

generatequeueingmode|[53
global-delayl6]
Grammar

XML,

91

XML),
grammar
original [73
group[3,
textbf4
error[70[78
share[67
error[6Y
tasks
error[67
group shard,_47
GroupType,[25,[26

histogram[-3W, 48,79
no phasd, 13
overflow[IT
statistics[_1I7
underflow[1V

histogram-bin34

HistogramBinType, 34,35

hol,[54

holding time[1

host-demand-cvsq ,[30

host-demand-mean ,[30

hyper 58

icon
stacked 1L
identifier
duplicate[6B
identifiers[8D
idle_time,
ignore.overhangingthreads[c3
infinite loop
call graph[[6b
infinite server 6B
error[66
infinity, 52,56 [60[61, 68
init-only, 54
initial-loops [59[6F
initially 21
input
invalid,[54 [61
multiple,[61
XML, 11 23,[51[59
interlock [55
interlock 511,52
interlocking 53
interprocessor delay, b3
it _limit 24

iteration limit,[I3[2467 [54,[71[76

error[71
iteratior_limit, 53

iterations ,[24

join,[1,8,[186[56
and[32
delay[T1[16 30,[33[56[81
error[68
precedencé]8
quorum[B[3p
variance[14, 34
join-list,[8,[31[79
error[6%
join-variance 34
join-waiting 34
joins,[51,[52

kurtosis ,[35

lambdal 1P
layer
spanning 1L
Layered Queueing Networlk] [, 3
layering
batched, 55
loose[Gh[71
Method of Layerd, 55
squashed, 55
strategyl 5b
strict,[55
layering [53
layers
length
simulation[62
limits
Igns [58
Igsim,[63
Linearizer[56
linearizer,[58
livelock,[63
LOOP[8[79
reply
error[64
loop,[38[31
loop count[B[311
loose B3
loose layerd, 55
loss probability-33
loss-probability 33
Ign-core.xsd, 20
Ign-model[23,[69
Ign-schema-version 23
Ign-sub.xsd. 20
Ign.xsd[2D
lgn2ps[I1

Igncore-schema-version 23
LgnModelType, 23
LONS,[31
lgns 112D

convergence valug, P4
LQNSPRAGMASA
Igsim,[20

scheduling 4,13
LQSIM.PRAGMASK2
LQX, 54,61

debug[5K, 61

error[65

execution

error[6T

intrinsic typesB7-£38
lgx,[71
lgx,[51

mak 58
Mak-Lundstrom[56
MakingCallType,[30,[31
man[53
manual blockind, 59
markoy[58
max, [17,[35%
max-service-time 17,30
maximum phases
error[6%
maximum service timé_ 18,79
mean,[35
messageseerequest
asynchronoug]5
buffers[62
pool
error[64
synchronoug.]5
message?
meta mode[13
Method of Layerd, 55
variance[57
method of sampleB,_ 62
mid-point ,[35
min ,[14,[3%
min_stepsh3
model
comment_76
error[67
mol,
molLms.underrelaxation53
monitor file [59
msgbufic]
multi-server 6B

92

multiplicity,], csv[60

error[72 human readablg, 11
infinite server_7R parseabld, 11, 5B, 60
multiplicity 28,27 XML, 1] 51,59
multiserver[L OutputDistributionType ,[30,34[3b
algorithm[55 OutputEntryDistributionType ,[35
approximation OutputResultForwardingANDJoinDelay,[30
error[72 OutputResultJoinDelayType 34
Bruell,[53 OutputResultType, 25,2630 31 33,34
Conway[5b[7P over relaxation_72
default[5% overflow[52[56, 6, 62
Reiser[5b overflow-bin[34
Rolia,[53[72 overlap calculatior, 57
Schmidt[5b overtaking[5b
multiserver[53 Markov,[56
MultiSRVN, [60 Method of Layerd, 56
MVA, overtakingG1{53[5b
Bard-Schweitzef, 54, 56
exact[GH[5b param,[24
Linearizer[56 Parasol 59, 80
mva 52,55 error[65
Pareto distributior,]5
name, [23,[25£30 34, 6. 69 Performance Model Interchange Forniat, 3
no-entry[57 phasel[119,16
node[3 asynchronoug] 1
none[B3E5T autonomoug.]5
not defined deterministic
error[70 error[66
not reachable maximum[68
error[70[7P reply,[1
number of iteration$, 13 rescheduld, 82
number-bins ,[I4,[3% results[3D
second 1L
on-off behavioufl. B service time 16
one-ste[E_E _ type [63[7879
one-step-linearize58 phase ,[28,30[35
open arrival 24, 63.70. 71 phases
error[66[68, 70 approximation
loss probability 81 error[72
overflow[56[6P phaseX-proc-waiting B3
waiting time[19,[63 phaseX-service-time B3
open mogie[lS phaseX-service-time-variance B3
open-arrival-rate 28 phaseX-utilization Rick
open-wait-time ,[33 platform-info 22
OR-fork,[8/[68 plot-control 23
error[69 population
or-fork,[79 infinite
OR-join,[8[79 error[G6
OrListType,[31 post 3]
or fork,[8 post-loop[69
or join,[8 post-precedencel 8
output[S2[6D error[6%

conversion_111

93

ppr,[58
pragmal 51, 54, 60, 62
invalid,[54
command line[_62
input file,[62
pragmal23,[23
pre,[31
pre-precedenck] 8
error[6%
precedencé] 8]
activity,[
and-fork[8
and-join[8
loop,[8
or-fork,[8
or-join,[8
guourm-join[8
sequencé]8
precedencd?8d,[69
PrecedenceTypdZ8,[31[3P
precision
simulation[59
primary document
error[20[6D
print,[52
print interval [2476
lgns,[23
print-interval,[61
print _int ,[24
print_interval,
prioity
premptive-resumg, 56
priority
entry[4[78
error[73
head of line[456
highest[%
inversion[4
preemptive resumg] 4
preemptive resumg] 4
processof,}4
priority 2128
prob ,[30,[32[35
prob-exceed-max-service-time 33
probability
branch[8[_31, 68
error[68
forwarding[66[6B
proc-utilization B33
proc-waiting ,[33
processofJLI1BHA

creation

error[6%
maximum[6B
not used
error[73
priority, 4
queueind,_16
rate
error[69
scheduling 54, 82
completely fair[7
custom[6P
natural[62
sharing[7F
sharingl4, [28,[55 [7P[717
error[72[78
trace[60
utilization,[62
waiting,[62

processo23,[56[60
processor sharing, b6
ProcessorTypel25
program limit

error[68

ps 58

quantum[473,17
guantum ,[23

queuel 1L
queue length, 17

error[73

queue-length ,[27
gueueing delay

processof, 11
task[11

gueueing model

closed[B[68
customerd, 88

open[5[6B

gueueing network

extended. 11
layered[1

queueing timd, 15

processofl9 33,83

variance[1b

quorum[79
quorum[31,51[58
quorum ,[32
guorum join[8
QUORUM-join,[8
quorum join[8[3P

random number

94

generatior, 60

reference tasig
bursty[5, [
error[68[707413

reiser,

reiser-ps53

remote procedure call] 3

rendezvoud.]1.]8] 5] [71[©.130.,164] 79

cycle [6%
delay[15 33,80
error[69[7B
reference task]5
variance[l5 33,81
rep2flat[64
replication[d
convergenceé, 71
error[64[6V
flatten [G64
iteration
error[72
processof,_16
ratio,[67
simulator[6#
task [7T
replication 28,27
reply,[d
activity,[1,3[28
duplicate
error[71
error[64[65700
explicitly, [
implicit, [71
invalid
error[71
phasel b
reply-activity
error[69
reply-activity, [28,[29[69
reply-elemenf2g
reply-entry[28,[69
request{I[199 28,30
asynchronoug]1
blocked[1
forward [1
reply,[1
synchronoug,]1
types[9
reschedule
activity,[62
phasel 62
reschedule-on-async-sef@@
resource

passivel b

possessiom,] 1
simultaneoug.]1

software[
response time

error[6T
result-activity[30
result-entry[28
result-forwarding[30
result-genera[23,[24
result-join-delay(3d
result-processqf23

result-task(28
ResultContentTypg[31,[33
results
activity,[30
intermediatd, 52
phasel 30
valid,[13
rolia, [55,[56
rolia-ps,[53
root mean squark, 62
round robin[%
run time
simulation[[59[_61
run-control 23
scheduling_63
cfs,[4
completely fairl#
completely fair #[2H, 26
error[68[70, 713
delay[72
error[72
FIFO,[73
fifo, B[4
priority, 4
processof, 36, 16
processor sharinf] &.173
random[%
round robin[%
semaphoré, 17
task[4[77
scheduling62
scheduling ,[25,[2T
schema
constraintd, 34
error[69
schmidf53
schweitze 58
seed[6D
semaphore
counting[®

95

signal[78

wait,[70
semaphore task,

error[68[7D
sempahore ,[28

send-no-repl\,11.19, 30, B2, 118,179

delay[15[81

error[64[607113

loss probabilityl1d

overflow[56[6P

variance[l6,[81
server

active[3

infinite,[68

pure[3

synchronize, 18

task

error[72

service

class[[}

request L
service[28

service time[H 0617 17,30 3B 7. 18. 79,82

demand_62

distribution[T1[17 [60,[82

distributions[1l
entry[62
error[72[7B
exceeded, 82
histogram[_34
kurtosis[1¥
maximum[78[_70

maximum exceeded L7

mean[1lF
phase oné¢, 15,16

probability exceeded, 7 [33

skew[1Y

standard deviatiof, 17
variance[I7 [17,[33[82

service-time B3
service-time-distribtioyi3d
service-time-distribution
service-time-variance
share[%
cap[4[2b
exceed K
guaranted,14, 26
share ,[26
signal [5[61, 68
simple[58
simulation

block,[59[61

B33

L7

statistics| 5P
singlestepc3
SingleActivityListType,[31
skew,[35
skip,[59
skip period[5B, 612
skiplayer,[53
slice [B[T[7H8
slot,[23
solution
statistics[6lL
solve()
implicit, [Z11
solver-info ,[24
solver-paramd23,23
special[58
speed-factor ,[25
squared-coeff-variation 33
squashedbl
squashed layerls, b5
srvndiff,[60
stack size
error[64
standard deviation
error[71
standard inpuE, 3Z. 60
start activity
error[65[70
statistical counterg, 60
statistics[59, 81
blocked[Z2%
simulation[61
std-dev ,[35
step() ,[13
stochastid, 17
stochastiglb 4
stop-on-message-lq&8,[60[62 6H, 11
stopping criterid,_ 62
strict,[53
strict layers[5b
strict-back[B3
submodel
population[66
sync-call[30
synchronization
error[67
synchronization server] 8
synchronization tas§
system-cpu-time ,[24

tag
end

96

error[6T Activity Type,[31
task[1[343 ActivtyDefType [28[3D
maximum ActivtyEntryDefType[3D
queue[} ActivtyPhasesTyp&,. 30
reference, H, 39, TD. 73 AndJoinListType[31,32
bursty5, EntryActivityDefType[28
semaphoré] %, 67, b8.170 EntryActivityGraph[28
server[7P EntryMakingCallTyp€e, 30
synchronizatior,J5 EntryType[26E209
trace[60 GroupType[2H. 26
task [23,[60[69 HistogramBinTypd. 34,35
task creation LgnModelType[2B
error[65 MakingCallType[3031
task-activities28,[28[69 OrListType[31
TaskActivityGraph ,[28 OutputDistributionTypd 30, 34 B5
TaskType, 2527 OutputEntryDistributionTypé, 35
tau, OutputResultForwardingANDJoinDelay]30
tex, OutputResultJoinDelay Typle, 134
think time [63[7VE79 OutputResultTyp¢, 26, 26, H0.131] 83] 34
entry[68 PrecedenceType. P8.131] 32
error[68 ProcessorTypé, 25
think-time ~,[27,(30 ResultContentTyp€. 3L, B3
thread[L SingleActivityListType[31
threadsc8 TaskActivityGraph[2B
three-point approximatioh, b6 TaskType[2H=27
throughput THI7 33,82 type 28,28
bounds| 115 [33,[51[8D
infinite under-relaxatio, 11
error[67 under-relaxation coefficier, V6
interlock [55 error[72
zero[68[71 underflow-bin34
throughput53,[55% underrelax _coeff ,[24
throughput ,[33 underrelaxations3
throughput-bound B3 user-cpu-time ,[24
time,[60 utilization
timeling [61 entry[33[6D
trace high,[71
processof, 80 error[72
task 60 processof, 11,113 [33,[60[62[E3
tracing[52[6D task[T1[17 [33,[60[8?
true,[56 utilization B33
type _
ActivityDefBase valid ,[24
ActivityDefType [28 value ,[24
ActivityEntryDefType[28 variancel 517
ActivityGraphBase 24. 29 initialize only,[57
ActivityListType, 31 Method of Layerd, 57
ActivityLoopListType[31[3P _service time[117
ActivityLoopType[31[3B variance[53,[57
ActivityMakingCallType [30 version[58 611
ActivityOrType [31[32 _ _
ActivityPhasesTypé. 26,28 Wa't’g’r?

97

wait,[53
wait() ,[I3
waiting

processof, 82
waiting ,[33
waiting time [I9[6D

open arrivalllg 33,83
waiting-variance 33
warning

ignore[53[61

x-samples ,[I1
Xerces[3W 36,89
error[69
error messagels, 36
validation[36
XML, 671 B9
debug[G1. 61
input,[51
validation[36
xml,[51
XML Grammar([20
XML Grammar)[36
xml-debug ,23
XMLSpy,[38
XSDvalid,[36
xsi:noNamespaceSchemalocation

98

	The Layered Queueing Network Model
	Model Elements
	Processors
	Groups
	Tasks
	Entries
	Activities
	Precedence
	Requests

	Multiplicity and Replication
	A Brief History

	Results
	Human-Readable Output
	Analytic Solver (lqns)
	Simulator (lqsim)

	Model Results
	Type 1 Throughput Bounds
	Mean Delay for a Rendezvous
	Variance of Delay for a Rendezvous
	Mean Delay for a Send-No-Reply Request
	Variance of Delay for a Send-No-Reply Request
	Arrival Loss Probabilities
	Mean Delay for a Join
	Service Times
	Service Time Variance
	Probability Maximum Service Time Exceeded
	Service Time Distributions for Entries and Activities
	Throughputs and Utilizations per Phase
	Arrival Rates and Waiting Times
	Utilization and Waiting per Phase for Processor

	XML Grammar
	Basic XML File Structure
	Schema Elements
	LqnModelType
	ProcessorType
	GroupType
	TaskType
	EntryType
	ActivityGraphBase
	TaskActivityGraph
	ActivityDefBase
	MakingCallType
	PrecedenceType
	OutputResultType
	OutputResultJoinDelayType
	OutputDistributionType
	HistogramBinType

	Schema Constraints

	LQX Users Guide
	Introduction to LQX
	Input File Format
	Writing Programs in LQX
	Program Input/Output and External Control
	Actual Example of an LQX Model Program

	API Documentation
	Built-in Class: Array
	Built-in Global Methods and Constants

	API Documentation for the LQN Bindings
	LQN Class: Document
	LQN Class: Processor
	LQN Class: Task
	LQN Class: Entry
	LQN Class: Phase
	LQN Class: Activity
	LQN Class: Call
	Confidence Intervals

	Invoking the Analytic Solver ``lqns''
	Command Line Options
	Pragmas
	Stopping Criteria
	Model Limits
	Diagnostics

	Invoking the Simulator ``lqsim''
	Command Line Options
	Return Status
	Pragmas
	Stopping Criteria
	Model Limits

	Error Messages
	Fatal Error Messages
	Error Messages
	Advisory Messages
	Warning Messages
	LQX Error messages

	Known Defects
	MOL Multiserver Approximation Failure
	Chain construction for models with multi- and infinite-servers
	No algorithm for phased multiservers OPEN class.
	Overtaking probabilities are calculated using CV=1
	Need to implement queue lengths for open classes.

	Traditional Grammar
	Input File Grammar
	General Information
	Processor Information
	Group Information
	Task Information
	Entry Information
	Activity Information
	Expressions
	Identifiers

	Output File Grammar
	General Information
	Throughput Bounds
	Waiting Times
	Waiting Time Variance
	Send-No-Reply Waiting Time
	Send-No-Reply Wait Variance
	Arrival Loss Probabilities
	Join Delays
	Service Time
	Service Time Variance
	Probability Service Time Exceeded
	Service Time Distribution
	Throughputs and Utilizations
	Arrival Rates and Waiting Times
	Utilization and Waiting per Phase for Processor

