
Computer Networks 112 (2017) 345–359

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

GreenMap: Green mapping of MapRe duce-base d virtual networks onto

a data center network and managing incast queueing delay

Ebrahim Ghazisaeedi ∗, Changcheng Huang

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada

a r t i c l e i n f o

Article history:

Received 21 March 2016

Revised 25 September 2016

Accepted 18 November 2016

Available online 25 November 2016

Keywords:

Energy-efficient data centers

MapReduce

Virtualized data centers

Incast queueing delay

a b s t r a c t

Energy consumption is a first-order concern for today’s data centers. MapReduce is a cloud comput-

ing approach that is widely deployed in many data centers. Toward virtualizing data centers, we con-

sider MapReduce-based virtual networks that need to be embedded onto a data center network. In

this paper, we propose GreenMap, a novel energy-efficient embedding method that maps heterogeneous

MapReduce-based virtual networks onto a heterogeneous data center network. Besides, we introduce a

new incast problem that specially may happen in Virtualized Data Centers (VDCs). GreenMap also con-

trols the incast queueing delay. We formulate a Mixed-Integer Disciplined Convex Program (MIDCP) for

this method. Because the formulated MIDCP is N P -hard, we also propose a novel and scalable heuristic

for GreenMap. Simulation results prove that both of the MIDCP and the heuristic reduce a data center

network’s energy consumption effectively, and control the incast queueing delay.

© 2016 Elsevier B.V. All rights reserved.

1

s

t

c

[

a

M

l

s

t

p

p

fl

r

v

t

f

w

fi

h

w

fl

w

o

d

d

c

t

s

n

b

i

c

p

p

E

b

w

l

b

h

1

. Introduction

Cloud computing is becoming widespread, and energy con-

umption of the physical infrastructure that provides resources for

he cloud is growing [1] . Accordingly, energy management is a key

hallenge for data centers to reduce all their energy-related costs

2] .

MapReduce [3] is a cloud computing approach that parallelizes

 computation across large-scale cluster of servers. We target

apReduce, because it is widely deployed in many data centers

ike Yahoo!, Amazon, and Facebook [4] . In this framework, users

pecify the computation tasks by generating map and reduce func-

ions. Nodes that perform a mapping job are called mappers. Map-

ers process input data and generate intermediate key and value

airs. The generated key and value pairs are shuffled through shuf-

er nodes to the other nodes that perform a reducing job, called

educers. Reducers aggregate the received intermediate key and

alue pairs from different mappers and compute the computa-

ional results for an application. Note that the original MapReduce

ramework in [3] does not have a shuffling node. However, when

e map a MapReduce framework to substrate networks, the traf-

c generated during the shuffling process must go through a net-
∗ Corresponding author.

E-mail addresses: eghazisaeedi@sce.carleton.ca (E. Ghazisaeedi),

uang@sce.carleton.ca (C. Huang).

p

p

o

t

M

t

ttp://dx.doi.org/10.1016/j.comnet.2016.11.015

389-1286/© 2016 Elsevier B.V. All rights reserved.
ork in which the network elements can be virtualized as shuf-

ing nodes.

Recently, virtualization has emerged in communication net-

orks, so multiple Virtual Networks (VNs) may concurrently run

ver a single substrate network. Virtual Machines (VMs) also tra-

itionally virtualize servers’ resources. VNs together with VMs un-

erpin Virtualized Data Centers (VDCs). A VDC in the virtual layer

onsists of virtual networks in which VMs are connected with vir-

ual links by virtual switches/routers. In the substrate layer, it con-

ists of a data center network in which physical servers are con-

ected with physical links by physical switches/routers. A VDC em-

edding process maps requested virtual nodes and links onto phys-

cal nodes and paths of a data center network, respectively.

Traditional data centers are moving toward virtualized data

enters in order to address their limitations regarding network

erformance, security, and manageability [5] . Accordingly, in this

aper, we consider MapReduce-based virtual networks in VDCs.

ach virtual network is heterogeneous, where a virtual node might

e a mapper, a reducer, or a shuffler in a MapReduce frame-

ork. The data center network is also heterogeneous, with a multi-

evel topology such as tree or fat-tree. A substrate node could

e a server, or a switch/router. In this case, a VDC embedding

rocess requires to split computation-based virtual nodes (map-

ers/reducers) and embed them onto multiple physical servers, in

rder to parallelize the computation tasks. Therefore, every split-

ed and mapped virtual node acts a corresponding worker in the

apReduce framework, with the required network connectivity of

he virtual network. The MapReduce framework handles the traf-

http://dx.doi.org/10.1016/j.comnet.2016.11.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.11.015&domain=pdf
mailto:eghazisaeedi@sce.carleton.ca
mailto:huang@sce.carleton.ca
http://dx.doi.org/10.1016/j.comnet.2016.11.015

346 E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359

c

a

a

a

t

n

i

s

o

m

s

l

t

n

s

i

i

f

T

d

v

q

s

o

t

i

b

B

i

q

t

c

a

d

m

a

f

c

2

b

w

i

a

w

t

i

d

t

h

n

f

c

(

m

e

o

p

d

p

fic’s source and destination between Mapper and Reducer workers.

Nevertheless, all the existing embedding methods for virtual net-

works assume a virtual node could be mapped only onto a single

substrate node. Therefore, they are not able to map heterogeneous

MapReduce-based VNs onto a heterogeneous data center network.

An example of the actual use-case for MapReduce-base virtual

networks is a virtual network that includes two mapper, some

shuffling, and two reducer nodes. The first mapper nodes processes

a large collection of documents to find the pages that a specific

set of words occurred in them. The generated intermediate key

and value pairs by the mapper virtual node will be shuffled to a

reducer virtual node in the virtual network, through the shuffler

virtual nodes. Afterwards, the aggregated results by the reducer

will be forwarded to another mapper virtual node through shuffler

virtual nodes. The second mapper virtual node will process each

found page to find the number of occurrence of each word in it.

The results will be shuffled to another reducer virtual node in the

virtual network, through the shuffler virtual nodes. The second re-

ducer virtual node aggregates the received data and finds a pattern

between the given set of words and the most repeated words in

the relative pages of documents.

Incast traffic pattern in a data center network firstly has been

introduced in [6] . In a MapReduce framework, multiple mappers

may simultaneously send intermediate key and value pairs to a

single reducer. Therefore, the bottleneck physical link over the

physical path to the reducer will likely be congested. In non-

virtualized data centers, the incast congestion normally happens in

the bottleneck physical link that connects a shallow-buffered Top-

of-Rack (ToR) switch to an end-server that hosts a reducer [7–11] .

The converged traffic flows deplete either the switch memory or

the maximum allowed for that interface, resulting in packet loss

[8] . The incast traffic also may cause a long queueing delay called

incast queueing delay [8] . MapReduce requirements for low latency

are directly related to the quality of the result returned and thus

revenue. Consequently, it is vital for providers to control the incast

delay.

The incast problem in VDCs is different from the incast prob-

lem in non-virtualized (traditional) data centers. A virtual link in

a VDC is commonly mapped onto a physical path rather than a

physical link. During a VDC embedding process, a specific amount

of bandwidth capacity is allocated to each virtual link in physical

paths. The traffic flows in the allocated physical paths are limited

to their assigned bandwidth capacity. Hence, the incast problem

might happen over the bottleneck allocated physical paths to vir-

tual links. In this case, the incast traffic may face the incast queue-

ing delay in multiple physical links over the bottleneck allocated

path, leading to a longer cumulative incast queueing delay in the

virtual link. This problem is significantly different from the sce-

nario when incast happens only in a single bottleneck physical

link, which connects a ToR switch to an end-server, in the case

of non-virtualized data centers. To the best of our knowledge this

problem is not introduced in any existing research studies.

In this paper, we propose GreenMap, an energy-efficient em-

bedding method for MapReduce-based virtual networks that also

controls the incast queueing delay. We formulate a Mixed-Integer

Disciplined Convex Program (MIDCP) for this problem. Since the

formulated MIDCP is N P -hard, it is not scalable to large network

sizes. Therefore, we also propose a novel and scalable heuristic

for GreenMap. Both of the MIDCP and the heuristic map hetero-

geneous MapReduce-based VNs onto a heterogeneous data center

network. They minimize a VDC’s total consumed energy by physi-

cal servers, physical switches/routers, and physical links. They also

control the incast queueing delay.

In this regard, we may split computation-based virtual nodes

and map them onto multiple server substrate nodes. Accordingly,

we address the emerged challenge of splitting and mapping adja-
ent virtual links of splitted and mapped virtual nodes. We might

lso collocate multiple splitted computation-based virtual nodes of

 VN in a single server substrate node. The shuffler virtual nodes

re assumed to be core/aggregation level nodes in the data cen-

er network with a multi-level topology. Besides, shuffler virtual

odes do not perform large computation tasks, and therefore there

s no need of parallel computation in this case. Thus, we do not

plit a shuffler virtual node. A shuffler virtual node is mapped only

nto a single switch/router substrate node. But, we may collocate

ultiple shuffler virtual nodes of a VN in a single switch/router

ubstrate node. Note that the substrate path that connects an al-

ocated computation-based virtual node in a server substrate node

o an allocated shuffler virtual node in a switch/router substrate

ode, or vice versa, may traverse through multiple intermediate

witches/routers.

Our method also controls the introduced incast queueing delay

n any adjacent virtual link of a mapped reducer virtual node. This

s achieved by calculating the average end-to-end queueing delay

or incast traffic pattern during the virtual link mapping process.

he incast queueing delay in an adjacent virtual link of an embed-

ed reducer virtual node is related to the mentioned challenge of

irtual link mapping. We demonstrate how controlling the incast

ueueing delay impacts the embedding process, the level of energy

aving, and the network’s admittance ratio.

We evaluated both the MIDCP and the heuristic for GreenMap

ver randomly generated VDC scenarios. Simulations results prove

hat the MIDCP and the heuristic save larger amounts of energy

n the data center network than an existing energy-efficient em-

edding method for VNs that do not allow virtual node splitting.

esides, the simulations confirm that the incast queueing delay

s controlled, and illustrate the influence of controlling the incast

ueueing delay on energy saving rates and the network’s admit-

ance ratio. It is also demonstrated that the heuristic could achieve

losely to the optimum points set by the MIDCP.

The rest of this paper is organized as follows: The related works

nd our contributions in this paper are discussed in Section 2 . We

efine our network model in Section 3 , and study related power

odels in Section 4 . The MIDCP and the heuristic for GreenMap

re formulated in Section 5 , and Section 6 , respectively. The per-

ormance of the solutions is evaluated in Section 7 . The paper con-

ludes in Section 8 .

. Related works

There are few research studies suggested energy-efficient em-

edding processes that map VNs onto a substrate network, energy-

ise [5,12–15] . These have been performed by modifying the phys-

cal resources’ weights based on their power consumption in [12] ,

nd consolidating VNs to the smallest number of substrate net-

ork elements in [5,13–16] . However, all of them assume a vir-

ual node could be mapped only onto a single substrate node. This

s also the case in other proposed VN embedding methods that

o not concern about energy efficiency [17–21] . Moreover, none of

hese embedding methods provides a tool that could handle the

eterogeneity of both of MapReduce-based VNs and a data center

etwork, at the same time.

On the other hand, existing research studies on incast problem,

or non-virtualized networks , are focused on creating new traffic

ontrol mechanisms, and updating Transmission Control Protocol

TCP). They either tried to decrease packet loss by increasing the

emory of shallow-buffered switches [8,22,23] , or increase recov-

ry speed of TCP by decreasing the value of Retransmission Time-

ut (RTO) [10,22,24] . Nonetheless, the existing solutions for incast

roblem are not efficient, and traffic control algorithms alone are

ifficult to mitigate incast congestion [11] . Besides, they do not

rovide a solution for incast problem in VDCs.

E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359 347

Fig. 1. A MapReduce-based VN’s topology.

t

v

[

c

c

V

2

a

n

s

i

p

p

e

t

m

p

p

e

(

f

3

l

I

p

V

r

s

s

i

t

v

s

s

c

t

a

t

c

i

t

m

C

o

a

q

g

s

g

o

n

t

d

m

C

s

v

W

i

v

v

t

s

V

p

s

w

a

r

4

t

p

t

t

s

p

d

t

a

n

a

c

p

[

a

t

t

C

s

fi

[

s

r

l

f

a

g

Our Contributions: (a) To the best of our knowledge, this is

he first study on energy-efficient embedding of MapReduce-based

irtual networks onto a data center network. (b) Different from

5,12–15,17–21] , our approach makes it probable to split and map

omputation-based virtual nodes onto the data center network. Ac-

ordingly, it enables the providers to embed computation-based

Ns onto the data center network. (c) Different from [5,12–15,17–

1] , our solution handles heterogeneity of MapReduce-based VNs

nd a data center network. (d) For the first time, we introduce a

ew incast problem for virtualized data centers. (e) We demon-

trate a novel approach that controls the introduced incast queue-

ng delay. (f) We tackle the incast problem during the provisioning

rocess. So, it prevents the incast problem to happen at the first

oint. This is a much more efficient approach in comparison to the

xisting solutions for incast in [8,10,22,22–24] that try to recover

he connection after that incast happens. (g) The problem is for-

ulated as a MIDCP. (h) A novel and scalable heuristic is also pro-

osed for the problem that could achieve closely to the optimum

oints. (i) We examine both the MIDCP and the heuristic through

xtensive simulations, and check the impacts of different factors.

j) We demonstrate how controlling incast queueing delay may af-

ect the energy saving level and the network’s admittance ratio.

. Network model

We consider a heterogeneous data center network with a multi-

evel topology, such as tree or fat-tree, as the substrate network.

t is modeled as a directed graph G s = (V s , E s) . The directed graph

rovides higher level of flexibility in regard to routing traffic flows.

 s and E s denote the set of substrate nodes and substrate links,

espectively. The i th substrate node v i s could be a server, or a

witch/router. The i th substrate node, which is a server, is repre-

ented by v̄ i s . C c (̄v i s) is the Central Processing Unit (CPU) capac-

ty of v̄ i s . V̄ s denotes the set of server substrate nodes. Moreover,

he i th substrate node, which is a switch/router, is represented by

˜

i
s . C b (̃ v i s) is the switching capacity of ˜ v i s . ˜ V s denotes the set of

witch/router substrate nodes. Therefore, V s = { ̄V s ∪

˜ V s } .
A substrate link l

i, j
s in a data center network connects the i th

ubstrate node to the j th substrate node. C b (l
i, j
s) is the bandwidth

apacity of l
i, j
s .

The n th virtual network is modeled as a directed graph G n =
(V n , E n) , where V n and E n denote the set of virtual nodes and vir-

ual links in the n th VN, respectively. � is the set of all of the VNs,

nd L n = | E n | . Fig. 1 shows an example of a MapReduce-based VN’s

opology. In this framework, the k th virtual node v k n in the n th VN

ould be a mapper, a reducer, or a shuffler. The k th virtual node

n the n th VN, which is a mapper, is represented by ˙ v k n . ˆ C c (̇ v k n) is

he requested CPU capacity for ˙ v k n . VN customers may specify the

inimum

ˆ C ̌m

c (̇ v k n) and the maximum

ˆ C ̂ m

c (̇ v k n) amount of required

PU capacity per allocated physical machine for ˙ v k n . The job arrival

f a mapper could be modelled with Poisson process [25] . Besides,

 mapper node that processes the jobs, is modelled as a M/M/1

ueue [25] . Therefore, according to Jackson Networks theorem, the

enerated traffic of a mapper node could be modelled with Pois-
on process. In this regard, we assume a mapper virtual node ˙ v k n

enerates traffic that follows Poisson process with the mean rate

f λ(̇ v k n) . Considering ˙ V n as the set of mapper virtual nodes in the

 th VN, λM

n is equal to
∑

k ∈ ̇ V n
λ(̇ v k n) . Besides, the k th virtual node in

he n th VN, which is a reducer, is represented by v̈ k n . ˆ C c (̈v k n) is the

emanded CPU capacity for v̈ k n . VN customers also may specify the

inimum

ˆ C ̌m

c (̈v k n) and the maximum

ˆ C ̂ m

c (̈v k n) amount of required

PU capacity per allocated physical machine for v̈ k n . V̈ n denotes the

et of reducer virtual nodes in the n th VN. Furthermore, the k th

irtual node in the n th VN, which is a shuffler, is represented by ˜ v k n .

e assume a shuffler virtual node ˜ v k n only has the switching capac-

ty demand

ˆ C b (̃ v k n) , that is equal to the summation of its adjacent

irtual links’ bandwidth demands. ˜ V n denotes the set of shuffler

irtual nodes in the n th VN. Therefore, V n = { ̇ V n ∪ V̈ n ∪

˜ V n } .
The set of virtual links is presented as a set of ordered vir-

ual node pairs l a
m ,b m

n , m = 1 , 2 , . . . , L n . a m and b m are source and

ink virtual nodes of the m th virtual link in the corresponding

N, respectively. ˆ C b (l a
m ,b m

n) is the bandwidth demand of l a
m ,b m

n . We

resume computation-based virtual nodes are connected through

huffler virtual nodes in a virtual network’s topology. In other

ords, there is no pair of computation-based virtual nodes that

re connected directly to each other in a VN’s topology. This is the

eal case in a MapReduce framework.

. Power models

Considering a described heterogeneous data center network as

he substrate network, we have three major power consumers,

hysical servers, physical switches/routers, and physical links. In

his paper, we intend to minimize the total consumed energy by

hem in a VDC. We study a power model for each of these sub-

trate elements.

˜ p (̄v i s) = α(̄v i s) ̃ p b (̄v i s) +

φ̌(̄v i s)
C c (̄v i s)

(
˜ p m (̄v i s) − ˜ p b (̄v i s)

)
defines the actual

ower consumption ˜ p (̄v i s) for a server substrate node v̄ i s [26] . α(̄v i s)
enotes the status of v̄ i s . It is 1, if v̄ i s is active. Otherwise, it is 0.

˜ p b (̄v i s) is the base power consumption of v̄ i s required to keep it ac-

ive. ˜ p m (̄v i s) is the maximum power consumption of v̄ i s . The total

llocated processing capacity φ̌(̄v i s) to computation-based virtual

odes in v̄ i s changes its actual power consumption between ˜ p b (̄v i s)
nd ˜ p m (̄v i s) , linearly. ˜ p b (̄v i s) and ˜ p m (̄v i s) could be found through

alibration experiments, e.g. in [27] .

˜ p (̃ v i s) = α(̃ v i s) ̃ p b (̃ v i s) +

r(̃ v i s)
C b (̃ v i s)

(
˜ p m (̃ v i s) − ˜ p b (̃ v i s)

)
defines the actual

ower consumption ˜ p (̃ v i s) for a switch/router substrate node ˜ v i s
28] . α(̃ v i s) shows the status of ˜ v i s . ˜ p b (̃ v i s) and ˜ p m (̃ v i s) are the base

nd maximum power consumptions of ˜ v i s , respectively. The total

raffic load r(̃ v i s) in

˜ v i s changes its actual power consumption be-

ween its base and maximum power consumptions, linearly.

According to [28] , ˜ p b (̃ v i s) is 0 . 85 C b (̃ v i s)
2
3 , and ˜ p m (̃ v i s) is C b (̃ v i s)

2
3 .

onsequently, equation of the actual power consumption for a

witch/router could be rewritten as ˜ p (̃ v i s) = 0 . 85 α(̃ v i s) C b (̃ v i s)
2
3 +

0 . 15 r(̃ v i s)

C b (̃ v i s)
1
3

.

Similarly, ˜ p (l
i, j
s) = α(l

i, j
s) ̃ p b (l

i, j
s) +

r(l
i, j
s)

C b (l
i, j
s)

(̃ p m (l
i, j
s) − ˜ p b (l

i, j
s)) de-

nes the actual power consumption ˜ p (l
i, j
s) of a substrate link l

i, j
s

28] . ˜ p b (l
i, j
s) and ˜ p m (l

i, j
s) are the base and maximum power con-

umptions of l
i, j
s , respectively. The total allocated traffic capacity

(l
i, j
s) to virtual links in l

i, j
s varies its actual power consumption,

inearly. Note that ˜ p b (l
i, j
s) and ˜ p m (l

i, j
s) are normally defined for dif-

erent ranges of link bandwidth capacity, based on the link’s length

nd the type of the cable. Some numerical amounts for them are

iven in [28] .

348 E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359

a

t

V

m

i

5

5

i

E

M

5

s

t

a

v

s

b

n∑

n

According to the above defined power models, the most effec-

tive way of saving power in any of the mentioned substrate ele-

ments is shutting down the device. Note that the same amount of

processing/traffic demand might cause different amounts of power

consumption in distinct substrate elements, based on the element’s

processing/bandwidth capacity, its base power consumption, and

its maximum power consumption.

5. Mixed-integer disciplined convex program

In this problem, the processing/bandwidth capacity of every

substrate node, and the bandwidth capacity of every substrate link

are given. Besides, each VN’s topology, the processing/bandwidth

demand of every virtual node and their minimum/maximum pro-

cessing demands per physical server, the bandwidth demand of ev-

ery virtual link, and λ(̇ v k n) of each mapper virtual node are known.

We need to find a mapping for every VN such that the data cen-

ter network’s total energy consumption by physical servers, physi-

cal switches/routers, and physical links, is minimized. We also re-

quire to control the incast queueing delay according to the given

ˆ D ,

which is the maximum tolerable queueing delay in a virtual link.

In this regard, we may split the computation-based virtual

nodes and map splitted virtual nodes onto multiple physical

servers. But, we map a shuffler virtual node onto a single physi-

cal switch/router, as they do not need parallel computations. We

also may collocate virtual nodes (mappers/reducers/shufflers) of

a VN in a single relevant substrate node. A new challenge will

emerge in this model. The issue is what is the bandwidth capacity

that needs to be allocated to an adjacent virtual link of a split-

ted and mapped computation-based virtual node. Likely, a split-

ted computation-based virtual node processes proportional traf-

fic to its assigned processing capacity. Therefore, the amount of

bandwidth we allocate to an adjacent virtual link of a splitted and

mapped computation-based virtual node is proportional to its as-

signed processing capacity. Thus, in this model, more likely the in-

troduced incast problem may arise in an adjacent virtual link of

a splitted reducer virtual node. Note that in order to avoid out of

order packet delivery, we do not split generated traffic of an allo-

cated virtual node.

In order to control the introduced incast queueing delay, it is

required to find the end-to-end queueing delay for incast traf-

fic pattern in the substrate path allocated to every virtual link

that terminates at a splitted and mapped reducer virtual node.

In this case the end-to-end delay is the total delay that a packet

takes to travel from an output port of a Mapper virtual node to

an input port of a Reducer virtual node, which is the total de-

lay the networking elements impose to the traffic. So, the delay

at servers’ input ports does not have any effect on the end-to-

end queueing delay for incast traffic pattern. In incast traffic pat-

tern, λM

n is the mean traffic rate in the substrate path. Most of to-

day’s switches/routers are internally non-blocking (i.e. the internal

switch fabric speed is much faster than each output port). There-

fore, traffic can only be blocked by limited bandwidths of output

ports which are defined earlier by the link bandwidth capacity. We

model the queue of an allocated bandwidth capacity to a virtual

link in a substrate link by M/M/1 queue. According to Jackson Net-

works theorem and because we do not split generated traffic of an

allocated virtual node, the end-to-end incast queueing delay in the

substrate path could be calculated by knowing the amount of allo-

cated traffic capacity to the virtual link in each physical link over

the substrate path, and λM

n . Since the amount of bandwidth we al-

locate to the virtual links are proportional to the assigned capacity

of its end virtual nodes, the way we split reducer virtual nodes im-

pacts the incast queueing delay. Besides, the substrate node which

we map the splitted reducer virtual node onto, and accordingly

the allocated substrate path to each of the adjacent virtual links,
lso may influence the incast queueing delay. Clearly, this limits

he level of freedom regarding energy-efficient embedding of the

Ns, and may affect the energy saving rate and the network’s ad-

ittance ratio.

Considering the discussed definitions, we formulate the follow-

ng MIDCP as a solution for GreenMap:

.1. Optimization variables

• φ̌(v k n , v i s) is a real variable. It represents the fraction of process-

ing/switching demand of a virtual node v k n , that is allocated in

a substrate node v i s . v k n could be ˙ v k n , v̈ k n , or ˜ v k n . v i s could be v̄ i s or

˜ v i s .
• α(̄v i s) , α(̃ v i s) , and α(l

i, j
s) are binary variables. They denote the

status of respective substrate node/link. The variable is 1 in the

case the device is active. Otherwise, it is 0.

• α(̇ v k n , ̄v i s) , α(̈v k n , ̄v i s) , α(̃ v k n , ̃ v i s) are binary variables denote

whether the virtual node is allocated in the substrate node (the

variable is 1), or not (the variable is 0).

• α(l
x,y
n (m)) is a binary variable. It is 1 if the whole or a fraction

of v a m n ’s processing/switching demand is allocated in v x s , and the

whole or a fraction of v b m n ’s processing/switching demand is al-

located in v y s . Otherwise, it is 0. l
x,y
n (m) is a sub virtual link of

l a
m ,b m

n that connects the allocated source virtual node in v x s to

the allocated sink virtual node in v y s .

• z i, j (l
x,y
n (m)) is a binary variable. It is 1 if the allocated substrate

path for l
x,y
n (m) passes through l

i, j
s . Otherwise, it is 0.

• ˙ d
x,y
n (m) is a real variable. It is the fraction of ˆ C b (l a

m ,b m

n) that

needs to be allocated to l
x,y
n (m) .

• d̈ i, j (l
x,y
n (m)) is a real variable. It shows the amount of allocated

traffic capacity to l
x,y
n (m) in l

i, j
s .

.2. Objective function

Our objective is minimizing the total consumed energy by phys-

cal servers, physical switches/routers, and physical links, in a VDC.

q. (1) maintains this objective.

inimize

{∑

i ∈ ̄V s
α(̄v i s) ̃ p b (̄v i s) +

φ̌(̄v i s)
C c (̄v i s)

(
˜ p m (̄v i s) − ˜ p b (̄v i s)

)

+

∑

i ∈ ̃ V s

0 . 85 α(̃ v i s) C b (̃ v i s)
2
3 +

0 . 15 r(̃ v i s)

C b (̃ v i s)
1
3

+

∑

(i, j) ∈ E s
α(l i, j

s) ̃ p b (l i, j
s) +

r(l i, j
s)

C b (l i, j
s)

(
˜ p m (l i, j

s) − ˜ p b (l i, j
s)

)}
(1)

.3. Constraints

Every virtual node must be mapped onto one or multiple sub-

trate nodes. This is ensured by the first constraint in Eq. (2) . Note

hat this constraint allows collocation of multiple virtual nodes of

 VN onto a single substrate node. The constraint in Eq. (3) pre-

ents a computation-based virtual node to be mapped onto a

witch/router substrate node. Besides, the constraint in Eq. (4) for-

ids a shuffler virtual node to be mapped onto a server substrate

ode.

i ∈ V s
φ̌(v k n , v i s) = 1 , ∀ n ∈ { n | G n ∈ �} , ∀ k ∈ V n (2)

∑

 ∈{ n | G n ∈ �}

(∑

k ∈ ̇ V n

φ̌(̇ v k n , ̃ v i s) +

∑

k ∈ ̈V n
φ̌(̈v k n , ̃ v i s)

)

= 0 , ∀ i ∈

˜ V s (3)

E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359 349

n

T

n

r

t

p

i

c

r

t

T

v

B

v

t

E

i

t

s

n

n

I

o

v

V

F

t

t

n

C

p

m

T

b

d

B

e

o

m

t

s

n

c

i

o

T

a

s

d

F

l

a

o

l

I

z

O

E

A

d

∀

M

s

c

r

r

C

c

t

l

s

(

e

E

l

s

n

t

0

0
∑

 ∈{ n | G n ∈ �}

∑

k ∈ ̃ V n

φ̌(̃ v k n , ̄v i s) = 0 , ∀ i ∈ V̄ s (4)

he allocated processing capacity to a computation-based virtual

ode in a server substrate node must be equal or greater than the

equested minimum CPU capacity per physical machine for the vir-

ual node, and equal or less than the requested maximum CPU ca-

acity per physical machine for the virtual node. This is confirmed

n the constraint in Eq. (5) for mapper virtual nodes, and in the

onstraint in Eq. (6) for reducer virtual nodes. Note that the given

atio must be feasible. For example,
ˆ C ̌m c (̈v k n)

ˆ C c (̈v k n)
could not be greater

han 0.5.

ˆ C m̌

c (̇ v k n)

ˆ C c (̇ v k n)
α(̇ v k n , ̄v i s) ≤ φ̌(̇ v k n , ̄v i s) ≤

ˆ C ˆ m

c (̇ v k n)

ˆ C c (̇ v k n)
α(̇ v k n , ̄v i s) ,

∀ i ∈ V̄ s , ∀ n ∈ { n | G n ∈ �} , ∀ k ∈

˙ V n (5)

ˆ C m̌

c (̈v k n)

ˆ C c (v k n)
α(̈v k n , ̄v i s) ≤ φ̌(̈v k n , ̄v i s) ≤

ˆ C ˆ m

c (̈v k n)

ˆ C c (̈v k n)
α(̈v k n , ̄v i s) ,

∀ i ∈ V̄ s , ∀ n ∈ { n | G n ∈ �} , ∀ k ∈ V̈ n (6)

he constraint in Eq. (7) restricts the program to map a shuffler

irtual node only onto one switch/router substrate node.

φ̌(̃ v k n , ̃ v i s) = α(̃ v k n , ̃ v i s) , ∀ i ∈

˜ V s , ∀ n ∈ { n | G n ∈ �} , ∀ k ∈

˜ V n (7)

esides, total allocated processing capacities to computation-based

irtual nodes in a server substrate node must be equal or less than

he substrate node’s CPU capacity, as shown in the constraint in

q. (8) . Total allocated switching capacities to shuffler virtual nodes

n a switch/router substrate node also must be equal or less than

he substrate node’s switching capacity, as indicated in the con-

traint in Eq. (9) .

∑

 ∈{ n | G n ∈ �}

(∑

k ∈ ̇ V n

φ̌(̇ v k n , ̄v i s) ̂ C c (̇ v k n)

+

∑

k ∈ ̈V n
φ̌(̈v k n , ̄v i s) ̂ C c (̈v k n)

)

≤ C c (̄v i s) , ∀ i ∈ V̄ s (8)

∑

 ∈{ n | G n ∈ �}

∑

k ∈ ̃ V n

φ̌(̃ v k n , ̃ v i s) ̂ C b (̃ v k n) ≤ C b (̃ v i s) , ∀ i ∈

˜ V s (9)

n the next step, the program needs to map adjacent virtual links

f allocated virtual nodes. We discussed that computation-based

irtual nodes are connected through shuffler virtual nodes in a

N’s topology. So, we have two types of virtual links in a VN.

irst, a virtual link that connects a computation-based virtual node

o a shuffler virtual node, or vice versa. Second, a virtual link

hat connects a shuffler virtual node to another shuffler virtual

ode. Therefore, φ̌(v a m n , v x s) ̌φ(v b m n , v y s) ̂ C b (l a
m ,b m

n) is the fraction of

ˆ
 b (l a

m ,b m

n) that needs to be allocated to l
x,y
n (m) . This amount is

roportional to the assigned processing/switching capacity to the

apped source and sink virtual nodes of the virtual link l a
m ,b m

n .

his is reflected in the constraint in Eq. (10) . This constraint could

e replaced by the linear constraints in Appendix B .

˙

x,y
n (m) = φ̌(v a m n , v x s) ̌φ(v b m n , v

y
s) ,

∀ x ∈ V s , ∀ y ∈ V s , ∀ n ∈ { n | G n ∈ �} , m = 1 , . . . , L n (10)

 1 , B 2 , B 3 , and B 4 are large integer numbers. They must be large

nough to be greater than the largest amount of the left-hand side

f their respective inequality. If there is a non-zero bandwidth de-

and for l
x,y
n (m) , the first constraint in Eq. (11) forces α(l

x,y
n (m))
o be 1. Then, the second constraint in Eq. (11) needs to route a

ingle unit of data from the x th substrate node to the y th substrate

ode. Because the variable z i, j (l
x,y
n (m)) is binary, the unit of data

ould not be splitted. Besides, the third constraint in Eq. (11) lim-

ts the program routing, so the maximum number of incoming and

utgoing flows for a sub virtual link, in any substrate node, is two.

his maintains a single loopless path. The driven route will be used

s the substrate path for l
x,y
n (m) . Note that if α(l

x,y
n (m)) = 0 , no

ubstrate path is allocated to l
x,y
n (m) .

˙

x,y
n (m) ̂ C b (l a

m ,b m

n) ≤ B 1 α(l x,y
n (m)) , ∑

{ j | (i, j) ∈ E s }
z i, j (l x,y

n (m)) −
∑

{ j| (j,i) ∈ E s }
z j,i (l x,y

n (m))

=

{

α(l x,y
n (m)) if i = x

−α(l x,y
n (m)) if i = y

0 otherwise
,

∑

{ j | (i, j) ∈ E s }
z i, j (l x,y

n (m)) +

∑

{ j| (j,i) ∈ E s }
z j,i (l x,y

n (m)) ≤ 2 ,

∀ i ∈ V s , ∀ x ∈ V s , ∀ y ∈ V s , ∀ n ∈ { n | G n ∈ �} , m = 1 , . . . , L n (11)

urthermore, total allocated traffic capacity r(l
i, j
s) in a substrate

ink l
i, j
s must be less than its physical bandwidth capacity C b (l

i, j
s) ,

s expressed in the constraint in Eq. (12) . r(l
i, j
s) is the summation

f every allocated traffic capacity d̈ i, j (l
x,y
n (m)) to a sub virtual link

x,y
n (m) in l

i, j
s . d̈ i, j (l

x,y
n (m)) is equal to z i, j (l

x,y
n (m)) ˙ d

x,y
n (m) ̂ C b (l a

m ,b m

n) .

f the allocated substrate path to l
x,y
n (m) passes through l

i, j
s ,

i, j (l
x,y
n (m)) is 1, and therefore d̈ i, j (l

x,y
n (m)) is ˙ d

x,y
n (m) ̂ C b (l a

m ,b m

n) .

therwise, d̈ i, j (l
x,y
n (m)) is 0. Note that the constraint in

q. (13) could be replaced by the linear constraints in

ppendix C .

r(l i, j
s) ≤ C b (l i, j

s) , ∀ (i, j) ∈ E s , where:

r(l i, j
s) =

∑

x ∈ V s

∑

y ∈ V s

∑

n ∈{ n | G n ∈ �}

L n ∑

m =1

d̈ i, j (l x,y
n (m))

 ̈

i, j (l x,y
n (m)) = z i, j (l x,y

n (m)) ˙ d x,y
n (m) ̂ C b (l a

m ,b m

n) , (12)

 (i, j) ∈ E s , ∀ x ∈ V s , ∀ y ∈ V s , ∀ n ∈ { n | G n ∈ �} ,
m = 1 , . . . , L n (13)

oreover, the total incoming and outgoing traffic of a

witch/router substrate node must be less than its switching

apacity. This is confirmed in the constraint in Eq. (14) .

(̃ v i s) ≤ C b (̃ v i s) , ∀ i ∈

˜ V s , where:

(̃ v i s) =

∑

(i, j) ∈ E s
r(l i, j

s) +

∑

(j,i) ∈ E s
r(l j,i s) (14)

onsidering M/M/1 queue and Jackson Networks theorem, and be-

ause we do not split generated traffic by an allocated virtual node,

he average end-to-end incast queueing delay of a sub virtual link

x,y
n (m) could be calculated by the sum of 1

μ(l
x,y
n (m)) −λM

n

for every

ubstrate link l
i, j
s that a traffic capacity is allocated to l

x,y
n (m) in it

 z i, j (l
x,y
n (m)) = 1). The mean service rate μ(l

x,y
n (m)) for l

x,y
n (m) is

qual to ˙ d
x,y
n (m) ̂ C b (l a

m ,b m

n) .

Thus, the left-hand side of the first inequality constraint in

q. (15) calculates the end-to-end incast queueing delay in the al-

ocated substrate path to a sub virtual link that connects a mapped

huffler virtual node to a mapped and splitted reducer virtual

ode. Note that if no traffic capacity is allocated to the sub vir-

ual link l
x,y
n (m) , then z i, j (l

x,y
n (m)) is 0, and therefore the delay is

. 2(1 − α(l
x,y
n (m))) is added to ensure the denominator is never

. According to the first constraint in Eq. (11), if ˙ d
x,y
n (m) is greater

350 E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359

Algorithm 1 Mapping shuffler virtual nodes of n th VN.

1: Input: Given data for the VN and the data center network

2: for all unallocated

˜ v k n such that k ∈

˜ V n do

3: for all ˜ v i s from top of S _ L 1 do

4: if C̆ b (̃ v i s) ≥ ˆ C b (̃ v k n) then

5: Č b (̃ v k n , ̃ v i s) =

ˆ C b (̃ v k n)

6: C̆ b (̃ v i s) = C̆ b (̃ v i s) − Č b (̃ v k n , ̃ v i s)
7: for all m th virtual link such that: its source virtual node

is ˜ v k n and its sink virtual node is ˜ v l n , l ∈

˜ V n , or its source

virtual node is ˜ v l n , l ∈

˜ V n and its sink virtual node is ˜ v k n

do

8: if ˜ v l n is unallocated then

9: for all ˜ v j s from top of S _ L 1 do

10: if C̆ b (̃ v
j
s) ≥ ˆ C b (̃ v l n) then

11: Č b (̃ v l n , ̃ v
j
s) =

ˆ C b (̃ v l n)
12: C̆ b (̃ v

j
s) = C̆ b (̃ v

j
s) − Č b (̃ v l n , ̃ v

j
s)

13: Algorithm4 (l
i, j
n (m)), or Algorithm4 (l

j,i
n (m))

14: if virtual link mapping was not successful then

15: Č b (̃ v l n , ̃ v
j
s) = 0

16: C̆ b (̃ v
j
s) = C̆ b (̃ v

j
s) + Č b (̃ v l n , ̃ v i s)

17: undo the modifications, check next ˜ v j s
18: else

19: break, and check the next virtual link in line 7

20: end if

21: end if

22: end for

23: else

24: Algorithm4(l
i, j
n (m)) , or Algorithm4(l

j,i
n (m))

25: if this virtual link mapping was not successful then

26: undo the modifications

27: break, and check the next ˜ v i s in line 3

28: end if

29: end if

30: end for

31: update S _ L 1 , break, and check the next ˜ v k n in line 2

32: end if

33: end for

34: undo the modifications, and reject n th VN

35: end for

t

t

t

M

v

t

s

h

s

d

d

c

c

e

6

s

c

e

n

p

r
than 0, then α(l
x,y
n (m)) is 1, and therefore the denominator is

˙ d
x,y
n (m) ̂ C b (l a

m ,b m

n) − λM

n . Otherwise, if ˙ d
x,y
n (m) is 0, then z i, j (l

x,y
n (m))

of any substrate link is 0, and the denominator is λM

n .

Hence, according to the proof in Appendix A , the first inequality

constraint in Eq. (15) is a disciplined convex constraint [29] , which

verifies the incast queueing delay in the allocated substrate path

to every virtual link that terminates at a mapped reducer virtual

node, is less than

ˆ D . Besides, the second constraint in Eq. (15) con-

firms that every queue in the network is stable.

∑

(i, j) ∈ E s

z i, j (l x,y
n (m)) 2

˙ d x,y
n (m) ̂ C b (l a

m ,b m
n) − λM

n + 2

(
1 − α(l x,y

n (m))
)
λM

n

≤ ˆ D ,

˙ d x,y
n (m) ̂ C b (l a

m ,b m

n) > α(l x,y
n (m)) λM

n ,

∀ n ∈ { n | G n ∈ �} , m ∈ { m | m = 1 , . . . , L n ; b m ∈ V̈ n } , ∀ x ∈ V s ,

∀ y ∈ V s (15)

The constraints in Eq. (16) check the respective device’s sta-

tus.

φ̌(̄v i s) ≤ B 2 α(̄v i s) , ∀ i ∈ V̄ s , where:

φ̌(̄v i s) =

∑

n ∈ G n

(∑

k ∈ ̇ V n

φ̌(̇ v k n , ̄v i s) +

∑

k ∈ ̈V n
φ̌(̈v k n , ̄v i s)

)

;

r(̃ v i s) ≤ B 3 α(̃ v i s) , ∀ i ∈

˜ V s ;
r(l i, j

s) ≤ B 4 α(l i, j
s) , ∀ (i, j) ∈ E s (16)

Besides, the variables have to hold the following bounds:

0 ≤ φ̌(v k n , v i s) ≤ 1 , ∀ i ∈ V s , ∀ n ∈ { n | G n ∈ �} , ∀ k ∈ V n

α(̄v i s) , α(̃ v i s) ∈ { 0 , 1 } , ∀ i ∈ V s

α(l i, j
s) ∈ { 0 , 1 } , ∀ (i, j) ∈ E s

α(̇ v k n , ̄v i s) ∈ { 0 , 1 } , ∀ i ∈ V̄ s , ∀ n ∈ { n | G n ∈ �} , ∀ k ∈

˙ V n

α(̈v k n , ̄v i s) ∈ { 0 , 1 } , ∀ i ∈ V̄ s , ∀ n ∈ { n | G n ∈ �} , ∀ k ∈ V̈ n

α(̃ v k n , ̃ v i s) ∈ { 0 , 1 } , ∀ i ∈

˜ V s , ∀ n ∈ { n | G n ∈ �} , ∀ k ∈

˜ V n

α(l x,y
n (m)) , z i, j (l x,y

n (m)) ∈ { 0 , 1 } , ∀ x ∈ V s , ∀ y ∈ V s ,

∀ n ∈ { n | G n ∈ �} , m = 1 , . . . , L n

The formulated MIDCP is a type of virtual network embedding

problems. A virtual network embedding problem is N P -hard [30] .

In consequence, the defined MIDCP is N P -hard, and it is not scal-

able to large network sizes.

6. Heuristic

Today’s data centers include hundreds to thousands of physi-

cal servers. Therefore, we need to develop a heuristic algorithm

for GreenMap that is scalable to large network sizes. The algorithm

also has to achieve closely to the optimum points set by the for-

mulated MIDCP. In this section, we propose such a heuristic for

GreenMap.

The heuristic embeds MapReduce-based VNs onto a data cen-

ter network, one by one, as the VN requests are received during

the time. It maps a VN onto a data center network with the mini-

mum additional energy consumption, and the hope of minimizing

a VDC’s total consumed energy at the end.

Four algorithms form our proposed heuristic for GreenMap.

Each algorithm maps a part of the n th MapReduce-based virtual

network onto a data center network. Algorithm 1 maps shuffler

virtual nodes onto switch/router substrate nodes. Algorithm 2 , and

Algorithm 3 map reducer virtual nodes, and mapper virtual nodes

onto server substrate nodes, respectively. Besides, Algorithm 4

maps virtual links onto substrate paths.
We first run Algorithm 1 to prepare the transit network for

ransferring generated intermediate data of computation-based vir-

ual nodes. Afterwards, we run Algorithm 2 and map reducer vir-

ual nodes onto server substrate nodes. Similar to the formulated

IDCP, the heuristic controls the incast queueing delay in every

irtual link that terminates in a splitted and mapped reducer vir-

ual node. Therefore, as it is discussed, we are limited regarding

plitting and allocating reducer virtual nodes. However, we do not

ave such a limitation in embedding mapper virtual nodes. In con-

equence, in order to have more available resources in mapping re-

ucer virtual nodes, we map reducer virtual nodes before embed-

ing mapper virtual nodes. Afterwards, we run Algorithm 3 to allo-

ate mapper virtual nodes in server substrate nodes. Algorithm 4 is

alled during the running process of the first three algorithms to

mbed the corresponding virtual links onto substrate paths.

.1. Mapping shuffler virtual nodes

A shuffler virtual node is allocated in a single switch/router

ubstrate node. Multiple shuffler virtual nodes might be collo-

ated in a single switch/router. In order to minimize a VDC’s

nergy consumption, our priority is to map a shuffler virtual

ode onto an already active switch/router with the minimum

ower consumption for the requested switching capacity. In this

egard, we sort switch/router substrate nodes in a list called

E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359 351

Algorithm 2 Mapping reducer virtual nodes of n th VN.

1: Input: Mapping outcome of Algorithm 1

2: for all unallocated v̈ k n from top of S _ L 3 do

3: V ′ k n = 0

4: for all v̄ i s from top of S _ L 2 do

5: if ˆ C ′ c (̈v k n) ≥ max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) then

6: if C̆ c (̄v i s) ≥ min (̂ C ′ c (̈v k n) , ˆ C ̂ m

c (̈v k n)) and

ˆ C ̂ m

c (̈v k n)) ≥
C i (̈v k n , ̄v i s)) then

7: Č c (̈v k n , ̄v i s) = min (̂ C ′ c (̈v k n) , ˆ C ̂ m

c (̈v k n))

8: else if max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) ≤ C̆ c (̄v i s) <

min (̂ C ′ c (̈v k n) , ˆ C ̂ m

c (̈v k n)) then

9: Č c (̈v k n , ̄v i s) = C̆ c (̄v i s)
10: end if

11: if Č c (̈v k n , ̄v i s) > 0 then

12: C̆ c (̄v i s) = C̆ c (̄v i s) − Č c (̈v k n , ̄v i s)
13: ˆ C ′ c (̈v k n) =

ˆ C ′ c (̈v k n) − Č c (̈v k n , ̄v i s)
14: V k n (i) = Č c (̈v k n , ̄v i s) − max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s))
15: V ′ k n = V ′ k n + V k n (i)

16: for all adjacent virtual link m of v̈ k n that its shuffler

virtual node is mapped on v j s , j ∈

˜ V n do

17: Algorithm4(l
i, j
n (m)) , or Algorithm4(l

j,i
n (m))

18: if the virtual link mapping was not successful then

undo the modifications, break, and check the next v̄ i s
in line 4

19: end for

20: end if

21: else if ˆ C ′ c (̈v k n) 	 = 0 and C̆ c (̄v i s) ≥ max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) and

V ′ k n ≥ max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) − ˆ C ′ c (̈v k n) then

22: Č c (̈v k n , ̄v i s) = max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s))
23: C̆ c (̄v i s) = C̆ c (̄v i s) − Č c (̈v k n , ̄v i s)
24: for all adjacent virtual link m of v̈ k n that its shuffler vir-

tual node is mapped on v j s , j ∈

˜ V n do

25: Algorithm4(l
i, j
n (m)) , or Algorithm4(l

j,i
n (m))

26: if the virtual link mapping was not successful then

undo the modifications, break, and check the next v̄ i s
in line 4

27: end for

28: for all x th v x s going backward from x = i to the top of

S _ L 2 do

29: Č c (̈v k n , ̄v x s) = Č c (̈v k n , ̄v x s) − min (V k n (x) , max (̂ C ̌m

c (̈v k n) ,

C i (̈v k n , ̄v i s)) − ˆ C ′ c (̈v k n))

30: C̆ c (̄v x s) = C̆ c (̄v x s) + min (V k n (x) , max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) −
ˆ C ′ c (̈v k n))

31: update the allocated traffic capacities to the corre-

sponding virtual links

32: if total reduced allocated processing capacities is equal

to max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) − ˆ C ′ c (̈v k n) then update S _ L 2 ,

break, and check the next v̈ k n in line 2

33: end for

34: else if ˆ C ′ c (̈v k n) = 0 then

35: update S _ L 2 , break, and check the next v̈ k n in line 2

36: end if

37: end for

38: undo the modifications, break, and reject n th VN

39: end for

S

i

s

A

t

i

o

Algorithm 3 Mapping mapper virtual nodes of n th VN.

1: Input: Mapping outcome of Algorithm 1 and 2

2: for all unallocated

˙ v k n such that k ∈

˙ V n do

3: for all v̄ i s from top of S _ L 2 do

4: if ˆ C ′ c (̇ v k n) ≥ ˆ C ̌m

c (̇ v k n) and

ˆ C ′ c (̇ v k n) +

ˆ C ̌m

c (̇ v k n) 	 = 0 then

5: if C̆ c (̄v i s) ≥ min (̂ C ′ c (̇ v k n) , ˆ C ̂ m

c (̇ v k n)) then

6: Č c (̇ v k n , ̄v i s) = min (̂ C ′ c (̇ v k n) , ˆ C ̂ m

c (̇ v k n))

7: else if ˆ C ̌m

c (̇ v k n) ≤ C̆ c (̄v i s) < min (̂ C ′ c (̇ v k n) , ˆ C ̂ m

c (̇ v k n)) then

8: Č c (̇ v k n , ̄v i s) = C̆ c (̄v i s)
9: end if

10: if Č c (̇ v k n , ̄v i s) > 0 then

11: C̆ c (̄v i s) = C̆ c (̄v i s) − Č c (̇ v k n , ̄v i s)
12: ˆ C ′ c (̇ v k n) =

ˆ C ′ c (̇ v k n) − Č c (̇ v k n , ̄v i s)
13: for all adjacent virtual link m of ˙ v k n that its shuffler

virtual node is mapped on v j s , j ∈

˜ V n do

14: Algorithm4(l
i, j
n (m)) , or Algorithm4(l

j,i
n (m))

15: if the virtual link mapping was not successful then

undo the modifications, break, and check the next v̄ i s
in line 3

16: end for

17: end if

18: else if ˆ C ′ c (̇ v k n) 	 = 0 and C̆ c (̄v i s) ≥ ˆ C ̌m

c (̇ v k n) then

19: Č c (̇ v k n , ̄v i s) =

ˆ C ̌m

c (̇ v k n)

20: C̆ c (̄v i s) = C̆ c (̄v i s) − Č c (̇ v k n , ̄v i s)
21: for all adjacent virtual link m of ˙ v k n that its shuffler vir-

tual node is mapped on v j s , j ∈

˜ V n do

22: Algorithm4(l
i, j
n (m)) , or Algorithm4(l

j,i
n (m))

23: if the virtual link mapping was not successful then

undo the modifications, break, and check the next v̄ i s
in line 3

24: end for

25: for all x th v x s going backward from x = i to the top of

S _ L 2 do

26: if Č c (̇ v k n , ̄v x s) − ˆ C ̌m

c (̇ v k n) +

ˆ C ′ c (̇ v k n) ≥ ˆ C ̌m

c (̇ v k n) then

27: Č c (̇ v k n , ̄v x s) = Č c (̇ v k n , ̄v x s) − ˆ C ̌m

c (̇ v k n) +

ˆ C ′ c (̇ v k n)

28: C̆ c (̄v x s) = C̆ c (̄v x s) +

ˆ C ̌m

c (̇ v k n) − ˆ C ′ c (̇ v k n)

29: update the allocated traffic capacities to the corre-

sponding virtual links

30: if total reduced allocated processing capacities is

equal to ˆ C ̌m

c (̇ v k n) − ˆ C ′ c (̇ v k n) then update S _ L 2 , break,

and check the next ˙ v k n in line 2

31: end if

32: end for

33: else if ˆ C ′ c (̇ v k n) = 0 then

34: update S _ L 2 , break, and check next ˙ v k n in line 2

35: end if

36: end for

37: undo the modifications, break, and reject n th VN

38: end for

t

s

i

s

s

e

c

n

a

a

s

s

 _ L 1 . Active switches/routers in S _ L 1 have a higher priority than

nactive switches/routers. This is because activating an inactive

witch/router adds the large amount of base power consumption.

ctive switches/routers are sorted in ascending order based on

heir value of
˜ p m (̃ v i s) − ˜ p b (̃ v i s)

C b (̃ v i s)
. As a result, the same amount of switch-

ng demand adds less amount of power consumption in higher pri-

rity switches/routers, according to the defined power model. If
he value of this fraction is equal for some switches/routers, we

ort them in descending order based on their available switch-

ng capacity. A switch/router with the larger amount of available

witching capacity may allow us to collocate a larger number of

huffler virtual nodes in it, and therefore allow us to save more

nergy. On the other hand, we sort inactive switches/routers in as-

ending order based on their base power consumption. Thus, if it is

ecessary to activate an inactive switch/router, the lowest possible

mount of base power consumption will be required. We sort in-

ctive switches/routers with the equal amount of base power con-

umption in ascending order based on

˜ p m (̃ v i s) − ˜ p b (̃ v i s)
C b (̃ v i s)

, because of the

ame discussed reason.

352 E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359

Algorithm 4 Virtual link mapping.

1: Input: l
i, j
n (m) , the mapping outcome

2: find K-shortest path from v i s to v j s in the data center network

3: for all K found paths with the minimum number of inactive

intermediate physical nodes do

4: for all (x, y) such that l
x,y
s is on the alternative path do

5: if C̆ b (l
x,y
s) ≥ φ̌(v a m n , v i s) ̌φ(v b m n , v j s) ̂ C b (l a

m ,b m

n) then

6: d̈ x,y (l
i, j
n (m)) = φ̌(v a m n , v i s) ̌φ(v b m n , v j s) ̂ C b (l a

m ,b m

n)

7: C̆ b (l
x,y
s) = C̆ b (l

x,y
s) − d̈ x,y (l

i, j
n (m))

8: else

9: undo the modifications, break, and check the next found

path

10: end if

11: end for

12: for all x such that ˜ v x s is an intermediate physical node on the

alternative path do

13: if C̆ b (̃ v x s) ≥ 2 ̌φ(v a m n , v i s) ̌φ(v b m n , v j s) ̂ C b (l a
m ,b m

n) then

14: C̆ b (̃ v x s) = C̆ b (̃ v x s) − 2 ̌φ(v a m n , v i s) ̌φ(v b m n , v j s) ̂ C b (l a
m ,b m

n)

15: else

16: undo the modifications, break, and check the next found

path

17: end if

18: end for

19: the virtual link is successfully mapped

20: break from checking the rest of found paths

21: end for

b

a

c

n

fl

s

T

a

e

o

t

a

d

b

v

t

n

e

o

b

c

c

a

a

v

C

l

t

t

t

m

o

s

s

c

v

A

s

v

f

n

t

i

w

m

t

A

φ

Algorithm 1 searches for a switch/router candidate ˜ v i s from the

top of S _ L 1 to map an unallocated shuffler virtual node ˜ v k n onto

it. A switch/router ˜ v i s is a candidate if its available switching ca-

pacity C̆ b (̃ v i s) is equal or greater than the switching capacity de-

mand

ˆ C b (̃ v k n) of the shuffler virtual node ˜ v k n . For such a candi-

date, the algorithm similarly maps every other unallocated shuf-

fler virtual node that is connected to ˜ v k n with a virtual link, onto

a switch/router. In the next step, it calls Algorithm 4 to embed

the candidate’s adjacent virtual links, between the allocated shuf-

fler virtual nodes, onto substrate paths. We describe Algorithm 4 ’s

process later in this section. If the algorithm successfully maps the

adjacent shuffler virtual nodes and virtual links of the candidate,

then the allocated switching capacity Č b (̃ v k n , ̃ v i s) to ˜ v k n in

˜ v i s is ˆ C b (̃ v k n) .

However, if it could not successfully map an unallocated shuffler

virtual node onto a switch/router, then it rejects the VN.

6.2. Mapping reducer virtual nodes

In the next step, we run Algorithm 2 to map reducer virtual

nodes onto server substrate nodes. The algorithm splits the pro-

cessing demand

ˆ C c (̈v k n) of a reducer virtual node v̈ k n and map the

splitted demands onto servers, while it minimizes the VDC’s en-

ergy consumption and controls the incast queueing delay. The way

it splits the processing demands and map them onto servers has

critical impacts on the energy consumption and the incast queue-

ing delay.

In order to reduce the VDC’s energy consumption when we

map reducer virtual nodes, we intend to use the minimum pos-

sible number of servers with the lowest power consumption for

demanded processing capacities. In this regard, we sort server sub-

strate nodes in a list called S _ L 2 . In S _ L 2 , active servers have a

higher priority than inactive servers. Active servers are sorted in

ascending order based on

˜ p m (̄v i s) − ˜ p b (̃ v i s)
C c (̄v i s)

. This ensures that the same

amount of processing demand adds less power consumption in

servers with a higher priority, according to the defined power

model. Servers with the equal value of
˜ p m (̄v i s) − ˜ p b (̃ v i s)

C c (̄v i)
are sorted
s
ased on their available processing capacity. A larger amount of

vailable processing capacity in servers may allow us to split pro-

essing demands in larger blocks. Therefore, we require a smaller

umber of servers to allocate them in, and the algorithm is more

exible regarding the incast constraint. Besides, we sort inactive

ervers in ascending order based on their base power consumption.

hus, if we need to activate an inactive server, the lowest possible

mount of base power consumption is needed. Servers with the

qual value of base power consumption are sorted in ascending

rder based on

˜ p m (̄v i s) − ˜ p b (̃ v i s)
C c (̄v i s)

for the same discussed reason. Note

hat we repeatedly update S _ L 2 during Algorithm 2 ’s process, upon

 reducer virtual node is mapped.

Moreover, we sort reducer virtual nodes in a list called S _ L 3 , in

escending order based on

ˆ C c (̈v k n)

ˆ C ̌m c (̈v k n)
.

ˆ C c (̈v k n)

ˆ C ̌m c (̈v k n)
is the maximum num-

er of distinct servers that may be required for mapping a reducer

irtual node v̈ k n . Algorithm 2 first maps reducer virtual nodes with

he highest value of
ˆ C c (̈v k n)

ˆ C ̌m c (̈v k n)
to increase the admittance ratio of the

etwork.

In order to use the minimum number of servers with the low-

st power consumption, we need to split the processing demand

f a reducer virtual node v̈ k n into the largest possible processing

locks, and allocate them in the appropriate servers. The algorithm

hecks the ordered server substrate nodes in S _ L 2 and try to allo-

ate the maximum possible processing capacity to an ordered un-

llocated reducer virtual node v̈ k n in S _ L 3 in a server. However, the

llocated processing capacity Č c (̈v k n , ̄v i s) to a reducer virtual node

¨

k
n in a server substrate node v̄ i s must satisfy two conditions. First,

 ̌c (̈v k n , ̄v i s) must be equal or greater than given

ˆ C ̌m

c (̈v k n) and equal or

ess than known

ˆ C ̂ m

c (̈v k n) . Second, Č c (̈v k n , ̄v i s) must be greater than

he minimum incast processing capacity C i (̈v k n , ̄v i s) , which guaran-

ees an in range (less than

ˆ D) end-to-end queueing delay for incast

raffic pattern in the substrate path allocated to a virtual link ter-

inates at v̈ k n in v̄ i s .
We assumed a reducer virtual node is connected to the rest

f the network via a shuffler virtual node in a VN topology. Be-

ides, shuffler virtual nodes are already mapped in the previous

tep. Therefore, it is possible to calculate the minimum incast pro-

essing capacity C i (̈v k n , ̄v i s) when we check the suitability of a server

¯

i
s for a v̈ k n , analytically. In order to calculate C i (̈v k n , ̄v i s) , we use

lgorithm 4 to find substrate paths that will be allocated to each

ub virtual link which connects an allocated shuffler virtual node

˜

l
n to v̈ k n . The mean end-to-end incast queueing delay in the longest

ound substrate path determines C i (̈v k n , ̄v i s) . L (̈v k n , ̄v i s) denotes the

umber of physical links in the found longest substrate path. Note

hat we do not allocate any traffic capacity at this stage. Accord-

ng to M/M/1 queue and Jackson Networks theorem, and because

e do not split generated traffic by an allocated virtual node, the

inimum required bandwidth capacity that needs to be allocated

o the virtual link l l,k n with the longest substrate path, is:

L (̈v k n , ̄v i s)
ˆ D

+ λM

n (17)

s it is discussed before, we know this value is equal to
ˇ (̈v k n , ̄v i s) ̂ C b (l l,k n) . Hence,

φ̌(̈v k n , ̄v i s) =

L (̈v k n , ̄v i s)
ˆ D

+ λM

n

ˆ C b (l l,k n)
,

C i (̈v k n , ̄v i s)
ˆ C c (̈v k n)

=

L (̈v k n , ̄v i s)
ˆ D

+ λM

n

ˆ C b (l l,k n)
,

C i (̈v k n , ̄v i s) =

ˆ C c (̈v k n)

ˆ C b (l l,k n)

(
L (̈v k n , ̄v i s)

ˆ D

+ λM

n

)
(18)

E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359 353

Fig. 2. The heuristic’s decision making process.

n

C

s

t

m

a

o

i

D

a

a

o

c

v

c

c

C

m

c

i

c

v

v

i

m

m

o

v

m

s

m

a

t

d

q

m

v

t

t

o

e

b

i

u

i

r

s

r

s

6

n

H

w

m

t

c

fi

A

t

c

p

C

c

c

s

c

p

t

p

p

6

c

I

t

o

O

t

i

t

g

o

t

a

i

a

s

s

t

e

p

e

t

i

a

2

g

c

t
Furthermore, ˆ C ′ c (̈v k n) is the remained processing capacity that

eeds to be allocated to v̈ k n . At the first, ˆ C ′ c (̈v k n) equals to ˆ C c (̈v k n) .
ˆ

′
c (̈v k n) might be changed, as the algorithm processes the ordered

ervers for the possible mapping. In this regard, we might face

hree conditions based on

ˆ C ′ c (̈v k n) , at each time we check a v̄ i s to

ap v̈ k n onto it.

First, ˆ C ′ c (̈v k n) is larger than max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) . In this case,

llocating the remained processing demand to v̈ k n in v̄ i s does not vi-

late either the minimum requested processing capacity per phys-

cal machine ˆ C ̌m

c (̈v k n) , or the maximum tolerable queueing delay
ˆ
 in the adjacent virtual links. Therefore, as Fig. 2 shows, we

llocate the maximum processing capacity based on the avail-

ble processing capacity C̆ c (̄v i s) in the server v̄ i s . If C̆ c (̄v i s) is equal

r greater than min (̂ C ′ c (̈v k n) , ˆ C ̂ m

c (̈v k n)) , then the maximum pro-

essing capacity we could allocate to v̈ k n in v̄ i s is the smaller

alue between

ˆ C ′ c (̈v k n) and

ˆ C ̂ m

c (̈v k n) . This ensures we do not allo-

ate a larger amount than the requested

ˆ C ̂ m

c (̈v k n) , or ˆ C ′ c (̈v k n) . Of

ourse, ˆ C ̂ m

c (̈v k n) must be equal or greater than C i (̈v k n , ̄v i s) . But, if

 ̆c (̄v i s) is less than min (̂ C ′ c (̈v k n) , ˆ C ̂ m

c (̈v k n)) and equal or greater than

ax (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) , then the maximum processing capacity we

ould allocate to v̈ k n in v̄ i s is C̆ c (̄v i s) . So, it does not violate the min-

mum/maximum requested processing capacity per physical ma-

hine, or the maximum tolerable queueing delay ˆ D in the adjacent

irtual links. Otherwise, no processing capacity is allocated to v̈ k n in

¯

i
s . If the algorithm allocates a processing capacity in a server, then

t calls Algorithm 4 to map the corresponding sub virtual links.

Second, ˆ C ′ c (̈v k n) is smaller than max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) . This

eans if we allocate ˆ C ′ c (̈v k n) to v̈ k n in v̄ i s , then either the mini-

um requested processing capacity per physical machine ˆ C ̌m

c (̈v k n) ,

r the maximum tolerable queueing delay ˆ D in its adjacent

irtual links, will be violated. Instead, the algorithm allocates

ax (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) to v̈ k n in v̄ i s and maps its corresponding

ub virtual links, if v̄ i s has enough available processing capacity.

ax (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) − ˆ C ′ c (̈v k n) is the extra processing capacity

llocated to v̈ k n in v̄ i s . Therefore, the algorithm recursively updates

he previously allocated processing capacities to v̈ k n in servers to

ecrease the extra allocated capacity, if the constraints (the re-

uested range of processing capacity per physical machine, and the

aximum tolerable delay in the adjacent virtual links) will not be

iolated.

In this regard, when a processing capacity is allocated to a vir-

ual node in a server, we record the amount of processing capacity

hat if we subtract it from the allocated processing capacity, none

f the constraints will be violated. This amount for a v̈ k n in a v̄ i s is

qual to Č c (̈v k n , ̄v i s) − max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) , and it is represented

y V k n (i) . V ′ k n is total V k n (i) for v̈ k n .
We decrease the previously allocated processing capacities to v̈ k n

n servers (e.g. v̄ x s) by min (V k n (x) , max (̂ C ̌m

c (̈v k n) , C i (̈v k n , ̄v i s)) − ˆ C ′ c (̈v k n)) ,

ntil the extra allocated capacity is removed. This is the case if V ′ k n

s equal or greater than the extra allocated capacity. Then, the algo-

ithm updates the allocated traffic capacities to the corresponding

ub virtual links.

Third, ˆ C ′ c (̈v k n) is 0. This means v̈ k n is mapped successfully.

Algorithm 2 rejects the VN, if it could not successfully map a

educer virtual node and its adjacent virtual links onto servers and

ubstrate paths, respectively.

.3. Mapping mapper virtual nodes

We run Algorithm 3 as the last step, to embed mapper virtual

odes onto servers. Algorithm 3 works similarly to Algorithm 2 .

owever, there are some minor differences.

Different from the mapping process of a reducer virtual node,

e do not concern about the incast queueing delay when we

ap a mapper virtual node onto servers. Therefore, in contrary

o Algorithm 2, Algorithm 3 does not check the minimum in-

ast processing capacity during its allocation process. This simpli-

es the mapping procedure. As a result, the recursive process in

lgorithm 3 , which modifies the allocated capacities due to the ex-

ra allocated processing capacity, is slightly different from the re-

ursive process in Algorithm 2 . The extra allocated processing ca-

acity to a ˙ v k n in a v̄ i s in Algorithm 3 is ˆ C ̌m

c (̇ v k n) − ˆ C ′ c (̇ v k n) , where
ˆ

′
c (̇ v k n) is the remained processing capacity that needs to be allo-

ated to ˙ v k n . This is because the minimum processing capacity that

ould be allocated to a ˙ v k n in a v̄ i s is only limited by ˆ C ̌m

c (̇ v k n) . Be-

ides, Algorithm 3 searches in the previously allocated processing

apacities to find the one which if it subtracts the extra allocated

rocessing capacity from the already allocated processing capacity,

he result does not violate the minimum requested processing ca-

acity per physical machine. Note that Č c (̇ v k n , ̄v i s) is the allocated

rocessing capacity to ˙ v k n in v̄ i s .

.4. Mapping virtual links

We have seen Algorithms 1–3 , might call Algorithm 4 to allo-

ate a virtual link or a sub virtual link l
i, j
n (m) in a substrate path.

n this regard, Algorithm 4 finds K loopless shortest path from v i s
o v j s in a data center network. If source and sink substrate nodes

f a substrate link are active, the cost of the substrate link is 1.

therwise, the substrate link has a large cost, e.g. 100. This helps

o find the shortest paths with activating the minimum number of

nactive substrate links and nodes. Our preferred routing algorithm

o find K loopless shortest paths is the very well known Yen’s al-

orithm [31] . It is also possible to consider more recent methods

f finding K loopless shortest paths as proposed in [32,33] . Note

hat the value of K is adjustable. It will be more probable to find

 capable substrate path, by incrementing the value of K . However,

ncrementing the value of K increases the time complexity of the

lgorithm, as will be discussed. The right value for K could be cho-

en according to the size of a data center network.

Algorithm 4 may check the capability of every found sub-

trate path, regarding the required traffic capacity. We know

he traffic capacity that needs to be allocated to l
i, j
n (m) is

qual to φ̌(v a m n , v i s) ̌φ(v b m n , v j s) ̂ C b (l a
m ,b m

n) . Therefore, a substrate

ath is a candidate if the available traffic capacity C̆ b (l
x,y
s) in

very physical link l
x,y
s along the path is equal or greater

han φ̌(v a m n , v i s) ̌φ(v b m n , v j s) ̂ C b (l a
m ,b m

n) . Besides, the available switch-

ng capacity C̆ b (̃ v x s) in every intermediate substrate node ˜ v x s

long the candidate path also must be equal or grater than

 ̌φ(v a m n , v i s) ̌φ(v b m n , v j s) ̂ C b (l a
m ,b m

n) . This considers incoming and out-

oing traffic in an intermediate substrate node. Note that a server

an not be an intermediate substrate node in our defined data cen-

er network topology. The virtual link or the sub virtual link is

354 E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359

Fig. 3. Topology of the data center network in a small simulation setup.

n

f

o

|

f

p

K

K

|

m

7

b

m

i

t

b

d

s

l

o

I

o

W

t

a

p

p

d

r

c

t

3

p

i

m

b

3

c

c

i

s

T

a

t

t

t

s

s

successfully mapped onto a data center network, if the algorithm

could find such a substrate path for it.

It is required to find the time complexity of the proposed

heuristic to see if it is scalable to large network sizes. In this re-

gard, we need to find the complexity of each of the described al-

gorithms for mapping the n th MapReduced-based VN onto a data

center network.

We first find the complexity of Algorithm 4 , because it is

called during the other algorithms. Algorithm 4 calls Yen’s algo-

rithm in line 2. The complexity of Yen’s algorithm is O(K| V s | (| E s | +
| V s | log| V s |) . Besides, the loop that starts in line 3 and ends in line

21 is run for K times. This loop has two sub-loops. The first sub-

loop that starts in line 4 and ends in line 11 is run for every sub-

strate link in the worst-case. The algorithm inside this sub-loop

might undo some modifications, that in the worst-case it checks

every substrate link again. Hence, the complexity of this sub-loop

is O(| E s | 2) . The second sub-loop that starts in line 12 and ends

in line 18 is run for every switch/router substrate node in the

worst-case. Inside this sub-loop the algorithm may also undo some

modifications. So, it may need to update every substrate link and

switch/router again. Thus, the complexity of the second sub-loop is

O(| ̃ V s | (| E s | + | ̃ V s |)) . All in all, considering only dominating factors,

the time complexity of Algorithm 4 is O(K(| V s | (| E s | + | V s | log| V s |) +
| E s | 2)) .

The complexity of Algorithm 1 is determined by the main loop

that starts in line 2 and ends in line 35. This loop is run for ev-

ery shuffler virtual node in the VN. So, it is run for | ̃ V n | times. A

sub-loop of the main loop starts in line 3 and ends in line 33. This

sub-loop is run for | ̃ V s | in the worst-case. Besides, we have a sub-

loop in Algorithm 1 which starts in line 7 and ends in line 30.

This sub-loop maps every adjacent virtual link of a shuffler virtual

node. In the worst-case, it is run for | E n | times. The other sub-loop

that starts in line 9 and ends in line 22 may be run for | ̃ V s | times.

The algorithm may call Algorithm 4 to map corresponding virtual

links. We know the complexity of Algorithm 4 is O(K(| V s | (| E s | +
| V s | log| V s |) + | E s | 2)) . Besides, it might undo some modifications re-

lated to the shuffler virtual node and its mapped virtual links. So,

the complexity of this function is O(| ̃ V s | + | E s || E n |) . Consequently,

by taking into account the dominating factors, the time complexity

of Algorithm 1 is O(| ̃ V n || ̃ V s | 2 | E n | (K| V s || E s | + K| V s | 2 log| V s | + K| E s | 2 +
| E s || E n |)) .

The main loop that starts in line 2 and ends in line 30 of

Algorithm 2 specifies its time complexity. This loops is run for ev-

ery reducer virtual node in the VN, which is | ̈V n | times. A sub-

loop that starts in line 4 and ends in line 37 may check the

capability of every server substrate node for the reducer virtual

node. So, it is run for | ̄V s | times. We have another sub-loop that

starts in line 16 and ends in line 19. A similar sub-loop also starts

in line 24 and ends in line 27. Both of them are run for | E n |

times in the worst-case. Algorithm 4 is called inside these sub-

loops. Besides, the algorithm may undo some modifications in-

side these sub-loops. Here, the undoing function may check ev-

ery server substrate node for the allocated processing capacities

to the reducer virtual node, and each substate link for the al-

located traffic capacities to the virtual links. Therefore, its com-

plexity is O(| ̄V s | + | E s || E n |) . The other sub-loop that starts in line

28 and ends in line 33 recursively updates the previously allo-

cated capacities. This sub-loop may be run for | ̄V s | times. The al-

gorithm also updates the previously allocated traffic capacities to

the corresponding virtual links inside this sub-loop. The complex-

ity of this function is O(| E s || E n |) . Hence, taking into considera-

tion the dominating factors, the time complexity of Algorithm 2 is

O(| ̈V n || ̄V s || E n | (K| ̄V s || E s | + K| ̄V s | 2 log| ̄V s | + K| E s | 2 + | E s || E n |)) .
The time complexity of Algorithm 3 could be derived simi-

larly to the time complexity of Algorithm 2 . The only difference is

that the main loop in Algorithm 3 is run for every mapper virtual
ode instead of every reducer virtual node in Algorithm 2 . There-

ore, it is run for | ̇ V n | times. In consequence, the time complexity

f Algorithm 3 is O(| ̇ V n || ̄V s || E n | (K| ̄V s || E s | + K| ̄V s | 2 log| ̄V s | + K| E s | 2 +
 E s || E n |)) .

We know Algorithms 1–3 are run in series to form the heuristic

or GreenMap. Thus, the time complexity of the heuristic for map-

ing the n th VN is O ((| ̃ V n || ̃ V s | 2 | E n | (K| V s || E s | + K| V s | 2 log| V s | +
| E s | 2 + | E s || E n |)) + (| ̈V n || ̄V s || E n | (K| ̄V s || E s | + K| ̄V s | 2 log| ̄V s | +

| E s | 2 + | E s || E n |)) + (| ̇ V n || ̄V s || E n | (K| ̄V s || E s | + K| ̄V s | 2 log| ̄V s | + K| E s | 2 +

 E s || E n |))) . This proves the heuristic could be solved in a polyno-

ial time.

. Evaluation

GreenMap is supposed to map the heterogeneous MapReduce-

ased VNs onto a heterogeneous data center network, and mini-

ize its total energy consumption. Besides, it needs to control the

ntroduced incast queueing delay. We verify the performance of

he formulated MIDCP and the proposed heuristic for GreenMap

y generating and mapping random MapReduce-based VNs onto a

ata center network with multi-level topology.

As it is discussed, the formulated MIDCP is N P -hard, so it is not

calable for large network sizes. Therefore, similar to the other re-

ated works in [15,16,28,34,35] , we assess capability of the MIDCP

n small random simulation setups. It is possible to solve Mixed-

nteger Disciplined Convex Programs by combination of a continu-

us optimization algorithm and an exhaustive search method [29] .

e solved the formulated MIDCP by MOSEK solver [36] , with the

olerance of 1 . 49 × 10 −8 . Nonetheless, the theoretical complexity

nalysis reveals that the proposed heuristic algorithm is much sim-

ler, and therefore it is scalable for large network sizes. Hence, the

erformance of the suggested heuristic is examined on large ran-

om simulation setups. The setups for the proposed heuristic algo-

ithm are simulated using MATLAB.

A small random simulation setup includes a heterogeneous data

enter network with a symmetric tree topology. Fig. 3 shows the

opology of this network. It has 13 nodes including 10 servers and

 switches/routers. We assume servers are blades with a CPU ca-

acity of 2 GHz. The blade server is ideal for our study, because it

s widely deployed in data centers and incorporates several power

anagement techniques [27] . The base power consumption of a

lade server is 213Watt, and its maximum power consumption is

19.5 W [27] . It is assumed a switch/router has 10Gbps switching

apacity, and a physical link has 1Gbps bandwidth capacity. In this

ase, the base power consumption of a physical link is 1.7 W, and

ts maximum power consumption is 2 W [28] .

Recently, Waxman algorithm [37] is widely used by the re-

earchers to generate random virtual network topologies [15,16,35] .

herefore, in this paper, virtual networks’ topologies are gener-

ted by Waxman algorithm. Waxman generates random network

opologies based on two parameters. As the first parameter grows,

he probability of having an edge between a pair of nodes in the

opology is increased. We choose 0.4 for the first parameter. As the

econd parameter grows there is a larger ratio of long edges to

hort edges. We choose 0.2 for the second parameter.

E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359 355

Fig. 4. Abstract topology of the data center network in a large simulation setup.

d

f

s

a

M

u

D

a

s

N

p

v

c

s

t

T

h

s

3

s

n

E

p

t

r

2

p

c

a

d

f

5

s

o

7

a

i

r

t

c

b

p

d

n

V

r

f

a

a

t

b

1

r

a

n

h

b

m

d

t

i

n

n

w

e

c

o

M

i

t

v

v

t

i

s

t

h

d

s

c

c

t

d

r

t

fi

t

T

d

v

v

d

D

t

r

C

i

a

l

m

n

n

T
In small random simulation setups, a virtual link’s bandwidth

emand is generated randomly between 100Mbps and 200Mbps,

ollowing the uniform distribution. The switching demand of a

huffler virtual node is assumed to be equal to the summation of

ll its incoming and outgoing virtual links’ bandwidth demands.

oreover, λ(̇ v k n) of a mapper virtual node ˙ v k n is generated with the

niform distribution between 1Mbps and 10Mbps. We also assume
ˆ
 is 25 ms. The round-trip times (RTTs) in data center networks

re in the range of hundreds of microsecond [7] . Therefore, we as-

ume the delay demands in the same range through this paper.

ote that no restrictions is considered for the minimum/maximum

rocessing capacity per physical machine for a computation-based

irtual node, unless otherwise stated.

A large random simulation setup includes a heterogeneous data

enter network with a fat-tree topology. Fig. 4 shows the ab-

tract topology of this network. Here, we consider a 6-ary fat-

ree topology with three layers of edge, aggregation, and core.

his topology is built by 6-port commodity switches/routers. It

as 6 pods, each contains two layers (edge/aggregation) of 3

witches/routers. Every 6-port edge switch/router is connected to

 servers, and 3 aggregation switches/routers. We also have 9 core

witches/routers. Each 6-port aggregation switch/router is con-

ected to 3 edge switches/routers, and 3 core switches/routers.

very core switch/router is connected to each of 6 pods. The i th

ort of a core switch/router is connected to the i th pod. Thus, this

opology has 54 servers, and 45 switches/routers. Similar to a small

andom simulation setup, servers are blades with a CPU capacity of

 GHz. It is assumed a switch/router has 6 × 10Gbps switching ca-

acity, and a physical link has 10Gbps bandwidth capacity. In this

ase, the base and maximum power consumption of a physical link

re assumed to be 17 W and 20 W, respectively [38] .

In a large random simulation setup, a virtual link’s bandwidth

emand is generated randomly between 300Mbps and 500Mbps,

ollowing the uniform distribution. Besides, ˆ D is assumed to be

0 ms. The rest of the configurations for large random simulation

etups are the same as the small random simulation setups, unless

therwise instructed.

.1. Small random simulation setups

First, we solved the MIDCP and the heuristic for GreenMap, and

lso the state-of-the-art energy-efficient VN embedding algorithm

n [15] , for different numbers of virtual nodes per VN, on a small

andom simulation setup. We measured the total power consump-

ion by servers in all the cases. There is no existing approach that

ould split virtual nodes and embed heterogeneous MapReduce-

ased VNs onto a heterogeneous data center network. So, we com-

ared our solution with the well-cited energy-efficient VN embed-

ing algorithm in [15] , which does not allow node splitting. The

umber of virtual nodes per VN is ranged from 5 to 8, while each
 (
N has 3 shuffler virtual nodes. It also has at least 1 mapper and 1

educer virtual node, but the exact numbers are chosen randomly

ollowing the uniform distribution. We tested 10 randomly gener-

ted virtual networks for each number of virtual nodes per VN,

nd plotted the average results including confidence intervals with

he confidence level of 90%, in Fig. 5 a.

In this simulation setup, the CPU demand of a computation-

ased virtual node is a random value between 500 MHz and

500 MHz, following the uniform distribution. Note that this

ange is chosen, so the state-of-the-art algorithm is able to map

 computation-based virtual node onto a single server substrate

ode.

The results in Fig. 5 a first confirm that the MIDCP and the

euristic for GreenMap effectively reduce total power consumption

y servers, in comparison to the state-of-the-art energy-efficient

apping algorithm. This is because the state-of-the-art algorithm

oes not allow either node splitting, or node collocation. Second,

he results show incrementing the number of virtual nodes per VN,

ncreases the total consumed power by servers in the data center

etwork. This is because we have fixed number of shuffler virtual

odes and increasing number of computation-based virtual nodes,

hile a computation-based virtual node needs some power to op-

rate. Besides, the power consumption is increasing linearly in the

ase of state-of-the-art algorithm, since it maps each virtual node

n a single substrate node. However, this is not the case for the

IDCP and the heuristic for GreenMap, as they splits the process-

ng demands of computation-based virtual nodes and might map

hem onto multiple virtual nodes. They also may collocate multiple

irtual nodes of a VN in a single substrate node. Moreover, Fig. 5 a

erifies that the heuristic could achieve reasonably close to the op-

imum results of the MIDCP. This is the case while the heuristic

s considerably faster than the MIDCP. For example, in the same

etup and for a single run, when we have 6 virtual nodes in a VN,

he MIDCP’s run time is 84,128 s. However, this amount for the

euristic is only 0.0414 s.

In addition, we solved the formulated MIDCP for GreenMap for

ifferent CPU demands of a computation-based virtual node, on a

mall random simulation setup. This is also solved for when the in-

ast constraints in Eq. (15) are relaxed. We measured the mean in-

ast queueing delay in the allocated substrate paths to virtual links

hat terminate at a reducer virtual node, for both cases. The CPU

emands are ranged from 20 0 0 MHz to 340 0 MHz. We tested 10

andomly generated virtual networks for each CPU rate, and plot-

ed the average results including confidence intervals with the con-

dence level of 90%, in Fig. 5 b.

In this simulation setup, we have 5 virtual nodes per VN, with

he minimum of 1 mapper, 1 reducer, and 1 shuffler virtual node.

he exact number is chosen randomly according to the uniform

istribution. Moreover, we assume that for a mapper virtual node

˙

k
n ,

ˆ C ̌m c (̇ v k n)

ˆ C c (̇ v k n)
= 0 . 5 and

ˆ C ̂ m
c (̇ v k n)

ˆ C c (̇ v k n)
= 1 . Besides, for a reducer virtual node

¨

k
n ,

ˆ C ̌m c (̈v k n)

ˆ C c (̈v k n)
= 0 and

ˆ C ̂ m
c (̈v k n)

ˆ C c (̈v k n)
= 1 .

According to the results in Fig. 5 b, the mean incast queueing

elay is always less than the determined maximum tolerable delay
ˆ
 of 25 ms. This confirms that the MIDCP for GreenMap could con-

rol the incast queueing delay, effectively. Nevertheless, simulation

esults show the mean incast queueing delay of infinity , for any

PU demand in the range, when we relax the incast constraints

n Eq. (15) . This means for each case, at least one queue over the

llocated substrate path to a virtual link that terminates at an al-

ocated reducer virtual node, is unstable. So, the queue’s service

ean rate is less than its arrival rate. Hence, in the case we do

ot control the introduced incast queueing delay, providers might

ot catch their latency targets for the individual MapReduce tasks.

his also may result in violation of their Service Level Agreements

SLAs).

356 E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359

Fig. 5. (a) The total power consumption based on different numbers of virtual nodes per VN for the state-of-the-art algorithm, the MIDCP for GreenMap, and the heuristic

for GreenMap. (b) The mean incast queueing delay based on different CPU demands of a computation-based virtual node for the MIDCP, as well as the chosen maximum

tolerable queueing delay ˆ D for a virtual link. (c) The total VDC’s power consumption based on different CPU demands of a computation-based virtual node for the MIDCP,

and the MIDCP when the incast constraints are relaxed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

T

v

t

a

a

a

a

t

n

i

s

o

t

t

w

v

s

c

s

a

n

s

i

r

n

V

1

p

u

t

a

e

a

t

c

m

c

t

m

s

t

b

t

a
Note that the incast queueing delay is fluctuating by chang-

ing the CPU demand. In order to satisfy the objective and the

constraints, different CPU demands of a computation-based virtual

node might be splitted and allocated in server substrate nodes, dif-

ferently. Since the incast queueing delay is related to the assigned

CPU capacity to reducer virtual nodes, it fluctuates by changing the

CPU demand.

In the same simulation setup, we also measured the total con-

sumed power by servers, switches/routes, and physical links. The

results are shown in Fig. 5 c. The figure shows that increasing the

demanded CPU rate of computation-based virtual nodes, increases

the total power consumption. This is because we need to allocate

more processing/bandwidth capacities in the data center network

in order to handle the higher demands.

But, the interesting point about the results in Fig. 5 c is that for

some demanded CPU rates, the total power consumption is higher

when we control the incast queueing delay. In other words, some-

times we could save more power if we relax the incast constraints.

According to Section 5 , the way we split and map the CPU de-

mands of reducer virtual nodes onto server substrate nodes di-

rectly impacts the incast queueing delay. Hence, when we limit the

incast queueing delay by setting the maximum tolerable queueing

delay for a virtual link, we are not able to use every available pro-

cessing/bandwidth capacity in the network to save energy. For ex-

ample, we might have to turn an inactive server on to handle a

CPU demand and keep the incast queueing delay in the requested

range. However, if we do not concern about the incast queueing

delay, we may be able to split the CPU demand into smaller block-

sand allocate them in active servers to save the energy.

This issue does not happen when we have the enough process-

ing capacity in active servers, so splitting the CPU demands does

not violate the incast constraint. Besides, the total power consump-

tion in the case of relaxed incast constraints might change linearly

for a range of CPU demands, as we could split and allocate them

in active servers without turing on inactive servers.

7.2. Large random simulation setups

The simulation results in Fig. 5 a confirmed that the heuristic re-

duces the total server power consumption of the small scale VDCs,

effectively. In order to verify the effectiveness of the heuristic re-

garding saving the energy in large scale data centers, we tested

the heuristic as well as the state-of-the-art algorithm on a large

random simulation setup, for different numbers of virtual nodes

per VN. The number of virtual nodes per VN is ranged from 12 to

18. Here, a VN has 10 shufflers, and at least 1 mapper and 1 re-

ducer virtual node. The exact number of mapper and reducer vir-

tual nodes are chosen randomly based on the uniform distribution.
he CPU demand of a computation-based virtual node is a random

alue between 500 MHz and 1500 MHz, following the uniform dis-

ribution. Note that this range is chosen, so the state-of-the-art

lgorithm is able to map a computation-based virtual node onto

 single server substrate node. We examined 10 randomly gener-

ted virtual networks for each number of virtual nodes per VN,

nd plotted the average results including confidence intervals with

he confidence level of 90%, in Fig. 6 a.

The results in Fig. 6 a prove that the heuristic for GreenMap sig-

ificantly reduces the large scale VDC’s total power consumption

n comparison to the state-of-the-art algorithm. Besides, the results

how that the heuristic for GreenMap saves much larger amounts

f power in the large random simulation setup in comparison to

he small simulation setup in Fig. 5 a. This means GreenMap saves

he energy in large network sizes more effectively than small net-

ork sizes. This is because a larger number of computation-based

irtual nodes could be splitted and mapped and/or collocated in

ervers. Besides, a larger number of shuffler virtual nodes could be

ollocated in switches/routers. This decreases the number of active

ubstrate elements remarkably, in comparison to the state-of-the-

rt algorithm that maps each virtual node onto a single substrate

ode.

Furthermore, we examined the heuristic on a large random

imulation setup, and measured the mean incast queueing delay

n the allocated substrate paths to virtual links that terminate at a

educer virtual node. This measurement is performed for different

umbers of virtual nodes per VN. The number of virtual nodes per

N is ranged from 12 to 28. A VN has 10 shufflers, and at least

 mapper and 1 reducer virtual node. The exact number of map-

er and reducer virtual nodes are chosen randomly based on the

niform distribution. The CPU demand of a computation-based vir-

ual node is chosen randomly between 20 0 0 Mhz and 3400 MHz,

ccording to the uniform distribution. We tested 10 randomly gen-

rated virtual networks for each number of virtual nodes per VN,

nd plotted the average results including confidence intervals with

he confidence level of 90%, in Fig. 6 b.

Fig. 6 b confirms that heuristic effectively controls the mean in-

ast queueing delay, and it is always less than the defined maxi-

um tolerable queueing delay of 50 ms. Note that the mean in-

ast queueing delay is fluctuating by changing the number of vir-

ual nodes per VN. This is because the algorithm might split and

ap the computation-based virtual nodes differently, in order to

atisfy the constraints. Because the incast queueing delay is related

o the assigned CPU capacity to reducer virtual nodes, it fluctuates

y changing the number of virtual nodes per VN.

Moreover, in another large random simulation setup, we tested

he admittance ratio of the network for different values of ˆ D . The

dmittance ratio is the number of accepted and mapped VNs, di-

E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359 357

Fig. 6. (a) The total power consumption of the VDC based on different numbers of virtual nodes per VN for the state-of-the-art algorithm, and the heuristic for GreenMap.

(b) The mean incast queueing delay based on different numbers of virtual nodes per VN for the heuristic for GreenMap, as well as the maximum tolerable queueing delay ˆ D

for a virtual link. (c) The mean acceptance ratio based on different values of ˆ D for the heuristic for GreenMap. (d) The mean acceptance ratio based on different mean traffic

rates of a mapper virtual node for the heuristic for GreenMap. (e) The mean incast queueing delay based on different mean traffic rates of a mapper virtual node for the

heuristic for GreenMap. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

v

t

g

d

t

a

b

3

s

9

i

t

n

s

s

q

m

s

r

t

v

m

o

c

v

a

d

s

a

t

t

s

u

t

s

m

c

m

c

f

i

s

t

c

r

8

t

c

e

b

M

t

c

i

t

b

V

o

d

t
ided by the total number of received VN requests. We considered

he range of 15 ms to 25 ms for ˆ D . We examined 10 randomly

enerated scenarios. In each scenario, the network receives 10 ran-

omly generated virtual networks for every defined

ˆ D . Here, a vir-

ual network has 10 shuffler virtual nodes, 5 mapper virtual nodes,

nd 5 reducer virtual nodes. The CPU demand of a computation-

ased virtual node is chosen randomly between 20 0 0 MHz and

400 MHz, according to the uniform distribution. The average re-

ults including confidence intervals with the confidence level of

0%, is plotted in Fig. 6 c.

Fig. 6 c demonstrates that the mean acceptance ratio is increas-

ng by increasing the value of ˆ D . The smaller values of ˆ D enforce

he heuristic to split the processing demands of reducer virtual

odes in relevantly larger processing blocks, and map them onto

ervers. Allocating larger processing capacities in servers leaves

maller available processing capacities in them for new VN re-

uests. Therefore, it is more probable that the heuristic could not

ap a new VN onto the data center network successfully, for

maller values of ˆ D . This results in a lower network’s acceptance

atio for smaller values of ˆ D .

In the same simulation setup, for when

ˆ D is 50 ms, we probed

he acceptance ratio for different mean traffic rates of a mapper

irtual node. The results are shown in Fig. 6 d. We assume the same

ean traffic rate for all mapper virtual nodes. The mean traffic rate

f a mapper virtual node is ranged from 5Mbps to 25Mbps. Ac-

ording to Eq. (18) , incrementing the mean traffic rate of mapper

irtual nodes and therefore increasing λM

n , increases the minimum

mount of processing capacity the heuristic must allocate to a re-

ucer virtual node to control the incast queueing delay. This causes

maller available processing capacities in servers for new VNs, and

ccordingly reduces the acceptance ratio.

Moreover, in the previous simulation setup, we also measured

he mean incast queueing delay in the allocated substrate paths to
he virtual links that terminate at a reducer virtual node. The re- a
ults are demonstrated in Fig. 6 e. Different from the previous sim-

lation setup, here we considered the range of 4Mbps–12Mbps for

he mean traffic rate of a mapper virtual node. This range is cho-

en, so no VN is rejected. As the results confirm, increasing the

ean traffic rate of mapper virtual nodes, increases the mean in-

ast queueing delay. This is because the difference between the

ean service rate and the mean traffic rate in an allocated traffic

apacity to the virtual links in substrate links is decreased. There-

ore, according to M/M/1 queue, the mean incast queueing delay is

ncreased.

Note that every simulation setup is quite large to cover a sub-

tantial number of random virtual networks in order to verify

he effectiveness of the proposed solutions. Besides, the calculated

onfidence intervals confirm that the results are precise enough to

eveal significances of GreenMap.

. Conclusion

Saving energy in today’s data centers is a key challenge. On

he other hand, data centers are moving toward virtualized data

enters. In this paper, we proposed GreenMap, a novel energy-

fficient embedding method that maps heterogeneous MapReduce-

ased virtual networks onto a heterogeneous data center network.

oreover, for the first time, we introduced a new incast problem

hat specially may happen in VDCs. GreenMap also controls the in-

ast queueing delay. A MIDCP is formulated and a novel heuristic

s suggested for GreenMap. Simulation results prove that both of

he solutions for GreenMap could map heterogeneous MapReduce-

ased VNs onto a heterogeneous data center network, and reduce a

DC’s total consumed energy, effectively. It is also confirmed both

f the MIDCP and the heuristic for GreenMap control the intro-

uced incast queueing delay. As a future work, it would be helpful

o show the comparison of our proposed solutions with the avail-

ble mapping methods that allow virtual node collocation.

358 E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359

[

[

[

[

[

[

[

[

Appendix A

Considering the continuous function f (g, h) =

g 2

h
, h > 0 , the

hessian matrix H of f is shown in Eq. (19) . Eigenvalues of H are

0 and

2 g 2 +2 h 2

h 3
. Because all eigenvalues of H are non-negative, H is

positive semi-definite. Therefore, f is jointly convex on both g and

h .

H =

⎡

⎢ ⎣

2

h

−2 g

h

2

−2 g

h

2

2 g 2

h

3

⎤

⎥ ⎦

(19)

Appendix B

The following linear constraints force ˙ d
x,y
n (m) to take the value

of φ̌(v a m n , v x s) ̌φ(v b m n , v y s) .

˙ d x,y
n (m) ≤ φ̌(v a m n , v x s) ,

˙ d x,y
n (m) ≤ φ̌(v b m n , v

y
s) ,

˙ d x,y
n (m) ≥ φ̌(v a m n , v x s) + φ̌(v b m n , v y s) − 1 ,

˙ d x,y
n (m) ≥ 0 ,

∀ x ∈ V s , ∀ y ∈ V s , ∀ n ∈ { n | G n ∈ �} , m = 1 , . . . , L n (20)

Appendix C

The following linear constraints force d̈ i, j (l
x,y
n (m)) to take the

value of z i, j (l
x,y
n (m)) ˙ d

x,y
n (m) ̂ C b (l a

m ,b m

n) . Note that M is the largest

virtual link bandwidth demand in �.

d̈ i, j (l x,y
n (m)) ≤ Mz i, j (l x,y

n (m)) ,

d̈ i, j (l x,y
n (m)) ≤ ˙ d x,y

n (m) ̂ C b (l a
m ,b m

n) ,

d̈ i, j (l x,y
n (m)) ≥ ˙ d x,y

n (m) ̂ C b (l a
m ,b m

n) − M(1 − z i, j (l x,y
n (m))) ,

d̈ i, j (l x,y
n (m)) ≥ 0 ,

∀ (i, j) ∈ E s , ∀ x ∈ V s , ∀ y ∈ V s , ∀ n ∈ { n | G n ∈ �} ,
m = 1 , . . . , L n (21)

References

[1] J. Baliga , R.W. Ayre , K. Hinton , R. Tucker , Green cloud computing: balancing
energy in processing, storage, and transport, Proc. IEEE IEEE 99 (1) (2011)

149–167 .

[2] L.A. Barroso , U. Hlzle , The case for energy-proportional computing, Comput.
IEEE 40 (12) (2007) 33–37 .

[3] J. Dean , S. Ghemawat , Mapreduce: simplified data processing on large clusters,
in: 6th Conference on Symposium on Operating Systems Design Implementa-

tion, ACM, 2004, p. 10 .
[4] W. Li , H. Yang , Z. Luan , D. Qian , Energy prediction for mapreduce work-

loads, in: Ninth International Conference on Dependable, Autonomic and Se-

cure Computing (DASC), IEEE, 2011, pp. 4 43–4 48 .
[5] M.F. Zhani , Q. Zhang , G. Simon , R. Boutaba , Vdc planner: dynamic migra-

tion-aware virtual data center embedding for clouds, in: International Sym-
posium on Integrated Network Management (IM), IFIP/IEEE, 2013, pp. 18–25 .

[6] D. Nagle , D. Serenyi , A. Matthews , The panasas activescale storage cluster: de-
livering scalable high bandwidth storage, in: Conference on Supercomputing,

ACM/IEEE, 2004, p. 53 .

[7] J. Hwang , J. Yoo , N. Choi , Deadline and incast aware tcp for cloud data center
networks, Comput. Netw. Elsevier 68 (2014) 20–34 .

[8] M. Alizadeh , A. Greenberg , D.A. Maltz , J. Padhye , P. Patel , B. Prabhakar , S. Sen-
gupta , M. Sridharan , Data center tcp (dctcp), Comput. Commun. Rev. ACM SIG-

COMM 41 (4) (2011) 63–74 .
[9] S. Kandula , S. Sengupta , A. Greenberg , P. Patel , R. Chaiken , The nature of data

center traffic: measurements and analysis, in: 9th Conference on Internet Mea-

surement Conference, ACM SIGCOMM, 2009, pp. 202–208 .
[10] H. Wu , Z. Feng , C. Guo , Y. Zhang , Ictcp: incast congestion control for tcp in
data-center networks, Transac. Netw. (TON) IEEE/ACM 21 (2) (2013) 345–358 .

[11] Y. Ren , Y. Zhao , P. Liu , K. Dou , J. Li , A survey on tcp incast in data center net-
works, Int. J. Commun. Syst. 27 (8) (2014) 1160–1172 . Wiley Online Library

[12] A. Fischer , M.T. Beck , H.D. Meer , An approach to energy-efficient virtual net-
work embeddings, in: International Symposium on Integrated Network Man-

agement (IM), IFIP/IEEE, 2013, pp. 1142–1147 .
[13] S. Su , Z. Zhang , X. Cheng , Y. Wang , Y. Luo , J. Wang , Energy-aware virtual net-

work embedding through consolidation, in: Computer Communications Work-

shops (INFOCOM WKSHPS), IEEE, 2012, pp. 127–132 .
[14] B. Wang , X. Chang , J. Liu , J.K. Muppala , Reducing power consumption in em-

bedding virtual infrastructures, in: Globecom Workshops (GC Wkshps), IEEE,
2012, pp. 714–718 .

[15] J.F. Botero , X. Hesselbach , M. Duelli , D. Schlosser , A. Fischer , H.D. Meer , En-
ergy efficient virtual network embedding, Commun. Lett. IEEE 16 (5) (2012)

756–759 .

[16] J.F. Botero , X. Hesselbach , Greener networking in a network virtualization en-
vironment, Comput. Netw. Elsevier 57 (9) (2013) 2021–2039 .

[17] C. Guo , G. Lu , H.J. Wang , S. Yang , C. Kong , P. Sun , W. Wu , Y. Zhang , Secondnet: a
data center network virtualization architecture with bandwidth guarantees, in:

6th International Conference on Emerging Networking Experiments and Tech-
nologies (CoNEXT), ACM, 2010, p. 15 .

[18] M. Chowdhury , M.R. Rahman , R. Boutaba , Vineyard: virtual network embed-

ding algorithms with coordinated node and link mapping, Transac. Netw.
(TON) IEEE/ACM 20 (1) (2012) 206–219 .

[19] Y. Zhu , M.H. Ammar , Algorithms for assigning substrate network resources to
virtual network components., in: INFOCOM, IEEE, 2006, pp. 1–12 .

[20] M. Yu , Y. Yi , J. Rexford , M. Chiang , Rethinking virtual network embedding: sub-
strate support for path splitting and migration, Comput. Commun. Rev. ACM 38

(2) (2008) 17–29 .

[21] N.M.K. Chowdhury , M.R. Rahman , R. Boutaba , Virtual network embedding with
coordinated node and link mapping, in: INFOCOM, IEEE, 2009, pp. 783–791 .

22] A. Phanishayee , E. Krevat , V. Vasudevan , D.G. Andersen , G.R. Ganger , G.A. Gib-
son , S. Seshan , Measurement and analysis of tcp throughput collapse in clus-

ter-based storage systems., in: Conference on File and Storage Technologies,
ACM, 8, 2008, pp. 1–14 .

23] E. Krevat , V. Vasudevan , A. Phanishayee , D.G. Andersen , G.R. Ganger , G.A. Gib-

son , S. Seshan , On application-level approaches to avoiding tcp throughput
collapse in cluster-based storage systems, in: 2nd International Workshop on

Petascale Data Storage: Held in Conjunction with Supercomputing’07, ACM,
2007, pp. 1–4 .

[24] Y. Chen , R. Griffith , J. Liu , R.H. Katz , A.D. Joseph , Understanding tcp incast
throughput collapse in datacenter networks, in: The 1st Workshop on Research

on Enterprise Networking, ACM, 2009, pp. 73–82 .

[25] K. Qi , Z. Zhao , J. Fang , Y. Han , Mapreduce-based data stream processing over
large history data, in: International Conference on Service-Oriented Comput-

ing, Springer, 2012, pp. 718–732 .
26] X. Fan , W.-D. Weber , L.A. Barroso , Power provisioning for a warehouse-sized

computer, in: ACM SIGARCH Computer Architecture News, ACM, 35, 2007,
pp. 13–23 .

[27] D. Economou , S. Rivoire , C. Kozyrakis , P. Ranganathan , Full-system power anal-
ysis and modeling for server environments, in: Workshop on Modeling Bench-

marking and Simulation (MOBS), 2006, pp. 13–23 .

28] A.P. Bianzino , C. Chaudet , F. Larroca , D. Rossi , J. Rougier , Energy-aware rout-
ing: a reality check, in: GLOBECOM Workshops (GC Wkshps), IEEE, 2010,

pp. 1422–1427 .
29] M. Grant , S. Boyd , Y. Ye , Disciplined Convex Programming, Springer, 2006 .

[30] N. Chowdhury , R. Boutaba , A survey of network virtualization, Comput Netw.
Elsevier 54 (5) (2010) 862–876 .

[31] J.Y. Yen , Finding the k shortest loopless paths in a network, Manage. Sci. 17

(11) (1971) 712–716 .
32] H. Aljazzar , S. Leue , K?: a heuristic search algorithm for finding the k shortest

paths, Artif. Intell. Elsevier 175 (18) (2011) 2129–2154 .
[33] J. Hershberger , M. Maxel , S. Suri , Finding the k shortest simple paths: a new al-

gorithm and its implementation, Transac. Algorithms (TALG) ACM 3 (4) (2007)
45 .

[34] E. Ghazisaeedi , N. Wang , R. Tafazolli , Link sleeping optimization for green

virtual network infrastructures, in: Globecom Workshops (GC Wkshps), IEEE,
2012, pp. 842–846 .

[35] E. Ghazisaeedi , C. Huang , Off-peak energy optimization for links in virtualized
network enviornment, Transac. Cloud Comput. (TCC) IEEE PP (99) (2015) .

36] E.D. Andersen, K.D. Andersen, The MOSEK interior point optimizer for linear
programming: an implementation of the homogeneous algorithm, High Per-

formance Optimization, Springer, pp. 197–232.

[37] B.M. Waxman , Routing of multipoint connections, Sel. Areas Commun. IEEE 6
(9) (1988) 1617–1622 .

38] S. Ricciardi , D. Careglio , U. Fiore , F. Palmieri , G. Santos-Boada , J. Sol-Pareta , An-
alyzing local strategies for energy-efficient networking, in: NETWORKING 2011

Workshops, Springer, 2011, pp. 291–300 .

http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30409-1/sbref0037

E. Ghazisaeedi, C. Huang / Computer Networks 112 (2017) 345–359 359

rical and Computer Engineering from Carleton University, Canada, in 2015. He also re-

ations from the University of Surrey, England, in 2011. His main research interests are in
work optimization.

 Engineering from Carleton University, Canada, in 1997. Since July 20 0 0, he has been with

Carleton University, where he is currently a professor. His research interests are stochastic
ireless networks, reliability mechanisms for optical networks, network protocol design
Ebrahim Ghazisaeedi received his Ph.D. degree in Elect

ceived his M.Sc. degree in Mobile and Satellite Communic
communication networks, network virtualization, and net

Changcheng Huang received his Ph.D. degree in Electrical

the Department of Systems and Computer Engineering at
control in computer networks, resource optimization in w

and implementation issues.

	GreenMap: Green mapping of MapReduce-based virtual networks onto a data center network and managing incast queueing delay
	1 Introduction
	2 Related works
	3 Network model
	4 Power models
	5 Mixed-integer disciplined convex program
	5.1 Optimization variables
	5.2 Objective function
	5.3 Constraints

	6 Heuristic
	6.1 Mapping shuffler virtual nodes
	6.2 Mapping reducer virtual nodes
	6.3 Mapping mapper virtual nodes
	6.4 Mapping virtual links

	7 Evaluation
	7.1 Small random simulation setups
	7.2 Large random simulation setups

	8 Conclusion
	 Appendix A
	 Appendix B
	 Appendix C
	 References

