
Layered Queueing Network Solver and Simulator User Manual

Greg Franks Peter Maly Murray Woodside Dorina C. Petriu Alex Hubbard
Martin Mroz

Department of Systems and Computer Engineering
Carleton University

Ottawa ON K1S 5B6
{cmw,greg}@sce.carleton.ca

January 31, 2023

Revision: 12086

Contents

1 The Layered Queueing Network Model 1

1.1 Model Elements . 3

1.1.1 Processors . 3

1.1.2 Groups . 4

1.1.3 Tasks . 4

1.1.4 Entries . 5

1.1.5 Activities . 7

1.1.6 Precedence . 8

1.1.7 Requests . 9

1.2 Multiplicity and Replication . 9

1.3 A Brief History . 10

2 Results 11

2.1 Header . 11

2.1.1 Analytic Solver (lqns) . 13

2.1.2 Simulator (lqsim) . 13

2.2 Type 1 Throughput Bounds . 13

2.3 Mean Delay for a Rendezvous . 15

2.4 Variance of Delay for a Rendezvous . 15

2.5 Mean Delay for a Send-No-Reply Request . 15

2.6 Variance of Delay for a Send-No-Reply Request . 15

2.7 Arrival Loss Probabilities . 15

2.8 Mean Delay for a Join . 16

2.9 Service Times . 16

2.10 Service Time Variance . 17

2.11 Probability Maximum Service Time Exceeded . 17

2.12 Service Time Distributions for Entries and Activities . 18

2.13 Semaphore Holding Times . 18

2.14 Throughputs and Utilizations per Phase . 18

2.15 Arrival Rates and Waiting Times . 18

2.16 Utilization and Waiting per Phase for Processor . 18

3 XML Grammar 21

3.1 Basic XML File Structure . 21

3.2 Schema Elements . 21

3.2.1 LqnModelType . 24

3.2.2 ProcessorType . 26

3.2.3 GroupType . 27

3.2.4 TaskType . 27

3.2.5 FanInType and FanOutType . 27

3.2.6 EntryType . 27

1

3.2.7 ActivityGraphBase . 30

3.2.8 TaskActivityGraph . 30

3.2.9 ActivityDefBase . 32

3.2.10 MakingCallType . 32

3.2.11 PrecedenceType . 33

3.2.12 OutputResultType . 35

3.2.13 OutputResultJoinDelayType . 35

3.2.14 OutputDistributionType . 35

3.2.15 HistogramBinType . 35

3.3 Schema Constraints . 35

4 LQX Users Guide 39

4.1 Introduction to LQX . 39

4.1.1 Input File Format . 39

4.1.2 Program Input/Output and External Control . 43

4.1.3 Writing Programs in LQX . 46

4.1.4 Actual Example of an LQX Model Program . 48

4.2 API Documentation . 49

4.2.1 Built-in Class: Array . 49

4.2.2 Built-in Global Methods and Constants . 50

4.3 API Documentation for the LQN Bindings . 52

4.3.1 LQN Class: Document . 52

4.3.2 LQN Class: Processor . 53

4.3.3 LQN Class: Group . 53

4.3.4 LQN Class: Task . 53

4.3.5 LQN Class: Entry . 54

4.3.6 LQN Class: Phase . 54

4.3.7 LQN Class: Activity . 55

4.3.8 LQN Class: Call . 55

4.3.9 Pragmas . 55

4.3.10 Confidence Intervals . 55

5 LQN Input File Format 56

5.1 Lexical Conventions . 58

5.1.1 White Space . 58

5.1.2 Comments . 58

5.1.3 Identifiers . 58

5.1.4 Variables . 58

5.2 LQN Model Specification . 58

5.2.1 Pragmas . 58

5.2.2 General Information . 59

5.2.3 Processor Information . 59

5.2.4 Group Information . 59

5.2.5 Task Information . 60

5.2.6 Entry Information . 60

5.2.7 Activity Information . 61

5.3 SPEX: Software Performance Experiment Driver . 63

5.3.1 Variables . 63

5.3.2 Report Information . 65

5.3.3 Convergence Information . 66

5.3.4 Differeneces to SPEX 1 . 66

5.3.5 SPEX and LQX . 67

2

6 Invoking the Analytic Solver “lqns” 70

6.1 Command Line Options . 70

6.2 Pragmas . 75

6.3 Stopping Criteria . 78

6.4 Model Limits . 79

6.5 Diagnostics . 79

7 Invoking the Simulator “lqsim” 80

7.1 Command Line Options . 80

7.2 Return Status . 82

7.3 Pragmas . 83

7.4 Stopping Criteria . 84

7.5 Model Limits . 84

8 Error Messages 86

8.1 Fatal Error Messages . 86

8.2 Error Messages . 86

8.3 Advisory Messages . 92

8.4 Warning Messages . 93

8.5 Input File Parser Error Messages . 95

8.6 LQX Error messages . 96

9 Known Defects 97

9.1 MOL Multiserver Approximation Failure . 97

9.2 Chain construction for models with multi- and infinite-servers . 97

9.3 No algorithm for phased multiservers OPEN class. 97

9.4 Overtaking probabilities are calculated using CV=1 . 97

9.5 Need to implement queue lengths for open classes. 97

A Traditional Grammar 99

A.1 Input File Grammar . 99

A.1.1 SPEX Parameters . 99

A.1.2 General Information . 99

A.1.3 Processor Information . 100

A.1.4 Group Information . 100

A.1.5 Task Information . 100

A.1.6 Entry Information . 101

A.1.7 Activity Information . 102

A.1.8 SPEX Report Information . 103

A.1.9 SPEX Convergence Information . 103

A.1.10 Expressions . 103

A.1.11 Identifiers . 104

A.1.12 Variables . 104

A.2 Output File Grammar . 104

A.2.1 General Information . 104

A.2.2 Throughput Bounds . 104

A.2.3 Waiting Times . 104

A.2.4 Waiting Time Variance . 105

A.2.5 Send-No-Reply Waiting Time . 105

A.2.6 Send-No-Reply Wait Variance . 105

A.2.7 Arrival Loss Probabilities . 105

A.2.8 Join Delays . 105

A.2.9 Service Time . 106

3

A.2.10 Service Time Variance . 106

A.2.11 Probability Service Time Exceeded . 106

A.2.12 Service Time Distribution . 106

A.2.13 Throughputs and Utilizations . 106

A.2.14 Arrival Rates and Waiting Times . 107

A.2.15 Utilization and Waiting per Phase for Processor . 107

4

List of Figures

1.1 Notation . 2

1.2 LQN Meta Model . 3

1.3 Entry Specification . 6

1.4 Phases for an Entry. 6

1.5 Slices. The slice time is shown using the label ζ. 7

1.6 Request Types. 9

1.7 Multiple copies of servers. 9

1.8 Replicated Model . 10

2.1 Results. 12

2.2 Analytic Solver Status Output. 14

2.3 Simulator Status Output. 15

2.4 Service Time Components for Join. 16

2.5 Service Time Components for Entry ‘SCE3’. 17

2.6 Histogram output . 19

2.7 Time components of a semaphore task. 20

3.1 LQN Schema . 23

3.2 Top-level LQN Schema. 24

3.3 Processor Schema. 26

3.4 TaskType . 27

3.5 Schema for type EntryType. 29

3.6 Schema diagram for the type ActivityGraphBase . 31

3.7 Schema diagram for the group MakingCallType. 33

3.8 Schema diagram for the type PrecedenceType. 34

3.9 Schema diagram for type OutputResultType . 35

3.10 Schema diagram for type OutputResultJoinDelayType . 36

3.11 Schema for type OutputDistributionType. 37

5.1 SRVN input schema . 56

5.2 x . 66

5

List of Tables

1.1 Activity graph notation. 8

3.1 Attributes for elements of type LqnModelType from Figure 3.2. 24

3.2 Attributes of element solver-params from Figure 3.2. 25

3.3 Attributes of element result-general from Figure 3.2. 25

3.4 Attributes of element pragma from Figure 3.2. 25

3.5 Attributes for elements of type ProcessorType. 26

3.6 Attributes for elements of type GroupType . 27

3.7 Attributes for elements of type TaskType . 28

3.8 Attributes for elements of type FanInType. 28

3.9 Attributes for elements of type FanOutType. 28

3.10 Attributes for elements of type EntryType. 30

3.11 Attributes of element reply-entry from Figure 3.6. 30

3.12 Attributes of element reply-activity from Figure 3.6. 31

3.13 Attributes for elements of type ActivityDefBase. 32

3.14 Attributes for elements of type MakingCallType. 32

3.15 Attributes for elements of type AndJoinListType. 33

3.16 Attributes for elements of type ActivityOrType. 34

3.17 Attributes for elements of type ActivityLoopListType. 34

3.18 Attributes for elements of type ActivityLoopType. 34

3.19 Attributes for elements of type ResultContentType. 36

3.20 Attributes for elements of type OutputResultJoinDelayType. 36

3.21 Attributes for elements of type OutputDistributionType. 37

3.22 Attributes for elements of type HistogramBinType. 37

5.1 Processor Scheduling Disciplines (see §1.1.1). 59

5.2 Multiplicity and Replication (see §1.2). 60

5.3 Task Scheduling Disciplines (see §1.1.3). 61

5.4 Optional parameters for tasks (see §1.1.3). 61

5.5 Entry Specifiers . 62

5.6 Activity Specifiers . 63

5.7 Activity Lists . 63

5.8 Spex Control Variables . 64

5.9 Observation Key location . 65

5.10 Obsolete SPEX Control Variables. 67

6.1 LQNS Model Limits. 79

7.1 Lqsim Model Limits . 85

6

Abstract

The Layered Queuing Network (LQN) model is a canonical form for extended queueing networks with a lay-

ered structure. The layered structure arises from servers at one level making requests to servers at lower levels as a

consequence of a request from a higher level. LQN was developed for modeling software systems, but it applies to

any extended queueing network with multiple resource possession, in which multiple resources are held in a nested

fashion.

This document describes the elements found in Layered Queueing Network Model, the results produced when a

LQN model is solved, and the input and output file formats. It also describes the method used to invoke the analytic

and simulation solvers, and the possible errors that can arise when solving a model. The reader is referred to “Tutorial

Introduction to Layered Modeling of Software Performance” [21] for constructing models.

Chapter 1

The Layered Queueing Network Model

Figure 1.1 illustrates the LQN notation with an example of an on-line e-commerce system. In an LQN, software

resources are all called “tasks”, have queues and provide classes of service which are called “entries”. The demand

for each class of service can be specified through “phases”, or for more complex interactions, using “activities”. In

Figure 1.1, a task is shown as a parallelogram, containing parallelograms for its entries and rectangles for activities.

Processor resources are shown as circles, attached to the tasks that use them. Stacked icons represent tasks or pro-

cessors with multiplicity, making it a multiserver. A multiserver may represent a multi-threaded task, a collection of

identical users, or a symmetric multiprocessor with a common scheduler. Multiplicity is shown on the diagram with a

label in braces. For example there are five copies of the task ‘Server’ in Figure 1.1.

Entries and activities have directed arcs to other entries at lower layers to represent service requests (or messages)1.

A request from an entry or an activity to an entry may return a reply to the requester (a synchronous request, or

rendezvous) indicated in Figure 1.1 by solid arrows with closed arrowheads. For example, task Administrator makes a

request to task BackorderMgr who then makes a request to task InventoryMgr. While task InventoryMgr is servicing

the request, tasks BackorderMgr and Administrator are blocked. A request may be forwarded to another entry for later

reply, such as from InventoryMgr to CustAccMgr. Finally a request may not return any reply at all (an asynchronous

request or send-no-reply, shown as an arrow with an open arrow head, for example, the request from task ShoppingCart

to CustAccMgr.

The first way that the demand at entries can be specified is through phases. The parameters of an entry are the

mean number of requests for lower entries (shown as labels in parenthesis on the request arcs), and the mean total host

demand for the entry (in units of time, shown as a label on the entry in brackets). An entry may continue to be busy

after it sends a reply, in an asynchronous “second phase” of service [7] so each parameter is an array of values for the

first and second phase. Second phases are a common performance optimization, for example for transaction cleanup

and logging, or delayed write operations.

The second way that demand can be specified is through activities. Activities are the lowest level of granularity in

a performance model and are linked together in a directed graph to indicate precedence. When a request arrives at an

entry, it triggers the first activity of the activity graph. Subsequent activities may follow sequentially, or may fork into

multiple paths which later join. The fork may take the form of an ‘AND’ which means that all the activities on the

branch after the fork can run in parallel, or in the form of an ‘OR’, which chooses one of the branches with a specified

probability. In Figure 1.1, a request that is received by entry “SCE3” of task “ShoppingCart” is processed using an

activity called “SCE3A95” that represents the main thread of control, then the main thread is OR-Forked into two

branches, one of which is later AND-forked into three threads. The three threads, starting with activities ‘AFBA109’,

‘AFBA130’ and ‘AFBA133’ respectively, run in parallel. The first thread replies to the entry through activity ‘OJA110’

then ends. The remaining two threads join into one thread at activity ‘AJA131’. When both ‘OJA110’ and ‘AJA131’

terminate, the task can accept a new request.

The holding time for one class of service is the entry service time, which is not a constant parameter but is

determined by its lower servers. Thus the essence of layered queuing is a form of simultaneous resource possession. In

software systems delays and congestion are heavily influenced by synchronous interactions such as remote procedure

1requests may jump over layers, such as the request from the Administrator task to the InventoryMgr task.

1

(Admin|Cust)Proc

BookstoreProc

DatabaseProc

Administrator

ARE
[1e+05]

(0.5)

Customer {5}

CRE
[3e+03]

AdminProc {inf} CustProc {inf}

BackorderMgr

BME2
[3e−06]

(50)

Server {5}

SE1
[4e−06]

(1)

SE3
[6e−06]

(1)

(1)

SE6
[8e−06]

(1)

ShoppingCart {inf}

SCE3

SCE3A95
[2e−06]

(1D)

OFBA97
[1]

0.05 0.95

AFBA109
[1]

(1D)

AFBA112
[4e−06]

AFBA130
[1]

AFBA133
[1]

OFBA146
[1]

OJA110
[2e−06]

InventoryMgr

IME7
[3e−06]

IME6
[5]

(5)

IME1
[2]

IME8
[2]

(1)

(1.5)

CustAccMgr

CAME5
[3]

CAME2
[1]

Catalogue {inf}

CE1
[10]

BookstoreProc

Database

DE1
[20]

CustAccDatabase {3}

CADE6
[150]

CADE4
[100]

CADE5
[191]

DatabaseProc

Forwarded request
Asynchronous request
Synchronous request

(0.915)
(0.0844)

(0.000422)(0.5)

(1)(1)

(2.5)
(500)

Layer 5

Layer 6

Layer 2

Layer 3

Layer 4

Layer 1

+

AJA131
[2e−06]

(1D)

+

&

&

&

Figure 1.1: Notation

2

calls (RPCs) or rendezvous, and the LQN model captures these delays by incorporating the lower layer queueing and

service into the service time of the upper layer server. This “active server” feature [20] is the key difference between

layered and ordinary queueing networks.

1.1 Model Elements

Figure 1.2 shows the meta-model used to describe Layered Queueing Networks. This model is unique in that it is

more closely aligned with the architecture of a software system that it is with a conventional queueing network model

such as Performance Model Interchange Format (PMIF) [17, 19]. The latter consists of stations with queues and visits,

whereas a LQN has processors, tasks and requests.

A Layered Queueing Network is a directed graph. Nodes in the graph consist of tasks, processors, entries, activi-

ties, and precedence. Arcs in the graph consist of requests from one node to another. The model objects are described

below.

next

1

0..*0..*

10..1

0..1

0..1

1..*
next

src

calls

0..1

1..*

1..*

«use»

1..*
{xor}

1

invokes

0..*0..*

src dst

1..*

1

forwards

0..*

0..*0..*

1..*

1..*
next

connects
Post

PrecedenceActivityEntry

OrJoin OrFork

Loop

AndFork

Pre

Task

Processor

LayeredQueueing

Network

Request

RendezvousSendNoReplyForward

FanIn FanOut

Reference

Task

Semaphore

Task
Group

AndJoin

Figure 1.2: LQN Meta Model

1.1.1 Processors

Processors are used by the activities within a performance model to consume time. They are pure servers in that they

only accept requests from other servers and clients. They can be actual processors in the system, or may simply be

place holders for tasks representing customers and other logical resources.

Each processor has a single queue for requests. Requests may be scheduled using the following queueing disci-

plines:

FIFO First-in, first out (first-come, first-served). Tasks are served in the order in which they arrive.

3

PRI Priority, preemptive resume. Tasks with priorities higher than the task currently running on the processor will

preempt the running task. Priorities range from zero to positive infinity, with a priority of zero being the highest.

The default priority for all tasks is zero.

HOL Head-of-line priority. Tasks with higher priorities will be served by the processor first. Tasks in the queue will

not preempt a task running on the processor even though the running task may have a lower priority.

PS Processor sharing. The processor runs all tasks “simultaneously”. The rate of service by the processor is inversely

proportional to the number of executing tasks. For lqsim, processor sharing is implemented as round-robin – a

quantum must be specified.

INF Infinite (delay).

RAND Random scheduling. The processor selects a task at random.

CFS Completely fair scheduling [9]. Tasks are scheduled within groups using round-robin scheduling and groups are

scheduled according to their share. A quantum must be specified. This scheduling discipline is implemented on

the simulator only at present.

Each processor can have multiple cores, all of which are served by the common queue (see §1.2). The processor

multiplicity must be a integer greater than zero or the special constant @infinity. If the multiplicity is set to

@infinity, the processor is coerced to a delay server.

1.1.2 Groups

Groups[9] are used to divide up a processor’s execution time up into shares. The tasks within a group divide the share

up among themselves evenly. Groups can only be created on processors running the scheduling discipline completely

fair scheduling,. .

Shares may either be guaranteed or capped. Guarantee shares act as a floor for the share that a group receives. If

surplus CPU time is available (i.e., the processor is not fully utilized), tasks in a guaranteed group can exceed their

share. Cap shares act as a hard ceiling. Tasks within these groups will never receive more than their share of CPU

time.

Note: Completely fair scheduling is a form of priority scheduling. With layered models, calls made by tasks within

groups to lower level servers can cause priority inversion. Cap scheduling tends to behave better than guaranteed

scheduling for these cases.

1.1.3 Tasks

Tasks are used in layered queueing networks to represent resources. Resources include, but are not limited to: actual

tasks (or processes) in a computer system, customers, buffers, and hardware devices. In essence, whenever some entity

requires some sort of service, requests between tasks involved.

A task has a queue for requests and runs on a processor. Items are served from the queue in a first-come, first-

served manner. Different classes of service are specified using entries (c.f. §1.1.4). Tasks may also have internal

concurrency, specified using activities (c.f. §1.1.5).

Requests can be served using the following scheduling methods:

FIFO First-in, first out (first-come, first-served). Requests are served in the order in which they arrive. This schedul-

ing discipline is the default for tasks.

PRI Priority, preemptive resume. Requests arriving at entries with priorities higher than entry that task is currently

processing will preempt the execution of the current entry. Priorities range from zero to positive infinity, with a

priority of zero being the highest. The default priority for all entries is zero.

INF Infinite (delay).

4

HOL Head-of-line priority. Requests arriving at entries with higher priorities will be served by the task first. Requests

in the queue will not preempt the processing of the current entry by the task.

Each task can have multiple homogenous threads, all of which are served by the common queue (see §1.2). The

task multiplicity must be a integer greater than zero or the special constant @infinity. If the multiplicity is set to

@infinity, the task is coerced to a delay server.

The subclasses of task are:

Reference Task: Reference tasks are used to represent customers in the layered queueing network. They are like

normal tasks in that they have entries and can make requests. However, they can never receive requests and

are always found at the top of a call graph. They typically generate traffic in the underlying closed queueing

model by making rendezvous requests to lower-level servers. Reference tasks can also generate traffic in the

underlying open queueing model by making send-no-reply requests instead of rendezvous requests. However,

open class customers are more typically represented using open arrivals which is simply encoded as a parameter

to an entry.

Bursty reference tasks are a special case of reference tasks where the service time for the slices are random

variables with a Pareto distribution (c.f. §1.1.5).

Semaphore Task: Semaphore tasks are used to model passive resources such as buffers. They always have two entries

which are used to signal and wait the semaphore. The wait entry must be called using a synchronous request

whereas the signal entry can be called using any type of request. Once a request is accepted by the wait entry,

no further requests will be accepted until a request is processed by the signal entry. The signal and wait entries

do not have to called from a common task. However, the two entries must share a common call graph, and the

call graph must be deterministic. The entries themselves can be defined using phases or activies and can make

requests to other tasks. Counting semaphores can be modeled using a multiserver.

Synch Task: Synchronization tasks are used... Cannot be a multiserver.

1.1.4 Entries

Entries service requests and are used to differentiate the service provided by a task. An entry can accept either

synchronous, or asynchronous requests, but not both. Synchronous requests are part of the closed queueing model

whereas asynchronous requests are part of the open model. Message types are described in Section 1.1.7 below.

Entries also generate the replies for synchronous requests. Typically, a reply to a message is returned to the

client who originally sent the message. However, entries may also forward the reply. The next entry which accepts

the forwarded reply may forward the message in turn, or may reply back to the originating client. For example, in

Figure 1.1, entry ‘IME8’ on task ‘IventoryMgr’ forwards the request from entry ‘BME2’ on task ‘BackorderMgr’ to

entry ‘CAME5’ on task ‘CustAccMgr’. The reply from ‘CAME2’ will be sent directly back to ‘BME2’.

The parameters for an entry can be specified using either phases or activities2. The activity method is typically

used when a task has complex internal behaviour such as forks and joins, or if its behaviour is specified as an activity

graph such as those used by Smith and Williams [18]. The phase method is simply a short hand notation for specifying

a sequence of one to three activities, with the reply being generated by the first activity in the sequence. Figure 1.3

shows both methods for specifying a two-phase client calling a two-phase server.

Regardless of the specification method used for an entry, its behaviour as a server to its clients is by phase, shown

in Figure 1.4. Phases consume time on processors and make requests to entries. Phase one is a service phase and

is similar to the service given by a station in a queueing network. Phase one ends after the server sends a reply.

Subsequent phases are autonomous phases which are launched by phase one. These phases operate in parallel with

the clients which initiated them. The simulator and analytic solver limit the number of phases to three.

2The meta-model in Figure 1.2 only shows activities, phases are a notational short-hand.

5

 s e1 1 2 −1

 y e1 e1 1 2

 s e2 1 2 −1

e1
[1,2]

(1,2)

t2

e2
[1,2]

t1

(a) Phases

 A e1 a1

 A e2 a1

A t1

 s a1 1

 s a2 2

 y a1 e2 1

 y a2 e2 1

:

 a1 −> a2

−1

A t2

 s a1 1

 s a2 2

:

 a1[e2] −> a2

−1

e1

a1
[1]

a2
[2]

t1

e2

a1
[1]

a2
[2]

t2

(2)(1)

(b) Activities

Figure 1.3: Entry Specification

Phase 1

Phase 2

Phase 3

server:Taskclient:Task

sd Phases

«reply»

entry()

Figure 1.4: Phases for an Entry.

6

1.1.5 Activities

Activities are the lowest-level of specification in the performance model. They are connected together using “Prece-

dence” (c.f. §1.1.6) to form a directed graph to represent more than just sequential execution scenarios.

Activities consume time on processors. The service time is defined by a mean and variance, the latter through coef-

ficient of variation squared 3. The service time between requests to lower level servers is assumed to be exponentially

distributed (with the exception of bursty reference tasks) so the total service time is the sum of a random number of

exponentially distributed random variables.

Activities also make requests to entries on other tasks. The distribution of requests to lower level servers is set by

the call order for the activity which is either stochastic or deterministic. If the call order is deterministic, the activity

makes the exact number of requests specified to the lower level servers. The number of requests is integral; the order

of requests to different entries is not defined. If the call order is stochastic, the activity makes a random number of

requests to the lower level servers. The mean number of requests is specified by the value specified. Requests are

assumed to be geometrically distributed.

For entries which accept rendezvous requests, replies must be generated. If the entry is specified using phases, the

reply is implicit after phase one. However, if the entry is specified using activities, one or more of the activities must

explicitly generate the reply. Exactly one reply must be generated for each request.

Slices

Activities consume time by making requests to the processor associated with the task. The service time demand

specified for an activity is divided into slices between requests to other entries, shown in the UML Sequence Diagram

in Figure 1.5. The mean number of slices is always 1 + Y where Y is total total number of requests made by the

activity.

Slice

server:Entryclient:Activity server:Processor

Slicessd

«reply»

«send»

{ζ}

{ζ}

«compute»

«compute»

loop

[y]

Figure 1.5: Slices. The slice time is shown using the label ζ.

By default, the demand of a slice is assumed to be exponentially distributed [20] but a variance may be specified

through the coefficient of variation squared (cv2 = σ2/s2) parameter for the entry or activity. The method used to

solve the model depends on the solver being used:

Analytic Solver: All servers with cv2 6= 1 use the HVFCFS MVA approximation from [13].

Simulator: The simulator uses the following distributions for generating random variates for slice times provided that

the task is not a bursty reference task.

cv2 = 0: deterministic.

3The squared coefficient of variation is variance divided by the square of the mean.

7

0 < cv2 < 1: gamma.

cv2 = 1: exponential.

cv2 > 1: bizarro...

If the task is a bursty reference task, then the simulator generates random variates for slice times according to

the Pareto distribution. The scale xm > 0 and shape k > 0 parameters for the distribution are derived from the

service time s and coefficient of variation squared cv2 parameters for the corresponding activity (or phase).

k =

√

1

cv2
+ 1 + 1

xm = s× (k − 1)

k

On-off behaviour can simulated by using two or more phases at the client, where on phase corresponds to the

on period and makes requests to other servers, while the other phase corresponds to the off period.

1.1.6 Precedence

Precedence is used to connect activities within a task to from an activity graph. Referring to Figure 1.2, precedence is

subclassed into ‘Pre’ (or ‘join’) and ‘Post’ (or ‘fork’). To connect one activity to another, the source activity connects

to a pre-precedence (or a join-list). The pre-precedence then connects to a post-precedence (or a fork-list) which, in

turn, connects to the destination activity. Table 1.1 summarizes the precedence types.

Name Icon Description

Sequence Transfer of control from an activity to a join-list.

And-Join ❥

.............................❘
&

.............................✠ A Synchronization point for concurrent activities.

Quorum-Join ❥

.............................❘
n

.............................✠ A Synchronization point for concurrent activities where only n
branches must finish.

Or-Join ❥

.............................❘
.............................✠

+

Sequence ❄ Transfer of control from fork-list to activity

And-Fork✠
.............................❘

❥& Start of concurrent execution. There can be any number of

forked paths.

Or-Fork
❥+

p 1 − p
.............................❘

.............................✠

A branching point where one of the paths is selected with prob-

ability p. There can be any number of branches.

Loop
❥

❄��✠ ❅❅❘
n1

n2

*
Repeat the activity an average of n times.

Table 1.1: Activity graph notation.

The semantics of an activity graph are as follows. For AND-forks, AND-joins and QUORUM-joins, each branch

of a join must originate from a common fork, and each branch of the join must have a matching branch from the fork.

Branches from AND-forks need not necessarily join, either explictily by a “dangling” thread not participating in a join,

8

or implicitly through a quorum join, where only a subset of the branches must join while ignoring the rest. However,

all threads started by a fork must terminate before the task will accept a new message (i.e., there is an implied join

collecting all threads at the end of a task’s cycle). Branches to an AND-join do not necessarily have to originate from

a fork – for this case each branch must originate from a unique entry. This case is used to synchronize two or more

clients at the server.

For OR-forks, the sum of the probabilities of the branches must sum to one – there is no “default” operation. AND-

forks may join at OR-joins. The threads from the AND-fork implicitly join when the task cycle completes. OR-joins

may be called directly from entries. This case is analogous to running common code for different requests to a task.

LOOPs consist of one or more branches, each of which is run a random number of times with the specified mean,

followed by an optional deterministic branch exit which is followed after all the looping has completed.

Replies can only occur from activities in pre-precedence (and-join) lists. Activities cannot reply to entries from a

loop branch because the number of times that a branch is executed is a random number.

1.1.7 Requests

Service requests from one task to another can be one of three types: rendezvous, forwarded, and send-no-reply, shown

in Figure 1.6. A rendezvous request is a blocking synchronous request – the client is suspended while the server

processes the request. A send-no-reply request is an asynchronous request – the client continues execution after the

send takes place. A forwarded request results when the reply to a client is redirected to a subsequent server which,

may forward the request itself, or may reply to the originating client.

CBE SCE1

Send

Reply

(a) Rendezvous

BME2 IME8 CAME5

Send

Reply

Forward

(b) Forwarding

Send

AJA131 CAME2

(c) Send-no-reply

Figure 1.6: Request Types.

1.2 Multiplicity and Replication

One common technique to improve the performance of a system is to add copies of servers. The performance model

supports two techniques: multiplicity and replication. Multiplicity is the simpler technique of the two as a single queue

is served by multiple servers. Replication requires a more elaborate specification because the queues of the servers are

also copied, so requests must be routed to the various queues. Multi-servers can be replicated. Figure 1.7 shows the

underlying queueing models for each technique.

(a) Multi-server (b) Replicated

Figure 1.7: Multiple copies of servers.

9

Replication reduces the number of nodes in the layered queueing model by combining tasks and processors with

identical behaviour into a single object, shown in Figure 1.8. The left figure shows three identical clients making

requests to two identical servers. The right figure is the same model, but specified using replication. Labels within

angle brackets in Figure 1.8(b) denote the number of replicas.

t1_1
λ=0.224,µ=1

e1_1
[1]

4.46

(1)
0.728

(1)
0.728

t1_2
λ=0.224,µ=1

e1_2
[1]

4.46

(1)
0.728

(1)
0.728

t1_3
λ=0.224,µ=1

e1_3
[1]

4.46

(1)
0.728

(1)
0.728

t2_1
λ=0.673,µ=0.673

e2_1
[1]
1

t2_2
λ=0.673,µ=0.673

e2_2
[1]
1

(a) Flat

t1 <3>
λ=0.233,µ=1

e1
[1]

4.29

(1), O=2, I=3
0.646

t2 <2>
λ=0.699,µ=0.699

e2
[1]
1

(b) Replicated

Figure 1.8: Replicated Model

Replication also introduces the notion of fan-in and fan-in, denoted using the O=n and I=n labels on the request

from t1 to t2 in Figure 1.8(b). Fan-out represents the number of replicated servers that a client task calls. Similarly,

fan-in represents the number of replicated clients that call a server. The product of the number of clients and the

fan-out to a server must be the same as the product of the number of servers and the fan-in to the server. Further, both

fan-in and fan-out must be integral and non-zero.

The total number of requests that a client makes to a server is the product of the mean number of requests and the

fan-out. If the performance of a system is being evaluated by varying the replication parameter of a server, the number

of requests to the server must be varied inversely with the number of server replicas in order to retain a constant

number of requests from the client.

1.3 A Brief History

LQN [6] is a combination of Stochastic Rendezvous Networks [20] and the Method of Layers [14].

10

Chapter 2

Results

Both the analytic solver and the simulator calculate:

• throughput bounds (lqns only),

• mean delay for rendezvous and send-no-reply requests,

• variances for the rendezvous and send-no-reply request delays (lqsim only),

• mean delay for joins,

• entry service times and variances,

• distributions for the service time lqsim

• task throughputs and utilizations,

• processor utilizations and queueing delays.

Figure 2.1 shows some of these results for the model shown in Figure 1.1, after solving the model analytically using

lqns(1). The interpretation of these results are describe below in Section 2.1.2.

Results can be saved in three different formats:

1. in a human-readable form.

2. in a “parseable” form suitable for processing by other programs. The grammar for the parseable output is

described in Section A on page 99.

3. in XML (again suitable for by processing by other programs). The schema for the XML output is shown in

Section 3 on page 21.

If input to the solver is in XML, then output will be in XML. Human-readable output will be produced by default except

if output is redirected using the -ooutput flag and either XML or parseable output is being generated. Conversion from

parseable output to XML, and from either parseable or XML output to the human-readable form, can be accomplished

using lqn2ps(1).

2.1 Header

The human-readable output from the the analytic solver and simulator consists of three parts. Part 1 of the output

consists of solution statistics and other header information and is described in detail in Sections 2.1.1 and 2.1.2 below.

Part 2 of the output lists the input and is not described further. Part 3 contains the actual results. These results are

described in Section 2.1.2, starting on page 13. The section headings here correspond to the section headings in the

output file.

11

Task throughput

and utilization

Entry service time

Entry demand

Activity demand

Activity service time

Join delay

Branch probability

Request rate

Queueing delay

Queueing delay

to processor

Processor utilization

Task multiplicityServer {5}
λ=0.0016,µ=0.189

SE1
[4e−06]

127

SE3
[6e−06]

21.7

(1)
0

SE6
[8e−06]

97.2

SCE3
11.6,187

SCE3A95
[2e−06]
0.0255

(1D)
3.83e−10

OFBA97
[1]

11.1

0.05 0.95

AFBA109
[1]

1.03

AFBA112
[4e−06]

197

AFBA130
[1]

1.03

1.53

AFBA133
[1]

1.03

(1D)
53.4

AJA131
[2e−06]
0.0256

OFBA146
[1]

1.03

OJA110
[2e−06]
0.0255

Catalogue {inf}
λ=0.000263,µ=0.00264

CE1
[10]
10

CustAccMgr
λ=0.000359,µ=0.0251

CAME5
[3]

79.7

CAME2
[1]

52.7

BookstoreProc
µ=0.00797

SCE3A95 w=0.0255
OFBA97 w=0.0511

AFBA109 w=0.0255
AFBA112 w=0.0511
AFBA130 w=0.0255
AFBA133 w=0.0255
AJA131 w=0.0256

OFBA146 w=0.0255
OJA110 w=0.0255

SE1 w=0.0511
SE3 w=0.0767
SE6 w=0.0511

(1)
3.83e−10

+

ShoppingCart {inf}
λ=0.000135,µ=0.0268

CE1 w=0.0211 CAME5 w=0.0491
CAME2 w=0.0491

+

&

&

&

Figure 2.1: Results.

12

2.1.1 Analytic Solver (lqns)

Figure 2.2 shows the header information output by the analytic solver. The first line of the output shows the version of

the solver and where it was run. This information is often useful when reporting problems with the solver. The lines

labeled Input and Output are the input and output file names respectively. The line labelled Command line

shows all the arguments used to invoke the solver. The Comment field contains the information found in the comment

field of the general information field of the input file (c.f. §A.1.2, §3.2.1). Next, optionally, the output lists any pragma

used. Much of this information is also present if the simulator is used to solve the model. The remainder of the header

lists statistics accumulated during the solution of the model and is solver-specific.

convergence test value: The convergence test value is the root of the mean of the squares of the

difference in the utilization of all of the servers from the last two iterations of the solver. If this value is less than

the convergence value (c.f. §3.2.1, A.1.2) specified in the input file, then the results are considered valid.

number of iterations: The number of iterations shows the number of times the solver has per-

formed its “outer iteration”. If the number of iterations exceeds the iteration limit set by the model file, the

results are considered invalid.

MVA solver information: This table shows the amount of effort the solver expended solving each submodel.

The first column lists the submodel number. Next, the column labelled ‘n’ indicates the number of times the

MVA solver was run on the submodel. The columns labelled ‘k’ and ‘srv’ show the number of chains and

servers in the submodel respectively. The next three columns show the number of times the core MVA step()

function was called. The following three columns show the number of time the wait() function, responsible

for computing the queueing delay at a server, is called. Finally, the last three columns list the time the solver

spends solving each submodel.

Finally, the solver lists the name of the machine the it was run on, the time spent executing the solver code, the time

spent by the system on behalf of lqns, and the total elapsed time.

2.1.2 Simulator (lqsim)

Figure 2.3 shows the header information output by the simulator after execution is completed. The first line of the

output shows the version of the simulator and where it was run. The lines labeled Input and Output are the input

and output file names respectively. The Comment field contains the information found in the comment field of the

general information field of the input file (c.f. §A.1.2, §3.2.1). Next, optionally, the output lists any pragma used. The

remainder of the header lists statistics accumulated during the solution of the model and is specific to the simulator.

Run time: The total run time in simulation time units.

Number of Statistical Blocks: The number of statistical blocks collected (when producing confidence

intervals).

Run time per block: The run time in simulation units per block. This value, multiplied by the number of

statistical blocks and the initial skip period will total to the run time.

Seed Value: The seed used by simulator.

Finally, the simulator lists the name of the machine that it was run on, the time spent executing the simulator code, the

time spent by the system on behalf of lqsim, and the total elapsed time.

2.2 Type 1 Throughput Bounds
lqns

The Type 1 Throughput Bounds are the “guaranteed not to exceed” throughputs for the entries listed. The value is

calculated assuming that there is no contention delay to underlying servers.

13

Generated by lqns, version 3.9 (Darwin 6.8.Darwin Kernel Version 6.8: Wed Sep 10 15:20:55 PDT 2003; Power Macintosh)

Copyright the Real-Time and Distributed Systems Group,

Department of Systems and Computer Engineering

Carleton University, Ottawa, Ontario, Canada. K1S 5B6

Input: bookstore.lqn

Output: bookstore.out

Command line: lqns -p

Tue Nov 1 21:37:54 2005

Comment: lqn2fig -Lg bookstore.lqn

#pragma multiserver = conway

Convergence test value: 7.51226e-07

Number of iterations: 5

MVA solver information:

Submdl n k srv step() mean stddev wait() mean stddev User System Elapsed

1 5 2 4 44 8.8 1.4697 4776 955.2 299.82 0:00:00.01 0:00:00.00 0:00:00.00

2 9 1 1 51 5.6667 0.94281 594 66 22.627 0:00:00.00 0:00:00.00 0:00:00.00

3 9 8 3 240 26.667 9.4751 4.0365e+05 44850 32163 0:00:00.19 0:00:00.00 0:00:00.21

4 9 10 3 271 30.111 7.0623 7.7481e+05 86090 40554 0:00:01.15 0:00:00.00 0:00:01.19

5 9 2 1 70 7.7778 1.6178 3408 378.67 181.73 0:00:00.00 0:00:00.00 0:00:00.00

6 5 0 0 0 0 0 0 0 0 0:00:00.00 0:00:00.00 0:00:00.00

Total 46 0 0 676 14.696 12.464 1.1872e+06 25809 41253 0:00:01.35 0:00:00.00 0:00:01.40

greg-frankss-Computer.local. Darwin 6.8

User: 0:00:01.35

System: 0:00:00.00

Elapsed: 0:00:01.40

Figure 2.2: Analytic Solver Status Output.

1
4

Generated by lqsim, version 3.9 (Linux 2.4.20-31.9 i686),

Copyright the Real-Time and Distributed Systems Group,

Department of Systems and Computer Engineering,

Carleton University, Ottawa, Ontario, Canada. K1S 5B6

Wed Nov 2 11:42:25 2005

Input: bookstore.lqn

Output: bookstore.out

Comment: lqn2fig -Lg bookstore.lqn

Run time: 4.34765E+09

Number of Statistical Blocks: 15

Run time per block: 2.89651E+08

Max confidence interval: 7.32

Seed Value: 1130948006

epsilon-13.sce.carleton.ca Linux 2.4.20-31.9

User: 0:04:47.78

System: 0:00:00.07

Elapsed: 0:14:27.66

Figure 2.3: Simulator Status Output.

2.3 Mean Delay for a Rendezvous

The Mean Delay for a Rendezvous is the queueing time for a request from a client to a server. It does not include the

time the customer spends at the server (see Figure 2.4). To find the residence timeresidence time, add the queueing

time to the phase one service time of the request’s server.

2.4 Variance of Delay for a Rendezvous
lqsim

The Variance of Delay for a Rendezvous is the variance of the queueing time for a request from a client to the server.

It does not include the variance of the time the customer spends at the server (see Figure 2.4). This result is only

available from the simulator.

2.5 Mean Delay for a Send-No-Reply Request

The Mean delay for a send-no-reply request is the time the request spends in queue and in service in phase one at the

destination. Phase two is treated as a ‘vacation’ at the server.

2.6 Variance of Delay for a Send-No-Reply Request
lqsim

2.7 Arrival Loss Probabilities

The Arrival Loss Probabilities...

15

2.8 Mean Delay for a Join

The Mean Delay for a Join is the maximum of the sum of the service times for each branch of a fork. The source

activity listed in the output file is the first activity prior to the fork (e.g., AFBA112 in Figure 2.1). Similarly, the

destination activity listed in the output file is the first activity after the join (AJA131). The variance of the join time is

also computed.

{q}

idle
ready

running
blocked

idle
ready

running
blocked

idle
ready

running
blocked

idle
ready

running
blocked

idle
ready

running
blocked

join time

A
F

B
A

13
3

A
F

B
A

13
0

A
F

B
A

11
2

td: join time components

IM
E

6
C

A
M

E
2

send
fork

receive reply

send
join

Figure 2.4: Service Time Components for Join.

2.9 Service Times

The service time is the total time a phase or activity uses processing a request. The time consists of four components,

shown in Figure 2.4:

1. Queueing for the processor (shown as items 1, 4, 6 and 8 in Figure 2.5.(b)).

2. Service at the processor (items 2, 5 and 9)

3. Queueing for serving tasks (item 6), and

4. Phase one service time at serving tasks (items 3 and 7).

Queuing at processors and tasks and can occur because of contention from other tasks (items 1, 6, and 8), or from

second phases from previous requests. For example, entry SE3 is queued at the processor because the processor is

servicing the second phase of entry SCE3.

Using the results shown in Figure 2.1, the service time for entry SE3 (21.7) is the sum of:

16

idle
ready

phase 1
phase 2

idle
ready

phase 1
phase 2

SE3
SCE3

CE1
Other

Idle

idle
ready

phase 1
blocked

{q}

S
E

3
S

C
E

3
C

E
1

B
oo

ks
to

re
P

ro
c

receive

receive

send

reply

send

receive reply

td: service time components

service time

2 5 9

1

3

4 8

7

6

Figure 2.5: Service Time Components for Entry ‘SCE3’.

• the processor wait (0.767),

• it’s own service time (6 × 10−6),

• the queueing time to entry SCE3 (0),

• the phase one service time at entry SCE3 (11.6),

• the queueing time to entry CE1 (3.83 × 10−10), and

• the phase one service time at entry CE1 (10)

Queueing time for serving tasks is shown in the Mean Delay for a Rendezvous section of the output. (c.f. §2.3).

Queueing time for the processor is shown in the Utilization and Waiting per Phase for Processor of the output (c.f.

§2.16).

2.10 Service Time Variance

The Service Time Variance section lists the variance of the service time (c.f. §2.9) for the phases and activities in the

model.

2.11 Probability Maximum Service Time Exceeded
lqsim

The probability maximum service time exceeded is output by the simulator for all phases and activities with a max-service-time.

This result is the probability that the service time is greater than the value specified. In effect, it is a histogram with

two bins.

17

2.12 Service Time Distributions for Entries and Activities
lqsim

Service Time Distributions are generated by the simulator by setting the service-time-distribution param-

eter (c.f. §3.2.9, §A.1.6, §A.1.7) for an entry or activity. A histogram of number-bins bins between min and max

is generated. Samples that fall either under or over this range are stored in their own under-flow or over-flow bins

respectively. The optional x-samples parameter can be used to set the sampling behaviour to one of:

linear Each bin is of equal width, found by dividing the histogram range by the number of bins. If the x-samples

is not set, this behaviour is the default.

log The logarithm of the range specified is divided by number-bins. This has the effect of making the width of the

bins small near min, and large near max. A minimum value of zero is not allowed.

sqrt The square root of the range specified is divided by number-bins. Bins are smallest near bin are smaller

than those near max.

The results of the histogram collection, shown in Figure 2.6, consist of the mean, standard deviation,, skew and

kurtosis of the sampled range, followed by the histogram itself. Each entry of the histogram contains the probability

of the sample falling within the bucket, and, if available, the confidence intervals of the sample.

The statistics for the histogram are found by multiplying the mid-point of the range defined by begin and end, not

counting either the overflow or underflow bins. If the mean value reported by the histogram is substantially different

than the actual service time of the phase or activity, then the range of the histogram is not sufficiently large.

2.13 Semaphore Holding Times

The Semaphore Holding Times section lists the average time a semaphore token is held (it’s service time), the variance

of the holding time, and the utilization of semaphore. Figure 2.7 shows how these values are found.

2.14 Throughputs and Utilizations per Phase

The Throughputs and Utilizations per Phase section lists the throughput by entry and activity, and the utilization by

phase and activity. The utilization is the task utilization, i.e., the reciprocal of the service time for the task (c.f. 2.9).

The processor utilization for the task is listed under Utilization and Waiting per Phase for Processor (see §2.16).

2.15 Arrival Rates and Waiting Times

The Arrival Rates and Waiting Times section is only present in the output when open arrivals are present in the input.

This section shows the arrival rate (Lambda) and the waiting time. The waiting time includes the service time at the

task.

2.16 Utilization and Waiting per Phase for Processor

The Utilization and Waiting per Phase for Processor lists the processor utilization and the queueing time for every

entry and activity running on the processor.

18

Service time distributions for entries and activities:

SCE3 PHASE 1:

Mean = 11.58, Stddev = 8.457, Skew = 0.8501, Kurtosis = -0.2496

Begin End Prob. +/-95% +/-99%

0 1 0.03355 0.001048 0.001412 | *
1 2 0.03786 0.001605 0.002163 | *
2 3 0.05406 0.002026 0.002731 | *
3 4 0.06333 0.002031 0.002737 | *
4 5 0.06545 0.001631 0.002199 | *
5 6 0.06369 0.001578 0.002127 | *
6 7 0.06049 0.001692 0.00228 | *
7 8 0.05591 0.001822 0.002456 | *
8 9 0.05133 0.001272 0.001714 | *
9 10 0.0472 0.001767 0.002382 | *
10 11 0.04318 0.001618 0.002181 | *
11 12 0.03931 0.001185 0.001597 | *
12 13 0.03579 0.001073 0.001446 | *
13 14 0.03231 0.001654 0.002229 | *
14 15 0.02952 0.001033 0.001392 | *
15 16 0.02677 0.001189 0.001603 | *
16 17 0.0243 0.001058 0.001425 | *
17 18 0.02214 0.001087 0.001466 | *
18 19 0.02001 0.001122 0.001512 | *
19 20 0.01806 0.001016 0.001369 | *
20 21 0.01653 0.0009079 0.001224 | *
21 22 0.01499 0.001018 0.001372 | *
22 23 0.01365 0.0007152 0.0009639 | *
23 24 0.01229 0.000955 0.001287 | *
24 25 0.0112 0.0008691 0.001171 | *
25 26 0.009997 0.0006182 0.0008331 | *
26 27 0.009227 0.0007344 0.0009898 | *
27 28 0.008282 0.0006896 0.0009293 | *
28 29 0.007444 0.0005936 0.0007999 | *
29 30 0.006802 0.0005752 0.0007751 | *

overflow 0.06532 0.001561 0.002104 | *

Figure 2.6: Histogram output

1
9

idle
ready

wait

blocked
signal

receive

send

receive

reply
opt reply

{q}

td: holding time components

S
em

ap
hp

re
 T

as
k holding time

Figure 2.7: Time components of a semaphore task.

20

Chapter 3

XML Grammar

The definition of LQN models using XML is an evolution of the original SRVN file format (c.f. §5 and Appendix A.1).

The new XML format is based on the work done in [22], with further refinement for general usage. There are new

features in the XML format to support new concepts for building and assembling models using components. The

normal LQN tool suite (like lqns(1) and lqsim(1)) do not support these new features, however other tools outside the

suite are being written to utilize the new parts of the XML format.

3.1 Basic XML File Structure

In XML, layered models are specified in a bottom-up order, which is the reverse of how layered models are typically

presented. First, a processor is defined, then within the processor block, all the tasks than run on it are defined.

Similarly, within each task block all the entries that are associated with it are defined, etc. A simplified layout of an

incomplete LQN model written in XML is shown in Figure 3.1.

Activity graphs (specified by task-activities) belong to a task, and hence are siblings to entry elements. The element

entry-activity-graph specifies an activity graph contained within one entry, but is not supported by any of the LQN

tools. The concept of phases still exists, but now each phase is an activity, and is defined in the entry-phase-activities

element.

3.2 Schema Elements

The XML definition for layered models consists of three files:

lqn.xsd: lqn.xsd is the root of the schema.

lqn-sub.xsd ...

lqn-core.xsd lqn-core is the actual model specfication and is included by lqn.xsd.

All three files should exist in the same location. If the solver cannot located the lqn.xsd file, it will emit an error1

and stop.

Figure 3.1 shows the schema for Layered Queueing Networks using Unified Modeling Language notation. The

model is defined starting from lqn-model. Unless otherwise specified in the figure, the order of elements in the

model is from left to right, i.e., <solver-params> always preceeds <processor> in the input file. Optional

elements are shown using a multiplicity of zero for an association. Note that results (optional, shown in blue) are part

of the schema.

1See the error message “The primary document entity could not be opened” on 95.

21

Listing 3.1: XML file layout.

1 <lqn-model>

2 <solver-params>

3 <pragma/>

4 </solver-params>

5 <processor>

6 <task>

7 <entry>

8 <entry-phase-activities>

9 <activity>

10 <synch-call/>

11 <asynch-call/>

12 </activity>

13 <activity> ... </activity>

14 </entry-phase-activities>

15 </entry>

16 <entry> ... </entry>

17 <task-activities>

18 <activity/>

19 <precedence/>

20 </task-activities>

21 </task>

22 <task> ... </task>

23 </processor>

24 <processor> ... </processor>

25 </lqn-model>

22

1..*0..1 0..* 0..*

0..1 1..*10..1 0..* 0..1

1..*1..*

0..*

1..*

0..*1..*

0..*

0..*

0..* 0..*

0..*

0..*

1..* 1..*

forwarding

0..*

entry−phase−

activities

0..1

result−entry

0..*

pragma result−processor groupresult−general

lqn−model

plot−control processorsolver−paramsrun−control slot lqx

result−group

0..*

task

{ordered}

{ordered}

{ordered}

{ordered}

{ordered}

{xor}

entry

1..*

service

1..*

task−activities

0..*

service−time−

distribution

0..*

result−task

{unordered}

fan−outfan−in

0..* 0..*

precedence reply−entry

post−or post−and post−looppostpre−or pre−andpre

activity

1

pre

1

post

0..1

reply−

activity

result−call

entry−activity−

graph

0..1

service−time−

distribution

result−join−

delay

result−activity
service−time−

distribution
synch−call

0..*{unordered}

asynch−call

{ordered}

0..*

activity

0..*

{ordered}

{ordered}

{ordered}

0..*1..3

{ordered}
0..1

Figure 3.1: LQN Schema. Elements shown in blue are results found in the output. Elements shown in red are not

implemented. Unless otherwise indicated, all elements are ordered from left to right.

23

3.2.1 LqnModelType

The first element in a layered queueing network XML input file is lqn-model, which is of type LqnModel-

Type and is shown in Figure 3.2. LqnModelType has five elements, namely: run-control, plot-control,

solver-params, processor and slot. Run-control and plot-control are not not implemented. Processor

is described under Section 3.2.2. Slot is described in [22]. The attributes for LqnModelType are shown in Table 3.1.

0..*0..1

0..10..*1..*0..1 0..1 1

comment: string
conv_val: float
it_limit: unsigned
print_int: unsigned
underrelax_coeff: float

solver−params

param: string

value: string

pragmaresult−general

lqn−model

name: string
description: string
lqn−schema−version: float

LqnModelType

lqxslotprocessorrun−control plot−control

{ordered}

{ordered}

Figure 3.2: Top-level LQN Schema.

Name Type Use Default Comments

name string optional The name of the model.

description string optional A description of the model.

lqn-schema-version integer fixed 1.0 The version of the schema (used by the solver

in case of substantial schema changes for

model conversion.)

lqncore-schema-version integer fixed 1.0

xml-debug boolean optional false

Table 3.1: Attributes for elements of type LqnModelType from Figure 3.2.

The element solver-params is used to set various operating parameters for the analytic solver, and to record

various output statistics after a run completes. It contains the elements result-general and pragma. The

attributes for solver-params are shown in Table 3.2. These attributes are mainly used to control the analytic

solver. Refer to Section 6.3 for more information. The attributes for result-general are shown in Table 3.3.

Refer to Sections 2.1.1 and 2.1.2 for the interpretation of header information. The attributes for pragma are show in

Table 3.4. Refer to Section 6.2 for the pragmas supported by lqns and to Section 7.3 for the pragmas supported by

lqsim.

24

Name Type Use Default Comments

conv_val float optional 1 Convergence value for lqns (c.f §6.3). Ignored by

lqsim.

it_limit integer optional 50 Iteration limit for lqns (c.f §6.3). Ignored by lqsim.

print_int integer optional 0 Print interval for intermediate results. The -tprint

must be specified to lqns to generate output after

it_limit iterations. Blocked statistics must be specified

to lqsim using the -An, -Bn, or -Cn flags.

underrelax_coeff float optional 0.5 Under-relaxation coefficient for lqns (c.f §6.3). Ig-

nored by lqsim.

Table 3.2: Attributes of element solver-params from Figure 3.2.

Name Type Use Default Comments

conv-val float required Convergence value (c.f. 2.1.1)

valid enumeration required Either YES or NO.

iterations float optional The number of iterations of the analytic solver or

the number of blocks for the simulator.

elapsed-time string optional The wall-clock time used by the solver.

system-cpu-time string optional The CPU time spent in kernel-mode.

user-cpu-time string optional The CPU time spent in user mode.

platform-info string optional The operating system and CPU type.

solver-info string optional The version of the solver.

Table 3.3: Attributes of element result-general from Figure 3.2.

Name Type Use Default Comments

param string required The name of the parameter. (c.f. 6.2, §7.3)

value string required the value assigned to the pragma.

Table 3.4: Attributes of element pragma from Figure 3.2.

25

3.2.2 ProcessorType

Elements of type ProcessorType, shown in Figure 3.3 are used to define the processors in the model. They contain

an optional result-processor element and elements of either GroupType or TaskType. The scheduling

attribute must by set to cfs, for completely fair scheduling, if GroupType elements are present and to any other type

if GroupType are not found. GroupType and TaskType elements may not be both be defined in a processor.

Element result-processor is of type OutputResultType and is described in Section 3.2.12. Element task

is described in Section 3.2.4. The attributes of ProcessorType, described in A.1.3, are shown in Table 3.5.

1..*

1..*1..*

0..*

name: string

cap: boolean

share: float

GroupType

TaskTypegroup

task

name: string

scheduling: SchedulingType
multiplicity: unsigned
replication: unsigned
quantum: float

speed−factor: float

ProcessorType

processor

result−processor

{xor}{ordered}

Figure 3.3: Processor Schema.

Name Type Use Default Comments

name string required

multiplicity integer optional 1 See §1.2

speed-factor float optional 1.0 Scaling factor for the processor.

scheduling enumeration optional fcfs The allowed scheduling types are fcfs, hol, pp,

rand, inf, ps-hol, ps-pp and cfs. See §1.1.1.

replication integer optional 1 See §1.2

quantum float optional 0.0 Mandatory for processor sharing scheduling when us-

ing lqsim.

Table 3.5: Attributes for elements of type ProcessorType.

26

3.2.3 GroupType

Optional elements of type GroupType, shown in Figure 3.3, are used to define groups of tasks for processors running

completely fair scheduling. Each group must contain a minimum of one task. The attributes of GroupType are shown

in Table 3.6.

Name Type Use Default Comments

name string required

share float required The fraction of the processor allocated to this

group.

cap boolean optional false If true, shares are caps (ceilings). Otherwise,

shares are guarantees (floors)

Table 3.6: Attributes for elements of type GroupType

3.2.4 TaskType

Elements of type TaskType, shown in Figure 3.4, are used to define the tasks in the model. These elements contain

an optional result-task element, one or more elements of EntryType, and optionally, elements of service and

task-activities. Element result-task is of type OutputResultType, and is described in Section 3.2.12.

Element entry is described in Section 3.2.6. The attributes of TaskType, described in Section A.1.5, are shown in

Table 3.7.

0..*

TaskActivityGraphtask

name: string
multiplicity: unsigned
replication: unsigned
scheduling: SchedulingType
think−time: float
priority: unsigned
queue−length: unsigned
activity−graph: bool
intially: unsigned

TaskType

entry service task−activities

EntryType

FanOutType

dest: string
value: unsigned

source: string
value: unsigned

FanInType

service−time−

distribution

0..*

result−task

{unordered}

fan−outfan−in

0..* 0..*

{ordered}

1..* 1..* 0..*

Figure 3.4: TaskType

3.2.5 FanInType and FanOutType

3.2.6 EntryType

Elements of type EntryType, shown in Figure 3.5, are used to define the entries of tasks. Entries can be specified one

of three ways, based on the attribute type of an entry element, namely:

27

Name Type Use Default Comments

name string required

multiplicity integer optional 1 See §1.2.

priority integer optional 0 The priority used by the processor for scheduling.

See §1.1.1.

queue-length integer optional 0 Maximum queue size (for open-class requests

only). See §1.1.3.

replication integer optional 1 See §1.2

scheduling enumeration optional FCFS The scheduling of requests at the task. The allowed

scheduling types are ref, fcfs, hol, pri, inf,

burst, and poll and semaphore. See §1.1.3.

activity-graph enumeration required yes or no

think-time float optional 0 Reference tasks only. Customer think time.

initially integer optional multiplicity Semaphore tasks only. Set the initial number of

semaphore tokens to zero. By default, the number

of tokens is set to the multiplicity of the task.

Table 3.7: Attributes for elements of type TaskType

Name Type Use Default Comments

source integer required (See §1.2)

value integer required (See §1.2)

Table 3.8: Attributes for elements of type FanInType.

Name Type Use Default Comments

dest integer required (See §1.2)

value integer required (See §1.2)

Table 3.9: Attributes for elements of type FanOutType.

28

{unordered}

1..* 0..*

bound−to−entry

name: string
host−demand−mean: float
host−demand−cvsq: float
think−time: float
max−service−time: float
call−order: CallOrderType

Phase
Activities

ActivityDefBase

Activity
PhasesType

phase: 1..3

name: string
open−arrival−rate: float
priority: integer
semaphore: SemaphoreType
type: enumeration

EntryType

Activity
GraphBase

EntryActivity

Graph

MakingCallType

dest: string
fanout: unsigned
fanin: unsigned

EntryMaking
CallType

entry

forwarding
entry−activity−

graph

0..1

result−entry

0..*

entry−phase−

activities

synch−call

0..*

asynch−call

0..*

activity

ActivityMaking
CallType

calls−mean: float
precedence reply−entryactivity

0..*1..3

prob: float

0..*

0..1

0..1

Figure 3.5: Schema for type EntryType.

29

ph1ph2 The entry is specified using phases. The phases are specified using an entry-phase-activities

element which is of the ActivityPhasesType type. Activities defined within this element must have a unique

phase attribute.

graph The entry is specified as an activity graph defined within the entry. The demand is specified using elements

of type ActivityEntryDefType. This method of defining an entry is not supported currently.

none The entry is specified using an activity graph defined within the task. A task-activities element

of type ActivtyDefType must be present and one of the activities defined within this element must have a

bound-to-entry attribute. The TaskActivityGraph type is defined in Section 3.2.8.

ActivityPhasesType, ActivityEntryDefType and ActivtyDefType are all based on ActivityDefBase, described in

Section 3.2.9. They only differ in the way the start of the graph is identified, and in the case of ActivityPhasesType,

the way the activities are connected.

The attributes for EntryType, described in Section A.1.6, are shown in Table 3.10. The optional element result-entry

is of type OutputResultType, and is described in Section 3.2.12. The optional element forwarding is used to de-

scribe the probability of forwarding a request to another entry; it is described in Section 3.2.10.

Name Type Use Default Comments

name string required The entry name

type enumeration required PH1PH2, GRAPH, or NONE

open-arrival-rate float optional

priority integer optional (c.f. 1.1.3)

sempahore enumeration optional signal or wait (c.f. 1.1.3)

Table 3.10: Attributes for elements of type EntryType.

3.2.7 ActivityGraphBase

Elements of type ActivityGraphBase, shown in Figure 3.6, are used to define activities (c.f. 1.1.5) and their relation-

ships to each other. They are used by elements of both EntryType and TaskActivityGraph types.

Elements of the ActivityGraphBase consist of a sequence of one or more activity elements followed by

a sequence of precedence elements. Activity elements are used to store the demand for an activity and re-

quests to other servers (through the ActivityDefType) and, optionally, results through elements of ActivityDefType.

Precedence elements are defined by the PrecedenceType in Section 3.2.11.

3.2.8 TaskActivityGraph

Task Activity Graphs, defined using elements of type TaskActivityGraph and shown in Figure 3.6, are used to specify

the behaviour of a task using activities. This type is almost the same as EntryActivityGraph, except that the activity

that replies to an entry must explicitly specify the entry for which the reply is being generated. The actual activity

graph is defined using elements of type ActivityGraphBase, described in Section 3.2.7. The attributes for elements

reply-entry and reply-activity are shown in Tables 3.11 and 3.12 respectively.

Name Type Use Default Comments

name string required The name of the entry for which the list of

reply-activity elements generate replies.

Table 3.11: Attributes of element reply-entry from Figure 3.6.

30

0..*

0..*

0..*1..*

0..* 0..*

reply−entry

name:string

name:string

reply−activity

ActivityDefType

bound−to−entry: string

Activity
PhasesType

phase: 1..3

activity

calls−mean: float

CallType
ActivityMaking

MakingCallType

dest: string
fanin: unsigned
fanout: unsigned

synch−call
service−time−

distribution
result−activity asynch−call

precedence

Graph

TaskActivity

Activity
GraphBase

task−activities

EntryActivity

Graph

entry−activity−

graph

EntryActivity
DefType

first−activity: string

name: string
host−demand−mean: float
host−demand−cvsq: float
think−time: float
max−service−time: float
call−order: CallOrderType

ActivityDefBase

activity

{ordered}

0..* 0..*

{unordered}

{ordered}{ordered}

{ordered}

Figure 3.6: Schema diagram for the type ActivityGraphBase

Name Type Use Default Comments

name string required The name of the activity which generates a reply. The

entry is either implicitly defined if this element is de-

fined within an EntryType, or part of list defined

within a reply-element.

Table 3.12: Attributes of element reply-activity from Figure 3.6.

31

3.2.9 ActivityDefBase

The type ActivityDefBase, shown in Figure 3.6, is used to define the parameters for an activity, such as demand and

call-order. This type is extended by ActivityPhasesType, EntryActivityDefType, and ActivityDefType to define the

requests from an activity to an entry, and to connect the activity graph to the requesting entry. Table 3.13 lists the

parameters used as attributes and the attributes used by the three sub-types. Refer to Section A.1.7 for more infor-

mation on these parameters. Refer to MakingCallType (§3.2.10) for the Activity-CallGroup used to make

requests to other entries2. Refer to OutputResultForwardingANDJoinDelay (§3.2.13) for result-join-delay

and result-forwarding for join-delay and forwarding results respectively. Refer to OutputDistributionType

(§3.2.14) for service-time-distribtion. Finally, refer to OutputResultType (§3.2.12) for result-activity.

This element contains most of the results for an activity or phase.

Name Type Use Default Comments

name string required

host-demand-mean float required The mean service time demand for

the activity.

host-demand-cvsq float optional 1.0 The squared coefficient of varia-

tion for the activity.

think-time float optional 0.0

max-service-time float optional 0.0

call-order enumeration optional STOCHASTIC STOCHASTIC or

DETERMINISTIC

ActivtyPhasesType

phase integer required 1, 2, or 3

ActivtyEntryDefType

first-activity string required

ActivtyDefType

bound-to-entry string optional If set, this activity is the start of an

activity graph.

Table 3.13: Attributes for elements of type ActivityDefBase.

3.2.10 MakingCallType

The type MakingCallType, shown in Figure 3.7, is used to define the parameters for requests to entries. This type is

extended by ActivityMakingCallType and EntryMakingCallType to defined requests from activities to entries and

for forwarding requests from entry to entry respectively. Requests from activities to entries can be either synchronous,

(i.e., a rendezvous), through a sync-call element, or asynchronous (i.e., a send-no-reply), through a async-call

element. Section 1.1.7 defines the parameters for a request. Table 3.14 lists the attributes for the types.

Name Type Use Default Comments

dest string required The name of the entry to which the requests are made.

ActivityMakingCallType

calls-mean float required The mean number of requests.

EntryMakingCallType

prob float required The probability of forwarding requests.

Table 3.14: Attributes for elements of type MakingCallType.

2Call-List-Group is not defined at present.

32

{unordered}

EntryMaking
CallType

activityentry ActivityMaking
CallType

calls−mean: float

forwarding

synch−call

MakingCallType

dest: string

prob: float

0..*

0..*

asynch−call

0..*

Figure 3.7: Schema diagram for the group MakingCallType.

3.2.11 PrecedenceType

The type PrecedenceType, shown in Figure 3.8, is used to connect one activity to another within an activity graph.

Each element of this type contains exactly one pre element and, optionally, one post element. The pre elements

are referred to as join-lists as all of the branches associated with the activities in the join-list must finish (i.e. “join”)

before the activities in the subsequent post element can start. The post element itself is referred to as a fork-list.

Elements of PrecedenceType can be of one of five types:

SingleActivityListType: Elements of this type have no attributes and a sequence of exactly one activity element

of ActivityType.

ActivityListType: Elements of this type have no attributes and a sequence one or more activity elements of

ActivityType.

AndJoinListType: Elements of this type have an optional quorum element and a sequence of one or more or more

activity elements of ActivityType. Table 3.15 show the attributes of AndJoinListType.

OrListType: Elements of this type have no attributes and a sequence one or more activity elements of Activity-

OrType. These elements specify an activity name and a branch probability. Table 3.16 show the attributes of

ActivityOrType.

ActivityLoopListType: Elements of this type have one optional attribute and a sequence one or more activity

elements of ActivityLoopType. These elements specify an activity name and a loop count. The optional

attribute is used to specify the activity that is executed after all the loop branches complete. Tables 3.17 and 3.18

show the attributes of ActivityLoopListType and ActivityLoopType respectively.

Name Type Use Default Comments

name string required

quorum integer optional 0 The number of branches which must complete for the

join to finish. If this attribute is not specified, then all

of the branches must finish, which makes this object

an AND-Join

Table 3.15: Attributes for elements of type AndJoinListType.

33

quorum: unsigned end: string

1..* 1..*

{ordered}

1

0..*

1..* 1..*

0..*

post

pre post

pre−OR

AndJoin

ListType

post−AND post−OR post−LOOP

ActivityOr

Type

prob: float

activity

ListType

SingleActivity

pre−AND

PrecedenceType

precedence

Type

ActivityLoop

count: float

activity

Activity

ListType ListType

Or ListType

ActivityLoop

pre

name: string

ActivityType

activity
service−time

distribution

result−join−

delay

0..11

{ordered}

Figure 3.8: Schema diagram for the type PrecedenceType.

Name Type Use Default Comments

name string required

prob float optional 1.0 The probability that the branch is taken, on average

(c.f. §1.1.6)

Table 3.16: Attributes for elements of type ActivityOrType.

Name Type Use Default Comments

end string required

Table 3.17: Attributes for elements of type ActivityLoopListType.

Name Type Use Default Comments

count float optional 1.0 The number of times the loop is executed, on average

(c.f. §1.1.6)

Table 3.18: Attributes for elements of type ActivityLoopType.

34

3.2.12 OutputResultType

The type OutputResultType, shown in Figure 3.9, is used to create elements that store results described earlier in

Section 2. OutputResultType is a subtype of ResultContentType. This latter type defines the result element’s

attributes. Elements of this OutputResultType can contain two elements of type ResultContentType, which contain

the ±95% and ±99% confidence intervals, provided that these results are available. The attributes for elements of

ResultContentType are listed in Table 3.19 and are used to store the actual results produced by the solver. Note that

all the attributes are optional: elements of this type will only have those attributes which are relevant.

0..10..1

ResultType

Output

ContentType

Result

result−processor result−group result−task

result−95−conf result−99−conf

result−entry result−callresult−activity

Figure 3.9: Schema diagram for type OutputResultType

3.2.13 OutputResultJoinDelayType

The type OutputResultJoinDelayType is similar to OutputResultType. The attributes of this type are shown in

Table 3.20.

3.2.14 OutputDistributionType

Elements of type OutputDistributionType, shown in Figure 3.11, are used to define and store histograms of phase

and activity service times. The optional underflow-bin, overflow-bin and histogram-bin elements, all

the elements are of type HistogramBinType, are used to store results.

The attributes of OutputDistributionType elements are used to both store the parameters for the histogram, and

output statistics. Refer to Table 3.21

3.2.15 HistogramBinType

3.3 Schema Constraints

The schema contains a set of constraints that are checked by the Xerces XML parser [1] to ensure that the model file

is valid. XML editors can also enforce these constraints so that the model is somewhat correct before being passed to

the simulator or analytic solver. The constraints are as follow:

• All processor must have a unique name.

• All tasks must have a unique name.

35

Name Type Comments (xref)

proc-utilization float Processor utilization for a task, entry, or ac-

tivity.

§2.16

proc-waiting float Waiting time at a processor for an activity. §2.16

phaseX-proc-waiting float Waiting time at a processor for phase X of an

entry.

§2.16)

open-wait-time float Waiting time for open arrivals. §2.15

service-time float Activity service time. §2.9

loss-probability float Probability of dropping an asynchronous

message.

§2.3

phaseX-service-time float Service time for phase X of an entry. §2.9

service-time-variance float Variance for an activity. §2.10

phaseX-service-time-variance float Variance for phase X of an entry. §2.10

phaseX-utilization float Utilization for phase X of an entry. §2.14

prob-exceed-max-service-time float §2.12

squared-coeff-variation float Squared coefficient of variation over all

phases of an entry

§2.10

throughput-bound float Throughput bound for an entry. §2.2

throughput float Throughput for a task, entry or activity. §2.14

utilization float Utilization for a task, entry, activity. §2.14

waiting float Rendezvous delay §2.3

waiting-variance float Variance of delay for a rendezvous §2.4

Table 3.19: Attributes for elements of type ResultContentType.

0..10..1

0..*

result−join−

delay

OutputResult

JoinDelayType

result−95−conf result−99−conf

ResultJoinDelay

ContentType

Figure 3.10: Schema diagram for type OutputResultJoinDelayType

Name Type Comments (xref)

join-waiting float Join delay §2.8

join-variance float Join delay variance §2.8

Table 3.20: Attributes for elements of type OutputResultJoinDelayType.

36

Histogram

BinType

end: float
prob: float
conf−95: float
conf−99: float

begin: float

underflow−bin histogram−bin overflow−bin

0..1 0..* 0..1

Output

DistributionType

min: float
max: float
bin−size: float
number−bins: unsigned
mean: float
std−dev: float

service−time−

distribution

pre−ANDactivitytask

0..*

Figure 3.11: Schema for type OutputDistributionType.

Name Type Use Default Comments

min float required The lower bound of the collected histogram data.

max float required The upper bound of the collected histogram data.

number-bins integer optional 20 The number of bins in the distribution.

mid-point float optional

bin-size float optional

Table 3.21: Attributes for elements of type OutputDistributionType.

Name Type Comments (xref)

begin float Lower limit of the bin.

end float Upper limit of the bin.

prob float The probability that the measured value lies

within begin and end.

conf-95 float

conf-99 float

Table 3.22: Attributes for elements of type HistogramBinType.

37

• All entries must have a unique name.

• All activities must have a unique name within a given task.

• All synchronous requests must have a valid destination.

• All asynchronous requests must have a valid destination.

• All forwarding requests must have a valid destination.

• All activity connections (in precedence blocks) must refer to valid activities.

• All activity replies must refer to a valid entry.

• All activity loops must refer to a valid activities.

• Each entry has only one activity bound to it.

• Phases are restricted to values one through three.

• All phase attributes within an entry must be unique.

Further validation is performed by the solver itself. Refer to Section 8 for the error messages generated.

One downside of using the Xerces XML parser library is that the Xerces tends to give rather cryptic error messages

when compared to other tools. If an XML file fails to pass the validation phase, and the error looks cryptic, chances

are very good that there is a genuine problem with the XML input file. Xerces has a bad habit of coming back with

cryptic errors when constraint checking fails, and only gives you the general area in the file where the actual problem

is.

One easy and convenient solution around this problem is to validate the XML file using another XML tool. Tools

that have been found to give more user friendly feedback are XMLSpy (any edition), and XSDvalid (Java based, freely

available). Another solution is to check if a particular tool can de-activate schema validation and rely on the actual

tool to do its own internal error checking. Currently this is not supported in any of the LQN tools which are XML

enabled, but it maybe implemented later on.

If the XML file validates using other tools, but fails validation with Xerces, or if the XML file fails validation on

other tools, but passes with Xerces then please report the problem. The likelihood of validation passing with Xerces

and not other tools will be much higher then the reverse scenario, because Xerces does not rigorously apply the XML

Schema standard as other tools. Other sources of problems could be errors in the XML schema itself, or some unknown

bug in the Xerces library.

38

Chapter 4

LQX Users Guide

4.1 Introduction to LQX

The LQX programming language is a general purpose programming language used for the control of input parameters

to the Layer Queueing Network Solversystem for the purposes of sensitivity analysis. This language allows a user to

perform a wide range of different actions on a variety of different input sources, and to subsequently solve the model

and control the output of the resulting data.

4.1.1 Input File Format

The LQX programming language follows grammar rules which are very similar to those of ANSI C and PHP. The

main difference between these languages and LQX is that LQX is a loosely typed language with strict runtime type-

checking and a lack of variable coercion (“type casting”). Additionally, variables need not be declared before their

first use. They do, however, have to be initialized. If they are un-initialized prior to their first use, the program will

fail.

Comment Style

LQX supports two of the most common commenting syntaxes, “C-style” and “C++-style.” Any time the scanner

discovers two forward slashes side-by-side (//), it skips any remaining text on that line (until it reaches a newline).

These are “C++-style” comments. The other rule that the scanner uses is that should it encounter a forward slash

followed by an asterisk (“/*”), it will ignore any text it finds up until a terminating asterisk followed by a slash (“*/”).

The preferred commenting style in LQX programs is to use “C++-style” comments for single-line comments and to

use “C-style” comments where they span multiple lines. This is a matter of style.

Intrinsic Types

There are five intrinsic types in the LQX programming languages:

• Number: All numbers are stored in IEEE double-precision floating point format.

• String: Any literal values between (“) and (”) in the input.

• Null: This is a special type used to refer to an “empty” variable.

• Boolean: A type whose value is limited to either “true” or “false.”

• Object: An semi-opaque type used for storing complex objects. See “Objects.”

• File Handle File handles to open files for writing/appending or reading. See “File Handles.”

39

LQX also supports a pseudo-intrinsic “Array” type. Whereas for any other object types, the only way to interact

with them is to explicitly invoke a method on them, objects of type Array may be accessed with operator [] and

with operator []=, in a familiar C- and C++-style syntax.

The Object type also allows certain attributes to be exposed as “properties.” These values are accessed with the

traditional C-style object.property syntax. An example property is the size property for an object of type

Array, accessed as array.size Only instances of type Object or its derivatives have properties. Number, String,

Null and Boolean instances all have no properties.

Built-in Operators

There are eight built in arithmetic operators in the LQX programming language:

• «: Shift the left operand left by the amount specified by the right operand. Both operands must be non-negative

integers.

• »: Shift the left operand right by the amount specified by the right operand. Both operands must be non-negative

integers.

• +: Add the left operand to the right operand.

• -: Subtract the right operand from the left operand.

• *: Multiply the left operand by the right operand.

• /: Divide the left operand by the right operand.

• %: Take the modulus of the left operand by the right operand. This operation is implemented using the fmod()

function, so both operands can be real numbers.

• **: Raise the left operand by the right operand. This operation is implemented using the power() function.

All operands must be numeric.

There are six built in comparison operators in the LQX programming language:

• ==: Return true if the left operand equals the right operand.

• !=: Return true if the left operand is not equal to the right operand.

• <=: Return true if the left operand is less than or equal to the right operand.

• >=: Return true if the left operand is greater than or equal to the right operand.

• >: Return true if the left operand is greater than the right operand.

• <: Return true if the left operand is less than the right operand.

All operands must be numeric.

There are three built in logical operators in the LQX programming language:

• !: Return true if the operand is false.

• &&: Return true if the left and right operands are true, otherwise return false. Short-circuit evaluation is used so

if the left operand evaluates to false, the right operand is not evaluated.

• ||: Return true if either the left or right operand is true, otherwise return false. Short-circuit evaluation is used

so if the left operand evaluates to true, the right operand is not evaluated.

All operands must be boolean.

There are nine built in assignement operators in the LQX programming language:

40

• =: Set the value of the right operand to the value of the left operand.

• +=: Equivalent to: a = a + (b).

• -=: Equivalent to: a = a - (b).

• *=: Equivalent to: a = a * (b). Note that a *= b + c is not necessarily the same as a = a * b +

c because *= has lower precedence than +.

• /=: Equivalent to: a = a / (b).

• **=: Equivalent to: a = a ** (b).

• «=: Equivalent to: a = a « (b). The left and right operands must both be non-negative integers.

• »=: Equivalent to: a = a » (b). The left and right operands must both be

All operands must be numeric.

Operator Precedence and Associativity

pre operator associativity

1 () left

2 [] left

3 ! left

4 ** right

5 *, /, % left

6 +, - left

7 «, » left

8 >=, <=<, > left

9 == != left

10 && left

11 || left

12 =, +=, -=, *=, /=, %=, **=, «=, »= none

Arrays and Iteration

The built-in Array type is very similar to that used by PHP. It is actually a hash table, also known as a “Dictionary” or

a “Map” for which you may use any object as a key, and any object as a value. It is important to realize that different

types of keys will reference different entries. That is to say that integer 0 and string “0” will not yield the

same value from the Array when used as a key.

The Array object exposes a couple of convenience APIs, as detailed in Section 4.2. These methods are simply

short-hand notation for the full function calls they replace, and provide no additional functionality. Arrays may be

created in three different ways:

• array_create(...) and array_create_map(key,value,...):

The explicit, but long and wordy way of creating an array of objects or a map is by using the standard functional

API. array_create(...) takes an arbitrary number of parameters (from 0 up to the maximum specified,

for all practical purposes infinity), and returns a new Array instance consisting of [0=>arg1, 1=>arg2,

2=>arg3, ...].

The other function, array_create_map(key,value,...) takes an even number of arguments, from 0

to 2n. The first argument is used as the key, and the second argument used as the value for that key, and so on.

The resulting Array instance consists of [arg1=>arg2, arg3=>arg4, ...]. Both of these methods are

documented in Section 4.2.

• [arg1, arg2, ...]: Shorthand notation for array_create(...)

41

• {k1=>v1, k2=>v2, ...}: Shorthand notation for array_create_map(...)

The LQX language supports two different methods of iterating over the contents of an Array. The first involves

knowing what the keys in the array actually are. This is a “traditional” iteration.

1 /* Traditional Array Iteration */

2 for (idx = 0; key < array.size; idx=idx+1) {

3 print("Key ", idx, " => ", array[idx]);

4 }

In the above code snippet, we assume there exists an array which contains n values, stored at indexes 0 through

n-1, continuously. However, the language provides a more elegant method for iterating over the contents of an array

which does not require prior knowledge of the contents of the array. This is known as a “foreach” loop. The

statement above can be rewritten as follows:

1 /* More modern array itteration */

2 foreach (key, value in array) {

3 print("Key ", key, " => ", value);

4 }

This method of iteration is much cleaner and is the recommended way of iterating over the contents of an array.

However, there is little guarantee of the order of the results in a foreach loop, especially when keys of multiple

different types are used.

Type Casting

The LQX programming language provides a number of built-in methods for converting between variables of different

types. Any of these methods support any input value type except for the Object type. The following is a non-extensive

list of use cases for each of the different type casting methods and the results. Complete documentation is provided in

Section 4.2.

str(...)

str() “”

str(1.0) “1”

str(1.0, "+", true) “1+true”

str([1.0, "t"]) “[0=>1, 1=>t]”

str(null) “(null)”

double(?)

double(1.0) 1.0

double(null) 0.0

double("9") 9.0

double(true) 1.0

double([0]) null

boolean(?)

boolean(1.0) true

boolean(17.0) true

boolean(-9.0) true

boolean(0.0) false

boolean(null) false

boolean("yes") true

boolean(true) true

boolean([0]) null

Keywords

The following strings are keywords in the language:

Control Flow : break, else, foreach, for, function, if, in, return, while.

Constants : NULL, false, null, true.

File Input/Output : append, file_close, file_open, print_spaced, println_spaced, println,

print, read_data, read_loop, read, write.

42

User-Defined Functions

The LQX programming language has support for user-defined functions. When defined in the language, functions do

not check their arguments types so every effort must be taken to ensure that arguments are the type that you expect

them to be. The number of arguments will be checked. Variable-length argument lists are also supported with the

use of the ellipsis (...) notation. Any arguments given that fall into the ellipsis are converted into an array named

(_va_list) in the functions’ scope. This is a regular instance of Array consisting of 0 or more items and can be

operated on using any of the standard operators.

User-defined functions do not have access to any variables except their arguments and External ($-prefixed) and

Constant (@-prefixed) variables. Any additional variables must be passed in as arguments, and all values must be

returned. All arguments are in only. There are no out or inout arguments supported. All arguments are copied,

pass-by-value. The basic syntax for declaring functions is as follows:

1 function <name>(<arg1>, <arg2>, ...) {

2 <body>

3 return (value);

4 }

You can return a value from a function anywhere in the body using the return function. A function which

reaches the end of its body without a call to return will automatically return NULL. return() is a function, not a

language construct, and as such the brackets are required. The number of arguments is not limited, so long as each

one has a unique name there are no other constraints.

4.1.2 Program Input/Output and External Control

The LQX language allows users to write formatted output to external files and standard output and to read input data

from external files/pipes and standard input. These features may be combined to allow LQNX to be controlled by a

parent process as a child process providing model solving functionality. These capabilities will be described in the

following sections.

File Handles

The LQX language allows users to open files for program input and output. Handles to these open files are stored in

the symbol table for use by the print() functions for file output and the read_data() function for data input. Files may

be opened for writing/appending or for reading. The LQX interpreter keeps track of which file handles were opened

for writing and which were opened for reading.

The following command opens a file for writing. If it exists it is overwritten. It is also possible to append to an

existing file. The three options for the third parameter are write, append, and read.

1 file_open(output_file1, "test_output_99-peva.txt", write);

To close an open file handle the following command is used:

1 file_close(output_file1);

File Output

Program output to both files and standard output is possible with the print functions. If the first parameter to the

functions is an existing file handle opened for writing output is directed to that file. If the first parameter is not a file

handle output is sent to standard output. Standard output is useful when it is desired to control LQNX execution from

a parent process using pipes. If the given file handle has been opened for reading instead of writing a runtime error

results.

There are four variations of print commands with two options. One option is a newline at the end of the line. It is

possible to specify additional newlines with the endl parameter. The second option is controlling the spacing between

columns either by specifying column widths in integers or supplying a text string to be placed between columns.

The basic print functions are print() and println() with the ln specifying a newline at the end.

43

1 println(output_file1, "Model run #: ", i, " t1.throughput: ", t1.throughput);

2

3 print(output_file1, "Model run #: ", i, " t1.throughput: ", t1.throughput, endl);

It should be noted that with the extra endl parameter both of these calls will produce the same output. The

acceptable inputs to all print functions are valid file handles, quoted strings, LQX variables that evaluate to numerical

or boolean values (or expressions that evaluate to numerical/boolean values) as well as the newline specifier endl.

Parameters should be separated by commas.

To print to standard output no file handle is specified as follows:

1 println("subprocess lqns run #: ", i, " t1.throughput: ", t1.throughput);

To specify the content between columns the print functions print_spaced() and println_spaced() are

used. The first parameter after the file handle (the second parameter when a file handle is specified) is used to specify

either column widths or a text string to be placed between columns. If no file handle is specified as when printing to

standard output then the first parameter is expected to be the spacing specifier. The specifier must be either an integer

or a string.

The following println_spaced() command specifies the string ", " to be placed between columns. It

could be used to create comma separated value (csv) files.

1 println_spaced(output_file2, ", ", $p1, $p2, $y1, $y2, t1.throughput);

Example output: 0, 2, 0.1, 0.05, 0.0907554

The following println_spaced() command specifies the integer 12 as the column width.

1 println_spaced(output_file3, 12, $p1, $p2, $y1, $y2, t1.throughput);

Reading Input Data from Files/Pipes

Reading data from input files/pipes is done with the read_data() function. Data can either be read from a valid

file handle that has been opened for reading or from standard input. Reading data from standard input is useful when

is useful when it is desired to control LQNX execution from a parent process using pipes. If the given file handle has

been opened for writing rather than reading a runtime error results. The first parameter is either a valid file handle

for reading or the strings stdout or - specifying standard input. The data that can be read can be either numerical

values or boolean values.

There are two forms in which the read_data() function can be used. The first is by specifying a list of LQX

variables which correspond to the expected inputs from the file/pipe. This requires the data inputs from the pipe to be

in the expected order.

1 read_data(input_file, y, p, keep_running);

The second form in which the read_data() function can be used is much more robust. It can go into a loop

attempting to read string/value pairs from the input pipe until a termination string STOP_READ is encountered. The

string must corespond to an existing LQX variable (either numeric or boolean) and the corresponding value must be

of the same type.

1 read_data(stdin, read_loop);

Sample input:

1 y 10.0 p 1.0 STOP_READ

2 continue_processing false STOP_READ

44

Controlling LQNX from a Parent Process

The file output and data reading functions can be combined to allow an LQNX process to be created and controlled by

a parent process through pipes. Input data can be read in from pipes, be used to solve a model with those parameters

and the output of the solve can be sent back through the pipes to the parent process for analysis. A LQX program

can easily be written to contain a main loop that reads input, solves the model, and returns output for analysis. The

termination of the loop can be controlled by a boolean flag that can be set from the parent process.

This section describes an example of how to control LQNX execution from a parent process, in this case a perl

script which uses the open2() function to create a child process with both the standard input and output mapped to

file handles in the perl parent process. This allows data sent from the parent to be read with read_data(stdin,

...) and output from the LQX print statements sent to standard output to be received for analysis in the parent.

This also provides synchronization between the parent and the child LQNX processes. The read_data() func-

tion blocks the LQNX process until it has received its expected data. Similarly the parent process can be programmed

to wait for feedback from the child LQNX process before it continues.

The following is an example perl script that can be used to control a LQNX child process.

1 #!/usr/bin/perl -w

2 # script to test the creation and control of an lqns solver subprocess

3 # using the LQX language with synchronization

4

5 use FileHandle;

6 use IPC::Open2;

7

8 @phases = (0.0, 0.25, 0.5, 0.75, 1.0);

9 @calls = (0.1, 3.0, 10.0);

10

11 # run lqnx as subprocess receiving data from standard input

12 open2(*lqnxOutput, *lqnxInput, "lqnx 99-peva-pipe.lqnx");

13

14 for $call (@calls) {

15 for $phase (@phases) {

16 print(lqnxInput "y ", $call, " p ", $phase, " STOP_READ ");

17 while($response = <lqnxOutput>) !~ m/subprocess lqns run/){}

18 print("Response from lqnx subprocess: ", $response);

19 }

20 }

21

22 # send data to terminate lqnx process

23 print(lqnxInput "continue_processing false STOP_READ");

The above program invokes the lqnx program with its input file as a child process with open2(). Two file handles

are passed as parameters. These will be used to send data over the pipe to the LQNX process to be received as standard

input and to receive feedback from the LQX program which it sends as standard output.

The while loop at line 17 waits for the desired feedback from the model solve before continuing. This example

uses stored data but a real application such as optimization would need to analyze the feedback data to decide which

data to send back in the next iteration therefore this synchronization is important.

When the data is exhausted the LQNX process needs to be told to quit. This is done with the final print statement

which sets the continue_processing flag to false. This causes the main loop in the LQX program which follows to quit.

1 <lqx><![CDATA[

2

3 i = 1;

4 p = 0.0;

5 y = 0.0;

45

6 continue_processing = true;

7

8 while (continue_processing) {

9

10 read_data(stdin, read_loop); /* read data from input pipe */

11

12 if(continue_processing) {

13

14 $p1 = 2.0 * p;

15 $p2 = 2.0 * (1 - p);

16 $y1 = y;

17 $y2 = 0.5 * y;

18 solve();

19

20 /* send output of solve through stdout through pipe */

21 println("subprocess lqns run #: ", i, " t1.throughput: ", t1.throughput);

22 i = i + 1;

23 }

24 }

25]]></lqx>

The variables p, y, and continue_processing all need to be initialized to their correct types before the

loop begins as they need to exist when the read_data() function searches for them in the symbol table. This is

necessary as they are all local variables. External variables that exist in the LQN model such as $p and $y don’t need

initialization.

4.1.3 Writing Programs in LQX

Hello, World Program

A good place to start learning how to write programs in LQX is of course the traditional Hello World program. This

would actually be a single line, and is not particularly interesting. This would be as follows:

1 println("Hello, World!");

The “println()” function takes an arbitrary number of arguments of any type and will output them (barring a

file handle as the first parameter) to standard output, followed by a newline.

Fibonacci Sequence

This particular program is a great example of how to perform flow control using the LQX programming language. The

Fibonacci sequence is an extremely simple infinite sequence which is defined as the following piecewise function:

fib(X) =

{

1 x = 0, 1
fib(x− 1) + fib(x− 2) otherwise

(4.1)

Thus we can see that the Fibonacci sequence is defined as a recursive sequence. The naive approach would be to

write this code as a recursive function. However, this is extremely inefficient as the overhead of even simple recursion

in LQX can be substantial. The best way is to roll the algorithm into into a loop of some type. In this case, the loop is

terminated when we have reached a target number in the Fibonacci sequence { 1, 1, 2, 3, 5, 8, 13, 21, ...}.

1 /* Initial Values */

2 fib_n_minus_two = 1;

3 fib_n_minus_one = 1;

4 fib_n = 0;

5

46

6 /* Loop until we reach 21 */

7 while (fib_n < 21) {

8 fib_n = fib_n_minus_one + fib_n_minus_two;

9 fib_n_minus_two = fib_n_minus_one;

10 fib_n_minus_one = fib_n;

11 println("Currently: ", fib_n);

12 }

As you can see, this language is extremely similar to C or PHP. One of the few differences as far as expressions are

concerned is that pre-increment/decrement and post-increment/decrement are not supported. Neither are short form

expressions such as +=, -=, *=, /=, etc.

Re-using Code Sections

Many times, there will be code in your LQX programs that you would like to invoke in many places, varying only the

parameters. The LQX programming language does provide a pretty standard functions system as described earlier.

Bearing in mind the caveats (some degree of overhead in function calls, plus the inability to see global variables

without having them passed in), we can make pretty ingenious use of user-defined functions within LQX code.

When defining functions, you can specify only the number of arguments, not their types, so you need to make sure

things are what you expect them to be, or your code may not perform as you expect. We will begin by demonstrating

a substantially shorter (but as described earlier) much less efficient implementation of the Fibonacci Sequence using

functions and recursion.

1 function fib(n) {

2 if (n == 0 || n == 1) { return (1); }

3 return (fib(n-2) + fib(n-1));

4 }

Once defined, a function may be used anywhere in your code, even in other user defined functions (and itself |

recursively). This particular example functions very well for the first 10-11 fibonacci numbers but becomes substan-

tially slower due to the increased number of relatively expensive function invocations. Remember, return() is a

function, not a language construct. The brackets are required.

A much more interesting use of functions, specifically those with variable length argument lists, is an implemen-

tation of the formula for standard deviation of a set of values:

1 function average(/*Array<double>*/ inputs) {

2 double sum = 0.0;

3 foreach (v in inputs) { sum = sum + v; }

4 return (sum / inputs.size);

5 }

6

7 function stdev(/*boolean*/ sample, ...) {

8 x_bar = average(_va_list);

9 sum_of_diff = 0.0;

10

11 /* Figure out the divisor */

12 divisor = _va_list.size;

13 if (sample == true) {

14 divisor = divisor - 1;

15 }

16

17 /* Compute sum of difference */

18 foreach (v in _va_list) {

19 sum_of_diff = sum_of_diff + pow(v - x_bar, 2);

20 }

47

21

22 return (pow(sum_of_diff / divisor, 0.5));

23 }

You can then proceed to compute the standard deviation of the variable length of arguments for either sample or

non-sample values as follows, from anywhere in your program after it has been defined:

1 stdev(true, 1, 2, 5, 7, 9, 11);

2 stdev(false, 2, 9, 3, 4, 2);

Using and Iterating over Arrays

As mentioned in the “Arrays and Iteration” under section 1.1 of the Manual, LQX supports intrinsic arrays and

foreach iteration. Additionally, any type of object may be used as either a key or a value in the array. The fol-

lowing example illustrates how values may be added to an array, and how you can iterate over its contents and print it

out. The following snippet creates an array, stores some key-value pairs with different types of keys and values, looks

up a couple of them and then iterates over all of them.

1 /* Create an Array */

2 array = array_create();

3

4 /* Store some key-value pairs */

5 array[0] = "Slappy";

6 array[1] = "Skippy";

7 array[2] = "Jimmy";

8

9 /* Iterate over the names */

10 foreach (index,name in array) {

11 print("Chipmunk #", index, " = ", name);

12 }

13

14 /* Store variables of different types, shorthand */

15 array = {true => 1.0, false => 3.0, "one" => true, "three" => false}

16

17 /* Shorthand indexed creation with iteration */

18 foreach (value in [1,1,2,3,5,8,13]) {

19 print ("Next fibonacci is ", value);

20 }

4.1.4 Actual Example of an LQX Model Program

The following LQX code is the complete LQX program for the model designated peva-99. The model itself contains

a few model parameters which the LQX code configures, notably $p1, $p2, $y1 and $y2. The LQX program is

responsible for setting the values of all model parameters at least once, invoking solve and optionally printing out

certain result values. Accessing of result values is done via the LQNS bindings API documented in Section 4.2.

The program begins by defining an array of values that it will be setting for each of the external variables. By

enumerating as follows, the program will set the variables for the cross product of phase and calls.

1 phase = [0.0, 0.25, 0.5, 0.75, 1.0];

2 calls = [0.1, 3.0, 10.0];

3 foreach (idx,p in phase) {

4 foreach (idx,y in calls) {

48

Next, the program uses the input values p and y to compute the values of $p1, $p2, $y1 and $y2. Any assign-

ment to a variable beginning with a $ requires that variable to have been defined externally, within the model definition.

When such an assignment is made the value of the right-hand side is effectively put everywhere the left-hand side is

found within the model.

5 $p1 = 2.0 * p;

6 $p2 = 2.0 * (1 - p);

7 $y1 = y;

8 $y2 = 0.5 * y;

Since all variables have now been set, the program invokes the solve function with its optional parameter, the

suffix to use for the output file of the current run. This particular program outputs in.out-$p1-$p2-$y1-$y2

files, so that results for a given set of input values can easily be found. As shown in the documentation in Section 3,

solve(<opt> suffix) will return a boolean indicating whether or not the solution converged, and this program

will abort when that happens, although that is certainly not a requirement.

9 if (solve(str($p1,"-",$p2,"-",$y1,"-",$y2)) == false) {

10 println("peva-99.xml:LQX: Failed to solve the model properly.");

11 abort(1, "Failed to solve the model.");

12 } else {

The remainder of the program outputs a small table of results for certain key values of interest to the person running

the solution using the APIs in Section 3.

13 t0 = task("t0");

14 p0 = processor("p0");

15 e0 = entry("e0");

16 ph1 = phase(e0, 1);

17 ctoe1 = call(ph1, "e1");

18 println("+-------------------------------------+");

19 println("t0 Throughput: ", t0.throughput);

20 println("t0 Utilization: ", t0.utilization);

21 println("+ ----- +");

22 println("e0 Throughput: ", e0.throughput);

23 println("e0 TP Bound: ", e0.throughput_bound);

24 println("e0 Utilization: ", e0.utilization);

25 println("+ ----- +");

26 println("ph Utilization: ", ph1.utilization);

27 println("ph Svt Variance:", ph1.service_time_variance);

28 println("ph Service Time:", ph1.service_time);

29 println("ph Proc Waiting:", ph1.proc_waiting);

30 println("+ ----- +");

31 println("call Wait Time: ", ctoe1.waiting_time);

32 println("+-------------------------------------+");

33 }

34 }

35 }

4.2 API Documentation

4.2.1 Built-in Class: Array

Summary of Attributes

numeric size The number of key-value pairs stored in the array.

49

Summary of Constructors

object[Array] array_create(...) This method returns a new instance of the Array class,

where each the first argument to the method is mapped

to index numeric(0), the second one to numeric(1) and

so on, yielding [0=>arg0, 1=>arg1, ...]

object[Array] array_create_map(k,v,...) This method returns a new instance of the Array class

where the first argument to the constructor is used

as the key, and the second is used as the value, and

so on. The result is a n array [arg0=>arg1,
arg2=>arg3,...]

Summary of Methods

null array_set(object[Array] a,

? key, ? value)

This method sets the value value of any type for the

key key of any type, for array a. The shorthand nota-

tion for this operation is to use the operator [].

ref<?> array_get(object[Array] a,

? key)

This method obtains a reference to the slot in the array

a for the key key. If there is no value defined in the

array yet for the given key, a new slot is created for

that key, assigned to NULL, and a reference returned.

boolean array_has(object[Array] a,

? key)

Returns whether or not there is a value defined on array

a for the given key, key.

4.2.2 Built-in Global Methods and Constants

Intrinsic Constants

Summary of Constants

double @infinity IEEE floating-point numeric infinity.

double @type_un The type_id for an Undefined Variable.

double @type_boolean The type_id for a Boolean Variable.

double @type_double The type_id for a Numeric Variable.

double @type_string The type_id for a String Variable.

double @type_null The type_id for a Null Variable.

50

General Utility Functions

Summary of Methods

null abort(numeric n, string r) This call will immediately halt the flow of the program,

with failure code n and description string r. This can-

not be “caught” in any way by the program and will

result in the interpreter not executing any more of the

program.

null copyright() Displays the LQX copyright message.

null print_symbol_table() This is a very useful debugging tool which output the

name and value of all variables in the current inter-

preter scope.

null print_special_table() This is also a useful debugging tool which outputs the

name and value of all special (External and Constant)

variables in the interpreter scope.

numeric type_id(? any) This method returns the Type ID of any variable, in-

cluding intrinsic types (numeric, boolean, null, etc.)

and the result can be matched to the constants prefixed

with @type (@type_null, @type_un, @type_double,

etc.)

null return(? any) This method will return any value from a user-defined

function. This method cannot be used in global scope.

Numeric/Floating-Point Utility Functions

Summary of Methods

numeric abs(numeric n) Returns the absolute value of the argument n

numeric ceil(numeric n) Returns the value of n rounded up.

numeric exp(numeric n) Returns en.

numeric floor(numeric n) Returns the value of n rounded down.

numeric log(numeric n) Returns log(n), n > 0 (natural log).

numeric max(array a) Returns the largest value found in the array a.

numeric max(numeric a, numeric b,

...)

Returns the largest value among the numeric args.

numeric min(array a) Returns the smallest value found in the array a.

numeric min(numeric a, numeric b,

...)

Returns the smallest value among the numeric args.

numeric pow(numeric bas, numeric

x)

Returns bas to the power x.

numeric rand() Returns a random number between 0 and 1.

numeric round(numeric n) Returns the value of n rounded to the nearest integer.

numeric sqrt(numeric n) Returns
√
n, n ≥ 0.

numeric normal(numeric a, numeric

b)

Returns a normally distributed random number with

mean of a and a standard deviation of b.

numeric gamma(numeric a, numeric

b)

Returns a Gamma distributed random number with a

mean of a and a shape of b.

numeric uniform(numeric a, numeric

b)

Returns a uniformily distributed random number be-

tween a and b.

numeric poisson(numeric a) Returns a Poisson distributed random number with a

mean of a.

51

Type-casting Functions

Summary of Methods

string str(...) This method will return the same value as the function

print(...) would have displayed on the screen.

Each argument is coerced to a string and then adjacent

values are concatenated.

numeric double(? x) This method will return 1.0 or 0.0 if provided a

boolean of true or false respectively. It will re-

turn the passed value for a double, 0.0 for a null and

fail (NULL) for an object. If it was passed a string,

it will attempt to convert it to a double. If the whole

string was not numeric, it will return NULL, otherwise

it will return the decoded numeric value.

boolean bool(? x) This method will return true for a numeric value of

(not 0.0), a boolean true or a string “true” or “yes”.

It will return false for a numeric value 0.0, a NULL

or a string “false” or “no”, or a boolean false. It will

return NULL otherwise.

4.3 API Documentation for the LQN Bindings

4.3.1 LQN Class: Document

Summary of Attributes

Read-Write Attributes

string comment The model comment.

double conv_val The model convergence value for lqns.

double it_limit The iteration limit for lqns.

double print_int Iteration numbers where intermediate results are

generated.

double underrelax_coeff The underrelaxation coefficient for lqns.

double seed_value The initial seed value for the random number gen-

erator for lqsim.

double number_of_blocks

double block_time

double precision

double warm_up_loops

double warm_up_time

Read-Only Attributes

double iterations The number of solver iterations/simulation blocks.

double invocation The solution invocation number.

double system_cpu_time Total system time for this invocation.

double user_cpu_time Total user time for this invocation.

double elapsed_time Total elapsed time for this invocation.

boolean valid True if the results are valid.

double waits The number of times wait() was called.

Summary of Constructors

Document document() Returns the Document object

52

4.3.2 LQN Class: Processor

Summary of Attributes

double utilization The utilization of the Processor

Summary of Constructors

Processor processor(string name) Returns an instance of Processor from the current

LQN model with the given name.

4.3.3 LQN Class: Group

Summary of Attributes

double utilization The utilization of the Group

Summary of Constructors

Group processor(string name) Returns an instance of Group from the current

LQN model with the given name.

4.3.4 LQN Class: Task

Summary of Attributes

double throughput The throughput of the Task

double utilization The utilization of the Task

double proc_utilization This Task’s processor utilization

Array phase_utilizations Individual phase utilizations

Summary of Constructors

Task task(string name) Returns an instance of Task from the current LQN

model with the given name.

53

4.3.5 LQN Class: Entry

Summary of Attributes

boolean has_phase_1 Whether the entry has a phase 1 result

boolean has_phase_2 Whether the entry has a phase 2 result

boolean has_phase_3 Whether the entry has a phase 3 result

boolean has_open_wait_time Whether the entry has an open wait time

double phase1_proc_waiting Phase 1 Processor Wait Time

double phase1_service_time_variance Phase 1 Service Time Variance

double phase1_service_time Phase 1 Service Time

double phase1_utilization Phase 1 (task) Utilization

double phase1_pr_time_exceeded Phase 1 Max Service Time Exceeded

double phase2_proc_waiting Phase 2 Processor Wait Time

double phase2_service_time_variance Phase 2 Service Time Variance

double phase2_service_time Phase 2 Service Time

double phase2_utilization Phase 2 (task) Utilization

double phase2_pr_time_exceeded Phase 2 Max Service Time Exceeded

double phase3_proc_waiting Phase 3 Processor Wait Time

double phase3_service_time_variance Phase 3 Service Time Variance

double phase3_service_time Phase 3 Service Time

double phase3_utilization Phase 3 (task) Utilization

double phase3_pr_time_exceeded Phase 3 Max Service Time Exceeded

double proc_utilization Entry processor utilization

double squared_coeff_variation Squared coefficient of variation

double throughput_bound Entry throughput bound

double throughput Entry throughput

double utilization Entry utilization

double waiting Entry open wait time

Summary of Constructors

Entry entry(string name) Returns the Entry object for the model entry whose

name is given as name

4.3.6 LQN Class: Phase

Summary of Attributes

double service_time Phase service time

double service_time_variation Phase service time variance

double utilization Phase utilization

double proc_waiting Phase processor waiting time

double pr_time_exceeded Phase Max Service Time Exceeded

Summary of Constructors

Phase phase(object entry,

numeric_int nr)

Returns the Phase object for a given entry’s phase

number specified as nr

54

4.3.7 LQN Class: Activity

Summary of Attributes

double proc_utilization The activities’ share of the processor utilization

double proc_waiting Activities’ processor waiting time

double service_time_variance Activity service time variance

double service_time Activity service time

1091 double pr_time_exceeded Activity Max Service Time Exceeded

double squared_coeff_variation The square of the coefficient of variation

double throughput The activity throughput

double utilization Activity utilization

Summary of Constructors

Activity activity(object task,

string name)

Returns an instance of Activity from the current

LQN model, whose name corresponds to an activ-

ity in the given task.

4.3.8 LQN Class: Call

Summary of Attributes

double waiting Call waiting time

double waiting_variance Call waiting time

double loss_probability Message loss probability for asynchronous mes-

sages

Summary of Constructors

Call call(object phase, string

destinationEntry)

Returns the call from an entry’s phase (phase) to

the destination entry whose name is (dest).

Call call(object activity,

string destinationEntry)

Returns the call from a task’s activity (activity) to

the destination entry whose name is (dest)

4.3.9 Pragmas

Summary of Attributes

string value Value of pramga.

Summary of Constructors

Pragma pragma(string pragma) Returns the value for the pragma supplied as an ar-

gument.

4.3.10 Confidence Intervals

Summary of Constructors

conf_int conf_int(object, int level) Returns the ± (level) for the attribute for the object

55

Chapter 5

LQN Input File Format

This Chapter describes the original ‘SRVN’ input file format, augmented with the Software Performance EXperiment

driver (SPEX) grammar. In this model format models are specified breadth-first, in contrast to the XML format

described in §3 where models are specified depth-first. This specification means that all resources such as processors,

tasks and entries, are defined before they are referenced. Furthermore, each resource is grouped into its own section in

the input file. Figure 5.1 shows the basic schema and Listing 5.1 shows the basic layout of the model file.

0..* 0..1 1..*1..* 1..* 0..* 0..* 0..*

1..*1

1..*

1..*

1..*1

{a
lt}

1..*

1..*1

1..* 0..*1

1

parameters General Processor Task Activity Result ConvergenceEntry

lqn−model

Group

definition precedence

{ordered}

Figure 5.1: SRVN input schema

Each of the sections within the input file begins with a key-letter, as follows:

$ SPEX parameters (optional).

G General solver parameters (optional).

P Processor definitions.

U Processor group definitions (optional).

T Task definitions.

E Entry definitions.

A Task activity definitions (optional).

R SPEX result definitions (optional).

C SPEX convergence (optional).

Section 5.2 describes the input sections necessary to solve a model, i.e. P, U T, E, and A. Section 5.3 describes the

additional input sections for solving multiple models using SPEX, i.e. $, R, and C. The complete input grammar is

listed in Appendix A.

56

Listing 5.1: LQN file layout

1 # Pragmas

2 #pragma <param>=<value>

3

4 # Parameters (SPEX)

5 $var = <expression>

6 $var = [<expression-list>]

7

8 # General Information

9 G "<string>" <real> <int> <int> <real> -1

10

11 # Processor definitions

12 P 0

13 p <proc-id> <sched> <opt-mult> <opt-repl> <opt-obs>

14 -1

15

16 # Group definitions

17 U 0

18 g <group-id> <real> <opt-cap> <proc-id>

19 -1

20

21 # Task definitions

22 T 0

23 t <task-id> <sched> <entry-list> -1 <proc-id> <opt-pri> <opt-think-time>

24 <opt-mult> <opt-repl> <opt-grp> <opt-obs>

25 -1

26

27 # Entry definitions

28 E 0

29 A <activity-id>

30 s <entry-id> <real> ... -1 <opt-obs>

31 y <entry-id> <entry-id> <real> ... -1 <opt-obs>

32 -1

33

34 # Activity definitions

35 A <task-id>

36 s <activity-id> <real> <opt-obs>

37 y <activity-id> <entry-id> <real> <opt-obs>

38 :

39 <activity-list> -> <activity-list>

40 -1

41

42 # Result defintions (SPEX)

43 R 0

44 plot($var, $var,...)

45 $var = <expression>

46 -1

47

48 # Convergence defintions (SPEX)

49 C 0

50 $var = <expression>

51 -1

57

5.1 Lexical Conventions

The section describes the lexical conventions of the SRVN input file format.

5.1.1 White Space

White space, such as spaces, tabs and new-lines, is ignored except within strings. Object definitions can span multiple

lines.

5.1.2 Comments

Any characters following a hash mark (#) through to the end of the line are considered to be a comment and are

generally ignored. However, should a line begin with optional whitespace followed by ‘#pragma’, then the remainder

of the line will be treated by the solver as a pragma (more on pragmas below).

5.1.3 Identifiers

Identifiers are used to name the objects in the model. They consist of zero or more leading underscores (‘_’), followed

by a character, followed by any number of characters, numbers or underscores. Punctuation characters and other

special characters such as the dollar-sign (‘$’) are not permitted. Non-numeric identifiers must be a minimum of two

characters in length1 The following, 1, p1, p_1, and __P_21_proc are valid identifiers, while $proc and $1 are

not.

5.1.4 Variables

Variables are used to set values of various objects such as the multiplicity of tasks and the service times of the phases

of entries. Variables are modifed by SPEX (see §5.3) to run multiple experiments. Variables start with a dollar-sign

(‘$’) followed by any number of characters, numbers or underscores. $var and $1 are valid variables while $$ is

not.

5.2 LQN Model Specification

This section describes the mandatory and option input for a basic LQN model file. SPEX information, namely Vari-

ables, (§5.2.7), Report Information (§5.3.2) and Convergence Information (§5.3.3) are described in the section that

follows. All input files are composed of three mandatory sections: Processor Information (§5.2.3), Task Information

(§5.2.5) and Entry Information (§5.2.6), which define the processors, tasks and entries respectively in the model. All

of the other sections for a basic model file are optional. They are: Pragmas, General Information (§5.2.2), Group

Information (§5.2.4), and Activity Information. The syntax of these specifications are described next in the order in

which they appear in the input model.

5.2.1 Pragmas

Any line beginning with optional whitespace followed by the word ‘#pragma’efines a pragma which is used by either

the analytic solver or the simulator to change its behaviour. The syntax for a pramga directive is shown in line 2 in

Listing 5.1. Pragma’s which are not handled by either the simulator or the analytic solver are ignored. Pragma’s can

appear anywhere in the input file2 though they typically appear first.

1Single characters are used for section and record keys.
2Pragma’s are processed during lexical analysis.

58

5.2.2 General Information

The optional general information section is used to set various control parameters for the analytic solver LQNS. These

parameters, with the exception of the model comment, are ignored by the simulator, lqsim. Listing 5.2 shows the

format of this section. Note that these parameters can also be set using SPEX variables, described below in §5.3.1.

Listing 5.2: General Information

1 G "<string>" # Model title.

2 <real> # convergence value

3 <int> # iteration limit

4 <int> # Optional print interval.

5 <real> # Optional under-relaxation.

6 -1

5.2.3 Processor Information

Processors are specified in the processor information section of the input file using the syntax shown in Listing 5.3.

The start of the section is identified using “P <int>” and ends with “-1”. The <int> parameter is either the number

of processor definitions in this section, or zero3.

Listing 5.3: Processor Information

1 P <int>

2 p <proc-id> <sched> <opt-mult>

3 -1

Each processor in the model is defined using the syntax shown in line 2 in Listing 5.3. Each record in this section

beginning with a ‘p’ defines a processor. <proc-id> is either an integer or an identifier (defined earlier in §5.1.3).

<sched> is used to define the scheduling discipline for the processor and is one of the code letters listed in Table 5.1.

The scheduling disciplines supported by the model are described in Section 1.1.1. Finally, the optional <opt-mult>
specifies the number of copies of this processor serving a common queue. Multiplicity is specified using the syntax

shown in Table 5.2. By default, a single copy of a processor is used for the model.

<sched> Scheduling Discipline

f First-come, first served.

p Priority-preemptive resume.

r Random.

i Delay (infinite server).

h Head-of-Line.

c <real> Completely fair share with time quantum <real>.

s <real> Round Robin with time quantum <real>.

Table 5.1: Processor Scheduling Disciplines (see §1.1.1).

5.2.4 Group Information

Groups are specified in the group information section of

Listing 5.4: Group Information

1 U <int>

2 g <group-id> <real> <opt-cap> <proc-id>

3The number of processors, <int>, is ignored with all current solvers.

59

<opt-mult> Multiplicity

m <int> <int> identical copies with a common queue.

i Infinite (or delay).

<opt-repl> Repliplication

r <int> <int> replicated copies with separate queues.

Table 5.2: Multiplicity and Replication (see §1.2).

3 -1

5.2.5 Task Information

Tasks are specified in the task information section of the input file using the syntax shown in Listing 5.5. The start of

the task section is identified using “T <int>” and ends with “-1”. The <int> parameter is either the number of task

definitions in this section, or zero.

Listing 5.5: Task Information

1 T <int>

2 t <task-id> <sched> <entry-list> -1 <opt-queue-length> <opt-tokens>

3 <proc-id> <opt-pri> <opt-think-time>

4 <opt-mult> <opt-repl> <opt-grp>

5 I <task-id> <task-id> <int> # fan-in for replication

6 O <task-id> <task-id> <int> # fan-out for replication

7 -1

Each task definition within this section starts with a ‘t’ and is is defined using the syntax shown in lines 2 and 3 of

Listing 5.54. <task-id> is an identifier which names the task. <sched> is used to define the request distribution for

reference tasks, or the scheduling discipline for non-reference tasks. The scheduling and distribution code letters are

shown in Table 5.3. Some disciplines are only supported by the simulator; these are identified using “†”. <entry-list>
is a list of idententifiers naming the entries of the task. The optional <opt-pri> is used to set the priority for the task

provided that the processor running the task is scheduled using a priority discipline. The optional <opt-think-time>
specifies a think time for a reference task. The optional <opt-mult> specifies the number of copies of this task serving

a common queue. Multiplicity is specified using the syntax shown in Table 5.2. By default, a single copy of a task is

used for the model. Finally, the optional <opt-grp> is used to identify the group that this task belongs to provided

that the task’s processor is using fair-share scheduling

5.2.6 Entry Information

Entries are specified in the entry information section starting from “E <int>” and ending with “-1”. The <int>
parameter is either the number of entry definitions in this section, or zero. Each record in the entry section defines

a single parameter for an entry, such as its priority, or a single parameter for the phases of the entry, such as service

time. Listing 5.6 shows the syntax for the most commonly used parameters.

All entry records start with a key letter, followed by an <entry-id>, followed by from one to up to five arguments.

Table 5.5 lists all the possible entry specifiers. The table is split into six classes, based on the arguments to the

parameter. Records used to specifiy service time and call rate parameters for phases take a list of from one to three

arguments and terminated with a ‘-1’. All other entry records, with the exception of histogram information, take a

fixed number of arguments. Records which only apply to the simulator are marked with a ‘†’.

4Line 3 is a continuation of line 2.

60

Reference tasks (customers).

<sched> Request Distribution

r Poisson.

b Bursty†.

u Uniform†.

Non-Reference tasks (servers).

<sched> Queueing Discipline

n First come, first served.

P Polled service at entries†.

h Head-of-line priority.

f First come, first served.

i Infinite (delay) server.

w Read-Write lock task†.

S Semaphore task†.

Table 5.3: Task Scheduling Disciplines (see §1.1.3).

Option Parameter

<integer> Task priority for tasks running on processors supporting priorities.

z <real> Think Time for reference tasks.

q <real> Maximum queue length for asynchronous requests.

T <integer> Initial tokens at semaphore task†.

m <integer> Task multiplicity.

r <integer> Task replication.

g <identifier> Group identifier for tasks running of processors with fair share scheduling.

Table 5.4: Optional parameters for tasks (see §1.1.3).

5.2.7 Activity Information

Activity information sections are required to specify the parameters and connectivity of the activities for a task. Note

that unlike all other sections, each task with activities has its own activity information section.

An activity information section starts with “A <task-id>” and ends with “-1”. The data within an activity infor-

mation section is partitioned into two parts. The first part lists the parameter data for an activity in a fashion similar

to the parameter data for an entry; the second section defines the connectivity of the activities. Listing 5.7 shows the

basic syntax.

Listing 5.6: Entry Information

1 E <int>

2 A <entry-id> <activity-id> # Start activity.

3 F <entry-id> <entry-id> <real> # forward.

4 s <entry-id> <real> ... -1 # Service time by phase.

5 y <entry-id> <entry-id> <real> ... -1 # Synchronous request by phase.

6 -1

61

Key Paramater Arguments

One argument

a <entry-id> <real> Arrival Rate

A <entry-id> <activity-id> Start activity

p <entry-id> <int> Entry priority

One to three phase arguments

s <entry-id> <real> ... -1 Service Time. The entry’s <entry-id> and mean service

time value per phase.

c <entry-id> <real> ... -1 Coefficient of Variation

Squared.

The entry’s <entry-id> and CV2 value for

each phase.

f <entry-id> <int> ... -1 Call Order STOCHASTIC or DETERMINISTIC

M <entry-id> <real> ... -1 Max Service Time† Output probability that the service time re-

sult exceeds the <real> parameter, per

phase.

Arguments for a single phase

H <int> <entry-id> <real> : <real> <opt-int> Histogram†: An <int> phase, followed by

a range from <real> to <real>, and an op-

tional <int> buckets.

Destination and one argument

F <entry-id> <real> -1 Forwarding Probability Source and Destination entries, and proba-

bility reply is forwarded.

Destination and one to three phase arguments

y <entry-id> <entry-id> <real> ... -1 Rendevous Rate Source and Destination entries, and rate per

phase.

z <entry-id> <entry-id> <real> ... -1 Send-no-Reply Rate Source and Destination entries, and rate per

phase.

Semaphores and Locks†

P <entry-id> Signal† Entry <entry-id> is used to signal a

semaphore task.

V <entry-id> Wait†

R <entry-id> Read lock†

U <entry-id> Read unlock†

W <entry-id> Write lock†

X <entry-id> Write unlock†

Table 5.5: Entry Specifiers

Listing 5.7: Activity Information

1 A <task-id>

2 s <activity-id> <real>

3 c <activity-id> <real>

4 f <activity-id> <int>

5 y <activity-id> <entry-id> <real>

6 z <activity-id> <entry-id> <real>

7 :

8 <activity-list> -> <activity-list>

9 -1

62

Key Paramater Arguments

one to three phase arguments

s Service Time. The entry’s <entry-id> and mean service time value per phase.

c Coefficient of Variation Squared. The entry’s <entry-id> and CV2 value for each phase.

f Call Order STOCHASTIC or DETERMINISTIC

Destination and one to three phase arguments

y Rendevous Rate Source and Destination entries, and rate per phase.

z Send-no-Reply Rate Source and Destination entries, and rate per phase.

Table 5.6: Activity Specifiers

Post (or Join) lists

<activity-id>
<activity-id> + <activity-id> +...
<activity-id> & <activity-id> &...

Pre (or Fork) lists

<activity-id>
<activity-id> + <activity-id> +...
<activity-id> & <activity-id> &...

Table 5.7: Activity Lists

5.3 SPEX: Software Performance Experiment Driver

SPEX, the Software Performance ExPeriment driver, was originally a Perl program used to generate and solve multiple

layered queueing network models. With version 5 of the solvers this functionality has been incorporated into the

lqiolib and lqx libraries used by the simulator and analytic solver. The primary benefit of this change is that

analytic solutions can run faster for reasons described in [11].

SPEX augments the input file described in §5.2 by adding variables for setting input values, a Report Information

(§5.3.2) used to format output, and an optional Convergence Information (5.3.3) for feeding result values back into

input variables. Listing 5.1 shows these sections starting with comments in red. The syntax of these sections are

described next in the order in which they appear in the input model.

5.3.1 Variables

SPEX variables are used to set and possibly vary various input values to the model, and to record results from the

solution of the model. There are four types of variables: control, scalar, array and observation. Control variables

are used to define parameters that control the execution of the solver. Scalar and array variables are used to set input

parameters to the model. Finally, observation variables are used to record results such as throughputs and utilizations.

Control Variables

Control variables are used to set parameters that are used to control either the analytic solver lqns, or the simulator

lqsim. With the exception of $comment, all of these variables can be changed as SPEX executes, though this be-

haviour may not be appropriate in many cases. Table 5.8 lists all of the control variables accepted by SPEX. See

Table 5.10 for control variables that are no longer recognized.

Scalar Variables

Scalar variables are used to set input values for the model and are initialized using any <ternary-expression> (?:)

using this syntax:

63

Control Variable Type of Value Default Value Program

$model_comment <string> ""

$solver <string> deprecated

$convergence_limit <real> 0.00001 lqns

$iteration_limit <int> 100 lqns

$print_interval <int> 1 lqns

$underrelaxation <real> 0.9 lqns

$block_time <int> 50000 lqsim

$number_of_blocks <int> 1 lqsim

$result_precision <real> – lqsim

$seed_value <int> – lqsim

$warm_up_loops <int> – lqsim

$convergence_iters <int> – spex

$convergence_under_relax <real> – spex

Table 5.8: Spex Control Variables

$name = <ternary-expression>

The <ternary-expression> may contain any variables defined previously or subsequently in the input file; order

does not matter. However, undefined variables and observation variables (more on these below) are not permit-

ted. If <ternary-expression> is an actual ternary expression, the test part must evaluate to a boolean. Refer to

Appendix A, §A.1.10 for the complete grammar for <ternary-expression>.

Array Variables

Array variables are used to specify a range of values that an input parameter may take on. There are two ways to

specify this information:

1 $name = [x, y, z, ...]

2 $name = [a : b, c]

The first form is used to set the variable $name to the values in the list, x, y, z, The second form is used the set

the variable $name from the value a to b using a step size of c. The value of b must be greater that a, and the step

size must be positive. Regardless of the format, the values for array variables must be constants.

During the execution of the solver, SPEX iterates over all of the values defined for each array variable. If multiple

arrays are defined, then SPEX generates the cross-product of all possible parameter values. Note that if a scalar

variable is defined in terms of an array variable, then the scalar variable will be recomputed for each model generated

by SPEX.

Observation Variables

There is a set of special symbols that are used to indicate to SPEX which result values from the solution of the model

are of interest. This result indication has the following form:

%<key><phase> $var

where <key> is a one or two letter key indicating the type of data to be observed and <phase> is an optional integer

indicating the phase of the data to be observed. The data, once obtained from the results of the model, is placed into

the variable $var where it may be used in the Result Information section described below.

To obtain confidence interval information, the format is

%<key><phase>[confidence] $var1 $var2

64

Key Phase Description Location

%u no Utilization processor declaration (p info)

yes task declaration (t info)

yes entry service declaration (s info)

%f no Throughput task declaration (t info)

no entry service declaration (s info)

%pu no Processor Utilization task declaration (t info)

no entry service declaration (s info)

%s yes Service Time entry service declaration (s info)

%v yes Service Time Variance entry service declaration (s info)

%fb no Throughput Bound entry service declaration (s info)

%pw yes Processor waiting time by task entry service declaration (s info)

%w yes Call waiting time entry call declaration (y info)

no entry open arrival declaration (a info)

%x yes Max Service Time Exceeded entry service declaration (s info)

Table 5.9: Observation Key location

Listing 5.8: Report Information

1 R <int>

2 plot(<var-list>)

3 splot(<var-list>)

4 $var = <ternary-expression>

5 <expression>

6 -1

where confidence can be 95 or 99, $var1 is the mean and $var2 is the half-width of the confidence interval.

The location of a result indication determines the entity to be observed. Table 5.9 describes each of the keys and

where they may be used.

For any key/location combination that takes a phase argument, if none is supplied then the sum of the values for

all phases is reported. This also happens if a phase of zero is given.

5.3.2 Report Information

The purpose of the report information section of the input file is to specify which variable values (including result

indications) are to be printed in the SPEX result file. The format of this section is shown in Listing 5.8 and consists of

either a single plot function, or a list of variables (with possible computed results).

There may be any number of report declarations, however, the integer parameter to R must either be the number of

report declarations present or zero5.

The <ternary-expression> may be any valid ternaray expression as discussed above. The <expression> can be

any expression, including a lone variable or a function call. Report indication variables and the parameter variables

may both be used together, but may not be mixed with either plot() or splot().

The values of the variables listed in this section are printed from left to right in the order that they appear in the

input file separated by commas. This output can then be used as input to Gnuplot or a spreadsheet such as Excel.

Output is normally sent to the terminal, but can be redirected using -ooutput filename.

If the plot() or splot() function is used, output will formatted in such a way that it can be used as input into

gnuplot. The first argument to the plot function call is the x variable for the graph. The first two arguments to the

splot function call are the x and y variables for the graph. Multiple additional arguments are permitted but should

5The number is ignored; it is present in the syntax so that the report section matches the other sections.

65

1 $array = 1 2 3

2 $array = 1:10,2

(a) Spex 1

1 $array = [1, 2, 3]

2 $array = [1:10,2]

(b) Spex 2

Figure 5.2: x

be grouped by result type (ie., throughputs, utilizations). When using plot, up to two groups can be plotted with

results in first group being plotted against the left ’y’ axis, and results from the second on the right ’y’ axis. When

using splot, only one group of results can be used. Only one plot function can be specified in the report section at

this time. The actual output is self-contained gnuplot input.

There is a special variable called $0 which represents the independent variable in the results tables (the x-axis in

plots). The variable $0 may be set to any expression allowing for flexibility in producing result tables. This variable

cannot be used as a parameter in the model.

5.3.3 Convergence Information

Spex allows a parameter value to be modified at the end of a model solution and then fed back in to the model. The

model is solved repeatedly until the parameter value converges. The convergence section is declared in a manner

similar to the result section:

Listing 5.9: Convergence Information

1 C <int>

2 $var = <ternary-expression>

3 -1

Convergence variables must be parameters. They cannot be result variables.

5.3.4 Differeneces to SPEX 1

This section outlines differences in the syntax between SPEX version 1 and version 2. SPEX version 1 was processed

by a Perl program to convert the model into a conventional LQN model file. SPEX version 2 is now parsed directly

and converted into LQX internally.

Array Initialization

Lists used for array initialization must now be enclosed within square brackets (‘[]’). Further, the items must be

separated using commas. Figure 5.2 shows the old and new syntax.

Perl Expressions

Perl Expressions are no longer supported in SPEX 2.0. Rather, a subset of LQX expressions are used instead. For

SPEX convergence expressions, Perl if then else statements must be converted to use the ternary ?: operator.

SPEX 2 cannot invoke Perl functions.

Line Continuation

Line continuation, where a line is terminated by a backslash (‘\’), is not needed with Version 2 SPEX. All whitespace,

including newlines, is ignored.

66

Control Variable

$coefficient_of_variation

$hosts

Table 5.10: Obsolete SPEX Control Variables.

Listing 5.10: SPEX random parameter generation

1 $experiments = [1:10,1] # 10 experiments.

2 $experiments, $parameter1 = rand() # $experiments is ignored.

3 $experiments, $parameter2 = rand() # $experiments is ignored.

Comments

In Version 1 of SPEX, all text before a dollar sign (‘$’), or either an upper case ‘G’ or ‘P’ at the start of a line, was

treated as a comment. Since Version 2 SPEX is parsed directly, all comments must start with the hash symbol (‘#’).

String Substitution

Version 2 SPEX does not support variable substitution of string parameters such as pragmas, and scheduling types.

This restriction may be lifted in future versions.

Pragmas

Version 1 SPEX did not require the hash symbol (‘#’) for setting pragmas. Version 2 SPEX does.

SPEX AGR

SPEX AGR is no longer supported.

Control Variables

Version 2 SPEX does not support the control variables shown in Table 5.10.

Random Numbers

Version 2 SPEX introduces the function rand() to generate random numbers in the range of [0..1). To generate a

set of experiments with random parameters, an array (or set of arrays) with the number of elements corresponding to

the number of experiments is required to cause SPEX to iterate (see Section 5.3.5). Listing 5.10 shows the syntax to

generate random values for ten experiments.

5.3.5 SPEX and LQX

SPEX uses LQX to generate individual model files. All scalar paramaters are treated as globally scoped variables in

LQX and can be used to set parameters in the model. If the assignement expression for a scalar variable does not

reference any array variables, it is set prior to the iteration of any loop. Otherwise, the scalar variable is set during the

execution of the innermost loop of the program.

Array variables are used to generate foreach loops in the LQX program. The variable defining the array is local

(i.e. without the ‘$’) with the name of the SPEX parameter. Each array variable generates a for loop; the loops are

nested in the order of the definition of the array variable. The value variable for the foreach loop is global (i.e. with

the ‘$’) with the name of the SPEX parameter and can be used as a parameter in the model.

If SPEX convergence is used, a final innermost loop is created. This loop tests the variables defined in the conver-

gence section for change, and if any of the variables changes by a non-trivial amount, the loop repeats.

67

Listing 5.11: SPEX file layout.

1 $m_client = [1, 2, 3]

2 $m_server = [1: 3, 1]

3 $s_server = $m_server / 2

4

5 P 2

6 p client i

7 p server s 0.1

8 -1

9

10 T 2

11 t client r client -1 client m $m_client %f $f_client

12 t server n server -1 server m $m_server %u $u_server

13 -1

14

15 E 2

16 s client 1 -1

17 y client server $s_server -1

18 s server 1 -1

19 -1

20

21 R 3

22 $0

23 $f_client

24 $u_server

25 -1

Listing 5.11 shows a model defined defined using SPEX syntax. Listing 5.12 shows the corresponding LQX

program generated by the model file.

68

Listing 5.12: LQX Program for SPEX input.

1 m_client = array_create(1, 2, 3);

2 _0 = 0;

3 _f_client = 0;

4 _u_server = 0;

5 println_spaced(", ", "$0", "$f_client", "$u_server");

6 foreach($m_client in m_client) {

7 for ($m_server = 1; $m_server <= 3; $m_server = ($m_server + 1)) {

8 $s_server = ($m_server / 2);

9 _0 = (_0 + 1);

10 if (solve()) {

11 _f_client = task("client").throughput;

12 _u_server = task("server").utilization;

13 println_spaced(", ", _0, _f_client, _u_server);

14 } else {

15 println("solver failed: $0=", _0);

16 }

17 }

18 }

69

Chapter 6

Invoking the Analytic Solver “lqns”

The Layered Queueing Network Solver (LQNS) is used to solved Layered Queueing Network models analytically.

Lqns reads its input from filename, specified at the command line if present, or from the standard input oth-

erwise. By default, output for an input file filename specified on the command line will be placed in the file

filename.out. If the -p switch is used, parseable output will also be written into filename.p. If XML input

or the -x switch is used, XML output will be written to filename.lqxo. This behaviour can be changed using the

-ooutput switch, described below. If several files are named, then each is treated as a separate model and output

will be placed in separate output files. If input is from the standard input, output will be directed to the standard output.

The file name ‘-’ is used to specify standard input.

The -ooutput option can be used to direct output to the file output regardless of the source of input. Output

will be XML if XML input or if the -x switch is used, parseable output if the -p switch is used, and normal output

otherwise. Multiple input files cannot be specified when using this option. Output can be directed to standard output

by using -o- (i.e., the output file name is ‘-’.)

6.1 Command Line Options

-a, -no-advisories

Ignore advisories. The default is to print out all advisories.

-b, -bounds-only

This option is used to compute the “Type 1 throughput bounds” only. These bounds are computed assuming no

contention anywhere in the model and represent the guaranteed not to exceed values.

-c, -convergence-value=arg

Set the convergence value to arg. Arg must be a number between 0.0 and 1.0.

-d, -debug=arg

This option is used to enable debug output. Arg can be one of:

all Enable all debug output.

forks Print out the fork-join matching process.

interlock Print out the interlocking table and the interlocking between all tasks and processors.

lqx Print out the actions the LQX parser while reading an LQX program.

overtaking Print the overtaking probabilities in the output file.

submodels Print out the contents of all of the submodels found in the model.

variance Print out variance calculation.

xml Print out the actions of the Expat parser while reading XML input.

70

-e, -error=arg

This option is to enable floating point exception handling. Arg must be one of the following:

1. a Abort immediately on a floating point error (provided the floating point unit can do so).

2. d Abort on floating point errors. (default)

3. i Ignore floating point errors.

4. w Warn on floating point errors.

The solver checks for floating point overflow, division by zero and invalid operations. Underflow and inexact

result exceptions are always ignored.

In some instances, infinities will be propogated within the solver. Please refer to the stop-on-message-loss

pragma below.

-f, -fast-linearizer

This option is used to set options for quick solution of a model using One-Step (Bard-Schweitzer) MVA. It is

equivalent to setting pragma mva=one-step, layering=batched, multiserver=conway

-h, -huge

Solve using one-step-schweitzer, no interlocking, and Rolia multiserver.

-H, -help=arg

Print a summary of the command line options. The optional argument shows help for -d, -t, -z, and -P respec-

tively.

-i, -iteration-limit=arg

Set the maximum number of iterations to arg. Arg must be an integer greater than 0. The default value is 50.

-I, -input-format=arg

This option is used to force the input file format to either xml or lqn. By default, if the suffix of the input filename

is one of: .in, .lqn or .xlqn , then the LQN parser will be used. Otherwise, input is assumed to be XML.

-j, -json

Generate JSON output regardless of input format.

-M, -mol-underrelaxation=arg

Set the under-relaxation factor to arg for the MOL (Rolia) multiserver approximation. If the approximation is

failing, lower this value. Arg must be a number between 0.0 and 1.0. The default value is 0.5.

-n, -no-execute

Build the model, but do not solve.The input is checked for validity but no output is generated.

-o, -output=arg

Direct analysis results to output. A filename of ‘-’ directs output to standard output. If output is a directory,

all output is saved in output/input.out. If the input model contains a SPEX program with loops, the

SPEX output is sent to output; the individual model output files are found in the directory output.d. If

lqns is invoked with this option, only one input file can be specified.

-p, -parseable

Generate parseable output suitable as input to other programs such as lqn2ps(1) and srvndiff(1). If input is

from filename, parseable output is directed to filename.p. If standard input is used for input, then the

parseable output is sent to the standard output device. If the -ooutput option is used, the parseable output is

sent to the file name output. (In this case, only parseable output is emitted.)

-P, -pragma=arg

Change the default solution strategy. Refer to the PRAGMAS section below for more information.

71

-r, -rtf

Output results using Rich Text Format instead of plain text. Processors, entries and tasks with high utilizations

are coloured in red.

-t, -trace=arg

This option is used to set tracing options which are used to print out various intermediate results while a model

is being solved. arg can be any combination of the following:

activities Print out results of activity aggregation.

cfs Print out CFS computation before each submodel is solved.

convergence=arg Print out convergence value after each submodel is solved. This option is useful for tracking

the rate of convergence for a model. The optional numeric argument supplied to this option will print out

the convergence value for the specified MVA submodel, otherwise, the convergence value for all submodels

will be printed.

delta-wait Print out difference in entry service time after each submodel is solved.

forks Print out overlap table for forks prior to submodel solution.

idle-time Print out computed idle time after each submodel is solved.

interlock Print out interlocking adjustment before each submodel is solved.

intermediate Print out intermediate solutions at the print interval specified in the model. The print interval field

in the input is ignored otherwise.

mva=arg Output the inputs and results of each MVA submodel for every iteration of the solver. The optional

argument is a bit set of the submodels to output. Submodel 1 is 0x1, submodel 2 is 0x2, submodel 3 is

0x4, etc. By default all submodels are traced.

overtaking Print out overtaking calculations.

quorum Print quorum traces.

replication

throughput Print throughput’s values.

variance Print out the variances calculated after each submodel is solved.

virtual-entry Print waiting time for each rendezvous in the model after it has been computed; include virtual

entries.

wait Print waiting time for each rendezvous in the model after it has been computed.

-u, -underrelaxation=arg

Set the underrelaxation to arg. Arg must be a number between 0.0 and 1.0. The default value is 0.9.

-v, -verbose

Generate output after each iteration of the MVA solver and the convergence value at the end of each outer

iteration of the solver.

-V, -version

Print out version and copyright information.

-w, -no-warnings

Ignore warnings. The default is to print out all warnings.

-x, -xml

Generate XML output regardless of input format.

-z, -special=arg

This option is used to select special options. Arguments of the form nn are integers while arguments of the form

nn.n are real numbers. Arg can be any of the following:

72

full-reinitialize For multiple runs, reinitialize all service times at processors.

generate=arg This option is used to generate a queueing model for solver in the directory arg. A directory

named arg will be created containing source code for invoking the MVA solver directly.

man=arg Output this manual page. If an optional arg is supplied, output will be written to the file named arg.

Otherwise, output is sent to stdout.

min-steps=arg Force the solver to iterate min-steps times.

overtaking Print out overtaking probabilities.

print-interval=arg Set the printing interval to arg. The -d or -v options must also be selected to display

intermediate results. The default value is 10.

single-step Stop after each MVA submodel is solved. Any character typed at the terminal except end-of-file

will resume the calculation. End-of-file will cancel single-stepping altogether.

tex=arg Output this manual page in LaTeX format. If an optional arg is supplied, output will be written to the

file named arg. Otherwise, output is sent to stdout.

If any one of convergence, iteration-limit, orprint-interval are used as arguments, the corresponding value spec-

ified in the input file for general information, ‘G’, is ignored.

-exact-mva

Use exact MVA instead of Linearizer for solving submodels.

-schweitzer

Use Bard-Schweitzer approximate MVA to solve all submodels.

-batch-layering

Default layering strategy where a submodel consists of the servers at a layer and each server’s clients.

-hwsw-layering

Use HW/SW layering instead of batched layering.

-method-of-layers

This option is to use the Method Of Layers solution approach to solving the layer submodels.

-squashed-layering

Use only one submodel to solve the model.

-srvn-layering

Use one server per layer instead of batched layering.

-processor-sharing

Use Processor Sharing scheduling at all fixed-rate processors.

-no-stop-on-message-loss

Do not stop the solver on overflow (infinities) for open arrivals or send-no-reply messages to entries. The default

is to stop with an error message indicating that the arrival rate is too high for the service time of the entry

-no-variance

Do not use variances in the waiting time calculations. The variance of an entry is used with fixed-rate servers.

Ignorning variance will help with convergence problems with some models. .

-reload-lqx

Re-run the LQX/SPEX program without re-solving the models. Results must exist from a previous solution run.

This option is useful if LQX print statements or SPEX results are changed.

73

-restart

Re-run the LQX/SPEX program without re-solving models which were solved successfully. Models which

were not solved because of early termination, or which were not solved successfully because of convergence

problems, will be solved. This option is useful for running a second pass with a new convergnece value and/or

iteration limit.

-no-header

Do not output the variable name header on SPEX results.This option can be also be set by using pragma spex-

header=no.This option has no effect if SPEX is not used.

-print-comment

Add the model comment as the first line of output when running with SPEX input.

-print-interval=arg

Output the intermediate solution of the model after <n> iterations.

-reset-mva

Reset the MVA calculation prior to solving a submodel.

-trace-mva=arg

Output the inputs and results of each MVA submodel for every iteration of the solver. The optional argument is

a bit set of the submodels to output. Submodel 1 is 0x1, submodel 2 is 0x2, submodel 3 is 0x4, etc. By default

all submodels are traced.

-debug-submodels

Print out submodels. <n> is a 64 bit number where the bit position is the submodel output.The output for each

submodel consists of the number of customers for closed classes, closed class clients, closed class servers, open

class servers, and the calls from clients to servers in the submodel. Calls are shown from entries to entries, or

from tasks to processors. Synchronous calls are shown using ->, asynchronous calls are shownn using >̃, and

processor calls are shown using *>.

-debug-json

Output JSON elements and attributes as they are being parsed. Since the JSON parser usually stops when it

encounters an error, this option can be used to localize the error.

-debug-lqx

Output debugging information as an LQX program is being parsed.

-debug-spex

Output LQX progam corresponding to SPEX input.

-debug-srvn

Output debugging information while parsing SRVN input.This is the output of the Bison LALR parser.

-debug-xml

Output XML elements and attributes as they are being parsed. Since the XML parser usually stops when it

encounters an error, this option can be used to localize the error.

Lqns exits with 0 on success, 1 if the model failed to converge, 2 if the input was invalid, 4 if a command line

argument was incorrect, 8 for file read/write problems and -1 for fatal errors. If multiple input files are being processed,

the exit code is the bit-wise OR of the above conditions.

74

6.2 Pragmas

Pragmas are used to alter the behaviour of the solver in a variety of ways. They can be specified in the input file

with “#pragma”, on the command line with the -P option, or through the environment variable LQNS_PRAGMAS.

Command line specification of pragmas overrides those defined in the environment variable which in turn override

those defined in the input file. The following pragmas are supported. Invalid pragma specification at the command

line will stop the solver. Invalid pragmas defined in the environment variable or in the input file are ignored as they

might be used by other solvers.

convergence-value=arg

Set the convergence value to arg. Arg must be a number between 0.0 and 1.0.

cycles=arg

This pragma is used to enable or disable cycle detection in the call graph. Cycles may indicate the presence of

deadlocks. Arg must be one of:

no Disallow cycles in the call graph.

yes Allow cycles in the call graph. The interlock adjustment is disabled.

The default is no.

force-infinite=arg

This pragma is used to force the use of an infinite server instead of a fixed-rate server and/or multiserver for all

the tasks in the model. Arg must be one of:

all Change all tasks to infinite servers.

fixed-rate Change all fixed-rate tasks to infinite servers.

multiservers Change all multiserver tasks to infinite servers.

none Do not change and fixed-rate or multiserver task to an infinite server.

The default is none.

force-multiserver=arg

This pragma is used to force the use of a multiserver instead of a fixed-rate server whenever the multiplicity of

a server is one. Arg must be one of:

all Always use a multiserver solution for non-delay servers (tasks and processors) even if the number of servers

is one (1). The Rolia multiserver approximation is known to fail for this case.

none Use fixed-rate servers whenever a server multiplicity is one (1). Note that fixed-rateservers with variance

may have results that differ from fixed-rate servers that don’t and that the multiserver servers never take

variance into consideration.

processors Always use a multiserver solution for non-delay processors even if the number of servers is one (1).

The Rolia multiserver approximation is known to fail for this case.

tasks Always use a multiserver solution for non-delay server tasks even if the number of servers is one (1). The

Rolia multiserver approximation is known to fail for this case.

The default is none.

interlocking=arg

The interlocking is used to correct the throughputs at stations as a result of solving the model using layers [5].

This pragma is used to choose the algorithm used. Arg must be one of:

no Do not perform interlock adjustment.

yes Perform interlocking by adjusting throughputs.

75

The default is yes.

iteration-limit=arg

Set the maximum number of iterations to arg. Arg must be an integer greater than 0. The default value is 50.

layering=arg

This pragma is used to select the layering strategy used by the solver. Arg must be one of:

batched Batched layering – solve layers composed of as many servers as possible from top to bottom.

batched-back Batched layering with back propagation – solve layers composed of as many servers as possible

from top to bottom, then from bottom to top to improve solution speed.

hwsw Hardware/software layers – The model is solved using two submodels: One consisting solely of the tasks

in the model, and the other with the tasks calling the processors.

mol Method Of layers – solve layers using the Method of Layers [14]. Layer spanning is performed by allowing

clients to appear in more than one layer.

mol-back Method Of layers – solve layers using the Method of Layers. Software submodels are solved top-

down then bottom up to improve solution speed.

squashed Squashed layers – All the tasks and processors are placed into one submodel. Solution speed may

suffer because this method generates the most number of chains in the MVA solution. See also -Pmva.

srvn SRVN layers – solve layers composed of only one server. This method of solution is comparable to the

technique used by the srvn solver. See also -Pmva.

The default is batched.

mol-underrelaxation=arg

Set the under-relaxation factor to arg for the MOL (Rolia) multiserver approximation. If the approximation is

failing, lower this value. Arg must be a number between 0.0 and 1.0. The default value is 0.5.

multiserver=arg

This pragma is used to choose the algorithm for solving multiservers. Arg must be one of:

bruell Use the Bruell multiserver [2] calculation for all multiservers.

conway Use the Conway multiserver [4, 3] calculation for all multiservers.

reiser Use the Reiser multiserver [13] calculation for all multiservers.

reiser-ps Use the Reiser multiserver calculation for all multiservers. For multiservers with multiple entries,

scheduling is processor sharing, not FIFO.

rolia Use the Rolia [15, 14] multiserver calculation for all multiservers.

rolia-ps Use the Rolia multiserver calculation for all multiservers. For multiservers with multiple entries,

scheduling is processor sharing, not FIFO.

schmidt Use the Schmidt multiserver [16] calculation for all multiservers.

suri experimental.

The default multiserver calculation uses the the Conway multiserver for multiservers with less than five servers,

and the Rolia multiserver otherwise.

mva=arg

This pragma is used to choose the MVA algorithm used to solve the submodels. Arg must be one of:

exact-mva Exact MVA. Not suitable for large systems.

fast-linearizer Fast Linearizer

linearizer Linearizer.

76

one-step Perform one step of Bard Schweitzer approximate MVA for each iteration of a submodel. The default

is to perform Bard Schweitzer approximate MVA until convergence for each submodel. This option,

combined with -Playering=srvn most closely approximates the solution technique used by the srvn solver.

one-step-linearizer Perform one step of Linearizer approximate MVA for each iteration of a submodel. The

default is to perform Linearizer approximate MVA until convergence for each submodel.

schweitzer Bard-Schweitzer approximate MVA.

The default is linearizer.

overtaking=arg

This pragma is usesd to choose the overtaking approximation. Arg must be one of:

markov Markov phase 2 calculation.

none Disable all second phase servers. All stations are modeled as having a single phase by summing the phase

information.

rolia Use the method from the Method of Layers.

simple Simpler, but faster approximation.

special ?

The default is markov.

processor-scheduling=arg

Force the scheduling type of all uni-processors to the type specfied.

fcfs All uni-processors are scheduled first-come, first-served.

hol All uni-processors are scheduled using head-of-line priority.

ppr All uni-processors are scheduled using priority, pre-emptive resume.

ps All uni-processors are scheduled using processor sharing.

The default is to use the processor scheduling specified in the model.

save-marginal-probabilities=arg

This pragma is used to enable or disable saving the marginal queue probabilities for multiservers in the results.

severity-level=arg

This pragma is used to enable or disable warning messages.

advisory

all

run-time

warning

spex-comment=arg

This pragma is used to enable or disable the comment line of SPEX output. Arg must be one of:

false Do not output a comment line (the output can then be fed into gnuplot easily).

true Output the model comment in the SPEX output.

The default is false.

spex-header=arg

This pragma is used to enable or disable the header line of SPEX output. Arg must be one of:

false Do not output a header line (the output can then be fed into gnuplot easily).

77

true Output a header line consisting of the names of all of the variables used in the Result section on the input

file.

The default is false.

stop-on-message-loss=arg

This pragma is used to control the operation of the solver when the arrival rate exceeds the service rate of a

server. Arg must be one of:

no Stop if messages are lost.

yes Ignore queue overflows for open arrivals and send-no-reply requests. If a queue overflows, its waiting times

is reported as infinite.

The default is no.

tau=arg

Set the tau adjustment factor to arg. Arg must be an integer between 0 and 25. A value of zero disables the

adjustment.

threads=arg

This pragma is used to change the behaviour of the solver when solving models with fork-join interactions.

exponential Use exponential values instead of three-point approximations in all approximations [8].

hyper Inflate overlap probabilities based on arrival instant estimates.

mak Use Mak-Lundstrom [10] approximations for join delays.

none Do not perform overlap calculation for forks.

The default is hyper.

variance=arg

This pragma is used to choose the variance calculation used by the solver.

init-only Initialize the variances, but don’t recompute as the model is solved.

mol Use the MOL variance calculation.

no-entry By default, any task with more than one entry will use the variance calculation. This pragma will

switch off the variance calculation for tasks with only one entry.

none Disable variance adjustment. All stations in the MVA submodels are either delay- or FIFO-servers.

stochastic ?

6.3 Stopping Criteria

Lqns computes the model results by iterating through a set of submodels until either convergence is achieved, or the

iteration limit is hit. Convergence is determined by taking the root of the mean of the squares of the difference in

the utilization of all of the servers from the last two iterations of the MVA solver over the all of the submodels then

comparing the result to the convergence value specified in the input file. If the RMS change in utilization is less than

convergence value, then the results are considered valid.

If the model fails to converge, three options are available:

1. reduce the under-relaxation coefficient. Waiting and idle times are propogated between submodels during each

iteration. The under-relaxation coefficient determines the amount a service time is changed between each itera-

tion. A typical value is 0.7 - 0.9; reducing it to 0.1 may help.

78

2. increase the iteration limit. The iteration limit sets the upper bound on the number of times all of the submodels

are solved. This value may have to be increased, especially if the under-relaxation coefficient is small, or if the

model is deeply nested. The default value is 50 iterations.

3. increase the convergence test value. Note that the convergence value is the standard deviation in the change in

the utilization of the servers, so a value greater than 1.0 makes no sense.

The convergence value can be observed using -tconvergence flag.

6.4 Model Limits

The following table lists the acceptable parameter types for lqns. An error will be reported if an unsupported parameter

is supplied except when the value supplied is the same as the default.

Parameter lqns

Phases 3

Scheduling FIFO, HOL, PPR

Open arrivals yes

Phase type stochastic, deterministic

Think Time yes

Coefficient of variation yes

Interprocessor-delay yes

Asynchronous connections yes

Forwarding yes

Multi-servers yes

Infinite-servers yes

Max Entries unlimited

Max Tasks unlimited

Max Processors unlimited

Max Entries per Task unlimited

Table 6.1: LQNS Model Limits.

6.5 Diagnostics

Most diagnostic messages result from errors in the input file. If the solver reports errors, then no solution will be

generated for the model being solved. Models which generate warnings may not be correct. However, the solver will

generate output.

Sometimes the model fails to converge, particularly if there are several heavily utilized servers in a submodel.

Sometimes, this problem can be solved by reducing the value of the under-relaxation coefficient. It may also be

necessary to increase the iteration-limit, particularly if there are many submodels. With replicated models, it may be

necessary to use ‘srvn’ layering to get the model to converge. Convergence can be tracked using the -tconvergence

option.

The solver will sometimes report some servers with ‘high’ utilization. This problem is the result of some of the

approximations used, in particular, two-phase servers. Utilizations in excess of 10% are likely the result of failures in

the solver. Please send us the model file so that we can improve the algorithms.

79

Chapter 7

Invoking the Simulator “lqsim”

Lqsim is used to simulate layered queueing networks using the PARASOL [12] simulation system. Lqsim reads its

input from files specified at the command line if present, or from the standard input otherwise. By default, output for

an input file filename specified on the command line will be placed in the file filename.out. If the -p switch

is used, parseable output will also be written into filename.p. If XML input is used, results will be written back to

the original input file. This behaviour can be changed using the -ooutput switch, described below. If several files are

named, then each is treated as a separate model and output will be placed in separate output files. If input is from the

standard input, output will be directed to the standard output. The file name ‘-’ is used to specify standard input.

The -ooutput option can be used to direct output to the file or directory named output regardless of the source

of input. Output will be XML if XML input is used, parseable output if the -p switch is used, and normal output

otherwise; multiple input files cannot be specified. If output is a directory, results will be written in the directory

named output. Output can be directed to standard output by using -o- (i.e., the output file name is ‘-’.)

7.1 Command Line Options

-A, -automatic=run-time[,precision[,skip]]

Use automatic blocking with a simulation block size of run-time. The precision argument specifies the desired

mean 95% confidence level. By default, precision is 1.0%. The simulator will stop when this value is reached,

or when 30 blocks have run. Skip specifies the time value of the initial skip period. Statistics gathered during

the skip period are discarded. By default, its value is 0. When the run completes, the results reported will be the

average value of the data collected in all of the blocks. If the -R flag is used, the confidence intervals will for

the raw statistics will be included in the monitor file.

-B, -blocks=blocks[,run-time[,skip]]

Use manual blocking with blocks blocks. The value of blocks must be less than or equal to 30. The run time for

each block is specified with run-time. Skip specifies the time value of the initial skip period.

-C, -confidence=precision[,initial-loops[,run-time]]

Use automatic blocking, stopping when the specified precision is met. The run time of each block is estimated,

based on initial-loops running on each reference task. The default value for initial-loops is 500. The run-time

argument specifies the maximum total run time.

-d, -debug

This option is used to dump task and entry information showing internal index numbers. This option is useful

for determining the names of the servers and tasks when tracing the execution of the simulator since the Parasol

output routines do no emit this information at present. Output is directed to stdout unless redirected using -mfile.

-e, -error=error

This option is to enable floating point exception handling.

80

a Abort immediately on a floating point error (provided the floating point unit can do so).

b Abort on floating point errors. (default)

i Ignore floating point errors.

w Warn on floating point errors.

The solver checks for floating point overflow, division by zero and invalid operations. Underflow and inexact

result exceptions are always ignored.

In some instances, infinities will be propogated within the solver. Please refer to the stop-on-message-loss

pragma below.

-houtput

Generate comma separated values for the service time distribution data. If output is a directory, the output file

name will be the name of a the input file with a .csv extension. Otherwise, the output will be written to the

named file.

-mfile

Direct all output generated by the various debugging and tracing options to the monitor file file, rather than to

standard output. A filename of ‘-’ directs output to standard output.

-n, -no-execute

Read input, but do not solve. The input is checked for validity. No output is generated.

-o, -output=output

Direct analysis results to output. A file name of ‘-’ directs output to standard output. If output is a directory,

all output from the simulator will be placed there with filenames based on the name of the input files processed.

Otherwise, only one input file can be processed; its output will be placed in output.

-p, -parseable

Generate parseable output suitable as input to other programs such as MultiSRVN(1) and srvndiff(1). If input is

from filename, parseable output is directed to filename.p. If standard input is used for input, then the

parseable output is sent to the standard output device. If the -ooutput option is used, the parseable output is

sent to the file name output. (In this case, only parseable output is emitted.)

-P, -pragma=pragma

Change the default solution strategy. Refer to the PRAGMAS chapter (§7.3) below for more information.

-R, -raw-statistics

Print the values of the statistical counters to the monitor file. If the -A, -B or -C option was used, the mean

value, 95th and 99th percentile are reported. At present, statistics are gathered for the task and entry, cycle time

task, processor and entry utilization, and waiting time for messages.

-S, -seed=seed

Set the initial seed value for the random number generator. By default, the system time from time time(3) is

used. The same seed value is used to initialize the random number generator for each file when multiple input

files are specified.

-t, -trace=traceopts

This option is used to set tracing options which are used to print out various steps of the simulation while it is

executing. Traceopts is any combination of the following:

driver Print out the underlying tracing information from the Parasol simulation engine.

processor=regex Trace activity for processors whose name match regex. If regexis not specified, activity on all

processors is reported. Regex is regular expression of the type accepted by egrep(1).

task=regex Trace activity for tasks whose name match regex. If regex is not specified, activity on all tasks is

reported. pattern is regular expression of the type accepted by egrep(1).

81

eventsregex[:regex] Display only events matching pattern. The events are: msg-async, msg-send, msg-receive,

msg-reply, msg-done, msg-abort, msg-forward, worker-dispatch, worker- idle, task-created, task-ready,

task-running, task-computing, task-waiting, thread-start, thread-enqueue, thread-dequeue, thread-idle, thread-

create, thread-reap, thread-stop, activity-start, activity-execute, activity-fork, and activity-join.

msgbuf Show msgbuf allocation and deallocation.

timeline Generate events for the timeline tool.

-T, -run-time=run-time

Set the run time for the simulation. The default is 10,000 units. Specifying -T after either -A or -B changes the

simulation block size, but does not turn off blocked statistics collection.

-v, -verbose

Print out statistics about the solution on the standard output device.

-V, -version

Print out version and copyright information.

-w, -no-warnings

Ignore warnings. The default is to print out all warnings.

-x, -xml

Generate XML output regardless of input format.

-zspecialopts

This flag is used to select special options. Arguments of the form n are integers while arguments of the form

n.n are real numbers. Specialopts is any combination of the following:

print-interval=nn Set the printing interval to n. Results are printed after nn blocks have run. The default value

is 10.

global-delay=n.n Set the interprocessor delay to nn.n for all tasks. Delays specified in the input file will override

the global value.

-global-delay

Set the inter-processor communication delay to n.n.

-print-interval

Ouptut results after n iterations.

-restart

Re-run the LQX program without re-solving the models unless a valid solution does not exist. This option is

useful if LQX print statements are changed, or if a subset of simulations has to be re-run.

-debug-lqx

Output debugging informtion as an LQX program is being parsed.

-debug-xml

Output XML elements and attributes as they are being parsed. Since the XML parser usually stops when it

encounters an error, this option can be used to localize the error.

7.2 Return Status

Lqsim exits 0 on success, 1 if the simulation failed to meet the convergence criteria, 2 if the input was invalid, 4 if a

command line argument was incorrect, 8 for file read/write problems and -1 for fatal errors. If multiple input files are

being processed, the exit code is the bit-wise OR of the above conditions.

82

7.3 Pragmas

Pragmas are used to alter the behaviour of the simulator in a variety of ways. They can be specified in the input file

with “#pragma”, on the command line with the -P option, or through the environment variable LQSIM_PRAGMAS.

Command line specification of pragmas overrides those defined in the environment variable which in turn override

those defined in the input file.

The following pragmas are supported. An invalid pragma specification at the command line will stop the solver.

Invalid pragmas defined in the environment variable or in the input file are ignored as they might be used by other

solvers.

block-period=real

Set the block period to real. This value is used in conjuction with max-blocks or precision.

initial-delay=real

Set the initial warmup period to real.

initial-loops=real

Run reference tasks int times before recording data.

max-blocks=int

Set the maximum number of blocks to int. Int must be no more than 30.

precision=real

Set the precision of the simulation results, based on the confidence intervals of the utilizations of all of the tasks

and processors, to real.

run-time=real

Set the run-time of the simulations to real. If used by itself, the simulation will use one block and not report

confidence intervals.

seed-value=int

Set the seed for the random number generator to int

nice=int

Set the “nice” value (i.e, lower the priority) when runninng the simulation.

severity-level=enum

Suppress messages with a severity-level lower than enum. Enum is any one of the following:

all Show all messages.

warning-only Suppress warnings.

advisory Suppress warnings and advisorys.

runtime-error Suppress runtime errors, warnings and advisorys.

The default is to report all messages.

scheduling-model=enum

This pragma is used to select the scheduler used for processors. Enum is any one of the following:

default Use the scheduler built into parasol for processor scheduling. (faster)

custom Use the custom scheduler for scheduling which permits more statistics to be gathered about processor

utilization and waiting times. However, this option invokes more internal tasks, so simulations are slower

than when using the default scheduler.

default-natural Use the parasol scheduler, but don’t reschedule after the end of each phase or activity. This

action more closely resembles the scheduling of real applications.

83

custom-natural Use the custom scheduler; don’t reschedule after the end of each phase or activity.

reschedule-on-async-send=bool

In models with send-no-reply messages, the simulator does not reschedule the processor after an asynchronous

message is sent (unlike the case with synchronous messages). The meanings of bool are:

true reschedule after each asynchronous message.

false reschedule after each asynchronous message.

stop-on-message-loss=bool

This pragma is used to control the operation of the solver when the arrival rate exceeds the service rate of a

server. The simulator can either discard the arrival, or it can halt. The meanings of bool are:

false Ignore queue overflows for open arrivals and send-no-reply requests. If a queue overflows, its waiting

times is reported as infinite.

true Stop if messages are lost.

7.4 Stopping Criteria

It is important that the length of the simulation be chosen properly. Results may be inaccurate if the simulation run is

too short. Simulations that run too long waste time and resources.

Lqsim uses batch means (or the method of samples) to generate confidence intervals. With automatic blocking,

the confidence intervals are computed after the simulations runs for three blocks plus the initial skip period If the root

or the mean of the squares of the confidence intervals for the entry service times is within the specified precision, the

simulation stops. Otherwise, the simulation runs for another block and repeats the test. With manual blocking, lqsim

runs the number of blocks specified then stops. In either case, the simulator will stop after 30 blocks.

Confidence intervals can be tightened by either running additional blocks or by increasing the block size. A rule

of thumb is the block size should be 10,000 times larger than the largest service time demand in the input model.

7.5 Model Limits

The following table lists the acceptable parameter types and limits for lqsim. An error will be reported if an unsup-

ported parameter is supplied except when the value supplied is the same as the default.

84

Parameter lqsim

Phases 3

Scheduling FIFO, HOL, PRI, RAND

Open arrivals yes

Phase type stochastic, deterministic

Think Time yes

Coefficient of variation yes

Interprocessor-delay yes

Asynchronous connections yes

Forwarding yes

Multi-servers yes

Infinite-servers yes

Max Entries unlimited

Max Tasks 1000

Max Processors 1000

Max Entries per Task unlimited

Table 7.1: Lqsim Model Limits

85

Chapter 8

Error Messages

Error messages are classified into four categories ranging from the most severe to the least, they are: fatal, error,

advisory and warning. Fatal errors will cause the program to exit immediately. All other error messages will stop

the solution of the current model and suppress output generation. However, subsequent input files will be processed.

Advisory messages occur when the model has been solved, but the results may not be correct. Finally, warnings

indicate possible problems with the model which the solver has ignored.

8.1 Fatal Error Messages

• Internal error

Something bad happened...

• No more memory

A request for memory failed.

• Model has no (activity|entry|task|processor)

This should not happen.

• Activity stack for "identifier" is full.

The stack size limit for task identifier has been exceeded.

• Message pool is empty. Sending from "identifier" to "identifier".

Message buffers are used when sending asynchronous send-no-reply messages. All the buffers have been used.

8.2 Error Messages

• (task|processor) "identifier": Replication not supported. lqsim

The simulator does not support replication. The model can be “flattened” using rep2flat(1).

• n.n Replies generated by Entry "identifier".

This error occurs when an entry is supposed to generate a reply because it accepts rendezvous requests, but the

activity graph does not generate exactly one reply. Common causes of this error are replies being generated by

two or more branches of an AND-fork, or replies being generated as part of a LOOP1.

1Replies cannot be generated by branches of loops because the number of iterations of the loop is random, not deterministic

86

• Activity "identifier" is a start activity.

The activity named identifier is the first activity in an activity graph. It cannot be used in a post-precedence

(fork-list).

• Activity "identifier" previously used in a fork."

The activity identifier has already been used as part of a fork expression. Fork lists are on the right hand side of

the -> operator in the old grammar, and are the post-precedence expressions in the XML grammar. This error

will cause a loop in the activity graph.

• Activity "identifier" previously used in a join."

The activity identifier has already been used as part of a join list. Join lists are on the left hand side of the ->

operator in the old grammar, and are the pre-precedence expressions in the XML grammar. This error will cause

a loop in the activity graph.

• Activity "identifier" requests reply for entry "identifier" but none pending. lqsim

The simulator is trying to generate a reply from entry identifier, but there are no messages queued at the entry.

This error usually means there is a logic error in the simulator.

• An error occured while compiling the LQX program found in file: filename‘. lqx

A syntax error was found in the LQX program found in the file filename. Refer to earlier error messages.

• An error occured executing the LQX program found in file: filename. lqx

A error occured while executing the the LQX program found in the file filename. Refer to earlier error messages.

• Attribute "attribute" is missing from "type" element.

The attribute named attribute for the type-element is missing.

• Attribute ’attribute’ is not declared for element ’element’

The attribute named attribute for element is not defined in the schema..

• "Both LQX and SPEX found in file filename . Use one or the other."

XML input allows for the use of LQX or SPEX, but not both at the same time.

• Cannot create (processor|processor for task|task) "identifier". lqsim

Parasol could not create an object such as a task or processor.

• Cycle in activity graph for task "identifier", back trace is "list".

There is a cycle in the activity graph for the task named identifier. Activity graphs must be acyclic. List identifies

the activities found in the cycle.

• Cycle in call graph, backtrace is "list".

There is a cycle in the call graph indicating either a possible deadlock or livelock condition. A deadlock can

occur if the same task, but via a different entry, is called in the cycle of rendezvous indentified by list. A livelock

can occur if the same task and entry are found in the cycle.

In general, call graphs must be acyclic. If a deadlock condition is identified, the cycles=allow pragma can be

used to suppress the error. Livelock conditions cannot be suppressed as these indicate an infinite loop in the call

graph.

• Data for n phases specified. Maximum permitted is m.

The solver only supports m phases (typically 3); data for n phases was specified. If more than m phases need to

be specified, use activities to define the phases.

87

• Datatype error: Type:InvalidDatatypeValueException, Message:message

• Delay from processor "identifier" to processor "identifier" previously specified. lqsim

Inter-processor delay...

• Derived population of n.n for task "identifier" is not valid." lqns

The solver finds populations for the clients in a given submodel by traversing up the call graphs from all the

servers in the submodel. If the derived population is infinite, the submodel cannot be solved. This error usually

arises when open arrivals are accepted by infinite servers.

• Destination entry "dst-identifier" must be different from source entry "src-identifier".

This error occurs when src-identifier and dst-identifier specify the same entry.

• Deterministic phase "src-identifier" makes a non-integral number of calls (n.n) to

entry dst-identifier.

This error occurs when a deterministic phase or activity makes a non-integral number of calls to some other

entry.

• Duplicate unique value declared for identity constraint of element ’task’.

One or more activities are being bound to the same entry. This is not allowed, as an entry is only allowed to

be bound to one activity. Check all bound-to-entry attributes for all activities to ensure this constraint is

being met.

• Duplicate unique value declared for identity constraint of element ’lqn-model’.

This error indicated that an element has a duplicate name – the parser gives the line number to the start of

the second instance of duplicate element. The following elements must have unique name attributes, but the

uniqueness does not span elements. Therefore a processor and task element can have the same name attribute,

but two processor elements cannot have the same name attribute.

The following elements must have a unique name attribute:

– processor

– task

– entry

• Empty content not valid for content model:’element’

(result-processor,task)

• Entry "identifier" accepts both rendezvous and send-no-reply messages.

An entry can either accept synchronous messages (to which it generates replies), or asynchronous messages (to

which no reply is needed), but not both. Send the requests to two separate entries.

• Entry "identifier" has invalid forwarding probability of n.n.

This error occurs when the sum of all forwarding probabilities from the entry identifier is greater than 1.

• Entry "entry-identifier" is not part of task "task-identifier".

An activity graph part of task task-identifer replies to entry-identifier. However, entry-identifier belongs to

another task.

• Entry "identifier" is not specified.

An entry is declared but not defined, either using phases or activities. An entry is “defined” when some parameter

such as service time is specified.

88

• Entry "identifier" must reply; the reply is not specified in the activity graph.

The entry identifier accepts rendezvous requests. However, no reply is specified in the activity graph.

• Entry "identifier" specified using both activity and phase methods.

Entries can be specified either using phases, or using activities, but not both..

• Entry "identifier" specified as both a signal and wait.

A semaphore task must have exactly one signal and one wait entry. Both entries have the same type..

• Expected end of tag ’element’

The closing tag for element was not found in the input file.

• External synchronization not supported for task "identifier" at join "join-list". lqns

The analytic solver does not implement external synchronization.

• External variables are present in file "filename, but there is no LQX program

to resolve them. lqx

The input model contains a variable of the form “$var” as a parameter such as a service time, multiplicty,

or rate. The variables are only assigned values when an LQX program executes. Since no LQX program was

present in the model file, the model cannot be solved.

• Fan-ins from task "from-identifier" to task "to-identifier" are not identical for all

calls. lqns

All requests made from task from-identifier to task to-identifier must have the same fan-in and fan-out values.

• Fan-out from (activity|entry|task) "src-identifier" (n * n replicas) does not match fan-in

to (entry|processor) "dst-identifier" (n * n). lqns

This error occurs when the number of replicas at src-identifier multiplied by the fan-out for the request to dst-

identifier does not match the number of replicas at dst-identifier multiplied by the fan-in for the request from

src-identifier. A fan-in or fan-out of zero (a common error case) can arise when the ratios of tasks to processors

is non-integral.

• Fewer entries defined (n) than tasks (m).

A model was specified with more tasks than entries. Since each task must have at least one entry, this model is

invalid.

• Group "identifier" has no tasks.

The group named by identifier has no tasks assigned to it. A group requires a minimum of one task.

• Group "identifier" has invalid share of n.n.

The share value of n.n for group identifier is not between the range of 0 < n.n <= 1.0.

• Infinite throughput for task "identifier". Model specification error. lqns

The response time for the task identifier is zero. The likely cause is zero service time for all calls made by the

task.

• Initial delay of n.n is too small, n client(s) still running. lqsim

This error occurs when the initial-loops parameter for automatic blocking is too small.

• Invalid fan-in of n: source task "identifier" is not replicated. lqns

The fan-in value for a request specifies the number of replicated source tasks making a call to the destination.

To correct this error, the source task needs to be replicated by a multiple of n.

89

• Invalid fan-out of n: destination task "identifier" has only m replicas. lqns

The fan-out value n is larger than the number of destination tasks m. In effect, the source will have more than

one request arc to the destination.

• Invalid path to join "join-list" for task "identifier": backtrace is "list".

The activity graph for task identifer is invalid because the branches to the join join-list do not all originate from

the same fork. List is a dump of the activity stack when the error occurred.

• Invalid probability of n.n.

The probability of n.n is not between the range of zero to one inclusive. The likely cause for this error is the

sum of the probabilities either from an OR-fork, or from forwarding from an entry, is greater than one.

• Name "identifier" previously defined.

The symbol identifer was previously defined. Tasks, processors and entries must all be named uniquely. Activi-

ties must be named uniquely within a task.

• Model has no reference tasks.

There are no reference tasks nor are there any tasks with open arrivals specified in the model. Reference tasks

serve as customers for closed queueing models. Open-arrivals serve as sources for open queueing models.

• No calls from (entry|activity) "from-identifier" to entry "to-identifier". lqns

This error occurs when the fan-in or fan-out parameter for a request are specified before the actual request type.

Switch the order in the input file.

• No group specified for task "task_identifier" running on processor "proc_identifier" using

fair share scheduling.

Task task_identifier has no group specified, yet it is running on processor proc_identifier which is using com-

pletely fair scheduling.

• No signal or wait specified for semaphore task "identifier".

Task identifier has been identified as a semaphore task, but neither of its entries has been designated as a signal

or a wait.

• Non-reference task "identifier" cannot have think time.

A think time is specified for a non-reference task. Think times for non-reference tasks can only be specified by

entry.

• Non-semaphore task "identifer" cannot have a (signal|wait) for entry "entry".

The entry is designated as either a signal or a wait. However, identifier is not a semaphore task.

• Number of (entries|tasks|processors) is outside of program limits of (1,n).

An internal program limit has been exceeded. Reduce the number of objects in the model.

• Number of paths found to AND-Join "join-list" for task "identifier" does not match

join list."

During activity graph traversal, one or more of the branches to the join join-list either originate from different

forks, or do not originate from a fork at all.

• Open arrival rate of n.n to task "identifier" is too high. Service time is n.n. lqns

The open arrival rate of n.n to entry identifier is too high, so the input queue to the task has overflowed. This

error may be the result of a transient condition, so the stop-on-message-loss pragma (c.f. §6.2) may be used to

suppress this error. If the arrival rate exceeds the service time at the time the model converges, then the waiting

time results for the entry will show infinity. Note that if a task accepts both open and closed classes, an overflow

in the open class will result in zero throughput for the closed classes.

90

• OR branch probabilities for OR-Fork "list" for task "identifier" do not sum to 1.0;

sum is n.n.

All branches from an or-fork must be specified so that the sum of the probabilities equals one.

• Processor "identifier" has invalid rate of n.n.

The processor rate parameter is used to scale the speed of the processor. A value greater than zero must be used.

• Processor "identifier" using CFS scheduling has no group."

If the completely fair share scheduler is being used, there must be at least one group defined for the processor.

• Reference task "identifier" cannot forward requests.

Reference tasks cannot accept messages, so they cannot forward.

• Reference task "task-identifier", entry "entry-identifier" cannot have open arrival stream.

Reference tasks cannot accept messages.

• Reference task "task-identifier", entry "entry-identifier" receives requests.

Reference tasks cannot accept messages.

• Reference task "task-identifier", replies to entry "entry-identifier" from activity "activity-

identifier)".

Reference tasks cannot accept messages, so they cannot generate replies. The activity activity-identifier replies

to entry entry-identifier.

• Required attribute ’attribute’ was not provided

The attribute named attribute is missing for the element.

• Semaphore "wait" entry "entry-identifier" cannot accept send-no-reply requests.

An entry designated as the semaphore “wait” can only accept rendezvous-type messages because send-no-reply

messages and open arrivals cannot block the caller if the semaphore is busy.

• Start activity for entry "entry-identifier" is already defined. Activity "activity-

identifier" is a duplicate.

A start activity has already been defined. This one is a duplicate.

• Symbol "identifier" not previously defined.

All identifiers must be declared before they can be used.

• Task "identifier" cannot be an infinite server."

This error occurs whenever a reference task or a semaphore task is designated as an infinite server. Reference

tasks are the customers in the model so an infinite reference task would imply an infinite number of customers2.

An infinite semaphore task implies an infinite number of buffers – no blocking at the wait entry would ever

occur.

• Task "identifier" has activities but none are reachable.

None of the activities for identifier is reachable. The most likely cause is that the start activity is missing.

• Task "identifier" has no entries.

No entries were defined for identifier.

2An infinite source of customers should be represented by open arrivals instead.

91

• "Task "identifier" has n entries defined, exactly m are required.

The task identifier has n entries, m are required. This error typically occurs with semaphore tasks which must

have exactly two entries.

• Task "task-identifier", Activity "activity-identifer" is not specified.

An activity is declared but not defined.. An activity is “defined” when some parameter such as service time is

specified.

• Task "task-identifier", Activity "activity-identifer" makes a duplicate reply for Entry

"entry-identifier".

An activity graph is making a reply to entry entry-identifier even though the entry is already in phase two. This

error usually occurs when more than one reply to entry-identifier is specified in a sequence of activities.

• Task "task-identifier", Activity "activity-identifer" makes invalid reply for Entry "entry-

identifier".

An activity graph is making a reply to entry entry-identifier even though the activity is not reachable..

• Task "task-identifier", Activity "activity-identifer" replies to Entry "entry-identifier" which

does not accept rendezvous requests.

The activity graph specifies a reply to entry entry-identifier even though the entry does not accept rendezvous

requests. (The entry either accepts send-no-reply requests or open arrivals).

• Unknown element ’element’

The element is not expected at this point in the input file. Element may not be spelled incorrectly, or if not, in

an incorrect location in the input file.

8.3 Advisory Messages

• Invalid convergence value of n.n, using m.m. lqns

The convergence value specified in the input file is not valid. The analytic solver is using m.m instead.

• Invalid standard deviation: sum=n.n, sum_sqr=n.n, n=n.n.

When calculating a standard deviation, the difference of the sum of the squares and the mean of the square of

the sum was negative. This usually implies an internal error in the simulator.

• Iteration limit of n is too small, using m. lqns

The iteration limit specified in the input file is not valid. The analytic solver is using m instead.

• Messages dropped at task identifier for open-class queues.

Asynchronous send-no-reply messages were lost at the task task. This message will occur when the stop-on-

message-loss pragma (c.f. §6.2) is set to ignore open class overflows. Note that if a task accepts both open and

closed classes, an overflow in the open class will result in zero throughput for the closed classes.

• Model failed to converge after n iterations (convergence test is n.n, limit is

n.n). lqns

Sometimes the model fails to converge, particularly if there are several heavily utilized servers in a submodel.

Sometimes, this problem can be solved by reducing the value of the under-relaxation coefficient. It may also

be necessary to increase the iteration-limit, particularly if there are many submodels. With replicated models,

it may be necessary to use ‘loose’ layering to get the model to converge. Convergence can be tracked using

-tconvergence.

92

• No solve() call found in the lqx program in file: filename. solve() was invoked

implicitly.

An LQX program was found in file filename. However, the function solve() was not invoked explictity. The

program was executed to completion, after which solve() was called using the final value of all the variables

found in the program.

• Replicated Submodel n failed to converge after n iterations (convergence test

is n.n, limit

is m.m). lqns

The inner “replication” iteration failed to converge....

• Service times for (processor) identifier have a range of n.n - n.n. Results may not

be valid. lqns

The range of values of service times for a processor using processor sharing scheduling is over two orders of

magnitude. The results may not be valid.

• Specified confidence interval of n.n% not met after run time of n.n. Actual

value is n.n%. lqsim

• Submodel n is empty. lqns

The call graph is interesting, to say the least.

• Underrelaxation ignored. n.n outside range [0-2), using m.m. lqns

The under-relaxation coefficient specified in the input file is not valid. The solver is using m.m instead3.

• The utilization of n.n at (task|processor) identifier with multiplicity m is too high.

This problem is the result of some of the approximations used by the analytic solver. The common causes are

two-phase servers and the Rolia multiserver. If identifer is a multiserver, switching to the Conway approxima-

tion will often help. Values of n.n in excess of 10% are likely the result of failures in the solver. Please send us

the model file so that we can improve the algorithms.

8.4 Warning Messages

• (activity|entry|task|processor) "identifier" is not used.

The object is not reachable. This may indicate an error in the specification of the model.

• (Processor|Task) "identifier" is an infinite server with a multiplicity of n.

Infinite servers must always have a multiplicty of one. This error is caused by specifying both delay scheduling

and a multiplicity for the named task or processor. The multiplicity attribute is ignored.

• sched scheduling specified for (processor|task) "identifier" is not supported.

The solver does not support the specified scheduling type. First-in, first-out scheduling will be used instead.

• Activity "identifier" has no service time specified.

No service time is specified for identifier.

• Coefficient of variation is incompatible with phase type at (entry|task) "identifier"

(phase|activity) "identifier". lqns

A coefficient of variation is specified at a using stochastic phase or activity.

3Values of under-relaxation from 1 < n ≤ 2 are more correctly called over-relaxation.

93

• Entry "identifier" does not receive any requests.

Entry identifier is part of a non-reference task. However, no requests are made to this entry.

• Entry "identifier" has no service time specified for any phase.

No service time is specified for entry identifier.

• Entry "identifier" has no service time specified for phase n.

No service time is specified for entry identifier, phase n.

• Infinite server "identifier" accepts either asynchronous messages or open arrivals.

The task or processor, identifier, is an infinite server. It processes either asynchronous messages or open arrivals.

If the arrival rate exceeds the service rate of the infinite server, the number of instances of the infinite server will

grow to infinity.

• Histogram requested for entry "identifier", phase n - phase is not present. lqsim

A histogram for the service time of phase n of entry identifier was requested. This entry has no corresponding

phase.

• Priority specified (n) is outside of range (n,n). (Value has been adjusted

to n). lqsim

The priority n is outside of the range specified.

• No quantum specified for PS scheduling discipline. FIFO used." lqsim

A processor using processor sharing scheduling needs a quantum value when running on the simulator.

• No requests made from from-identifier to to-identifier. lqns

The input file has a rendezvous or send-no-reply request with a value of zero.

• Number of (processors|tasks|entries) defined (n) does not match number specified (m).

The processor task and entry chapters of the original input grammar can specify the number of objects that

follow. The number specified does not match the actual number of objects. Specifying zero as a record count is

valid.

• Parameter is specified multiple times.

A parameter is specified more than one time. The first occurance is used.

• Processor "identifier" is not running fair share scheduling."

A group was defined in the model and associated with a processor using a scheduling discipline other than

completely fair scheduling.

• Processor "identifier" has no tasks.

A processor was defined in the model, but it is not used by any tasks. This can occur if none of the entries or

phases has any service time.

• Queue Length is incompatible with task type at task identifier. lqns

A queue length parameter was specified at a task which does not support bounded queues.

• Reference task "identifier" does not send any messages."

Reference tasks are customers in the model. This reference task does not visit any servers, so it serves no

purpose.

94

• Reference task "identifier" has more than one entry defined.

Reference tasks typically only have one entry. The named reference task has more than one. Requests are

generated in proportion to the service times of the entries.

• Task "task-identifier" with priority is running on processor "processor-identifier" which

does not have priority scheduling.

Processors running with FCFS scheduling ignore priorities.

• Value specified for (fanin|fanout), n, is invalid. lqns

The value specified for a fan-in or fan-out is not valid and will be ignored.

• The x feature is not supported in this version.

Feature x is not supported in this release.

8.5 Input File Parser Error Messages

• error: not well-formed (invalid token)

This error occurs when an XML input file is expected, but some other input file type was given.

• Parse error.

An error was detected while processing the XML input file. See the list below for more explantion:

– The primary document entity could not be opened. Id=URI while parsing file-

name.

This error is generated by the Xerces when the Uniform resource indicator (URI) specified as the argument

to the xsi:noNamespaceSchemaLocation attribute of the lqn-model element cannot be opened.

This argument must refer to a valid location containing the LQN schema files.

– The key for identity constraint of element ’lqn-model’ is not found.

When this message appears, Xerces does not provide many hints on where the actual error occurs be-

cause it always gives a line number which points to the end of the file (i.e. where the terminating tag

</lqn-model> is).

In this case, the following three points should be inspected to ensure validity of the model:

1. All synchronous calls have a dest attribute which refers to a valid entry.

2. All asynchronous calls have a dest attribute which refers to a valid entry.

3. All forwarding calls have a dest attribute which refers to a valid entry.

If it is not practical to manually inspect the model, run the XML file through another tool like XMLSpy or

XSDvalid which will report more descriptive errors.

– The key for identity constraint of element ’task’ is not found.

When this error appears, it means there is something wrong within the task element indicated by the line

number. Check that:

* The name attribute of all reply-entry elements refers to a valid entry name, which exists

within the same task as the task activity graph.

* All activities which contain the attribute bound-to-entry have a valid entry name that exists

within the same task as the task activity graph.

– The key for identity constraint of element ’task-activities’ is not found.

When this error appears, it means there is something wrong within the task-activities element

indicated by the line number.

Check that:

95

* All activities referenced within the precedence elements refer to activities which are defined for

that particular task activity graph.

* The name attribute of all reply-activity elements refers to an activity defined within the men-

tioned task-activities element.

* The head attribute of all post-loop elements refers to an activity defined within the mentioned

task-activities element.

* All post-LOOP elements which contain the optional attribute end, refers to an activity defined within

the mentioned task-activities element.

– Not enough elements to match content model :elements

((run-control,plot-control,solver-params,processor),slot)

8.6 LQX Error messages

• Runtime Exception Occured: Unable to Convert From: ‘«uninitialized»’ To: ‘Array’

An unitialized variable is used where an array is expected (like in a foreach loop).

96

Chapter 9

Known Defects

9.1 MOL Multiserver Approximation Failure

The MOL multiserver approximation sometimes fails when the service time of the clients to the multiserver are signif-

icantly smaller than the service time of the server itself. The utilization of the multiserver will be too high. Sometimes,

the problem can be solved by changing the mol-underrelaxation. Otherwise, switch to the more-expensive Conway

multiserver approximation.

9.2 Chain construction for models with multi- and infinite-servers

9.3 No algorithm for phased multiservers OPEN class.

9.4 Overtaking probabilities are calculated using CV=1

9.5 Need to implement queue lengths for open classes.

97

f

98

Appendix A

Traditional Grammar

This chapter gives the formal description of Layered Queueing Network input file and parseable output file grammars

in extended BNF form. For the nonterminals the notation 〈nonterminal_id〉 is used, while the terminals are written

without brackets as they appear in the input text. The notation {· · ·}m
n

, where n ≤ m means that the part inside the

curly brackets is repeated at least n times and at most m times. If n = 0, then the part may be missing in the input

text. The notation 〈· · ·〉opt means that the non-terminal is optional.

A.1 Input File Grammar

〈LQN_input_file〉 → 〈general_info〉 〈processor_info〉 〈group_info〉
opt

〈task_info〉 〈entry_info〉
{〈activity_info〉}0

| 〈parameter_list〉 〈processor_info〉 〈group_info〉
opt

〈task_info〉 〈entry_info〉
{〈activity_info〉}0 〈report_info〉

opt
〈convergence_info〉

opt

A.1.1 SPEX Parameters

〈parameter_list〉 → {〈comma_expr〉}np
1

〈comma_expr〉 → 〈variable_def 〉
| [〈expression〉 , 〈variable_def 〉]

〈variable_def 〉 → 〈variable〉 = 〈ternary_expr〉
| [〈 expression_list〉]

| [〈real〉 : 〈real〉 , 〈real〉]

A.1.2 General Information

〈general_info〉 → G 〈comment〉 〈conv_val〉 〈it_limit〉 〈print_int〉
opt

〈underrelax_coeff 〉
opt

〈end_list〉

〈comment〉 → 〈string〉 /∗ comment on the model ∗/

〈conv_val〉 → 〈real〉 /∗ convergence value ∗/ ‡

〈it_limit〉 → 〈integer〉 /∗ max. nb. of iterations ∗/ ‡

〈print_int〉 → 〈integer〉 ‡

/∗ intermed. res. print interval ∗/

〈underrelax_coeff 〉 → 〈real〉 /∗ under_relaxation coefficient ∗/ ‡

〈end_list〉 → -1 /∗ end_of_list mark ∗/

〈string〉 → " 〈text〉 "

99

A.1.3 Processor Information

〈processor_info〉 → P 〈np〉 〈p_decl_list〉

〈np〉 → 〈integer〉 /∗ total number of processors ∗/

〈p_decl_list〉 → {〈p_decl〉}np
1 〈end_list〉

〈p_decl〉 → p 〈proc_id〉 〈scheduling_flag〉 〈quantum〉
opt

〈multi_server_flag〉
opt

〈replication_flag〉
opt

〈proc_rate〉
opt

〈proc_id〉 → 〈integer〉 | 〈identifier〉
/∗ processor identifier ∗/

〈scheduling_flag〉 → f /∗ First come, first served ∗/
| h /∗ Head Of Line ∗/
| p /∗ Priority, preemeptive ∗/
| c 〈real〉 /∗ completely fair scheduling ∗/
| s 〈real〉 /∗ processor sharing ∗/
| i /∗ Infinite or delay ∗/
| r /∗ Random ∗/

〈quantum〉 → 〈real〉 | 〈variable〉

〈multi_server_flag〉 → m 〈copies〉 /∗ number of duplicates ∗/
| i /∗ Infinite server ∗/

〈replication_flag〉 → r 〈copies〉 /∗ number of replicas ∗/

〈proc_rate〉 → R 〈ratio〉 | 〈variable〉 /∗ Relative proc. speed ∗/

〈copies〉 → 〈integer〉 | 〈variable〉

〈ratio〉 → 〈real〉 | 〈variable〉

A.1.4 Group Information

〈group_info〉 → U 〈ng〉 〈g_decl_list〉 〈end_list〉

〈ng〉 → 〈integer〉 /∗ total number of groups ∗/

〈g_decl_list〉 → {〈g_decl〉}ng
1 〈end_list〉

〈g_decl〉 → g 〈group_id〉 〈group_share〉 〈cap_flag〉
opt

〈proc_id〉

〈group_id〉 → 〈identifier〉

〈group_share〉 → 〈real〉 | 〈variable〉

〈cap_flag〉 → c

A.1.5 Task Information

〈task_info〉 → T 〈nt〉 〈t_decl_list〉

〈nt〉 → 〈integer〉 /∗ total number of tasks ∗/

〈t_decl_list〉 → {〈t_decl〉}nt
1 〈end_list〉

〈t_decl〉 → t 〈task_id〉 〈task_sched_type〉 〈entry_list〉 〈queue_length〉
opt

〈proc_id〉
〈task_pri〉

opt
〈think_time_flag〉

opt
〈tokens〉

opt
〈multi_server_flag〉

opt

〈replication_flag〉
opt

〈group_flag〉
opt

| I 〈from_task〉 〈to_task〉 〈fan_in〉
| O 〈from_task〉 〈to_task〉 〈fan_out〉

〈task_id〉 → 〈integer〉 | 〈identifier〉
/∗ task identifier ∗/

〈task_sched_type〉 → r /∗ reference task ∗/
| n /∗ non-reference task ∗/
| h /∗ Head of line ∗/

100

| f /∗ FIFO Scheduling ∗/
| i /∗ Infinite or delay server ∗/
| p /∗ Polled scheduling at entries ∗/
| b /∗ Bursty Reference task ∗/
| S /∗ Semaphore ∗/

〈entry_list〉 → {〈entry_id〉}net

1 〈end_list〉
/∗ task t has net entries ∗/

〈entry_id〉 → 〈integer〉 | 〈identifier〉
/∗ entry identifier ∗/

〈task_pri〉 → 〈integer〉 /∗ task priority, optional ∗/

〈queue_length〉 → q 〈integer〉 /∗ open class queue length ∗/

〈group_flag〉 → g 〈identfier〉 /∗ Group for scheduling ∗/

〈tokens〉 → t 〈integer〉 /∗ Initial tokens ∗/

〈from_task〉 → 〈task_id〉 /∗ Source task ∗/

〈to_task〉 → 〈task_id〉 /∗ Destination task ∗/

〈fan_in〉 → 〈integer〉 /∗ fan in to this task ∗/

〈fan_out〉 → 〈integer〉 /∗ fan out from this task ∗/

A.1.6 Entry Information

〈entry_info〉 → E 〈ne〉 〈entry_decl_list〉

〈ne〉 → 〈integer〉 /∗ total number of entries ∗/

〈entry_decl_list〉 → {〈entry_decl〉}1 〈end_list〉

/∗ k = maximum number of phases ∗/

〈entry_decl〉 → a 〈entry_id〉 〈arrival_rate〉
| A 〈entry_id〉 〈activity_id〉
| F 〈from_entry〉 〈to_entry〉 〈p_forward〉
| H 〈entry_id〉 〈phase〉 〈hist_min〉 ’:’ 〈hist_max〉 〈hist_bins〉 〈hist_type〉
| M 〈entry_id〉 {〈max_service_time〉}k1 〈end_list〉
| P 〈entry_id〉 /∗ Signal Semaphore ∗/
| V 〈entry_id〉 /∗ Wait Semaphore ∗/
| Z 〈entry_id〉 {〈think_time〉}k1 〈end_list〉
| c 〈entry_id〉 {〈coeff_of_variation〉}k1 〈end_list〉
| f 〈entry_id〉 {〈ph_type_flag〉}k1 〈end_list〉
| p 〈entry_id〉 〈entry_priority〉
| s 〈entry_id〉 {〈service_time〉}k1 〈end_list〉
| y 〈from_entry〉 〈to_entry〉 {〈rendezvous〉}k1 〈end_list〉
| z 〈from_entry〉 〈to_entry〉 {〈send_no_reply〉}k1 〈end_list〉

〈arrival_rate〉 → 〈real〉 | 〈variable〉 /∗ open arrival rate to entry ∗/

〈coeff_of_variation〉 → 〈real〉 | 〈variable〉 /∗ squared service time coefficient of variation ∗/

〈from_entry〉 → 〈entry_id〉 /∗ Source of a message ∗/

〈hist_bins〉 → 〈integer〉 /∗ Number of bins in histogram. ∗/

〈hist_max〉 → 〈real〉 /∗ Median service time. ∗/

〈hist_min〉 → 〈real〉 /∗ Median service time. ∗/

〈hist_type〉 → log | linear | sqrt /∗ bin type. ∗/

〈max_service_time〉 → 〈real〉 /∗ Median service time. ∗/

〈p_forward〉 → 〈real〉 /∗ probability of forwarding ∗/

〈phase〉 → 1 | 2 | 3 /∗ phase of entry ∗/

101

〈ph_type_flag〉 → 0 /∗ stochastic phase ∗/
| 1 /∗ deterministic phase ∗/

〈rate〉 → 〈real〉 | 〈variable〉 /∗ nb. of calls per arrival ∗/

〈rendezvous〉 → 〈real〉 | 〈variable〉 /∗ mean number of RNVs/ph ∗/

〈send_no_reply〉 → 〈real〉 | 〈variable〉 /∗ mean nb.of non-blck.sends/ph ∗/

〈service_time〉 → 〈real〉 | 〈variable〉 /∗ mean phase service time ∗/

〈think_time〉 → 〈real〉 | 〈variable〉 /∗ Think time for phase. ∗/

〈to_entry〉 → 〈entry_id〉 /∗ Destination of a message ∗/

A.1.7 Activity Information

〈activity_info〉 → 〈activity_defn_list〉 〈activity_connections〉
opt

〈end_list〉

/∗ Activity definition. ∗/

〈activity_defn_list〉 → {〈activity_defn〉}na

1

〈activity_defn〉 → c 〈activity_id〉 〈coeff_of_variation〉 /∗ Sqr. Coeff. of Var. ∗/
| f 〈activity_id〉 〈ph_type_flag〉 /∗ Phase type ∗/
| H 〈entry_id〉 〈hist_min〉 ’:’ 〈hist_max〉 〈hist_bins〉 〈hist_type〉
| M 〈activity_id〉 〈max_service_time〉
| s 〈activity_id〉 〈ph_serv_time〉 /∗ Service time ∗/
| Z 〈activity_id〉 〈think_time〉 /∗ Think time ∗/
| y 〈activity_id〉 〈to_entry〉 〈rendezvous〉 /∗ Rendezvous ∗/
| z 〈activity_id〉 〈to_entry〉 〈send_no_reply〉 /∗ Send-no-reply ∗/

/∗ Activity Connections. ∗/

〈activity_connections〉 → : 〈activity_conn_list〉

〈activity_conn_list〉 → 〈activity_conn〉 {; 〈activity_conn〉}na

1

〈activity_conn〉 → 〈join_list〉
| 〈join_list〉 -> 〈fork_list〉

〈join_list〉 → 〈reply_activity〉
| 〈and_join_list〉
| 〈or_join_list〉

〈fork_list〉 → 〈activity_id〉
| 〈and_fork_list〉
| 〈or_fork_list〉
| 〈loop_list〉

〈and_join_list〉 → 〈reply_activity〉 {& 〈reply_activity〉}na

1 〈quorum_count〉
opt

〈or_join_list〉 → 〈reply_activity〉 {+ 〈reply_activity〉}na

1

〈and_fork_list〉 → 〈activity_id〉 {& 〈activity_id〉}na

1

〈or_fork_list〉 → 〈prob_activity〉 {+ 〈prob_activity〉}na

1

〈loop_list〉 → 〈loop_activity〉 {, 〈loop_activity〉}na
0 〈end_activity〉

opt

〈prob_activity〉 → (〈real〉) 〈activity_id〉

〈loop_activity〉 → 〈real〉 * 〈activity_id〉

〈end_activity〉 → , 〈activity_id〉

〈reply_activity〉 → 〈activity_id〉 〈reply_list〉
opt

〈reply_list〉 → [〈entry_id〉 {, 〈entry_id〉 }ne
0]

〈quorum_count〉 → (〈integer〉) /∗ Quorum ∗/

102

A.1.8 SPEX Report Information

〈report_info〉 → R 〈nr〉 〈report_decl_list〉 〈end_list〉
| R 〈nr〉 〈identifier〉 (〈expression_list〉)

〈report_decl_list〉 → {〈r_decl〉}nr
1

〈r_decl〉 → 〈variable〉 = 〈ternary_expr〉
| 〈expression〉

A.1.9 SPEX Convergence Information

〈convergence_info〉 → C 〈nc〉 〈convergence_decl_list〉 〈end_list〉

〈convergence_decl_list〉 → {〈c_decl〉}nr
1

〈c_decl〉 → 〈variable〉 = 〈ternary_expr〉

A.1.10 Expressions

〈ternary_expression〉 → 〈or_expression〉 ? 〈or_expression〉 : 〈or_expression〉
| 〈or_expression〉

〈or_expression〉 → 〈or_expression〉 | 〈and_expression〉 /∗ Logical OR ∗/
| 〈and_expression〉

〈and_expression〉 → 〈and_epxression〉 & 〈compare_expression〉 /∗ Logical AND ∗/
| 〈compare_expression〉

〈compare_expression〉 → 〈compare_expression〉 == 〈expression〉
| 〈compare_expression〉 != 〈expression〉
| 〈compare_expression〉 < 〈expression〉
| 〈compare_expression〉 <= 〈expression〉
| 〈compare_expression〉 > 〈expression〉
| 〈compare_expression〉 >= 〈expression〉
| 〈expression〉

〈expression〉 → 〈expression〉 + 〈term〉
| 〈expression〉 − 〈term〉
| 〈term〉

〈term〉 → 〈term〉 * 〈power〉
| 〈term〉 / 〈power〉
| 〈term〉 % 〈power〉 /∗ Modulus ∗/
| 〈power〉

〈power〉 → 〈prefix〉 ** 〈power〉 /∗ Exponentiation, right associative ∗/
| 〈prefix〉

〈prefix〉 → ! 〈factor〉 /∗ Logical NOT ∗/
| 〈factor〉

〈factor〉 → (〈expression〉)

| 〈identifier〉 (〈expression_list〉)

| 〈variable〉 [〈expression_list〉]

| 〈variable〉
| 〈double〉

〈expression_list〉 → 〈expression〉 {, 〈expression〉 }0

〈int〉 → /∗ Non negative integer ∗/

〈double〉 → /∗ Non negative double precision number ∗/

103

A.1.11 Identifiers

Identifiers may be zero or more leading underscores (‘_’), followed by a character, followed by any number of charac-

ters, numbers or underscores. Punctuation characters and other special characters such as the dollar-sign (‘$’) are not

permitted. The following, _p1, foo_bar, and __P_21_proc are valid identifiers, while _21 and $proc are not.

A.1.12 Variables

SPEX variables all start with a dollar-sign (‘$’) followed by any number of characters, numbers or underscores (‘_’).

The following, $s1, $1, and $_x are all valid variables. SPEX variables are treated as global symbols by the

underlying LQX program. Variables used to store arrays will also generate a local variable of the same name, except

without the leading dollar-sign.

A.2 Output File Grammar

〈LQN_output_file〉 → 〈general〉 〈bound〉
opt

〈waiting〉
opt

〈wait_var〉
opt

〈snr_waiting〉
opt

〈snr_wait_var〉
opt

〈drop_prob〉
opt

〈join〉
opt

〈service〉
opt

〈variance〉
opt

<exceeded>opt {<distribution>}0 〈thpt_ut〉 〈open_arrivals〉
opt

〈processor〉

〈from_entry〉 → 〈entry_name〉 /∗ Source entry id. ∗/

〈to_entry〉 → 〈entry_name〉 /∗ Destination entry id. ∗/

〈entry_name〉 → 〈identifier〉

〈task_name〉 → 〈identifier〉

〈proc_name〉 → 〈identifier〉

〈float_phase_list〉 → {〈real〉} 〈end_list〉

〈real〉 → 〈float〉 | 〈integer〉

A.2.1 General Information

〈general〉 → 〈valid〉 〈convergence〉 〈iterations〉 〈n_processors〉 〈n_phases〉

〈valid〉 → V 〈yes_or_no〉

〈yes_or_no〉 → y | Y | n | N

〈convergence〉 → C 〈real〉

〈iterations〉 → I 〈integer〉

〈n_processors〉 → PP 〈integer〉

〈n_phases〉 → NP 〈integer〉

A.2.2 Throughput Bounds

〈bound〉 → B 〈nt〉 {〈bounds_entry〉}nt
1 〈end_list〉

〈bounds_entry〉 → 〈task_name〉 〈real〉

〈nt〉 → 〈integer〉 /∗ Total number of tasks ∗/

A.2.3 Waiting Times

〈waiting〉 → W 〈ne〉 {〈waiting_t_tbl〉}nt
1 〈end_list〉

〈waiting_t_tbl〉 → 〈task_name〉 : 〈waiting_e_tbl〉 〈end_list〉 〈waiting_a_tbl〉
opt

〈waiting_e_tbl〉 → {〈waiting_entry〉}ne
0

〈waiting_entry〉 → 〈from_entry〉 〈to_entry〉 〈float_phase_list〉

104

〈ne〉 → 〈integer〉 /∗ Number of Entries ∗/

〈waiting_a_tbl〉 → : {〈waiting_activity〉}na
0 〈end_list〉

〈waiting_activity〉 → 〈from_activity〉 〈to_entry〉 〈float_phase_list〉

〈na〉 → 〈integer〉 /∗ Number of Activities ∗/

A.2.4 Waiting Time Variance

〈wait_var〉 → VARW 〈ne〉 {〈wait_var_t_tbl〉}nt
1 〈end_list〉

〈wait_var_t_tbl〉 → 〈task_name〉 : 〈wait_var_e_tbl〉 〈end_list〉 〈wait_var_a_tbl〉
opt

〈wait_var_e_tbl〉 → {〈wait_var_entry〉}ne
0

〈wait_var_entry〉 → 〈from_entry〉 〈to_entry〉 〈float_phase_list〉

〈wait_var_a_tbl〉 → : {〈wait_var_activity〉}na
0 〈end_list〉

〈wait_var_activity〉 → 〈from_activity〉 〈to_entry〉 〈float_phase_list〉

A.2.5 Send-No-Reply Waiting Time

〈snr_waiting〉 → Z 〈ne〉 {〈snr_waiting_t_tbl〉}nt
1 〈end_list〉

〈snr_waiting_t_tbl〉 → 〈task_name〉 : 〈snr_waiting_e_tbl〉 〈end_list〉 〈snr_waiting_a_tbl〉
opt

〈snr_waiting_e_tbl〉 → {〈snr_waiting_entry〉}ne
0

〈snr_waiting_entry〉 → 〈from_entry〉 〈to_entry〉 〈float_phase_list〉

〈snr_waiting_a_tbl〉 → : {〈snr_waiting_activity〉}na
0 〈end_list〉

〈snr_waiting_activity〉 → 〈from_activity〉 〈to_entry〉 〈float_phase_list〉

A.2.6 Send-No-Reply Wait Variance

〈snr_wait_var〉 → VARZ 〈ne〉 {〈snr_wait_var_t_tbl〉}nt
1 〈end_list〉

〈snr_wait_var_t_tbl〉 → 〈task_name〉 : 〈snr_wait_var_e_tbl〉 〈end_list〉 〈snr_wait_var_a_tbl〉
opt

〈snr_wait_var_e_tbl〉 → {〈snr_wait_var_entry〉}ne
0

〈snr_wait_var_entry〉 → 〈from_entry〉 〈to_entry〉 〈float_phase_list〉

〈snr_wait_var_a_tbl〉 → : {〈snr_wait_var_activity〉}na
0 〈end_list〉

〈snr_wait_var_activity〉 → 〈from_activity〉 〈to_entry〉 〈float_phase_list〉

A.2.7 Arrival Loss Probabilities

〈drop_prob〉 → DP 〈ne〉 {〈drop_prob_t_tbl〉}nt
1 〈end_list〉

〈drop_prob_t_tbl〉 → 〈task_name〉 : 〈drop_prob_e_tbl〉 〈end_list〉 〈drop_prob_a_tbl〉
opt

〈drop_prob_e_tbl〉 → {〈drop_prob_entry〉}ne
0

〈drop_prob_entry〉 → 〈from_entry〉 〈to_entry〉 〈float_phase_list〉

〈drop_prob_a_tbl〉 → : {〈drop_prob_activity〉}na
0 〈end_list〉

〈drop_prob_activity〉 → 〈from_activity〉 〈to_entry〉 〈float_phase_list〉

A.2.8 Join Delays

〈join〉 → J 〈ne〉 {〈join_t_tbl〉}nt
1 〈end_list〉

〈join_t_tbl〉 → 〈task_name〉 : 〈join_a_tbl〉 〈end_list〉

〈join_a_tbl〉 → {〈join_entry〉}na
0

〈join_entry〉 → 〈from_activity〉 〈to_activity〉 〈real〉 〈real〉

105

A.2.9 Service Time

〈service〉 → X 〈ne〉 {〈service_t_tbl〉}nt
1 〈end_list〉

〈service_t_tbl〉 → 〈task_name〉 : 〈service_e_tbl〉 〈end_list〉 〈service_a_tbl〉
opt

〈service_e_tbl〉 → {〈service_entry〉}ne
0

〈service_entry〉 → 〈entry_name〉 〈float_phase_list〉

〈service_a_tbl〉 → : {〈service_activity〉}na
0 〈end_list〉

〈service_activity〉 → 〈activity_name〉 〈float_phase_list〉

A.2.10 Service Time Variance

〈variance〉 → VAR 〈ne〉 {〈variance_t_tbl〉}nt
1 〈end_list〉

〈variance_t_tbl〉 → 〈task_name〉 : 〈variance_e_tbl〉 〈end_list〉 〈variance_a_tbl〉
opt

〈variance_e_tbl〉 → {〈variance_entry〉}ne
0

〈variance_entry〉 → 〈entry_name〉 〈float_phase_list〉

〈variance_a_tbl〉 → : {〈variance_activity〉}na
0 〈end_list〉

〈variance_activity〉 → 〈activity_name〉 〈float_phase_list〉

A.2.11 Probability Service Time Exceeded

〈variance〉 → VAR 〈ne〉 {〈variance_t_tbl〉}nt
1 〈end_list〉

A.2.12 Service Time Distribution

〈distribution〉 → D 〈entry_name〉 〈statistics〉 {〈hist_bin〉}0 〈end_list〉
| D 〈task_name〉 〈activity_name〉 〈statistics〉 {〈hist_bin〉}0 〈end_list〉

〈statistics〉 → 〈phase〉 〈mean〉 〈stddev〉 〈skew〉 〈kurtosis〉

〈hist_bin〉 → 〈begin〉 〈end〉 〈probability〉 {〈bin_conf 〉}2
0

〈mean〉 → 〈real〉 /∗ Distribution mean ∗/

〈stddev〉 → 〈real〉 /∗ Distribution standard deviation ∗/

〈skew〉 → 〈real〉 /∗ Distribution skew ∗/

〈kurtosis〉 → 〈real〉 /∗ Distribution kurtosis ∗/

〈probability〉 → 〈real〉 /∗ 0.0 - 1.0 ∗/

〈bin_conf 〉 → % 〈conf_level〉 〈real〉

A.2.13 Throughputs and Utilizations

〈thpt_ut〉 → FQ 〈nt〉 {〈thpt_ut_task〉}nt
1 〈end_list〉

〈thpt_ut_task〉 → 〈task_name〉 〈net〉 {<thpt_ut_entry>}net
1 〈end_list〉 〈thpt_ut_task_total〉

opt

〈thpt_ut_entry〉 → 〈entry_name〉 〈entry_info〉 {〈thpt_ut_confidence〉}0

〈entry_info〉 → 〈throughput〉 〈utilization〉 〈end_list〉 〈total_util〉

〈throughput〉 → 〈real〉 /∗ Task Throughput ∗/

〈utilization〉 → 〈float_phase_list〉 /∗ Per phase task util. ∗/

〈total_util〉 → 〈real〉

〈thpt_ut_task_total〉 → 〈entry_info〉
{〈thpt_ut_conf 〉}0

〈thpt_ut_conf 〉 → % 〈conf_level〉 〈entry_info〉

106

〈conf_level〉 → 〈integer〉

A.2.14 Arrival Rates and Waiting Times

〈open_arrivals〉 → R 〈no〉 {〈open_arvl_entry〉}no
1 〈end_list〉

〈no〉 → 〈integer〉 /∗ Number of Open Arrivals ∗/

〈open_arvl_entry〉 → 〈from_entry〉 〈to_entry〉 〈real〉 〈real〉
| 〈from_entry〉 〈to_entry〉 〈real〉 Inf

A.2.15 Utilization and Waiting per Phase for Processor

〈processor〉 → {〈proc_group〉}n_processors
1 〈end_list〉

〈proc_group〉 → P 〈proc_name〉 〈nt〉 {〈proc_task〉}nt
1 〈end_list〉 〈proc_total〉

opt

〈proc_task〉 → 〈task_name〉 〈proc_task_info〉 {〈proc_entry_info〉}ne
1 〈end_list〉 〈task_total〉

opt

〈proc_task_info〉 → 〈ne〉 〈priority〉 〈multiplicity〉
opt

〈priority〉 → 〈integer〉 /∗ Prio. of task ∗/

〈multiplicity〉 → 〈integer〉 /∗ Number of task instances ∗/

〈proc_info〉 → 〈entry_name〉 〈proc_entry_info〉 {〈proc_entry_conf 〉}0

〈proc_entry_info〉 → 〈utilization〉 〈sched_delay〉 〈end_list〉

〈sched_delay〉 → 〈float_phase_list〉 /∗ Scheduling delay ∗/

〈proc_entry_conf 〉 → % 〈integer〉 〈proc_entry_info〉

〈task_total〉 → 〈real〉 {〈proc_total_conf 〉}0

〈proc_total〉 → 〈real〉 {〈proc_total_conf 〉}0 〈end_list〉

〈proc_total_conf 〉 → % 〈integer〉 〈real〉

107

Bibliography

[1] The Apache Software Foundation. Xerces C++ Documentation.

[2] S. C. Bruell, G. Balbo, and P. V. Afshari. Mean value analysis of mixed, multiple class

BCMP networks with load dependent service centers. Performance Evaluation, 4(4):241–260, 1984.

doi:10.1016/0166-5316(84)90010-5.

[3] Adrian E. Conway. Fast approximate solution of queueing networks with multi-server chain-dependent FCFS

queues. In Ramon Puigjaner and Dominique Potier, editors, Modeling Techniques and Tools for Computer

Performance Evaluation, pages 385–396. Plenum, New York, 1989.

[4] Edmundo de Souza e Silva and Richard R. Muntz. Approximate solutions for a class of

non-product form queueing network models. Performance Evaluation, 7(3):221–242, 1987.

doi:10.1016/0166-5316(87)90042-3.

[5] Greg Franks. Traffic dependencies in client-server systems and their effect on performance prediction. In IEEE

International Computer Performance and Dependability Symposium, pages 24–33, Erlangen, Germany, April

1995. IEEE Computer Society Press. doi:10.1109/IPDS.1995.395840.

[6] Greg Franks, Tariq Al-Omari, Murray Woodside, Olivia Das, and Salem Derisavi. Enhanced modeling and

solution of layered queueing networks. IEEE Transactions on Software Engineering, 35(2):148–161, March–

April 2009. doi:10.1109/TSE.2008.74.

[7] Roy Gregory Franks. Performance Analysis of Distributed Server Systems. PhD thesis, Department of Systems

and Computer Engineering, Carleton University, Ottawa, Ontario, Canada, December 1999.

[8] Xianghong Jiang. Evaluation of approximation for response time of parallel task graph model. Master’s thesis,

Department of Systems and Computer Engineering, Carleton University, Canada, April 1996.

[9] Lianhua Li and Greg Franks. Performance modeling of systems using fair share scheduling with layered queue-

ing networks. In Proceedings of the Seventeenth IEEE/ACM International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunications Systems (MASCOTS 2009), pages 1–10, London, Septem-

ber 21–23 2009. doi:10.1109/MASCOT.2009.5366689.

[10] Victor W. Mak and Stephen F. Lundstrom. Predicting performance of parallel computations. IEEE Transactions

on Parallel and Distributed Systems, 1(3):257–270, July 1990. doi:10.1109/71.80155.

[11] Martin Mroz and Greg Franks. A performance experiment system supporting fast mapping of system issues. In

Fourth International Conference on Performance Evaluation Methodologies and Tools, Pisa, Italy, October 20–

22 2009. doi:10.4108/ICST.VALUETOOLS2009.7807.

[12] John E. Neilson. PARASOL: A simulator for distributed and/or parallel systems. Technical Report SCS TR-192,

School of Computer Science, Carleton University, Ottawa, Ontario, Canada, May 1991.

[13] Martin Reiser. A queueing network analysis of computer communication networks with win-

dow flow control. IEEE Transactions on Communications, 27(8):1199 – 1209, August 1979.

doi:10.1109/TCOM.1979.1094531.

108

http://dx.doi.org/10.1016/0166-5316(84)90010-5
http://dx.doi.org/10.1016/0166-5316(87)90042-3
http://dx.doi.org/10.1109/IPDS.1995.395840
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1109/MASCOT.2009.5366689
http://dx.doi.org/10.1109/71.80155
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7807
http://dx.doi.org/10.1109/TCOM.1979.1094531

[14] J. A. Rolia and K. A. Sevcik. The method of layers. IEEE Transactions on Software Engineering, 21(8):689–700,

August 1995. doi:10.1109/32.403785.

[15] Jerome Alexander Rolia. Predicting the Performance of Software Systems. PhD thesis, Univerisity of Toronto,

Toronto, Ontario, Canada, January 1992.

[16] Rainer Schmidt. An approximate MVA algorithm for exponential, class-dependent multiple servers. Performance

Evaluation, 29(4):245–254, 1997. doi:10.1016/S0166-5316(96)00048-X.

[17] C. U. Smith and L. G. Williams. A performance model interchange format. Journal of Systems and Software,

49(1):63–80, 1999. doi:10.1016/S0164-1212(99)00067-9.

[18] C. U. Smith and L. G Williams. Performance Solutions: A Practical Guide to Creating Responsive, Scalable

Software. Object Technology Series. Addison Wesley, 2002.

[19] Connie U. Smith and Catalina M. Lladó. Performance model interchange format (PMIF 2.0): XML definition

and implementation. In Proceedings of the First International Conference on the Quantative Evaluation of

Systems (QEST), pages 38–47, Enschede, the Netherlands, September 27–30 2004. IEEE Computer Society

Press. doi:10.1109/QEST.2004.1348017.

[20] C. Murray Woodside, John E. Neilson, Dorina C. Petriu, and Shikharesh Majumdar. The stochastic rendezvous

network model for performance of synchronous client-server-like distributed software. IEEE Transactions on

Computers, 44(8):20–34, August 1995. doi:10.1109/12.368012.

[21] Murray Woodside and Greg Franks. Tutorial introduction to layered modeling of software performance. Revision

6554.

[22] Xiuping Wu. An approach to predicting peformance for component based systems. Master’s thesis, Department

of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada, August 2003. Available

from: ftp://ftp.sce.carleton.ca/pub/cmw/xpwu-mthesis.pdf.

109

http://dx.doi.org/10.1109/32.403785
http://dx.doi.org/10.1016/S0166-5316(96)00048-X
http://dx.doi.org/10.1016/S0164-1212(99)00067-9
http://dx.doi.org/10.1109/QEST.2004.1348017
http://dx.doi.org/10.1109/12.368012
ftp://ftp.sce.carleton.ca/pub/cmw/xpwu-mthesis.pdf

Index

!, 40, 41

!=, 40, 41

(), 41

*, 40, 41

**, 40, 41

**=, 41

*=, 41

+, 40, 41

+=, 41

-, 40, 41

-automatic, 80

-batch-layering, 73

-blocks, 80

-bounds-only, 70

-confidence, 80

-convergence-value, 70

-debug, 70, 80

-debug-json, 74

-debug-lqx, 74, 82

-debug-spex, 74

-debug-srvn, 74

-debug-submodels, 74

-debug-xml, 74, 82

-error, 71, 80

-exact-mva, 73

-fast-linearizer, 71

-global-delay, 82

-help, 71

-huge, 71

-hwsw-layering, 73

-input-format, 71

-iteration-limit, 71

-json, 71

-method-of-layers, 73

-mol-underrelaxation, 71

-no-advisories, 70

-no-execute, 71, 81

-no-header, 74

-no-stop-on-message-loss, 73

-no-variance, 73

-no-warnings, 72, 82

-output, 71, 81

-parseable, 71, 81

-pragma, 71, 81

-print-comment, 74

-print-interval, 74, 82

-processor-sharing, 73

-raw-statistics, 81

-reload-lqx, 73

-reset-mva, 74

-restart, 74, 82

-rtf, 72

-run-time, 82

-schweitzer, 73

-seed, 81

-special, 72

-squashed-layering, 73

-srvn-layering, 73

-trace, 72, 81

-trace-mva, 74

-underrelaxation, 72

-verbose, 72, 82

-version, 72, 82

-xml, 72, 82

-=, 41

->, 87, see precedence

-A, 25, 80–82

-B, 25, 80–82

-C, 25, 80, 81

-H, 71

-I, 71

-M, 71

-P, 71, 75–77, 81, 83

-R, 80, 81

-S, 81

-T, 82

-V, 72, 82

-a, 70

-b, 70

-c, 70

-d, 70, 73, 80

-e, 71, 80

-f, 71

-h, 71, 81

-i, 71

-j, 71

110

-m, 80, 81

-n, 71, 81

-o, 11, 65, 70, 71, 80, 81

-p, 70, 71, 80, 81

-r, 72

-t, 25, 72, 79, 81, 92

-u, 72

-v, 72, 73, 82

-w, 72, 82

-x, 70, 72, 82

-z, 72, 82

/, 40, 41

/=, 41

<, 40, 41

«, 40, 41

«=, 41

<=, 40, 41

=, 41

==, 40, 41

>, 40, 41

>=, 40, 41

», 40, 41

»=, 41

?:, 63, 66

@infinity, 4, 5

[], 66

[], 41

#, 58, 67

#pragma, 58

$0, 66

$block_time, 64

$coefficient_of_variation, 67

$comment, 63

$convergence_iters, 64

$convergence_limit, 64

$convergence_under_relax, 64

$hosts, 67

$iteration_limit, 64

$model_comment, 64

$number_of_blocks, 64

$print_interval, 64

$result_precision, 64

$seed_value, 64

$solver, 64

$underrelaxation, 64

$warm_up_loops, 64

%, 40, 41

%=, 41

&&, 40, 41

\, 66

->, 87

asynchronous connections, 79

coefficient of variation, 79

entry

maximum, 79

forwarding, 79

infinite server, 79

interprocessor delay, 79

multi-server, 79

open arrival, 79

phase

maximum, 79

type, 79

processor

maximum, 79

scheduling, 79

task

maximum, 79

think time, 79

active server, 3

activities, 72

activity, 1, 3–5, 7, 30

connection, 38, see precedence, 102

defined, 92

demand, 30

error, 92

LQN, 61

not reachable

error, 92

reply, 1, 7, 9

error, 88, 89

reschedule, 83

results, 32

service time, 16

start, 91

activity, 30, 33

activity graph, 1, 5, 30, 33

connection, 32

error, 90, 95, 96

semantics, 8

start, 32

task, 30

activity list

LQN, 63

Activity-CallGroup, 32

activity-graph, 28

ActivityDefBase, 30, 32

ActivityDefType, 30, 32

ActivityEntryDefType, 30

ActivityGraphBase, 30, 31

ActivityListType, 33

ActivityLoopListType, 33, 34

111

ActivityLoopType, 33, 34

ActivityMakingCallType, 32

ActivityOrType, 33, 34

ActivityPhasesType, 30, 32

ActivityType, 33

ActivtyDefType, 30, 32

ActivtyEntryDefType, 32

ActivtyPhasesType, 32

advisory

ignore, 70

advisory, 77

all, 70, 75, 77

AND-fork, 1, 8

reply

error, 86

and-fork, 102

AND-join, 8, 102

AndJoinListType, 33

and fork, 8

and join, 8

append, 42

arcs, 1, 3

arrival loss probabilities, 15

arrival rate, 78, 84

async-call, 32

asynchronous connections, 85

attribute

activity-graph, 28

attribute, 95

begin, 37

bin, 18

bin-size, 37

bound-to-entry, 30, 32, 88, 95

call-order, 32

calls-mean, 32

cap, 27

conf-95, 37

conf-99, 37

conv-val, 25

conv_val, 25

count, 34

description, 24

dest, 28, 32, 95

elapsed-time, 25

end, 34, 37, 96

first-activity, 32

host-demand-cvsq, 32

host-demand-mean, 32

initially, 28

it_limit, 25

iterations, 25

join-variance, 36

join-waiting, 36

loss-probability, 36

lqn-schema-version, 24

lqncore-schema-version, 24

max, 18, 37

max-service-time, 17, 32

mid-point, 37

min, 18, 37

missing

error, 87, 91

multiplicity, 26, 28

name, 24, 26–28, 30–34, 88, 96

not declared

error, 87

number-bins, 18, 37

open-arrival-rate, 30

open-wait-time, 36

param, 25

phase, 30, 32

phaseX-proc-waiting, 36

phaseX-service-time, 36

phaseX-service-time-variance, 36

phaseX-utilization, 36

platform-info, 25

print_int, 25

priority, 28, 30

prob, 32, 34, 37

prob-exceed-max-service-time, 36

proc-utilization, 36

proc-waiting, 36

quantum, 26

queue-length, 28

quorum, 33

replication, 26, 28

scheduling, 26, 28

sempahore, 30

service-time, 36

service-time-distribution, 18

service-time-variance, 36

share, 27

solver-info, 25

source, 28

speed-factor, 26

squared-coeff-variation, 36

system-cpu-time, 25

think-time, 28, 32

throughput, 36

throughput-bound, 36

type, 27, 30

underrelax_coeff, 25

unique name, 88

unique phase, 38

112

user-cpu-time, 25

utilization, 36

valid, 25

value, 25, 28

waiting, 36

waiting-variance, 36

x-samples, 18

xml-debug, 24

xsi:noNamespaceSchemaLocation, 95

attribute, 95

automatic blocking, 80, 84, 89

autonomous phase, 5

Bard-Schweitzer, 77

batch means, 84

batch-layering, 73

batched, 76

batched layers, 76

batched-back, 76

begin, 37

bin, 18

bin-size, 37

block

automatic, 80, 84, 89

manual, 80, 84

simulation, 13, 80

size, 80, 84

block-period, 83

bound-to-entry, 30, 32, 88, 95

bounds

throughput, 70

branch

AND, 1, 8, 90

deterministic, 9

exit, 9

loop count, 9, 33

OR, 1, 91

probability, 1, 9, 33, 90, 91

break, 42

bruell, 76

buffers, 4

call graph, 75, 93

call order, 7, 32

Call-List-Group, 32

call-order, 32

calls-mean, 32

cap, 27

cfs, 72

chain, 13

class

closed, 90, 92

open, 90, 92

closed model, 5

coefficient of variation, 7, 7, 32, 36, 62, 63, 85, 101, 102

error, 93

command line, 80, 83

incorrect, 74, 82

comment

LQN, 58

components, 21

concurrency, 4

conf-95, 37

conf-99, 37

confidence intervals, 80, 84

confidence level, 80

constraint checking, 38

contention delay, 13

conv-val, 25

conv_val, 25

Convergence

SPEX, 66

convergence, 78

error, 92

failure, 74, 78, 79, 82

problems, 73

test value, 13

value, 78, 79, 99

error, 92

convergence, 72

convergence-value, 75

conway, 76

copyright, 72, 82

count, 34

counters

statistical, 81

customer, 4, 5

cycle

activity graph

error, 87

call graph

error, 87

detection, 75

cycle-time

entry, 81

task, 81

cycles, 75

cycles=allow, 87

d

LQN

pragma, 58

deadlock, 75, 87

debug, 70

delay

113

contention, 13

interprocessor, 82

delta-wait, 72

demand, 1, 30, 32

description, 24

dest, 28, 32, 95

deterministic, 7

directed graph, 7

distribution

exponential, 8

gamma, 8

Pareto, 8

service time, 81

driver, 81

duplicate

identifier

error, 90

parameter

error, 94

start activity

error, 91

unique value

error, 88

egrep, 81

elapsed-time, 25

element

activity, 30, 33

Activity-CallGroup, 32

async-call, 32

Call-List-Group, 32

duplicate name

error, 88

entry, 27

entry-phase-activities, 30

forwarding, 30

histogram-bin, 35

lqn-model, 24, 95

overflow-bin, 35

plot-control, 24

post, 33

post-loop, 96

pragma, 24, 25

pre, 33

precedence, 30, 96

processor, 24

quorum, 33

reply-activity, 30, 31, 96

reply-element, 31

reply-entry, 30, 95

result-activity, 32

result-entry, 30

result-forwarding, 32

result-general, 24, 25

result-join-delay, 32

result-processor, 26

result-task, 27

run-control, 24

service, 27

service-time-distribtion, 32

slot, 24

solver-params, 24, 25

sync-call, 32

task, 26, 95

task-activities, 27, 30, 95, 96

underflow-bin, 35

unkown

error, 92

else, 42

end, 34, 37, 96

entry, 1, 3, 4, 5–7

activity, 89

defined, 88

different

error, 88

error, 88, 91

LQN, 60

maximum, 85

message type

error, 88

parameters, 1

phase, 89

priority, 4

service time, 62

signal, 5, 89, 90

type

error, 89

wait, 5, 89–91

entry, 27

entry-phase-activities, 30

EntryActivityDefType, 32

EntryActivityGraph, 30

EntryMakingCallType, 32

EntryType, 27, 29–31

environment variable

override, 83

environment variable, 75, 83

error, 95

activity, 92

not reachable, 92

reply, 88, 89

activity graph, 90, 95, 96

AND-fork

reply, 86

114

attribute

missing, 87, 91

not declared, 87

coefficient of variation, 93

convergence, 92

value, 92

cycle

activity graph, 87

call graph, 87

duplicate

identifier, 90

parameter, 94

start activity, 91

unique value, 88

element

duplicate name, 88

unkown, 92

entry, 88, 91

different, 88

message type, 88

type, 89

external variable, 89

fan-in, 89, 90, 95

fan-out, 89, 90, 95

fatal, 74, 82

fork, 90

fork-list, 87

forward, 91, 95

forwarding

probability, 88

group, 91, 94

share, 89

tasks, 89

infinite server, 88

iteration limit, 92

join, 90

join-list, 87

LOOP

reply, 86

LQX, 87

execution, 89

lqx

spex, 87

maximum phases, 87

message

pool, 86

model, 89

multiplicity, 93

not defined, 91

not reachable, 91, 93

open arrival, 88, 90, 91

OR-fork, 91

Parasol, 87

phase

deterministic, 88

population

infinite, 88

post-precedence, 87

pre-precedence, 87

primary document, 21, 95

priority, 94, 95

probability, 90

processor

creation, 87

not used, 94

rate, 91

sharing, 93, 94

program limit, 90

queue length, 94

reference task, 90, 91, 94, 95

rendezvous, 94, 95

replication, 86, 89

iteration, 93

reply, 86, 87, 91

duplicate, 92

invalid, 92

reply-activity, 96

response time, 89

scheduling, 93

completely fair, 90, 91, 94

schema, 95

semaphore task, 90–92

send-no-reply, 86, 92, 94, 95

server

task, 94

service time, 93, 94

spex

lqx, 87

stack size, 86

standard deviation, 92

start activity, 87, 91

synchronization, 89

tag

end, 89

task creation, 87

think time, 90

throughput

infinite, 89

under-relaxation coefficient, 93

utilization

high, 93

wait, 91

Xerces, 95

events, 82

115

exact-mva, 76

Excel, 65

exit

success, 74, 82

exponential, 78

external variable

error, 89

false, 77

false, 42

fan-in, 10, 100

error, 89, 90, 95

fan-out, 10, 100

error, 89, 90, 95

FanInType, 28

FanOutType, 28

fast-linearizer, 76

fcfs, 77

file

debug, 81

monitor, 80, 81

tracing, 81

file_close, 42

file_open, 42

first-activity, 32

fixed-rate, 75

floating point

exception, 71, 80

infinity, 71, 81

for, 42

force-infinite, 75

force-multiserver, 75

foreach, 42

fork, 1, 5, 78

error, 90

precedence, 8

fork-list, 8, 33

error, 87

forks, 70, 72

forward

error, 91, 95

forwarding, 1, 5, 9, 32, 85, 90

probability, 90

error, 88

forwarding, 30

forwarding probability, 101

full-reinitialize, 73

function, 42

generate, 73

global-delay, 82

Gnuplot, 65

gnuplot, 65, 66

Grammar

XML, 21

XML), 38

grammar

original, 94

group, 4,

textbf4

error, 91, 94

LQN, 59

share, 89

error, 89

tasks

error, 89

group share, 100

GroupType, 26, 27

hardware-software layers, 76

histogram, 35, 101, 102

no phase, 94

overflow, 18

statistics, 18

underflow, 18

histogram-bin, 35

HistogramBinType, 35, 37

hol, 77

holding time, 1

host-demand-cvsq, 32

host-demand-mean, 32

hwsw, 76

hyper, 78

icon

stacked, 1

identifier

duplicate, 90

LQN, 58

identifiers, 104

idle-time, 72

if, 42

in, 42

infinite

force, 75

infinite loop

call graph, 87

infinite server, 85

error, 88

infinity, 71, 78, 81, 84, 90

init-only, 78

initial-delay, 83

initial-loops, 80, 89

initial-loops, 83

initially, 28

input

116

invalid, 74, 82

multiple, 82

XML, 11, 24, 70, 80

interlock, 75

interlock, 70, 72

interlocking, 75

intermediate, 72

interprocessor delay, 85

it_limit, 25

iteration limit, 13, 25, 78, 79, 92, 99

error, 92

iteration-limit, 76

iterations, 25

join, 1, 5, 16, 78

and, 33

delay, 11, 16, 32, 36, 78, 105

error, 90

precedence, 8

quorum, 9, 33

variance, 16, 36

join-list, 8, 33, 102

error, 87

join-variance, 36

join-waiting, 36

JSON

debug, 74

lambda, 18

layer

spanning, 1

Layered Queueing Network, 1, 3

layering

batched, 76

loose, 92

method of, 76

Method of Layers, 76

squashed, 76

srvn, 76

strategy, 76

layering, 76

layers

hardware-software, 76

length

simulation, 84

limits

lqns, 79

lqsim, 85

line continuation, 66

Linearizer, 76

linearizer, 76

livelock, 87

LOOP, 9, 102

reply

error, 86

loop, 8, 33

loop count, 9, 33

loss probability, 36

loss-probability, 36

lqiolib, 63

LQN, 58–61

activity, 61, 63

activity list, 63

comment, 58

entry, 60, 62

group, 59

identifier, 58

multiplicity, 60

parameter, 58

pragma

d, 58

processor, 59

task, 60

white space, 58

lqn-core.xsd, 21

lqn-model, 24, 95

lqn-schema-version, 24

lqn-sub.xsd, 21

lqn.xsd, 21

lqn2ps, 11

lqncore-schema-version, 24

LqnModelType, 24

LQNS, 70

parameters, 59

lqns, 11, 21

convergence value, 25

LQNS_PRAGMAS, 75

lqsim, 21

scheduling, 4, 94

LQSIM_PRAGMAS, 83

LQX, 39–55, 67, 73, 74, 82

debug, 74, 82

error, 87

execution

error, 89

intrinsic types, 39–40

keywords, 42

operator

precedence, 41

operators, 40–41

precedence, 41

lqx, 63, 93

spex

error, 87

lqx, 70

117

mak, 78

Mak-Lundstrom, 78

MakingCallType, 32, 33

man, 73

manual blocking, 80

markov, 77

max, 18, 37

max-blocks, 83

max-service-time, 17, 32

maximum phases

error, 87

maximum service time, 101, 102

message, see request

asynchronous, 5

pool

error, 86

synchronous, 5

meta model, 3

Method of Layers, 76

variance, 78

method of layers, 76

method of samples, 84

mid-point, 37

min, 18, 37

min-steps, 73

model

comment, 99

error, 89

mol, 76, 78

mol-back, 76

mol-underrelaxation, 76

monitor file, 80

msgbuf, 82

multi-server, 85

multiplicity, 1, 9–10

@infinity, 4, 5

error, 93

infinite server, 93

LQN, 60

processor, 4

task, 5

multiplicity, 26, 28

multiserver, 1

algorithm, 76

approximation

error, 93

Bruell, 76

Conway, 76, 93

default, 76

force, 75

MOL, 71, 76

Reiser, 76

Rolia, 76, 93

rolia, 75

Schmidt, 76

multiserver, 76

multiservers, 75

MultiSRVN, 81

MVA

algorithm, 76

Bard-Schweitzer, 73, 77

exact, 73, 76

Linearizer, 76

trace, 72, 74

mva, 72, 76

name, 24, 26–28, 30–34, 88, 96

nice, 83

no, 75, 78

no-entry, 78

node, 3

none, 75, 77, 78

not defined

error, 91

not reachable

error, 91, 93

NULL, 42

null, 42

number of iterations, 13

number-bins, 18, 37

on-off behaviour, 8

one-step, 77

one-step-linearizer, 77

open arrival, 30, 85, 91, 92

error, 88, 90, 91

loss probability, 105

overflow, 78, 84

waiting time, 18, 107

open model, 5

open-arrival-rate, 30

open-wait-time, 36

OR-fork, 9, 90

error, 91

or-fork, 102

OR-join, 9, 102

OrListType, 33

or fork, 8

or join, 8

output, 71, 81

conversion, 11

csv, 81

human readable, 11

parseable, 11, 80, 81

XML, 11, 70, 80

118

OutputDistributionType, 32, 35, 37

OutputResultForwardingANDJoinDelay, 32

OutputResultJoinDelayType, 35, 36

OutputResultType, 26, 27, 32, 35

over relaxation, 93

overflow, 71, 78, 81, 84

overflow-bin, 35

overlap calculation, 78

overtaking, 77

Markov, 77

Method of Layers, 77

overtaking, 70, 72, 73, 77

param, 25

parameter

LQN, 58

Parasol, 80, 81

error, 87

Pareto distribution, 5

Performance Model Interchange Format, 3

Perl

SPEX, 66

phase, 1, 5, 6

asynchronous, 1

autonomous, 5

deterministic

error, 88

maximum, 85

reply, 7

reschedule, 83

results, 32

second, 1

service time, 16

type, 85, 101, 102

phase, 30, 32

phases

approximation

error, 93

phaseX-proc-waiting, 36

phaseX-service-time, 36

phaseX-service-time-variance, 36

phaseX-utilization, 36

platform-info, 25

plot, 65, 66

x, 65

y, 65, 66

plot-control, 24

population

infinite

error, 88

post, 33

post-loop, 96

post-precedence, 8

error, 87

ppr, 77

pragma, 58, 71, 75, 81, 83

invalid, 75

command line, 83

input file, 83

srvn-header, 74

pragma, 24, 25

pre, 33

pre-precedence, 8

error, 87

precedence, 3, 7, 8–9, 38

activity, 1

and-fork, 8

and-join, 8

loop, 8

or-fork, 8

or-join, 8

quourm-join, 8

sequence, 8

precedence, 30, 96

PrecedenceType, 30, 33, 34

precision

simulation, 80

precision, 83

primary document

error, 21, 95

print, 42

print interval, 25, 99

lqns, 25

print-interval, 73, 82

print_int, 25

print_spaced, 42

println, 42

println_spaced, 42

priority

entry, 4, 101

error, 94, 95

head of line, 4, 5, 77

highest, 4

inversion, 4

preemptive resume, 4

preemptive-resume, 77

processor, 4

priority, 28, 30

prob, 32, 34, 37

prob-exceed-max-service-time, 36

probability

branch, 9, 33, 90

error, 90

forwarding, 88, 90

119

proc-utilization, 36

proc-waiting, 36

processor, 1, 3, 3–4

creation

error, 87

delay, 4

LQN, 59

maximum, 85

multiplicity, 4

not used

error, 94

priority, 4

queueing, 16

rate

error, 91

scheduling, 59, 77, 83

completely fair, 100

custom, 83

natural, 83

sharing, 100

sharing, 4, 26, 76, 93, 100

error, 93, 94

trace, 81

utilization, 18, 83

waiting, 83

processor, 24, 81

processor sharing, 77

processor-scheduling, 77

processors, 75

ProcessorType, 26

program limit

error, 90

ps, 77

quantum, 4, 94, 100

quantum, 26

queue, 1

queue length, 100

error, 94

queue-length, 28

queueing delay

processor, 11

task, 11

queueing model

closed, 5, 90

customers, 90

open, 5, 90

queueing network

extended, 1

layered, 1

queueing time, 15

processor, 18, 36, 107

variance, 15

quorum, 102

quorum, 33, 72

quorum, 33

quorum join, 9

QUORUM-join, 8

quorum join, 8, 33

rand(), 67

random number

generation, 81

read, 42

read_data, 42

read_loop, 42

reference

task, 60

reference task, 5, 61, 80

bursty, 5, 8

error, 90, 91, 94, 95

reiser, 76

reiser-ps, 76

remote procedure call, 3

rendezvous, 1, 3, 5, 7, 9, 32, 86, 101, 102

cycle, 87

delay, 15, 36, 104

error, 94, 95

reference task, 5

variance, 15, 36, 105

rep2flat, 86

replication, 9–10

convergence, 92

error, 86, 89

flatten, 86

iteration

error, 93

processor, 100

ratio, 89

simulator, 86

task, 100

replication, 72

replication, 26, 28

reply, 1

activity, 1, 5, 30

duplicate

error, 92

error, 86, 87, 91

explicitly, 7

implicit, 7

invalid

error, 92

phase, 5

reply-activity

120

error, 96

reply-activity, 30, 31, 96

reply-element, 31

reply-entry, 30, 95

request, 1, 3, 9, 32

asynchronous, 1

blocked, 1

forward, 1

reply, 1

synchronous, 1

types, 9

reschedule

activity, 83

phase, 83

reschedule-on-async-send, 84

resource

passive, 5

possession, 1

simultaneous, 1

software, 1

response time

error, 89

result-activity, 32

result-entry, 30

result-forwarding, 32

result-general, 24, 25

result-join-delay, 32

result-processor, 26

result-task, 27

ResultContentType, 35, 36

results

activity, 32

intermediate, 72

phase, 32

valid, 13

return, 42

rolia, 76, 77

rolia-ps, 76

root mean square, 84

round robin, 4

run time

simulation, 80, 82

run-control, 24

run-time, 77, 83

save-marginal-probabilities, 77

scheduling, 85

cfs, 4

completely fair, 4, 26, 27, 59

error, 90, 91, 94

delay, 4, 93

error, 93

fair share, 60

FCFS, 59, 61, 95

fifo, 3, 4, 85

head of line, 26

head-of-line, 59, 61

hol, 4, 5, 85

infinite, 4

pri, 4, 85

priority, 4

processor, 26, 59, 77, 100

processor sharing, 4, 94

ps, 4

rand, 85

random, 4

round robin, 4

semaphore, 101

task, 4, 28, 100

scheduling, 26, 28

scheduling-model, 83

schema

constraints, 35

error, 95

schmidt, 76

schweitzer, 77

seed, 81

seed-value, 83

semaphore

counting, 5

service time, 18

signal, 101

utilization, 18

wait, 91

semaphore task, 5, 62, 89

error, 90–92

sempahore, 30

send-no-reply, 1, 9, 32, 84, 101, 102

delay, 15, 105

error, 86, 92, 94, 95

loss probability, 15

overflow, 78, 84

variance, 15, 105

server

active, 3

fcfs, 73

fixed-rate

variance, 75

infinite, 88

pure, 3

synchronize, 9

task

error, 94

service

121

class, 1, 4

request, 1

service, 27

service time, 7, 11, 16–17, 18, 32, 36, 94, 101, 102, 106

demand, 84

distribution, 11, 18, 81, 106

distributions, 18

entry, 84

error, 93, 94

exceeded, 106

histogram, 35

kurtosis, 18

maximum, 101, 102

maximum exceeded, 17

mean, 18

phase one, 15, 16

probability exceeded, 17, 36

skew, 18

standard deviation, 18

variance, 17, 17, 36, 106

service-time, 36

service-time-distribtion, 32

service-time-distribution, 18

service-time-variance, 36

severity-level, 77, 83

share, 4

cap, 4, 27

exceed, 4

guarantee, 4, 27

share, 27

signal, 5, 62, 89, 90

simple, 77

simulation

block, 80, 82

statistics, 80

single-step, 73

SingleActivityListType, 33

skip, 80

skip period, 80, 84

slice, 5, 7, 7–8

slot, 24

solution

statistics, 82

solve()

implicit, 93

solver-info, 25

solver-params, 24, 25

source, 28

special, 77

speed-factor, 26

SPEX, 56, 63–67

AGR, 67

arrays, 66

convergence, 56, 66

grammar

convergence, 103

expressions, 103

paramters, 99

report, 103

if-then-else, 66

LQX, 66

parameter

control, 59

parameters, 56

Perl, 66

random numbers, 67

report, 65

plot, 65

results, 56

ternary expressions, 63, 66

Variables, 58

variables, 104, 63–104

array, 64

control, 63

observation, 64

scalar, 63

versions, 66

Spex

report

plot, 65

splot, 65

spex

lqx

error, 87

variables, 63

spex-comment, 77

spex-header, 77

splot, 65, 66

squared-coeff-variation, 36

squashed, 76

squashed layers, 76

srvn, 76

srvn layers, 76

srvndiff, 81

stack size

error, 86

standard deviation

error, 92

standard input, 71, 81

start activity

error, 87, 91

statistical counters, 81

statistics, 80, 82

blocked, 25

122

simulation, 82

step(), 13

stochastic, 7

stochastic, 78

stop-on-message-loss, 78, 81, 84, 90, 92

stopping criteria, 84

submodel

population, 88

submodels, 70

suri, 76

sync-call, 32

synchronization

error, 89

synchronization server, 9

synchronization task, 5

system-cpu-time, 25

tag

end

error, 89

task, 1, 3, 4–5

delay, 4, 5

LQN, 60

maximum, 85

multiplicity, 5

queue, 4

reference, 5, 60, 61, 80, 91, 95

bursty, 5, 7

semaphore, 5, 89–92

server, 94

synchronization, 5

threads, 5

trace, 81

task, 26, 81, 95

task creation

error, 87

task-activities, 27, 30, 95, 96

TaskActivityGraph, 30

tasks, 75

TaskType, 26–28

tau, 78

tex, 73

think time, 60, 85, 100–102

entry, 90

error, 90

think-time, 28, 32

thread, 1

threads

homogenous, 5

threads, 78

three-point approximation, 78

throughput, 11, 18, 36, 106

bounds, 11, 13, 36, 70, 104

infinite

error, 89

interlock, 75

zero, 90, 92

throughput, 72

throughput, 36

throughput-bound, 36

time, 81

timeline, 82

trace

processor, 81

task, 81

tracing, 72, 81

true, 77, 78

true, 42

type

ActivityDefBase, 30, 32

ActivityDefType, 30, 32

ActivityEntryDefType, 30

ActivityGraphBase, 30, 31

ActivityListType, 33

ActivityLoopListType, 33, 34

ActivityLoopType, 33, 34

ActivityMakingCallType, 32

ActivityOrType, 33, 34

ActivityPhasesType, 30, 32

ActivityType, 33

ActivtyDefType, 30, 32

ActivtyEntryDefType, 32

ActivtyPhasesType, 32

AndJoinListType, 33

EntryActivityDefType, 32

EntryActivityGraph, 30

EntryMakingCallType, 32

EntryType, 27, 29–31

FanInType, 28

FanOutType, 28

GroupType, 26, 27

HistogramBinType, 35, 37

LqnModelType, 24

MakingCallType, 32, 33

OrListType, 33

OutputDistributionType, 32, 35, 37

OutputResultForwardingANDJoinDelay, 32

OutputResultJoinDelayType, 35, 36

OutputResultType, 26, 27, 32, 35

PrecedenceType, 30, 33, 34

ProcessorType, 26

ResultContentType, 35, 36

SingleActivityListType, 33

TaskActivityGraph, 30

123

TaskType, 26–28

type, 27, 30

under-relaxation, 92

under-relaxation coefficient, 99

error, 93

underflow-bin, 35

underrelax_coeff, 25

user-cpu-time, 25

utilization

entry, 36, 81

high, 92

error, 93

processor, 11, 18, 18, 36, 81, 83, 107

semaphore, 18, 18

task, 11, 18, 36, 81, 106

utilization, 36

valid, 25

value, 25, 28

Variables

SPEX, 58

variables

parameters, 65

report indication, 65

spex, 63

variance, 73, 78

initialize only, 78

Method of Layers, 78

service time, 17

variance, 70, 72, 78

version, 72, 82

virtual-entry, 72

wait, 5, 89, 90

error, 91

wait, 72

wait(), 13

waiting

processor, 83

waiting, 36

waiting time, 18, 81

open arrival, 18, 36, 107

waiting-variance, 36

warning

ignore, 72, 82

warning, 77

while, 42

white space

LQN, 58

write, 42

x-samples, 18

Xerces, 35, 38, 95

error, 95

error messages, 38

validation, 38

XML, 70, 80

debug, 74, 82

input, 70

validation, 38

xml, 70

XML Grammar, 21

XML Grammar), 38

xml-debug, 24

XMLSpy, 38

XSDvalid, 38

xsi:noNamespaceSchemaLocation, 95

yes, 75, 78

124

	The Layered Queueing Network Model
	Model Elements
	Processors
	Groups
	Tasks
	Entries
	Activities
	Precedence
	Requests

	Multiplicity and Replication
	A Brief History

	Results
	Header
	Analytic Solver (lqns)
	Simulator (lqsim)

	Type 1 Throughput Bounds
	Mean Delay for a Rendezvous
	Variance of Delay for a Rendezvous
	Mean Delay for a Send-No-Reply Request
	Variance of Delay for a Send-No-Reply Request
	Arrival Loss Probabilities
	Mean Delay for a Join
	Service Times
	Service Time Variance
	Probability Maximum Service Time Exceeded
	Service Time Distributions for Entries and Activities
	Semaphore Holding Times
	Throughputs and Utilizations per Phase
	Arrival Rates and Waiting Times
	Utilization and Waiting per Phase for Processor

	XML Grammar
	Basic XML File Structure
	Schema Elements
	LqnModelType
	ProcessorType
	GroupType
	TaskType
	FanInType and FanOutType
	EntryType
	ActivityGraphBase
	TaskActivityGraph
	ActivityDefBase
	MakingCallType
	PrecedenceType
	OutputResultType
	OutputResultJoinDelayType
	OutputDistributionType
	HistogramBinType

	Schema Constraints

	LQX Users Guide
	Introduction to LQX
	Input File Format
	Program Input/Output and External Control
	Writing Programs in LQX
	Actual Example of an LQX Model Program

	API Documentation
	Built-in Class: Array
	Built-in Global Methods and Constants

	API Documentation for the LQN Bindings
	LQN Class: Document
	LQN Class: Processor
	LQN Class: Group
	LQN Class: Task
	LQN Class: Entry
	LQN Class: Phase
	LQN Class: Activity
	LQN Class: Call
	Pragmas
	Confidence Intervals

	LQN Input File Format
	Lexical Conventions
	White Space
	Comments
	Identifiers
	Variables

	LQN Model Specification
	Pragmas
	General Information
	Processor Information
	Group Information
	Task Information
	Entry Information
	Activity Information

	SPEX: Software Performance Experiment Driver
	Variables
	Report Information
	Convergence Information
	Differeneces to SPEX 1
	SPEX and LQX

	Invoking the Analytic Solver ``lqns''
	Command Line Options
	Pragmas
	Stopping Criteria
	Model Limits
	Diagnostics

	Invoking the Simulator ``lqsim''
	Command Line Options
	Return Status
	Pragmas
	Stopping Criteria
	Model Limits

	Error Messages
	Fatal Error Messages
	Error Messages
	Advisory Messages
	Warning Messages
	Input File Parser Error Messages
	LQX Error messages

	Known Defects
	MOL Multiserver Approximation Failure
	Chain construction for models with multi- and infinite-servers
	No algorithm for phased multiservers OPEN class.
	Overtaking probabilities are calculated using CV=1
	Need to implement queue lengths for open classes.

	Traditional Grammar
	Input File Grammar
	SPEX Parameters
	General Information
	Processor Information
	Group Information
	Task Information
	Entry Information
	Activity Information
	SPEX Report Information
	SPEX Convergence Information
	Expressions
	Identifiers
	Variables

	Output File Grammar
	General Information
	Throughput Bounds
	Waiting Times
	Waiting Time Variance
	Send-No-Reply Waiting Time
	Send-No-Reply Wait Variance
	Arrival Loss Probabilities
	Join Delays
	Service Time
	Service Time Variance
	Probability Service Time Exceeded
	Service Time Distribution
	Throughputs and Utilizations
	Arrival Rates and Waiting Times
	Utilization and Waiting per Phase for Processor

