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1 Software Server Concept

We consider layered systems (software systems, and otis &f systems too) that are made up of servers (and other
resources which we will model as servers); the generic teemvill use for these entities is “task”. A server is either

a pure server, which executes operations on command (ftanios a processor), or a more complex logical bundle
of operations, which include the use of lower layer servicgsch a bundle of operations may be implemented as a
software server.
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Figure 1: The elements of a software server, including miatihreads, multiple entries, and second phases, which
are all optional.

Figure[1 illustrates the elements of a software server, @g fiight be implemented in a software process. The
threads are servers to the queue, and the requests takartheffmterprocess messages (remote procedure calls, or
the semantic equivalent), and the entries describe or disfinelasses of service which can be given. The assumption
in this theory is that each thread has the capability of etkeglany entry. The execution of the entry can follow
any sequence of operations, and can include any number @fthesgjuests or calls to other servers. Calls to internal
services of the server are assumed to be included in the eotgll calls are to other servers. A canonical sequence
of operations is the first-phase/second phase sequenca $lyalve heavy line in the figure, with the reply sent after
the first phase. Software servers often send the reply ag &apossible, and complete some operations later (e.g.
database commits).

The execution of the server entity is assumed to be carrietya single processor, or multiprocessor, called its
“host” and not shown in Figufd 1. Once the request is accefitedxecution of the entry is a sequence of requests for
service to the host and to other servers, and the essengeecétbmodeling is to capture this nesting of requests. Each
request requires queueing at the other server, and thentexeof a service there. The service time of a software
server is the time to execute one request, and it has two coemp®, a phase 1 time until the reply is generated, and a
phase 2 time.

The “thread” abstraction in a software server can also mottedr mechanisms that allow the server to operate
simultaneously on several requests, including a procesk kernel or user threads, dynamically created threads or
processes, and virtual threads.

The abstract “task” model which applies to a software secagr also be applied to other system resources, as
described later. For instance, a disk device may offer nfae bne operation with different service times, modelled
by entries; a buffer pool can be modelled by a set of “threadsh of which accepts one block of data and then tries



to send it to the receiver entry.

In the graphical notation adopted here for layered modeésserver entity above is represented as in Figlire 2.
The multiplicity of threads is shown by a “stack” of task pémgrams, which is optional. The requests are shown
from entry to entry; the queue is not shown explicitly. Thetmmay be shown as an oval; other devices such as disks
are represented by a task to capture the services, and allestask part can represent multiple classes of services
by the device, as entries.

el e2
[s] [s]

Figure 2: Layered modeling notation for the server in Fidlire

2 Layered Queuing Concepts

Modelers will be more familiar with non-layered models, se will consider an example, shown[ih 3, and relate it to
a layered model of the same system. A flat, non-layered madebhly one layer of servers, and is equivalent to an
ordinary queueing model. The following example MadJser entities making requests to a set of Server entities, an
represents Users at workstations making requests to at&etver (file server or database server) with a printer and
two disks.

/workstatioj / server / / printer / /network/ disk_2 disk_1
[5] [15] [100] [0.001] [0.01] [0.01]

workstations{4} server printer network{inf} disk_2 disk_1

Figure 3: Model with a single layer of resources (i.e., arptpieueing model) for a client-server system

The Users are the reference for performance measures, endtex cycle in which they think for 3 sec in total
(indicated byZ = 3 sec.), and also make the indicated average number of reqieestich server. These are the
normalized parameters of a queueing network model (reguast thinking time per response), normalized to the
reference point of the Users. Each server has its own setimieg(indicated bys = value, for two of the servers) and
discipline for serving requests.



2.1 Layered approach

In the layered view of the same model, shown in Fidure 4, thezeserver tasks (which are not shown explicitly in a
plain queueing model) on the server CPU, which have theirquaues of messages to serve, and which in turn make
requests to lower layer servers like the server CPU and .diSke Network also appears as a server which passes
requests through, inserting its own latency and conterd@ays into the path. It connects messagesdaover _1
andser ver _2 through separate interfaces called entries, describesvb&he execution demand ser ver _1 and

ser ver _2 have the weighted average value of 15 msec shown in HiguretBé&erver CPU.

/workstatiorf / net_2 / net_1
[5] [0.001] [0.001]

workstations{4} / network{inf{ /

/) / )
server_1
[ [10] f

server_1

(0.04) (7.1) 0.6)
printer disk_2 disk_1
[100] [0.01] [0.01]
printer disk_2 disk_1

Figure 4: Layered version of the client-server system

Readers who are familiar with queueing models will recogrtiiis as an extended queueing model, with simulta-
neous resource possession. To execute operations at atssk/éhe server task resource must be obtained, and then
a device resource at the bottom. Layered queueing repsesiemiltaneous resources in a simple canonical way.

2.2 Resources, authority, layering

Layered modeling describes a system by the sets of resahatesre used by its operations. Every operation requires
one or more resources, and the model defines a resource tantean architecture context for each operation. The
architecture context is a software object to execute theatipa, and the resource context is a set of software and
hardware entities required by the operation. Every remimdudes an aspect of an authority to proceed and use it,
which is controlled by a discipline and a queue (which mayx#ieit or implicit). In layered modeling the resources
are ordered into layers (typically with user processes tieatop and hardware at the bottom) to provide a structured
order of requesting them. With proper layering, a graph logp@ssible sequences of requests is acyclic, and deadlock
among requests is impossible. For this and perhaps for mthsons, layered resources are very common in practice.
Layering provides an ordering; notice that in this view resfs may jump over layers.

2.3 Tasks, entries, calls, demands

The notation for layered queueing models uses the termshaskprocessor, entry, call, and demand, as follows.

e Tasks are the interacting entities in the model. Tasks oamtyoperations and also have the properties of
resources, including a queue, a discipline, and a muliipliasks that do not receive any requests are special,



they are called reference tasks and represent load gersecatasers of the system, that cycle endlessly and
create requests to other tasks. Separate classes of usens@elled by separate reference tasks.

e Atask has a host processor, which models the physical éhtitycarries out the operations. This separates the
logic of an operation from its physical execution. Thus & issnodeled by two entities, a disk task representing
the logic of disk operations (including the difference begén say a read and a write, and the logic of disk device-
level caching), and a disk device. The processor has a quelie discipline for executing its tasks, and a task
has a priority.

e A task has one or more entries, representing different ¢dipesait may perform. If the task is like a concurrent
object, then the entries are like its methods (the name cdroesthe Ada language). Entries with different
workload parameters are equivalent to separate classegireing. The workload parameters of an entry are its
host execution demand, its pure delay (or think time), amdatls to other entries.

e Calls are requests for service from one entry to an entry offear task. A call may be synchronous, asyn-
chronous, or forwarding, as discussed below. This givestemocabulary of parallel and concurrent operations,
expressed in a manner very close to that of a software acthitedescription language.

e Demands are the total average amounts of host processingvaralye number of calls for service operations
required to complete an entry. More detailed descriptidagiling the sequence of operations, can be given by
giving the activity structure of an entry, described below.

The most important graphical notation for layered queueargbe captured in the following diagram

Entry (s=host demand, Z=pure delay)

Task (m=multiplicity)

Processor (m = multiplicity, * rate)

Call(y=mean number of (y1,y2)
calls, by phase)

Figure 5: Graphical notation for layered queueing... keyrants

Figure[6 shows another example system, representing a asdaiiiicket reservation system. It uses the UML
notation for the software in part (a) and the deployment ih (. The layered model in part (c) combines these two.

3 Tools: the LQNS solver, the simulator, and their modeling &anguage

There are two solvers for layered queues, that take the sapoé format. One uses analytic mean-value queueing
approximations to solve the queues at all the entities, emié other is a simulator. There is also an experiment
controller that can execute parameterized experimentsgarameter ranges.

The analytic solvet QNScan be executed with the command line:

I gns infile.lqgnx
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Figure 6: Layered system example of a web-based ticketwasen system

(where the suffix .Ignx is suggested, but not mandatory)gmduces an output file with the defaultname i | e. out .
There are many options, which can be listed by invokiqgs - h. The documentation is the manual (“man”) page,
also available in PDF as Igns.pdf.

The simulatotiqsimis invoked as:

lgsim[run controls] infile.lqgnx

and also generates an output filef i | e. out , which includes confidence intervals on the estimated pedioce
parameters. Documentation is the man page for Igsim, or 8@IAversion lgsim.txt.

3.1 XML Input File Grammar

Input to the Igns model solver uses the schema shown in Fidloglow. The “classes” in Figufd 7 correspond to
elements in the XML input file. The attributes for the classesespond to the most commonly used parameters for
a model. Notice how every task must have a processor, ansl géaskused to model many things: devices other than
CPUs, external services that introduce a delay, users @id#action time, critical sections and locks, buffers, et

The behaviour of a task can be specified either using phasas fentry, or through activities defined for a task.
Usually, it is simpler to specifiy behaviour using phases\ghin black) since most tasks do not incorporate internal
parallelism. The filer eserv-t enpl .| gnx in the AppendiX’A contains the reservation system. It is aam
template file for models based entirely on entries. Morerimftion about tasks modeled using activitives is found in
Sectiorl V.

3.2 Jlgndef editor view

The model is more easily edited and viewed with “jlgndef”. ptovides windows with labeled fields for editing
parameters and adding structure, and an automatic-lay@utwindow for navigating the model and observing the
structure. Jigndef can be used with models that were crégtethnual editing or other means.

3.3 Experiment Control Language LQX

The experiment controllespexuses an expanded modeling syntax which includes paramatéots and selectors
for performance measures. It is invoked as:

spex infile.xlqgn



Ign-model

? {ordered}

1

solver-params

conv_val: float
it_limit: unsigned
underrelax_coeff: float

1.7

processor

name: string
multiplicity: unsigned
scheduling: scheduling_t

{xor}
0.* 1. 1.*
pragma group % task
name: string name: string
share: float multiplicity: unsigned
scheduling: scheduling_t
{ordered}
1.0 0.
entry task-activities
name: string ’
? {ordered}
0.* 0.1
forwarding entry-phase-
activities
dest: string
prob: float {ordered)
1.3 0.* 0.*
activity precedence reply-entry
name: string name: string
host-demand-mean: float
? {ordered}
0.! . ‘ 1. 1 0.1 1.
synch-call asynch-call activity pre post reply-activity
dest: string dest: string bound-to-entry: string name: string
calls-mean: float calls-mean: float
1.* 1.*
activity
name: string

Figure 7: Language Schema




(where again the suffix .xlgn, standing for “extended Ign’file not mandatory) and it generates a set of case files,
input and output, a summary calleaf i | e. r es which tabulates the results over the cases, and optionaly af
plots of measures against parameter values. There is a @éotation file called spex.txt.

4 Task resources, queueing, and multiplicity (threads)

An object may exist in a single instance, such that only ogeest can be served at a time; this is called a single-
threaded task and is identified with a task resource, andkajtamue. One task queue is used by all requests to all the
task’s entries. This is an example of a “task” with both pmtigs of an object providing operations, and of a resource.

Some software objects are fully re-entrant, they can eristny number of copies, each with its own context.
These are often called multi-threaded, however because itheao limit to the number of threads we will term them
infinite-threaded This is an example of a “task” which imposes no resourcetcaims. An infinite resource is one
which we do not have to consider as a resource at all, singe# dot limit its authority to proceed.

Some software objects exist as a pool of instances of a nesia¢. Requests are given a thread as long as
there is one free; beyond this, requests must queue. Thdseewiermedmulti-threaded Such a task models an
object providing operations, and a homogeneous set of resaunits that are dispatched from a single queue, like a
multiserver.

Multiple instances may be provided in different ways, fostance by process forking, by lightweight threads or
kernel threads, by re-entrant procedure calls. A specsa wénich is modeled as multiple instances is a single cdyeful
written process that accepts all requests, and saves thextof uncompleted requests in data tables (this is virtual
threading, or data threading).

Multiplicity also applies to processors (single, multigl&inite). Figurd.8 shows the notation used.

interact

ser
~.Queue for the webserver tas
\y Z, (Not usually shown)
/connect/ confirm/ reserve/ displa>/

l
updateTDB
TicketDB

il

WebServer

(a) Atask has asingle queue, for messages to all its entrfby A multithreaded task running on a multi-
ple processor

Figure 8: A Task queue, and multiple resources

4.1 Pseudo-tasks to represent modules (objects or subsysis

While an LQN task is used to model the resource aspects of @ucamt process as well as its workload, it can also
be used to model just the workload aspects of an object ostdma which is just part of a concurrent process, and
which has no attached resource significance (we will cadlahinodule). This can be helpful to structure the workload
description around the software structure. If a task callédepresenting the overall container process makes a
synchronous call (see below) to a task T2 representing a lmedhich is part of the process, the model captures the
fact that the process resources are held while executingntiteile. Sometimes a task representing a module will be
called a pseudo-task, just to emphasize the fact that it dogelsave resources of its own. The pseudo-task is infinite
threaded (see below), and is allocated to the same proces#ue task that executes it.



5 Blocking calls and other styles of interaction

Layered modeling in LQNS recognizes three kinds of intéoastbetween entries (shown in Figlie 9):

‘ Browser ‘ ‘ Webserver ‘ ‘ TicketDB ‘ ‘ Browser ‘ ‘ Webserver ‘ ‘ TicketDB ‘ ‘ Webserver ‘ ‘ TicketDB ‘ ‘TLogServer‘
T T T T T T T T T

]

D

(a) Nested synchronous calls (b) Forwarded query, replying directfg) External arrivals, and an asyn-
to the client chronous invocation

Figure 9: UML Sequence Diagrams showing the messages pafselis notation, the solid arrowhead shows a
synchronous message, with a dashed arrow for the reply.

1. asynchronous callthe sender does not wait and receives no reply. The recedvitry operates autonomously
and handles the request.

2. synchronous call, with a replyThe sender waits (blocked) for the reply, and the receivimtgyemust provide
replies. This is the pattern of a standard remote proce@liréRPC). The sending object task resource or thread
is regarded as busy during the wait.

Replies without blocking are modelled by introducing exteader threads (these are model constructs), one for
each potential outstanding reply. In the model these tlsrdadblock and wait for the reply, and they accumulate
the total time to complete a response. These threads needisbexplicitly in the software (e.g. they may be
virtual threads).

3. forwarding interaction: the first sender sees a synchronous interaction, and waits ffleply. However the
receiver does not reply, but rather forwards the requestttdrd party, which either replies, or forwards it
further. This gives an asynchronous chain of operationa feaiting client.

Additional styles of interaction may be constructed usiativdties, including an asynchronous or delayed remote
procedure call in which the sender continues at first, andteedly waits to get a reply.

In each interaction there is a calling party, taking a “diiewnle and a called party, in a “server” role. A deeply
layered system will have middle-level tasks that act botbesigers, accepting calls from above, and as clients, making
calls to lower-level servers. There may be tasks represgsiistem users, that only originate requests. These pure
client tasks act as sources of work, cycling between their execution or delays, and requests into the system.

The system may also receive an arrival flow of requests frotside; these are treated as asynchronous requests
from the environment (there is no reply). To capture theaasp delay, we may introduce an artificial infinite threaded
“response” task which serves the arrival stream, makes ehsgnous request into the remainder of the system and
waits for the completion of the activity.

5.1 Workload parameters of an activity: summary so far

An entry has one or more activities (so far we have only seémesrwith a single activity), and the activities have
workload parameters. The ones described so far are:

e execution demand: the time demand on the CPU or other dewidiedted by the token "s” in the modeling
code)

e wait delay (also called a think time) (optional... it can lsed to model any pure delay that does not occupy the
processor) (token is Z)

10
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Figure 10: Layered Queueing notation for the three stylestefaction

e mean synchronous requests to another entry (token is y)
e mean asynchronous requests to another entry (token is z)
Additional optional parameters, not discussed before, are

o the probability of forwarding the request to another emtither than replying to it, when serving a synchronous
request (token is F)

e the squared coefficient of variation of the execution demragdests. This is the ratio of the variance to the
square of the mean; for a deterministic demand its valuetisk@( is c)

e a binary parameter to identify a stochastic sequence intwiie number of nested requests is random, with
a geometric distribution and the stated mean, versus andigtistic sequence in which the number is exactly
the stated number (which must be an integer). (token is fy walue O for stochastic (the default) or 1 for a
deterministic sequence)

To add detail to a model, we can introduce additional stmgotvithin an entry, called activities or phases. In the cases
described so far each entry has just one activity or phask thhe parameters listed above. In the more general cases
the same set of parameters can be used for each activity lopbase.

6 Performance measures: Service time and utilization valwefor an entry
or a task.

The service time of an entry, shown in Figliré 11, is the timig ftusy, in response to a single request. It includes its
execution time and all the time it spends blocked, waitingt®processor and for nested lower services to complete.
The service time in a layered model is a result rather thamanpater, except for pure servers.

Since a task may have entries with different service tinfesentries define different classes of service by the task.
The overall mean service time of a task is the average of ttng service times (weighted by frequency of invocation).

The utilization of a single-threaded task is the fractiotimie the task is busy (executing or blocked), meaning not
idle. A multi-threaded or infinite-threaded task may havweesal services under way at once and its utilization is the
mean number of busy threads.

A saturated task has all its threads busy almost all the time.

11
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Figure 11: The service time of an entry includes any nestadcgetimes while it is blocked, waiting for a reply

6.1 Software Bottleneck

A task which is fully utilized, when the resources it usesaoefully utilized, is called a “software bottleneck”. A
typical example is a single-threaded task which blocks/fay &nd the typical cure is to multi-thread the task, making i
a multiserver. Then when one thread is blocked another ampreaeed. (See the 1995 Software Bottleneck paper [5]
for more discussion).

7 Adding detail with activities within an entry

Detailed description of the sequence of operations, wheasla accepts a request at an entry, can be defined by
describing activities with a precedence graph. The schesed im LQNS is shown in Figute1.2.

If the repeated part is a sequence, the rest of the sequenedinged as preceded lactivityl. Ifitis a
complex structure of activities it can be packaged into assp pseudo-task (as described in Se¢fioh 2.1, called by
activi tyl. This pseudo-task can contain forks and joins and othent@inastructure nested within the loop.

If a request to an entry (sagnt r y1) generates a reply, then some activity in the graph trigterseply. This is
indicated by attaching the entry name to the activity,

<reply-entry name="entryl">
<reply-activity nane="activityl"/>
</reply-entry>

activitylisareply-activity. When it is finished it sends a reply to thquester that initiated the execution of the
entry.

7.1 LQN code for the activity section

The entries which use activities are identified in the erily long with the first activity in the entry. In a separate
activity section for each task, the workload parameterdefactivities and their precedence relationships are dakfine
for all the entries that have activities. The template ditd i vi t y-t enpl . | gnx, representing a server with OR
and AND forks, is commented to document to additional syfoaactivities.

(Often there is a separate sub-graph for each entry. Howeweasionally one may wish to define a single graph
with multiple starting points at two or several entries, iftstance to define a task which joins flows from two different
tasks. For this reason each activity graph is defined forangigsk rather than a given entry, and replies are indicated
by entry name.)

As well as the precedence graph definition, just discussedwbrkload of each activity must be defined, using
the parameters defined in Sectlon|3.1. The template &lepl at e. | gnx documents the syntax of the input file,
including activities.

12



task-activities|

? {ordered}

lo.r 0.*
activity precedence reply-entry
name: string name: string
host-demand-mean: float
{ordered}
1.7 1 0.1 1.7
activity pre post reply-activity
bound-to-entry: string name: string
pre pre-AND pre-OR post post-AND post-OR post-LOOP
’ ’ ’ ? quorum: unsigned ’ end: string
1 ‘1..*
activit
y 1.* 1.*
name: string activity activity
prob: float count: float

Figure 12: activities
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Figure 13: Task with activities
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Figure 14: A server task with parallel and alternative atigs, as defined in AppendiX B
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The activity diagram notation in UML is somewhat more gehtran the LQN notation, in that it allows a single
graph to span multiple concurrent tasks, but it can be useédoribe LQN activity graphs. However our purpose is
focused on defining performance models.

Examples of activity notation are given in the document &Hal Activity Notation in LQNS” by Franks (1999),
which is also Chapter 6 in Franks thesis.

The concurrency semantics of parallel activities assuima&sa separate sub-thread (or its equivalent) exists for
each parallel path. These sub-threads all compete for gsomeresources, and can block separately. Thus if one
parallel path is blocked on a server, another one can run.

Use activities for modeling detailed sequencesA basic use of activities is to described a particular deteistic
sequence of execution steps of different lengths, andesiegjuests to servers. Each step is modeled by its own
activity. This provides a second level of detail, after nmak& model using average demands.

Use activities for modeling parallel service: As shown in Figuré_14, if a task makes two or more service rgigue
(to other tasks) in parallel, so that it waits for both of themctomplete before proceeding, this can modeled by
using activities:

o fork to parallel activities, one to make each request,
e each parallel activity makes a blocking call for the servicene of the other tasks, and waits for the return,

e join the parallel activities.
This is discussed im[3] on modeling parallel service.

Modeling Asynchronous RPC, and Pre-fetching: An asynchronous RPC is modeled by forking an activity to make
the RPC, and joining at the point where the result is pickedyphe main flow. Pre-fetches are modeled
similarly, as are “futures” operations (which do a speduéatomputation in parallel).

8 Service with a Second Phase

A wide variety of software services give a reply to the rederebefore they are entirely finished, in order to release
the requester from the synchronous call delay as soon aibfgsEhe remaining operations after the reply are done
under sole control of the server task, and they form the skpbase. This behaviour is shown in Figliré 15. A special
shorthand is used to represent this common case.

Webserver H TicketDB
T T

! 1
: ! display
| | [1]
! 1
|

QueryTDB

Display

phasel
[0.3]

'

phase2
[0.5]

First phase,
demand = 0.3:

Second phase
demand = 0.5

TicketDB

(a) Behaviour (b) LON with phases in TktD (c) LON with activities in TktDB (ac-
tivities shaded)

Figure 15: A second phase of service lets the client of theraation proceed
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Entries with phase one and phase two can be represented kactivities, one performed before the reply and
one after. Because they all have this simple structure thaybe defined directly for the entry, without an explicit
precedence graph. Each entry has a vector for each worklaaineter, with a value for each phase. Thus the
execution demand for the entry queryTDB above would be definea line beginning with code "s” for execution
demand:

s queryTDB 0.3 0.5 -1

The host demands are 0.3 for phase 1, 0.5 for phase 2. Notbérsgparator -1 is used in many places in the definition
language.

Second phases are common. An example is seen in a write igpetatthe Linux NFS file server; the write
operation returns to the requester once the file is bufferdidd server, and the actual write to disk is performed later,
under sole control of the server. Doing the writes in firstgghaould be safer, because the client would be told if the
write failed, and this is how the NFS protocol was originalgfined. Other NFS implementations allow second-phase
or delayed writes only if the server has a battery-powerdfkbto provide security of the data, in case of a power
failure.

Second phases improve performance; they give less del&gtalient, and they increase capacity because there
can be some parallel operation between the client and thersdthe amount of gain depends on circumstances (real
parallelism needs separate processors, and a saturatedamnot increase its capacity).

The extreme case of all execution being in second phase isdaokiacknowledged hand-over of data from the
clientto the server. Thusitis similar to an asynchronoussage, except that the sender waits for the acknowledgment.
One important advantage of this is that the sender cannotranethe receiver; the sender is throttled by the waiting
for acknowledgments.

Results for second phase at a single server, and at two thgereers: to come

If some of a task’s work can be put into the second phase, #tectn return more quickly to its clients. However
if the task is already saturated the clients have to wait fanyrother services anyway and the advantage is small or
even nil. The degree of improvement thus depends on the eledmaturation,and where the saturation is. Thble 1
shows how a group of users with a 5-sec thinking time are &fteawhen the server service time is split between phase
1 and phase 2 in different ratios (LQNS approximate resul$)ow utilizations, more phase 2 is uniformly better,
but as utilization increases, the best split moves towdrelsrtiddle.

nusers| Response time (sec) for different values of demand s = [phasiease 2]

s=[0,1.0]| [0.2,0.8] | [0.4,0.6] | [0.6,0.4] | [0.8,0.2] | [1.0,0]

1 0.166 0.310 0.464 0.629 0.807 0.999

4 1.125 0.726 0.827 0.996 1.269 1.6420

7 3.066 2.694 1.5087 1.7928 2.269 2.9256

10 4.8474 4.2741 3.8951 3.98149 4.4927 5.221

15 9.9096 9.4738 9.2281 9.2289 9.5048 10.037

20 14.9381 14.541 14.323 14.318 14.548 15.0120

Table 1: The impact of dividing a unit server demand betwdeasp 1 and phase 2

8.1 Modeling finite buffers:

A finite buffer space, which blocks its senders when it is,fodin be modeled by a multi-threaded buffer task with
second-phase interactions going into and coming out of tliieth The model is shown in Figutell6. Each buffer
space is modeled by‘thread” which immediately replies (releasing the sender) and teedsto the receiver (and
waits until the receiver replies, to acknowledge receipt).

8.2 Modeling pipelines, using a third phase:

In a software pipeline each task has three parts to its pso@gsnput, processing and output to the next stage. Becaus
LQN workloads are described by average values for eachitgciivmay be important to separate these three rather
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Figure 16: Modeling a finite buffer with blocking by a pool oftBreads. The buffer is full at the time of the second
store.

than lumping them together.

This is particularly clear in a pipeline with acknowledgezhd-overs. Part 1 takes the message and acknowledges
it to release the sending stage. Part 2 does the processrng3 fends the output message and may have to wait for
the acknowledgment. If the output message were averagethimPart 2 workload, then on average it would occur in
the middle, and this would give an error in the stage delayfattor of nearly 2.

In order to facilitate pipeline modeling with phases, adiphase has been made permissible, to model the output
activity.

9 Logical resources (critical sections, locks, buffers)

The task entity in layered modeling is used to model any nesowhatever. Buffers have been discussed above.
Consider a critical section shared by processes on the semoegsor, in which all the processes execute the same
code in the critical section (this is like a monitor); it ca@ modeled exactly as a task. the critical section code and
workload, including 1/0O operations and messaging, is dasea with the critical section task rather than the caller
process.

If the processes execute different operations in the atigiection, then the critical section “task” is an empty shel
with no execution of its own, and with an entry for each calléhis entry calls a sort of shadow task defined for each
process, which represents the critical section workloatiaif process. Only one of these shadow tasks can be active
at once, and a queue of requests forms before the criticibaetask”. Effectively the calling processes are split
into a component for the workload outside the critical segtand a component inside. If a caller is a multithreaded
processes, or asynchronous (infinite-threaded) procabgeshadow task for it has the same number of threads.

The same approach can be applied to locking a table. A full §ystem, with many separate locks, and read and
write locks, requires special treatment. The queuing pis@s are somewhat arcane, and there are too many locks to
represent each one separately. This is a subject of cugeedich.

Memory and buffer resources can be modeled similarly, withudtiple “task” (the same designation as a multi-
threaded task) to represent the resource, and with entraagtivate the workload for each user.

10 Limitations
This is not a complete list, but notes some limitations tteatehcome up:

e recursive calls are excluded (a task calling its own entriethe approach for dealing with recursive calls is to
aggregate the demand into the first entry. Possibly thisldimiaccommodated, but it requires an assumption
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that the same thread handles the recursive request (to @wadlock when threads are limited), which limits the
behaviour of an entry.

e replication of subsystems (without defining all the re@isaparately) is handled but only with restrictions; a
thesis is availablé [6].

e activity sequences which fork in one task and join in anotiaer be solved by the simulation solver (Igsim) but
the analytic solver Igns has been inadequately tested ésetbases, and may fail in various ways.

e external arrival flows may be specified into an entry, howeveystem with only external arrivals causes prob-
lems for the analytic solver. It is recommended to define smmipf traffic as tasks which make requests and
block; this has the advantage that it never overruns thesysio obtain a source with a given throughput define
a very large source population (size N) with a long thinkiimget Z between requests, and it will generate an
arrival rate of roughly N/Z per sec. If it deviates greathjistindicates that the system is heavily loaded.

e message loss is not modeled; current research may cure this.

e exceptions and timeouts are also not modeled, similar cathme

11 Reference material
See the web pages:

e hitp://ww. sce. carl et on. ca/ r ads|for material on the larger project (RADS is the Real-time And
Distributed Systems group at Carleton), and for softwarerdoad.

e Nttp://ww. sce. carleton.ca/rads/Ign/l gn- docunentati on

e http://wwv. sce. carl eton. cal/facul ty/ woodsi defor my bibliography material:
Particularly recommended are:

— Enhanced Modeling and Solution of Layered Queueing Nes\ilkthe most recent transactions paper
on all model features.

— |Performance Analysis of Distributed Server Systf&hfor an overview,

— [the database modeling paper at ICDCS97 [7], for a completeather complex case study,
— [the software bottleneck paper in/95 [5] for a discussion tfrsdion effects,

— [the parallel service paper at WOSPOB [3], regarding paisdievices

— Examples of activity notation are given in the document &ital Activity Notation in LQNS” by Franks
(1999).

12 Running the tools

LQNS has been compiled for Solaris, HP-UX and Linux, and f@and Windows NT. It has a comprehensive
manual page describing many options for different solvgodihms, for tracing solutions and for printing more or
less detail. The best reference on the many solver optic@ssg Franks’ PhD thesis|[4].

The LQNS input language is essentially documented by the XiMihe example files in the appendicie. More
informatino can be found in the User Manual.

Jigndefis a graphical and text-window-based editor whigtwss a simple diagram of the model. It requires Java
1.1.3 or higher, with the “swing components”.

There is a useful tool called SPEX which is included in therifigtion, for running experiments over sets of
parameters. SPEX is a Perl script. You have to edit the texaraion of the input model,and add specifications for
control, for extraction of results, and for reporting résuSets of runs can be done over any combination of parameter
variations, and results are automatically tabulated dtgxddn Matlab. SPEX is documented in the spex.txt.
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ftp://ftp.sce.carleton.ca/pub/cmw/bneck.ps
ftp://ftp.sce.carleton.ca/pub/cmw/overtaking.ps

13 Questions

e Throughput refuses to increase when | introduce more ressuSearch for a saturated resource; it may repre-
sent a modeling error. For instance, if one introduces msees) one must also introduce more processors for
them to run on. A simple expedient is to make any resourcewstiould not be a limit, infinite. This is also
solver-friendly, a infinite resources are easy.

e Convergencewhat if my LQNS solution does not convergéRe symptom is that the convergence value for
the iterations is greater than the set value, typically®. Sometimes, especially in heavily loaded systems,
the iterative solver will cycle and not converge. One curéchlis sometimes effective is to reduce the value
of the under-relaxation coefficient in the solver contrédlem a typical value of 0.9 or 0.7 to a low value, of
say 0.1. This is intended to force convergence by reduciagtidp size. If this does not succeed, then as long
as the convergence value is less than 0.1, the solution fbeadsome reasonable relationship to the correct
value. (The size of the convergence value is the largegivelehange from one iteration to the next, of any of
the variables in the model; it does not directly indicate $fme of errors, but if the solution is in fact cycling
around the correct solution then all relative errors ardabdy smaller than this). A method which is usually
not effective is to increase the number of iteration stefh& Basic recourse for greater accuracy is to simulate.

e Replication:how can | model a system with many repetitions of a subsysitln ? Provided the replications
are identical in every respect, and divide all their intéoas with the rest of the system equally, the replication
feature of LQNS can give efficient solutions. The full documtation of this feature is in the Master’s thesis of
Amy Pan. Briefly, any task can have a replication factor r,alihineans that multiple copies are created. If its
processor has the same r, then each copy has a separatesprotféascommunicates with other tasks with the
same r, it communicates with just one of them, and the intenagare assumed to form r subsystems. Messages
between tasks with different r must have values of fan-iraffl fanout (0) such that the product of source (r
times fanout) = destination (r times fan-in). These factasd o describe the replication of the message arcs.
Unfortunately replication does not work for models withigities, only with phases.

e Odd results for multiple serverst | run for a series of values of m for server multiplicity, lagnsee rising
throughput; then for m= infinity, the throughput drops a bidow come? The waiting time calculation for
a multiserver is an approximation, and errors of a few peraemto be expected. The infinite server queue
is solved exactly (no waiting). If the anomaly is worryingy 8 more exact multiserver algorithm by using
“pragma -Pmultiserver=conway”, but it will take longer.

e Non-blocking systemsn my model the servers are asynchronous. A server proceasbanessage, whether a
request or a reply, and then takes whatever message contes mexer blocks to wait for a reply. How to model
it? Such a server is modeled with infinite threads, allowing art@ thread for each uncompleted request it is
processing. This may be called virtual threads or data tlsresince the request context, if any , is managed by
user data.

e Solution Time:my LQNS solution takes a long time (a minute is long for a feskgal0 minutes is long for
any model) Possible reasons are: (1) poor convergence (see belgwli.may want to reduce the iterations
or simulate; (2) a huge number of classes, generated bydhaviot of separate source tasks (“reference tasks”
and lots of entries on worker tasks.... you could get fag®sults if the sources were combined into fewer tasks,
with random splits to generate the requests they make istedhvice layers.(3) do you have a multiserver (not
a reference task) with a large m (say, m¢, 20?)... or layerdiisenvers one above the other, with moderate m...
multiserver solutions are only moderately expensive bydiult algorithm, but the others cost more. You
might consider whether it could as easily be infinite (if,,.se/usage is well below the limit so the limit is not a
factor). In any of these cases, you might try to simulaterdimave been models that solved faster by simulation.

e Cycles: what do | do if my model has a synchronous messaging cyc@®RS will refuse to solve a model,
however it can be instructed to ignore the cycle checker thigpr agna - Pcycl es=al | ow. It then solves
the model with an implicit assumption that if deadlocks apsgible, they do not occur or are resolved. The
simulator (Igsim) will take a model with cycles at any timewever if a deadlock occurs as a result of a cycle,
the simulation stops without any diagnostic.
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e Delay: how can | get the result for delay from an input at one poing tesponse completion somewhere else in
the model?The cleanest approach is to introduce some special modeéals: first, at the start of the response,
introduce a pseudo-task R to capture the delay as its setimee It has zero demands (s = 0), has infinite
multiplicity (code i) runs on its own processor or an infingeocessor, has deterministic phases (f = 1) and
makes one synchronous call to the input point to start theorese. Second, create a forwarding chain through
the model along the path of the response, so that the replgased at the completion point; the reply goes back
to the pseudo-task R, and ends its blocking state.

e Simulation accuracyhow can | tell how accurate my simulation i#2s essential to get confidence intervals out
of the simulation. If you don’t know about these, you will leao consult a statistics text. Lgsim will calculate
confidence intervals for you, for all its results, if you ruitmwthe - A (automatic) or B (batched) run options.
These have the form -A,a,p,b or -B,n,b where b is a batch lteingthodel time units, which should be say 100
times longer than the longest service time in your model,raiscthe number batches (suggest 30, which is the
max allowed). For A, a is the accuracy target in 5 of mean \&lpés the confidence level.
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A Model File: reserve-templ.lgnx

<?xm version="1.0"?>
<!-- Invoked as: | gn2xm reserve-tenpl.lgn -->
<l-- Sat Cct 17 11:32:17 2009 -->

<l gn- nodel nane="reserve-tenpl" description="LQ\_nodel file"
xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNanespaceSchemalLocati on="/usr /| ocal /share/l gns/| gn. xsd" >
<sol ver - parans conment ="Layer ed_Queuei ng_Net wor k_f or _a_Web-based_Reservati on_Systent
conv_val ="0.0001" it_limt="500" print_int="1" underrelax_coeff="0.5"/>
<processor nane="UserP" scheduling="fcfs">
<task nanme="Users" schedul ing="ref" nultiplicity="100">
<entry name="users" type="PHLPH2" >
<entry-phase-activities>
<activity nanme="users_ph2" phase="2" host-demand- nean="56">
<synch-cal | dest="connect" calls-nean="1"/>
<synch-cal | dest="di sconnect" calls-nean="1"/>
<synch-cal|l dest="interact" calls-nean="6"/>
<lactivity>
</entry-phase-activities>
</entry>
</ task>
</ processor >
<processor nane="ReservP" schedul i ng="fcfs">
<task name="Reserv" scheduling="fcfs" multiplicity="5">
<entry nanme="connect" type="PHLPH2">
<entry-phase-activities>
<activity nane="connect_phl" phase="1" host-denmand- nean="0. 001" >
<synch-cal | dest="netware" calls-nean="1"/>
</activity>
</ entry-phase-activities>
</entry>
<entry nanme="di sconnect" type="PHLPH2" >
<entry-phase-activities>
<activity name="di sconnect _phl" phase="1" host - demand- mean="0. 0001" >
<synch-cal | dest="netware" calls-nean="1"/>
<synch-cal | dest="dbupdate" calls-nean="1"/>
<lactivity>
<activity nane="di sconnect _ph2" phase="2" host - denand- mean="0. 0007"/ >
</ entry-phase-activities>
</entry>
<entry name="interact" type="PHLPH2">
<entry-phase-activities>
<activity nane="interact_phl" phase="1" host-demand- nrean="0.0014">
<synch-cal | dest="netware" calls-nean="1"/>
<synch-cal | dest="dbupdate" calls-nean="1.15"/>
<synch-cal | dest="ccreq" calls-nmean="0.1"/>
</activity>
</ entry-phase-activities>
</entry>
</ task>
<task name="Netware" schedul i ng="fcfs">
<entry nanme="netware" type="PHLPH2">
<entry-phase-activities>
<activity nane="netware_phl" phase="1" host-denmand-nean="0.0012">
<synch-cal | dest="reservDi sk" calls-nean="1.5"/>
</activity>
</ entry-phase-activities>
</entry>
</ task>
</ processor >
<processor nane="DBP" schedul i ng="fcfs">
<task name="DB" schedul i ng="fcfs">
<entry name="dbupdate" type="PHLPH2" >
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<entry-phase-activities>

<activity nane="dbupdate_phl" phase="1" host-demand- nrean="0. 0085" >
<synch-cal | dest="dbDi sk" calls-nmean="2"/>

<lactivity>
</entry-phase-activities>
</entry>
</ task>
</ processor >
<processor nane="CCReqP" scheduling="fcfs">
<task name="CCReq" schedul ing="fcfs">
<entry name="ccreq" type="PHLPH2" >
<entry-phase-activities>

<activity nane="ccreq_phl" phase="1" host-

</entry-phase-activities>
</entry>
</ task>
</ processor >
<processor nane="ReservDi skP" schedul i ng="fcfs">
<task name="ReservDi sk" schedul i ng="fcfs">
<entry nanme="reservDi sk" type="PHLPH2" >
<entry-phase-activities>
<activity name="reservDi sk_phl" phase="1"
</entry-phase-activities>
</entry>
</ task>
</ processor >
<processor nane="DBDi skP" schedul i ng="fcfs">
<task name="DBDi sk" schedul ing="fcfs">
<entry nanme="dbDi sk" type="PHLPH2" >
<entry-phase-activities>

denmand- nrean="3"/>

host - demand- nean="0. 011"/ >

<activity nane="dbDi sk_phl" phase="1" host-denmand- nean="0.011"/>

</entry-phase-activities>
</entry>
</task>
</ processor >

</l gn- nodel >
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B Model File: activity-templ.lgnx

<?xm version="1.0"?>
<!-- Invoked as: |l gn2xm activity-tenpl.lgn -->
<l-- Sat Cct 17 22:53:15 2009 -->

<l gn-nodel nane="activity-tenpl" description="LQ\_Mdel file."
xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNanespaceSchemalLocati on="/usr /| ocal / share/l gns/| gn. xsd" >
<sol ver - parans conmment ="Activity_tenplate"
conv_val ="1e-06" it_|limt="50" print_int="5" underrel ax_coeff="0.9"/>
<processor nane="UserP" schedul ing="fcfs">
<task name="User" scheduling="ref" nultiplicity="50" think-tinme="50">
<entry name="user" type="PHLIPH2">
<entry-phase-activities>
<activity nane="user _phl" phase="1" host-denmand- nean="1" cal |l -order="DETERM NI STI C' >
<synch-cal | dest="server" calls-nmean="1"/>
<lactivity>
</entry-phase-activities>
</entry>
</ task>
</ processor >
<processor nane="ServerP" schedul i ng="ps">
<task name="Server" scheduling="fcfs" multiplicity="4">
<entry name="server" type="NONE'/>
<task-activities>
<activity nane="serverStart" bound-to-entry="server
<activity nane="seqlnit" host-denand-mean="0.3"/>
<activity nane="parlnit" host-denmand-mean="0.1"/>
<activity nane="parA" host-demand- nean="0. 05" >
<synch-cal | dest="disklread" calls-nean="1.3"/>
</activity>
<activity nane="parB" host-demand- nean="0.08">
<synch-cal | dest="disk2read" calls-nean="2.1"/>
</activity>
<activity nane="par Reply" host-denmand- nean="0. 01"/ >
<activity nane="| oopOperation" host-demand-nmean="0.1">
<synch-cal | dest="disklread" calls-nean="0.7"/>
</activity>
<activity nane="| oop2" host-denmand- mean="0"/>
<activity nane="bi gLoopDriver" host-demand- nean="0" cal | - order="DETERM NI STI C' >
<synch-cal | dest="bi gLoop" calls-nean="1"/>
</activity>
<activity nane="seqReply" host-denand- mean="0.005"/>
<activity nane="| oopEnd" host - denmand- nrean="0"/>
<pr ecedence>
<pr‘ e>
<activity nanme="serverStart"/>
</ pre>
<post - OR>
<activity nane="parlnit" prob="0.6"/>
<activity nanme="seqlnit" prob="0.4"/>
</ post - OR>
</ precedence>
<pr ecedence>
<pr‘ e>
<activity name="parlnit"/>
</ pre>
<post - AND>
<activity name="parA'/>
<activity name="parB'/>
</ post - AND>
</ precedence>
<pr ecedence>
<pr e- AND>

host - demand- nean="0"/ >
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<activity name="parA'/>
<activity name="parB'/>
</ pr e- AND>
<post >
<activity nanme="parReply"/>
</ post >
</ precedence>
<pr ecedence>
<pr‘ e>
<activity nane="seqlnit"/>
</ pre>
<post - LOOP end="1| oopEnd" >
<activity nanme="| oopOperation" count="3.5"/>
</ post - LOOP>
</ precedence>
<pr ecedence>
<pre>
<activity nanme="| oopOperation"/>
</ pre>
<post >
<activity nane="|oop2"/>
</ post >
</ precedence>
<pr ecedence>
<pre>
<activity nane="| oopEnd"/ >
</ pre>
<post - LOOP end="seqRepl y">
<activity nanme="bi gLoopDriver" count="1.2"/>
</ post - LOOP>
</ precedence>
<reply-entry name="server">
<reply-activity name="parReply"/>
<reply-activity name="seqRepl y"/>
</reply-entry>
</task-activities>
</ task>
<t ask name="Bi gLoop" schedul i ng="fcfs">
<entry name="bi gLoop" type="NONE"/>
<task-activities>
<activity nanme="first" bound-to-entry="bi gLoop" host-denmand-nean="0.01"/>
<activity nane="second" host-demand- nean="0">
<synch-cal | dest="diskiwite" calls-nean="1"/>
</activity>
<activity nanme="third" host-denmand- nean="0">
<synch-cal | dest="disk2wite" calls-nean="1"/>
</activity>
<activity nane="fourth" host-demand- nean="0.13"/>
<pr ecedence>
<pre>
<activity nane="first"/>
</ pre>
<post - AND>
<activity nanme="second"/>
<activity nane="third"/>
</ post - AND>
</ precedence>
<pr ecedence>
<pr e- AND>
<activity nanme="second"/>
<activity nane="third"/>
</ pr e- AND>
<post >
<activity name="fourth"/>
</ post >
</ precedence>
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<repl y-entry nane="bi gLoop">
<reply-activity name="fourth"/>
</reply-entry>
</task-activities>
</ task>
</ processor >
<processor nane="Di sk1P" schedul i ng="fcfs">
<task nanme="Di sk1" schedul i ng="fcfs">
<entry name="di sklread" type="PHLPH2">
<entry-phase-activities>
<activity nane="di sklread_phl" phase="1" host-demand- mrean="0. 04"/ >
</entry-phase-activities>
</entry>
<entry name="di sklwite" type="PHLPH2">
<entry-phase-activities>
<activity nane="di sklwrite_phl" phase="1" host - denand- mean="0. 04"/>
</ entry-phase-activities>
</entry>
</ task>
</ processor >
<processor nane="Di sk2P" schedul i ng="fcfs">
<t ask nanme="Di sk2" schedul i ng="fcfs">
<entry name="di sk2read" type="PHLPH2">
<entry-phase-activities>
<activity nane="di sk2read_phl" phase="1" host-demand- nrean="0. 03"/ >
</entry-phase-activities>
</entry>
<entry name="di sk2wite" type="PHLPH2" >
<entry-phase-activities>
<activity nane="di sk2write_phl" phase="1" host - denand- mean="0. 03"/ >
</ entry-phase-activities>
</entry>
</ task>
</ processor >
</l gn- nodel >
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