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Abstract—We derive the likelihood functions and the maximum
likelihood (ML) detectors for four classes of single-input double-
output (SIDO) communication systems, i.e., systems with one
transmit and two receive antennas. For all classes, the received
signals are contaminated by a Gaussian noise component and
a non-Gaussian component induced by the Gaussian transmis-
sions of a proactive continuous single-antenna jammer over
an unknown complex 2 × 1 Gaussian vector channel. The
considered classes correspond to whether full channel distribution
information (CDI), or partial CDI about the transmitter channel
and the jammer channel is available at the receiver. Unlike
their scalar counterparts, the vector channels considered herein
interweave the components of the received signal, rendering the
derivation of the likelihood function a daunting task for more
than two receive antennas. Furthermore, the interweaving of the
received signal components in the vector channel case prevents
the optimal ML detector for unit-norm constellations from
reducing to the corresponding Gaussian approximation-based
detector. This is in sharp contrast with the scalar case, wherein
the two detectors are equivalent for unit-norm constellations.
Confirming our analytical findings, experimental results show
that the difference between the two detectors can be significant,
especially when the transmitter-receiver and jammer-receiver
channels have substantial line-of-sight components. Although the
computational cost of performing optimal ML detection in the
presence of non-Gaussian jamming is higher in the case of two
receive antennas, the performance advantage over the single
antenna case justifies it.

I. INTRODUCTION

The services offered by wireless communications have pro-

liferated our everyday life, from entertainment to banking and

defence-centric services. Disrupting these services can cause

distress, evoke chaos and potentially incur catastrophic losses.

The open nature of the wireless channel makes it vulnerable to

jamming which compromises the reliability and effectiveness

of these services and, in extreme cases, can result in denial

of service altogether [1], [2]. Although traditionally, jamming

was considered in the context of warfare, its impact on civil ap-

plications cannot be ignored. For instance, cellular systems [3],

positioning systems [4], sensing and monitoring networks [5],

Vehicular Ad hoc Networks (VANETs) [6], cognitive radio

networks [7], and Internet-of-Things (IoT) systems [8] to name

a few can all be disrupted by jamming activities. Unlike their

traditional stationary counterparts, modern jammers can be

mobile or airborne [9], [10], giving rise to intricate wireless

channels and received signal models.
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Launching jamming attacks is readily feasible and inex-

pensive. For instance, a protocol-specific jammer can use

off-the-shelf software defined radio to exploit vulnerabilities

of system protocols [11], e.g., the medium access control

protocol (MAC) [12] and channel estimation procedures [13].

Alternatively, a protocol-neutral jammer can use a noise gen-

erator to disrupt communications by degrading the signal-

to-noise ratio (SNR) at the receiver. Such a jammer can

simultaneously impact the performance of multiple wireless

systems [5].

Jammers can be either reactive or proactive depending on

the timing of their attacks [12]. Whereas reactive jammers

launch their attacks whenever a communication activity is

detected, proactive ones launch their attacks blindly, irre-

spective of the communication activity. The transmissions

of proactive jammers can be either continuous or random.

Random jamming is more power efficient, but continuous

jamming is more impactful [2].

Jammers can also be classified according to the bandwidth

they target. For instance, a jammer can focus its transmissions

on a single or a particular set of discrete tones or on a

contiguous frequency band. A particular class of jammers

is the so-called barrage jammers which are characterized by

broadband transmissions [14]. Such jammers typically emit

white Gaussian noise that occupies the entire bandwidth of the

target system. In the absence of prior information about target

systems, proactive continuous barrage jamming is known to be

the most deleterious [9]. When prior channel information is

available, proactive jamming can be mitigated with the help of

a friendly eavesdropper [15] or by adjusting the transmission

power or rate, or both, of legitimate users using adaptive water-

filling-like protocols [16]–[18]. However, these techniques are

not readily applicable when channel information is not avail-

able, which is the case considered herein. This is due to the

fact that when channel information is not available, the signal

induced by the jammer at the receiver is not Gaussian, thereby

violating a fundamental assumption of those techniques.

The signal induced at the receiver by the barrage jammer

is assumed to be an additive Gaussian noise in the majority

of literature, see e.g., [9], [15], [16], [19]–[21]. However,

this assumption is valid if the jammer transmits Gaussian-

distributed signals and the channel state information (CSI)

of the jammer-receiver channel is known. The fact that the

jammer does not send pilots or prescribed waveforms makes

acquiring this CSI a difficult task. The problem becomes more

pronounced when either the jammer and/or the receiver are
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mobile or airborne [22], rendering the Gaussianity assumption

on the jamming signal observed at the receiver questionable.

For a mobile jammer and/or receiver, the statistical distribution

of the jamming signal observed at the receiver is that of

the product of a Gaussian random variable representing the

emitted jamming signal and a random vector representing the

multiple-antenna jammer-receiver channel. In the particular

case in which the receiver has a single antenna and the

jammer-receiver channel is Rayleigh or Rician fading, the

distribution of the jamming signal at the receiver is that of

the product of two Gaussian random variables, which is not

Gaussian [23], [24]. Having expressions for the conditional

probability density functions (pdf’s) of the received signal

in the presence of barrage jamming is necessary for optimal

maximum likelihood (ML) detection. Such expressions depend

on the channel statistical information available at the receiver.

Obtaining conditional pdf expressions for the received sig-

nal involves deriving the distributions of various products

of Gaussian random variables. Such distributions have been

derived for real and complex Gaussian random variables in,

e.g., [25]–[29]. For instance, the pdf of the inner product

of two real Gaussian random vectors was derived in [25]. The

case of the inner product of two complex Gaussian vectors was

considered in [26]. Therein, an expression of the characteristic

function was first derived, and subsequently, the corresponding

pdf was obtained by evaluating its inverse Fourier transform

numerically. The joint pdf of the magnitude and phase of the

product of two independent complex Gaussian scalars was

derived in [27], whereas that of the random scalar resulting

from adding a complex Gaussian scalar to the product of two

complex Gaussian scalars was derived in [30]. The vector

counterpart of [30], i.e., the pdf of the random vector resulting

from adding a Gaussian vector to the product of a Gaussian

scalar and a Gaussian vector was derived in [28], [31]. A

more general version in which the pdf of the vector resulting

form adding a Gaussian vector to the product of a Gaussian

matrix and a Gaussian vector was derived in [32] and [33].

The vector considered in [31] resulted due to considering

a barrage-jammed single-input single-output system. In that

case, all channels were assumed to be block fading with inde-

pendent Gaussian scalar gains, rendering the components of

the received signal vector separable. This separability has been

key in deriving the conditional pdf of the received signal with

arbitrary symbol dimensions. Unfortunately, this separability

does not hold for the case in which the receiver has multiple

antennas. This significantly complicates the derivation of the

conditional pdf of the received signal vector and prevents the

derivation in [31] from generalizing to the case of receivers

with more than two antennas.

In this paper, we consider a scenario in which a single-

antenna transmitter sends multi-dimensional complex symbols

to a double-antenna receiver in the presence of a single-

antenna barrage jammer. The transmitter-receiver and the

jammer-receiver channels are assumed to be block fading

independent Gaussian matrices with coherence time that is

larger than the time required for transmitting the multi-

dimensional symbol. The jammer’s signal is represented by

a vector of independent complex Gaussian random variables.

Given the transmitted symbols, the received signal can be

represented by the random vector resulting from adding a

Gaussian vector to the product of a block diagonal Gaussian

matrix and a Gaussian vector. We derive the conditional

pdf of the received signal vector for the cases in which

either full or partial channel distribution information (CDI)

about the transmitter-receiver and jammer-receiver channels is

available at the receiver. The block fading assumption along

with the multiplication inherent in this model interweaves the

components of the received signal, thereby complicating the

derivation of the required conditional pdf and rendering it

intractable for receivers with more than two antennas. To the

best of our knowledge, the scenario considered herein was not

considered in the literature and, in a sense, complements the

results reported in [27], [30], and [31].

The paper is organized as follows. In Section II we present

the system model and the problem statement for four different

cases. Expressions for the likelihood functions corresponding

to each of these cases are presented in Section III. This section

also presents expressions for the likelihood function obtained

by treating the jammer’s component of the received signal

as if it were Gaussian distributed. In Section IV we present

simulation results and Section V concludes the paper. For ease

of flow, most derivations are relegated to the appendices.

Standard notations will be used throughout the paper. Bold-

face uppercase and lowercase letters will be used to denote

random vectors and random scalars, respectively; regular face

letters will be used to denote deterministic quantities. The

Euclidean norm of vector V is denoted by ‖V ‖. The deter-

minant of a matrix M , its inverse, if exists, and its Hermitian

transpose will be denoted by |M |, M−1, and M† respectively.

The identity matrix of dimension N will be denoted by IN .

The vectorized version of matrix M ∈ C
m×n resulting from

stacking the columns of M on top of each other is given by

vec(M ) ∈ C
mn×1. For a complex variable z, the complex

conjugate, the magnitude, the real part, the imaginary part

and the phase will be denoted by z∗, |z|, ℜ{z}, ℑ{z} and

∡z, respectively. The modified Bessel functions of the first

kind of order zero will be denoted by I0(·). The Kronecker

product will be denoted by ⊗.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a system composed of a single-antenna trans-

mitter communicating with a double-antenna receiver in the

presence of a single-antenna barrage jammer. The transmitter-

receiver channel, H ∈ C
2×1, and the jammer-receiver chan-

nel, G ∈ C
2×1, are assumed to be block fading vector

channels, i.e., they remain constant during the transmission

of any data symbol and take independent realizations for

subsequent symbols. Unlike their scalar counterparts, the

block fading vector channels considered herein interweave the

components of the received signal, rendering the derivation of

the likelihood function intractable for more than two receive

antennas.

Both H and G are modeled as independent proper complex

Gaussian random vectors with mean vectors µH and µG,

and covariance matrices σ2
hI2 and σ2

gI2, respectively, where
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σh and σg are known scalars, i.e., H ∼ CN (µH , σ2
hI2)

and G ∼ CN (µG, σ
2
gI2). The transmitter-receiver and the

jammer-receiver distances are assumed to be much larger than

the receiver’s inter-antenna spacing, this assumption allows

us to express the mean vectors of H and G as µH =
|µh|[e−θh1 e−θh2 ]† and µG = |µg|[e−θg1 e−θg2 ]†, where

|µh| are |µg| are known scalars, whereas θh1
,θh2

,θg1 , and

θg2 are i.i.d random scalars uniformly distributed in [0, 2π).
The transmitter, the jammer, and the receiver can be mobile

or airborne, which is the case in vehicle-to-vehicle (V2V) and

unmanned aerial vehicle (UAVs) communications. Hence, both

channels, H and G, are assumed to be subject to independent

fading processes. Both channels can be Rayleigh or Rician

fading depending on whether their respective means, µH and

µG, are zero or non-zero vectors [34]. For the case in which

the transmitter-receiver channel, H , is Rayleigh fading, i.e.,

|µh| = 0, we assume that the receiver has full CDI about H .

On the other hand, for the case in which H is Rician fading,

e.g., the case when either the transmitter and/or the receiver

is a UAV [35], we assume that the receiver has a partial CDI

about H represented by the relative strength of its line-of-

sight (LOS) components given by its k-factor, kh =
|µh|
σh

.

Analogously, G is either Rayleigh fading and the receiver

knows σg , or G is Rician fading and the receiver knows σg

and kg =
|µg|
σg

.

The transmitted symbol, the jamming signal, and the ad-

ditive noise at the receiver are denoted by X ∈ C
T ,

V ∈ C
T , and Z̄ ∈ C

2×T , respectively. The jamming

vector, V , and the vectorized additive white noise, Z =
vec(Z̄), are assumed to be independent circularly symmetric

complex Gaussian random vectors, i.e., V ∼ CN (0, σ2
V IT )

and Z ∼ CN (0, σ2
ZI2T ), where σV and σZ are known scalars.

The received signal is denoted by Ȳ ∈ C
2×T and is given by:

Ȳ = H(X∗)† +G(V ∗)† + Z̄. (1)

It can be shown that the vectorized version of (1) is given by:

Y = (IT ⊗H)X + (IT ⊗G)V +Z, (2)

where Y ∈ C
2T .

This paper aims at developing the ML detector for each

of the four cases outlined hereinabove. For all these cases,

we show that the ML detector outperforms the detector based

on the Gaussian approximation of the signal induced at the

receiver by the jammer transmission. This contrasts with the

case in which the receiver has a single antenna. In that case,

the exact detector and the Gaussian approximation detector

coincide when the constellation symbols have unit norm.

The four cases considered herein are the following.

1) Statistical distribution of both H and G partially

known: The ML detector decides in favor of the con-

stellation point X̂ given by

X̂ = argmax
X∈C

pY |X

(

Y
∣

∣X; |µh|, σ2
h, |µg|, σ2

g

)

. (3)

In this case, the phases of the mean vectors of H and

G, i.e., θµh1
, θµh2

, θµg1
, and θµg2

are random and

unknown. This situation arises when both the transmitter

and the jammer channels have LOS components. The ex-

act and Gaussian approximation-based likelihood func-

tions for this case are given in (7) and (9), respectively.

2) Statistical distribution of H partially known and statis-

tical distribution of G known:

The ML detector decides in favor of the constellation

point X̂ given by

X̂ = argmax
X∈C

pY |X

(

Y
∣

∣X; |µh|, σ2
h, σ

2
g

)

. (4)

In this case the phases of the mean vector of H , i.e.,

θµh1
and θµh2

, are random and unknown while the

mean vector of G is zero. This situation arises when

the transmitter channel has an LOS component but

the jammer channel does not. The exact and Gaussian

approximation-based likelihood functions for this case

are given in (10) and (9), respectively.

3) Statistical distribution of H known and statistical distri-

bution of G partially known: The ML detector decides

in favor of the constellation point X̂ given by

X̂ = argmax
X∈C

pY |X

(

Y
∣

∣X; |µg|, σ2
g , σ

2
h

)

. (5)

Complementary to the previous case, the phases of the

mean vector of G, i.e., θµg1
and θµg2

, are random and

unknown while the mean vector of H is zero. In this

situation the jammer channel has an LOS component but

the transmitter channel does not. The exact and Gaussian

approximation-based likelihood functions for this case

are given in (12) and (14), respectively.

4) Statistical distribution of both H and G known: The

ML detector decides in favor of the constellation point

X̂ given by

X̂ = argmax
X∈C

pY |X

(

Y
∣

∣X;σ2
h, σ

2
g

)

. (6)

In this case both H and G have zero mean vectors,

i.e., neither the transmitter channel nor the jammer

channel has an LOS component. The exact and Gaussian

approximation-based likelihood function for this case are

given in (15) and (14), respectively.

In all of the aforementioned cases, the transmitted symbol

that maximizes the corresponding likelihood function is ob-

tained using exhaustive search over constellation symbols. In

the next section, we will provide exact and approximate ML

detection rules for each of these cases.

III. LIKELIHOOD FUNCTION EXPRESSIONS FOR THE

DIFFERENT CSI CASES

In this section, we present the exact likelihood function

expressions for the cases outlined in the previous section

along with the likelihood expressions based on the Gaussian

approximation of the non-Gaussian signal resulting from the

jammer’s transmissions.

A. Statistical distribution of both H and G partially known:

In this case the transmitter channel and the jammer channel

have LOS components. This might be the case when the

jammer and the transmitter are airborne, or when the receiver

is airborne or highly mounted.
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1) The exact likelihood function: The exact

likelihood function for this case is fY |X(Y |X) =
pY |X

(

Y
∣

∣X; |µh|, σ2
h, |µg|, σ2

g

)

, (cf. (3)) and is given in

the following theorem:

Theorem 1. Let Y = (IT ⊗ H)X + (IT ⊗ G)V + Z,

where X ∈ C
T , V ∼ CN (0, σ2

V IT ), Z ∼ CN (0, σ2
ZI2T ),

H ∼ CN
(

|µh|[e
−θµh1 e

−θµh2 ]†, σ2
hI2

)

and G ∼
CN

(

|µg|[e−θµg1 e−θµg2 ]†, σ2
gI2

)

. The scalars |µh|, |µg|,
σh, σg , σZ , and σV are known, and the phases θµh1

, θµh2
,

θµg1
, and θµg2

are i.i.d. random scalars uniformly distributed

over [0, 2π). Let kh =
|µh|
σh

and kg =
|µg|
σg

. The likelihood

function of Y conditioned on X = X is given by:

fY |X(Y |X) =
exp(−2k2g)

4π2T+2σ4
gσ

4
v |Σ|2

×
∫ 2π

0

∫ 2π

0

exp
(

−(Yo−khσhe
θµh1 X)†Σ−1(Yo−khσhe

θµh1 X)
)

× exp
(

−(Ye−khσhe
θµh2 X)† Σ−1(Ye−khσhe

θµh2 X)
)

×ΨX,Y,kh
(θµh1

, θµh2
) dθµh1

dθµh2
, (7)

where Σ = σ2
hXX† + σ2

zIT , and

ΨX,Y,kh
(θµh1

, θµh2
) =

∫ 1

0

∫ 1

0

t ( t̄ )
T−3

|Λt+ t̄ IT |
exp

( −t

σ2
gσ

2
v t̄

)

× exp
(

ū(Yo−khσhe
θµh1 X)†Υ(Σ, t)(Yo−khσhe

θµh1 X)
)

× exp
(

u(Ye−khσhe
θµh2 X)†Υ(Σ, t)(Ye−khσhe

θµh2 X)
)

×I0

(

2
√
uūt|(Yo−khσhe

θµh1X)†Υ(Σ, t)(Ye−khσhe
θµh2X)|

)

× I0

(

2kg
σgσv

√

ū t

t̄

)

I0

(

2kg
σgσv

√

u t

t̄

)

du dt, (8)

where Yo contains the odd components of Y , i.e., Yo =

[Y ∗
1 , . . . , Y

∗
2i−1, . . . , Y

∗
2T−1]

† and Ye contains the even compo-

nents of Y , i.e., Ye= [Y ∗
2 , . . . , Y

∗
2i, . . . , Y

∗
2T ]

†. The parameters

t̄ = 1 − t and ū = 1 − u, and the diagonal matrix Λ
contains the eigenvalues of Σ−1, and the matrix Υ(Σ, t) =

Σ−1
(

IT + t̄
t
Σ
)−1

.

Proof. See Appendix A.

We note that Y o and Y e are the outputs of the first

and second receive antennas, respectively. We also note the

symmetry of the expressions in (7) and (8) in Y o and Y e,

which reflects the symmetry of the channels observed by

the two antennas. The computation of (8) is compounded

by the fact that a term of the integrand in (8), namely,

I0

(

2
√
uū t|(Yo−khσhe

θµh1X)†Υ(Σ, t)(Ye−khσhe
θµh2X)|

)

,

contains the inner product of the output of the first and second

receive antennas. This portends the difficulties that are likely

to be encountered if the proposed technique were to be used

to obtain the likelihood function for the case with more than

two receive antennas.

2) Gaussian Approximation:

Due to mathematical tractability, the signal induced by the

jammer at the receiver has been commonly assumed to be

Gaussian distributed, see, e.g., [9], [15], [16], [19]–[21]. In

this paper, we investigate this assumption for all considered

cases.

Approximating the signal resulting form the jammer trans-

mission at the i-th receive antenna, i ∈ {1, 2}, by a Gaussian

vector J i = giV , where J i ∼ CN
(

0, σ2
gσ

2
vIT
)

yields the

likelihood function in the following lemma.

Lemma 1. Let Y , X , V , Z, H , G, kh and kg be as defined

in Theorem 1, and let J = giV where i ∈ {1, 2}. Assume

that J ∼ CN (0, σ2
gσ

2
V IT ), then the likelihood function of Y

conditioned on X = X is given by:

fY |X(Y |X) =
1

π2T |ΣN |2
× exp

(

−Y †
o Σ

−1
N Yo − Y †

e Σ
−1
N Ye − 2k2hσ

2
hX

†Σ−1
N X

)

× I0
(

2khσh|Y †
o Σ−1

N X|
)

I0
(

2khσh|Y †
e Σ−1

N X|
)

, (9)

where ΣN = σ2
hXX† + (σ2

gσ
2
v + σ2

Z)IT , and Yo and Ye are

defined in Theorem 1.

Proof. See Appendix B.

It can be noticed from (9) that in this case, and in the

other cases as will be seen later, the likelihood function based

on the Gaussian approximation does not incorporate the k-

factor of the jammer’s channel, kg . Not incorporating this

information renders the performance of the detector based

on this likelihood function inferior to the one based on the

exact one, cf. Section IV below. It is worth mentioning that

the non-zero mean of the transmitter’s channel, µh, appears

in the Gaussian approximation expression in the form of

|µh| = khσh. In contrast, the non-zero mean of the jammer’s

channel, µg , does not appear in the likelihood expression based

on the Gaussian approximation. This is due to the fact that the

signal resulting form the jammer’s transmission, J = gV , is

approximated by a Gaussian signal with mean µj = µgµv .

The zero mean of the jamming signal, µv , renders µj zero.

Hence, µg is suppressed regardless of its value.

B. Statistical distribution of H partially known and statistical

distribution of G known:

The conditional statistical distribution of the received signal

for this case is required for optimal detection when the

jammer-receiver channel does not have an LOS component,

whereas the transmitter-receiver channel has an LOS compo-

nent with a known k-factor. Such a scenario may arise when

both the jammer and the receiver are ground-based and the

transmitter is airborne or highly mounted.

1) The exact likelihood function: The exact likelihood func-

tion for this case is fY |X(Y |X) = pY |X

(

Y
∣

∣X; |µh|, σ2
h, σ

2
g

)

,

(cf. (4)) and is given in the following corollary.

Corollary 1. Let Y , X , V , Z, H , Σ, θµh1
, θµh2

and kh be

as defined in Theorem 1, and let G ∼ CN
(

0, σ2
gI2
)

where σg



5

is a known scalar. The likelihood function of Y conditioned

on X = X is given by:

fY |X(Y |X) =
1

4π2T+2σ4
gσ

4
v |Σ|2

×
∫ 2π

0

∫ 2π

0

exp
(

−(Yo−khσhe
θµh1 X)†Σ−1(Yo−khσhe

θµh1 X)
)

× exp
(

−(Ye−khσhe
θµh2 X)† Σ−1(Ye−khσhe

θµh2 X)
)

× ΦX,Y,kh
(θµh1

, θµh2
) dθµh1

dθµh2
, (10)

where

ΦX,Y,kh
(θµh1

, θµh2
) =

∫ 1

0

∫ 1

0

t ( t̄ )
T−3

|Λt+ t̄ IT |
exp

( −t

σ2
gσ

2
v t̄

)

× exp
(

ū(Yo−khσhe
θµh1 X)†Υ(Σ, t)(Yo−khσhe

θµh1 X)
)

× exp
(

u(Ye−khσhe
θµh2 X)†Υ(Σ, t)(Ye−khσhe

θµh2 X)
)

I0

(

2
√
uūt|(Yo−khσhe

θµh1X)†Υ(Σ, t)(Ye−khσhe
θµh2X)|

)

× du dt, (11)

where Λ, t̄, Yo, Ye, Υ(Σ, t), and ū are defined in Theorem 1.

Proof. Setting kg to zero in (7) and (8) and noticing that

I0(0) = 1 yields (10) and (11), respectively.

It can be noticed that the role of the function

ΦX,Y,kh
(θµh1

, θµh2
) in (10) is similar to the role of the func-

tion ΨX,Y,kh
(θµh1

, θµh2
) in (7). In particular, both functions

render the outputs of both antennas inseparable, which com-

pounds the evaluation of the respective likelihood functions.

However, in comparison with ΨX,Y,kh
(θµh1

, θµh2
) in (8), the

computation of ΦX,Y,kh
(θµh1

, θµh2
) in (11) is less demanding

because it does not contain the Bessel functions involving kg .

2) Gaussian Approximation: From Lemma 1, it can be seen

that the likelihood function based on the Gaussian approxima-

tion does not incorporate the k-factor of the jammer’s channel,

kg . Hence, it can be readily verified that approximating the

received signal components corresponding to the jammer’s

transmission by Gaussian vectors as in Section III-A2 yields

the same likelihood function given in (9).

C. Statistical distribution of H known and statistical distri-

bution of G partially known:

Complementary to the previous case, in this case the

jammer-receiver channel has an LOS component with a known

k-factor, whereas the transmitter-receiver channel has no LOS

component. Such a case arises when the jammer is airborne or

highly mounted whereas both the transmitter and the receiver

are ground-based.

1) The exact likelihood function: The exact likelihood func-

tion for this case is fY |X(Y |X) = pY |X

(

Y
∣

∣X; |µg|, σ2
g , σ

2
h

)

,

(cf. (5)) and is given in the following corollary.

Corollary 2. Let Y , X , V , Z, G, Σ and kg be as defined in

Theorem 1, and let H ∼ CN
(

0, σ2
hI2
)

where σh is a known

scalar. The likelihood function of Y conditioned on X = X
is given by:

fY |X(Y |X) =
exp(−2k2g)

π2Tσ4
gσ

4
v |Σ|2

× exp
(

−
(

Y †
o Σ−1 Yo

)

−
(

Y †
e Σ−1Ye

))

ΩX,Y,kh
, (12)

where

ΩX,Y,kh
=

∫ 1

0

∫ 1

0

t ( t̄ )
T−3

|Λt+ t̄ IT |
exp

(

− t

σ2
gσ

2
v t̄

)

× exp
(

ūY †
o Υ(Σ, t)Yo + uY †

e Υ(Σ, t)Ye

)

I0

(

2kg
σgσv

√

ū t

t̄

)

× I0

(

2kg
σgσv

√

u t

t̄

)

I0

(

2
√
uūt|Y †

o Υ(Σ, t)Ye|
)

dudt,

(13)

where Λ, t̄, Yo, Ye, Υ(Σ, t), and ū are defined in Theorem 1.

Proof. Setting kh to zero in (7) and (8) and noticing that

(2π)−2
∫ 2π

0

∫ 2π

0
dθµh1

dθµh2
= 1, and I0(0) = 1 yields (12)

and (13), respectively.

Comparing (12) with (7) and (10), we notice that (12) does

not involve integration over θµh1
and θµh2

. This is due to the

fact that H is zero mean, which renders the computation of the

expression in (12) much less demanding than its counterparts

in (7) and (10).

2) Gaussian Approximation: Approximating the signal

resulting form the jammer transmission at the i-th receive

antenna, i ∈ {1, 2}, by a Gaussian vector J i = giV , where

J i ∼ CN
(

0, σ2
gσ

2
vIT
)

yields the likelihood function in the

following lemma.

Lemma 2. Let Y , X , V , Z, G, Σ and kg be as defined

in Theorem 1, and let H ∼ CN
(

0, σ2
hI2
)

where σh is a

known scalar. Let J = giV where i ∈ {1, 2}. Assume

that J ∼ CN (0, σ2
gσ

2
V IT ), then the likelihood function of Y

conditioned on X = X is given by:

fY |X(Y |X) =
1

π2T |ΣN |2 exp
(

−
(

Y †
o Σ

−1
N Yo+Y †

e Σ
−1
N Ye

))

,

(14)

where ΣN = σ2
hXX† + (σ2

gσ
2
v + σ2

Z)IT , and Yo and Ye are

defined in Theorem 1.

Proof. Setting kh to zero in (9) and noticing that I0(0) = 1
yields (14).

As in Lemma 1, it can be seen form (14) that the likelihood

function based on the Gaussian approximation does not incor-

porate the k-factor of the jammer’s channel, kg . Moreover,

in comparison with (9), we notice that the computation of

likelihood function in (14) is less demanding because it does

not contain the Bessel functions involving kh.

D. Statistical distribution of both H and G known:

In this case, neither the transmitter-receiver channel nor the

jammer-receiver channel has an LOS component. This might

be the case when all parties are ground-based.
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1) The exact likelihood function: The exact likelihood

function for this case is fY |X(Y |X) = pY |X

(

Y
∣

∣X;σ2
h, σ

2
g

)

,

(cf. (6)) and is given in the following corollary:

Corollary 3. Let Y , X , V , Z and Σ be as defined in The-

orem 1, and let H ∼ CN
(

0, σ2
hI2
)

and G ∼ CN
(

0, σ2
gI2
)

,

where σh and σg are known scalars. Then, the likelihood

function of Y conditioned on X = X is given by:

fY |X(Y |X) =
1

π2Tσ4
gσ

4
v |Σ|2

× exp
(

−
(

Y †
o Σ−1 Yo

)

−
(

Y †
e Σ−1Ye

))

ΓX,Y,kh
, (15)

where

ΓX,Y,kh
=

∫ 1

0

∫ 1

0

t ( t̄ )
T−3

|Λt+ t̄ IT |

× exp

(

ū Y †
o Υ(Σ, t) Yo + u Y †

e Υ(Σ, t) Ye −
t

σ2
gσ

2
v t̄

)

× I0

(

2
√
uūt |Y †

o Υ(Σ, t) Ye|
)

du dt, (16)

where Λ, t̄, Yo, Ye, Υ(Σ, t) and ū are defined in Theorem 1.

Proof. Setting kh and kg to zeros in (7) and (8) and noticing

that (2π)−2
∫ 2π

0

∫ 2π

0
dθµh1

dθµh2
= 1, and I0(0) = 1 yields

(15) and (16), respectively.

The fact that (15) does not involve the double integration

over θµh1
and θµh2

, and that ΓX,Y,kh
in (16) does not include

the two Bessel functions involving kg that were present in

(13) makes the exact likelihood function of this case the least

computationally demanding among all considered cases.

2) Validation: In validating the correctness of the exact

likelihood expression in (15) by comparing it to the histogram

produced by a Monte Carlo simulation, we faced the problem

that the analytical and the Monte Carlo results are multivariate.

For instance, a constellation with T = 2 will produce a

likelihood function that has eight independent real variables.

Plotting such a likelihood function or a histogram is not an

easy task. To overcome this obstacle, we set T to be 2, and

resorted to deriving the conditional marginal distribution of

fr1|X(r1|X), where r1 is the magnitude of the first output

of the first antenna, i.e. r1 = |Y 1|. The expression of

fr1|X(r1|X) is given in the following corollary1.

Corollary 4. Let Y be the random vector whose likelihood

function, fY |X(Y |X), is given in Corollary 3. Let T = 2.

Then, the marginal distribution of r1 = |Y 1| conditioned on

X is given by:

fr1|X(r1|X) =

2r1
σ4
gσ

4
v |Σ|2

∞
∑

k=0

⌊ k
2
⌋

∑

ℓ=0

k−2ℓ
∑

n=0

(n+ ℓ)!(k − ℓ− n)!2 r2n+2ℓ
1

k! ℓ!2 n! (k−2ℓ−n)!

×
∫ 1

0

∫ 1

0

(uūt2)kt(t̄)−1

∏2
i=1(λit+ t̄)

exp

( −t

σ2
gσ

2
v t̄

− λ2
1tu+ λ1t̄

λ1t+ t̄
r21

)

×
(

λ1t+ t̄

λ2
1tū+λ1t̄

)n+ℓ+1(
λ2t+ t̄

λ2
2tu+λ2t̄

)k−ℓ−n+1(
λ2
2

λ2t+ t̄

)2k

1The validation has been kindly suggested by an anonymous Reviewer.

Fig. 1. The Monte Carlo histogram versus the analytical marginal pdf for
T =6, kg= kh =0.

×
(

λ2t+ t̄

λ2
2tū+ λ2t̄

)k−ℓ−n+1(
λ2
1(λ2t+ t̄)

λ2
2(λ1t+ t̄)

)2(n+ℓ)

dudt,

(17)

where λi, i ∈ {1, 2}, and t̄ are defined in Theorem 1.

Proof. See Appendix C.

The plots of fr1|X(r1|X) and the histogram produced by

a Monte-Carlo simulation are given in Figure 1. It can be

seen form this figure that the derived conditional marginal

distribution closely match the histogram.

3) Gaussian Approximation: Due to the fact that the likeli-

hood function based on the Gaussian approximation does not

incorporate the jammer’s channel k-factor, kg , cf. Lemma 1

and Lemma 2, approximating the signal resulting form the

jammer’s transmission at the receiver by Gaussian vectors as

in Sections III-A2 and III-C2 yields a likelihood expression

identical to the one in (14).

4) The Optimal covariance matrix for Gaussian Approx-

imation: The Gaussian approximation likelihood expression

for the cases in which kh = 0, i.e. cases in Sections III-C

and III-D, can be optimized by using the covariance matrix

that minimizes the Kullback-Leibler distance measure [36]

between the Gaussian approximation-based likelihood function

in (14) and the exact likelihood functions in (12) and (15). This

covariance matrix is given in the following lemma2.

Lemma 3. Let Y , Yo, Ye, and X be as defined in

Theorem 1, and let H ∼ CN
(

0, σ2
hI2
)

where σh is a

known positive scalar. The covariance matrix that minimizes

the Kullback-Leibler distance measure between the Gaussian

approximation-based likelihood function in (14) and the exact

likelihood functions in (12) and (15) is given by

Ξ⋆(X) =
ΞYo|X + ΞYe|X

2
, (18)

where ΞYo|X = E{Y oY
†
o|X} =

∫

Yo
fY o|X(Yo|X)

(

YoY
†
o

)

dYo, and ΞYe|X = E{Y eY
†
e|X} =

2This approach has been kindly suggested by an anonymous Reviewer.
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∫

Ye
fY e|X(Ye|X)

(

YeY
†
e

)

dYe, fY o|X and fY e|X(Ye|X) are

the exact likelihood functions of Y o and Y e respectively (See

[31]).

Proof. See Appendix D.

The result of this lemma is rather intuitive. In particular,

to approximate a given distribution by a Gaussian one, the

optimal covariance matrix that can be used for the Gaussian

distribution is the covariance matrix of the realizations of the

original distribution.

IV. SIMULATION RESULTS

In this section, we compare the performance of the ML

detector based on the exact likelihood functions provided

hereinabove with that of the approximate ML detector based

on the Gaussian assumption of the signals received due to

the jammer’s transmissions. Moreover, we examine the per-

formance gain achieved by using double instead of a single

receive antenna in addition to the impact of the symbol length,

T , on performance.

In all simulations, we used constellations of unit norm

symbols constructed with the method proposed in [37]. In

particular, to generate a complex constellation C with 2n T -

dimensional symbols, we use the following procedure.

1) Generate a pool of I random matrices of size T × 2n

from the standard complex Gaussian distribution. For

each matrix, compute the QR-decomposition, where Q
is the unitary component of the matrix and R is its lower

triangular component. Let Qi be the Q-component of the

i-th matrix, i ∈ {1, . . . , I}. The set {Qi} is known to

be asymptotically isotropically distributed on the group

of unitary matrices [37].

2) Out of all the generated matrices, select the matrix

whose Q component has the largest angular separation

between its columns, that is, select the i∗’th matrix,

where i∗ = argmini maxm,n,m 6=n |(qim)†qin|, qir is the

r-th column of Qi, r ∈ {1, . . . , 2n}.

3) Choose the columns of Qi∗ to be the points of the

signalling constellation.

To facilitate the presentation of results, we fix the total power

of the noise plus jamming signal to 10 dB. To do so, in all

simulations, we set the noise variance to σ2
Z = 0.5 and the

jamming signal variance to σ2
V = 4.5. To maintain a constant

average channel power gain for the transmitter and jammer

channels under different values of kh and kg , the transmitter

channel variance, σ2
h, and the jammer channel variance, σ2

g ,

are set to σ2
h =

1

k2h + 1
and σ2

g =
1

k2g + 1
, respectively. In all

forthcoming examples, except Example 4 and Example 5, the

symbol length is set to T = 4, and the data rate is set to 0.75
bits per channel use (bpcu).

Example 1: In this example, we set the k-factor of the

jammer’s channel, kg , to zero for various values of the k-factor

of the transmitter’s channel, kh. This scenario arises when the

transmitter is highly mounted or airborne while the jammer

and the receiver are ground-based, cf. Section III-A. Using

these settings, we obtained the symbol error rates (SERs)

-5 0 5 10 15 20
10

-3

10
-2

10
-1

10
0

kh = 0
kh = 1
kh = 2
kh = 3

Exact Likelihood

Approximate Likelihood

SE
R

SJNR

Fig. 2. T =4, kg=0 and various values of kh.

reported in Figure 2 for both the exact and approximate ML

detectors. The superiority of the exact ML detector over the

approximate one is apparent in Figure 2. Furthermore, it can

be seen that the performance of both detectors improves when

kh increases, i.e., when the LOS of the transmitter’s channel

becomes stronger. For instance, at a signal-to-jamming-plus-

noise ratio (SJNR) of 10 dB, increasing the k-factor of the

transmitter channel from kh = 1 to kh = 3 reduces the

SER from around 9 × 10−3 to about 2 × 10−3 for the exact

ML detector and form about 2 × 10−2 to 9 × 10−3 for

the approximate one. However, the advantage of the exact

ML detector is more pronounced at lower values of kh. For

instance, at an SER of 10−3, the exact ML detector exhibits

an advantage of 3 dB when kh = 1 and 2 dB when kh = 3.

This figure illustrates the sharp contrast between the be-

haviour of the exact and approximate ML detectors for the

cases of single and double receive antennas. In particular, as

shown in [31], the performance of these detectors coincides

when the signalling constellation has a unit norm and the

receiver has one antenna. However, the exact ML detector of-

fers a significant performance advantage over its approximate

counterpart when the receiver has two antennas, albeit with a

higher computational cost. �

Example 2: In this example, we consider a case comple-

mentary to that considered in Example 1. In particular, in this

example, the k-factor of the transmitter’s channel was set to

kh = 0, and various values were used for the k-factor of the

jammer’s channel, kg . This scenario arises when the jammer

is highly mounted or airborne while the transmitter and the

receiver are ground-based, cf. Section III-C.

The SER curves obtained in this example are reported in

Figure 3 for both the exact and approximate ML detectors. It

can be seen from Figure 3 that, as in the cases considered in

Example 1, the exact ML detector significantly outperforms

the approximate one. For instance, at an SER of 1 × 10−2,

the exact ML detector has an advantage of 3 dB at kg = 0
and 3.25 dB at kg = 8. Furthermore, it can be noticed

that, although the detection performance of both detectors

is not highly sensitive to the changes in kg , the detection

performance of the exact ML detector improves with the
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Fig. 3. T =4, kh=0 and various values of kg .

strength of the jammer’s LOS component, i.e., increasing kg
decreases the SER. For instance, at an SJNR of 10 dB, the

SER drops form 1.4× 10−2 at kg = 0 to 1× 10−2 at kg = 8.

This example suggests that a receiver with an intense LOS

component to the jammer is more resilient to jamming. In a

complementary fashion, it is more effective for the jammer to

be occluded from, than for it to have an LOS component to,

the receiver.

Example 3: In this example, we compare the performance

achieved by a double-antenna receiver with that achieved by a

single-antenna one for various values of kh and kg . The SER

curves obtained in this example are presented in Figure 4. This

figure illustrates the robustness of double-antenna receivers to

jamming. For instance, at an SER of 3.3 × 10−3, the exact

ML detector yielded a gain of 11 dB when kh = kg = 2, a

gain of 6 dB when kh = kg = 0, and a gain of 9.5 dB when

kh = 2 and kg = 0.

This example suggests that equipping the receiver with more

antennas will likely offer significant jamming resilience. Un-

fortunately, however, as previously pointed out in Section III,

deriving the optimal ML detector for cases with more than

two receive antennas seems daunting. Furthermore, performing

optimal detection with a large number of receive antennas is

likely to be computationally expensive unless closed-form ex-

pressions are obtained for the respective likelihood functions.

Example 4: In this example, we investigate the effect of

the symbol length, T , on the performance of the exact and the

Gaussian approximation-based ML detectors. Two values of

T were considered, namely, T = 2 and T = 4. For each value

of T , performance is evaluated at three transmission rates,

namely, 0.5, 1, and 2 bpcu. The k-factors of both channels

are chosen to be zero, i.e., kh = kg = 0. The results obtained

in this example are presented in Figure 5. It can be noticed

from this figure that, as commonly noted in the literature,

e.g. [38], [39], spreading information across more time slots

tends to yield better performance at higher SJNRs. However,

this phenomenon does not necessarily carry over to the low

SJNR regime. For instance, at an SER of 1 × 10−2, using

T = 4 has an SJNR advantage of 1.5 dB when the data rate

-5 0 5 10 15 20

10
-3

10
-2

10
-1

10
0

kh = 2, kg = 2.
kh = 0, kg = 0
kh = 2, kg = 0

Double Receive Antenna

Single Receive Antenna

SE
R

SJNR

Fig. 4. Detection performance of double receive antenna vs. single receive
antenna for T =4 and various values of kh and kg .
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Fig. 5. Performance at different rates and values of T for kh = kg = 0.

is 0.5 bpcu and 2.5 dB when the data rate is 2 bpcu over the

case of T = 2.

Example 5: In this example, we investigate the effect

of the optimal covariance matrix in Lemma 3 on the per-

formance of the detector based on Gaussian approximation

when T = 6 and the constellation contains 8 symbols. For

ease of computation, we used the sample covariance matrices

of Yo and Ye to approximate the optimal covariance matrix

corresponding to each constellation symbol, X . The results

of this investigation are presented in Figure 6. It can be

seen form this figure that using the optimized Gaussian ap-

proximation detector yields valuable gain over its commonly-

used counterpart. For instance, at an SER of 10−3, this gain

is about 1 dB. The advantage of the detector based on the

exact likelihood function over the commonly-used Gaussian

approximation detector at this SER is about 8.5 dB.

V. CONCLUSION

We considered a scenario in which a single-antenna trans-

mitter communicates with a double-antenna receiver in the

presence of a continuous proactive single-antenna jammer. The
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Fig. 6. Detection performance of the Gaussian Approximate, Optimized
Gaussian Approximate, and the Exact detector for T = 6, kh = 0 and
kg = 0.

jammer’s transmitted signal, the transmitter-receiver, and the

jammer-receiver channels are assumed to be Gaussian, thereby

inducing a non-Gaussian jamming signal at the receiver. For

this scenario, the likelihood functions of the received signals

are derived for the cases in which the receiver has full or partial

CDI about the transmitter’s channel and the jammer’s channel.

These likelihood functions are used to develop the optimal

ML detector. Furthermore, the likelihood functions based on

the Gaussian approximation of the signal component resulting

from the jammer’s transmission are derived, and the corre-

sponding detector is developed. The detection performance of

both detectors is tested through simulations. These simulations

revealed the superiority of the ML detector based on the

exact likelihood functions over the one based on Gaussian

approximations for the case of unit-norm constellations. This

is in sharp contrast with the single antenna case wherein the

two detectors are equivalent for this type of constellations [31].

Simulation results showed the significant power advantage of

the exact ML detector, especially when the transmitter has a

strong LOS component. Furthermore, these results showed that

a double-antenna receiver with strong LOS components to the

transmitter and the jammer is more resilient to proactive bar-

rage jamming than its single-antenna counterpart. Extending

these results to receivers with more than two antennas seems

daunting and computationally expensive, but it will likely yield

valuable performance gains.

APPENDIX A

PROOF OF THEOREM 1

An outline of this proof is as follows.

• Conditioned on X , G, V and θµh
, invoke statistical

independence to express the pdf of Y as the product of

the pdfs of Y o and Y e.

• To facilitate the separation of the components of V ,

use the eigendecomposition to diagonalize the covariance

matrix, Σ−1.

• Average out V to obtain the pdf of Y given X , G, and

θµh
.

• Average out G to obtain the pdf of Y given X and θµh
.

• Average out θµh
to obtain the pdf of Y given X .

Equation (2) can be written as:














Y1

Y2

...

Y2T−1

Y2T















=















H 0 . . . 0 0
0 H . . . 0 0

. . .

0 0 . . . H 0
0 0 . . . 0 H





























X1

X2

...

XT−1

XT















(19)

+















G 0 . . . 0 0
0 G . . . 0 0

. . .

0 0 . . . G 0
0 0 . . . 0 G





























V1

V2

...

VT−1

VT















+















Z1

Z2

...

Z2T−1

Z2T















.

From this equation, it can be seen that, conditioned on X ,

V , G =
[

g∗
1 g∗

2

]†
, kh and θµh

=
[

θµh1
θµh2

]†
, the pdf of

the received signal vector, Y , is the product of two Gaussian

pdfs:

fY |X,G,V ,θµh
(Y |X,G, V, θµh

) =

fY o|X,V ,g1,θµh1

(Yo|X,V, g1, θµh1
)×

fY e|X,V ,g2,θµh2

(Ye|X,V, g2, θµh2
), (20)

where Yo = [Y ∗
1 , . . . , Y

∗
2i−1, . . . , Y

∗
2T−1]

†, Ye =
[Y ∗

2 , . . . , Y
∗
2i, . . . , Y

∗
2T ]

†,

fY o|X,V ,g
1
,θµh1

(Yo|X,V, g1, θµh1
) =

1

πT |Σ|×

exp

(

−
[

Ỹo − g1V
]†

Σ−1
[

Ỹo − g1V
]

)

, (21)

and

fY e|X,V ,g
2
,θµh2

(Ye|X,V, g2, θµh2
) =

1

πT |Σ|×

exp

(

−
[

Ỹe − g2V
]†

Σ−1
[

Ỹe − g2V
]

)

, (22)

where Ỹo=Yo−khσhe
jθµh1 X , Ỹe = Ye−khσhe

jθµh2 X , and

Σ = σ2
hXX† + σ2

ZIT . Using the eigenvalue decomposition,

we write Σ−1 = QΛQ†. Hence,

fY o|X,V ,g
1
,θµh1

(Yo|X,V, g1, θµh1
)

=
1

πT |Σ| exp
(

−
[

Y̌o − g1V̂
]†

Λ
[

Y̌o − g1V̂
]

)

,

=
1

πT |Σ| exp
(

−
T
∑

i=1

λi|y̌2i−1 − g1v̂i|2
)

, (23)

and

fY e|X,V ,g
2
,θµh2

(Ye|X,V, g2, θµh2
)

=
1

πT |Σ| exp
(

−
[

Y̌e − g2V̂
]†

Λ
[

Y̌e − g2V̂
]

)

,

=
1

πT |Σ| exp
(

−
T
∑

i=1

λi|y̌2i − g2v̂i|2
)

, (24)
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where V̂ = Q†V , Y̌o = Q†Ỹo and Y̌e = Q†Ỹe. Using (23) and

(24) in (20) yields:

fY |X,G,V ,θµh
(Y |X,G, V, θµh

)

=
1

π2T |Σ|2 exp
(

−
T
∑

i=1

λi

(

|y̌2i−1−g1v̂i|2+|y̌2i−g2v̂i|2
)

)

,

=
1

π2T |Σ|2 exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2 + |y̌2i|2
)

)

× exp

(

−
T
∑

i=1

λi

(

‖g‖2|v̂i|2− 2ℜ{(g∗1 y̌2i−1 + g∗2 y̌2i) v̂
∗
i }
)

)

.

(25)

where ‖g‖2=|g1|2+|g2|2. Note that ℜ{(g∗1 y̌2i−1 + g∗2 y̌2i) v̂
∗
i }=

|g∗1 y̌2i−1 + g∗2 y̌2i||v̂i| cos
(

θv̂∗

i
− αi

)

, where αi =
∠ (g∗1 y̌2i−1 + g∗2 y̌2i), and θv̂∗

i
= ∠v̂∗i = −∠v̂i.

To obtain an expression for fY |X,G,θµh
(Y |X,G, θµh

), we

average both sides of (25) over the random vector V . Note

that, since Q is a unitary matrix, i.e., |Q| = 1; hence, V̂ has

the same pdf as V . Doing so yields:

fY |X,G,θµh
(Y |X,G, θµh

) =
∫

V

fY |X,G,V ,θµh
(Y |X,G, V, θµh

)fV (V )dV, (26)

where fV (V ) is given by:

fV (V ) =
1

πTσ2T
v

exp

(

−‖V ‖2
σ2
v

)

. (27)

Using (25) and (27) in (26) and taking into account that ‖V ‖ =
‖V̂ ‖ and that cos

(

θv̂∗

i
− αi

)

= cos (θv̂i
+ αi) yields:

fY |X,G,θµh
(Y |X,G, θµh

) =

1

π3Tσ2T
v |Σ|2 exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2 + |y̌2i|2
)

)

×

∫

V̂

exp

(

2

T
∑

i=1

λi|g∗1 y̌2i−1+g∗2 y̌2i||v̂i| cos (θv̂i
+αi)

)

× exp

(

−
T
∑

i=1

(

λi‖g‖2 +
1

σ2
v

)

|v̂i|2
)

dV̂ . (28)

Using polar coordinates with |v̂i| = ri, θi = θv̂i
and dV̂ =

∏T
i=1 ridridθi yields:

fY |X,G,θµh
(Y |X,G, θµh

) =

1

π3Tσ2T
v |Σ|2 exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2 + |y̌2i|2
)

)

×

T
∏

i=1

∫ ∞

0

ri exp

(

−
(

λi‖g‖2 +
1

σ2
v

)

r2i

)

×
∫ 2π

0

exp (2λi|g∗1 y̌2i−1 + g∗2 y̌2i|ri cos (θi + αi)) dθi

× dri. (29)

We note that the zeroth-order modified Bessel function of

the first kind is given by

I0 (z) =
1

2π

∫ 2π

0

exp (z cos (θ + α)) dθ,

=
∞
∑

k=0

(z/2)2k

(k!)2
.

Hence, the inner integration in (29) can be expressed as:

2πI0 (2λi|g∗1 y̌2i−1 + g∗2 y̌2i|ri) =

2π

∞
∑

ℓ=0

(

λ2
i |g∗1 y̌2i−1 + g∗2 y̌2i|2r2i

)ℓ

(ℓ!)2
. (30)

Using (30) in (29) yields:

fY |X,G,θµh
(Y |X,G, θµh

) =
1

π2Tσ2T
v |Σ|2×

exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2 + |y̌2i|2
)

)

×

T
∏

i=1

∞
∑

ℓ=0

(

λ2
i |g∗1 y̌2i−1 + g∗2 y̌2i|2

)ℓ

(ℓ!)2
×

∫ ∞

0

r2ℓi exp

(

−
(

λi‖g‖2 +
1

σ2
v

)

r2i

)

2ridri (31)

=
1

π2T |Σ|2 exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2+|y̌2i|2
)

)

×

T
∏

i=1

(

1

λiσ2
v‖g‖2 + 1

)

×

∞
∑

ℓ=0

(

λ2
iσ

2
v |g∗1 y̌2i−1 + g∗2 y̌2i|2
λiσ2

v‖g‖2 + 1

)ℓ
1

(ℓ!)
(32)

=
1

∏T
i=1(λiσ2

v‖g‖2+1)
exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2+|y̌2i|2
)

)

× 1

π2T |Σ|2 exp

(

T
∑

i=1

λ2
iσ

2
v |g∗1 y̌2i−1 + g∗2 y̌2i|2
λiσ2

v‖g‖2 + 1

)

,

(33)

where, to write (32), we have used the fact that the integration

in (31) is equal to (ℓ!)

(

σ2
v

λiσ2
v‖g‖2 + 1

)ℓ+1

, and to write (33),

we have replaced the summation in (32) with the exponential

function.

Let S1 be the summation in the argument of the last

exponential in (33). This summation is given by

S1 =
T
∑

i=1

λ2
iσ

2
v

λiσ2
v‖g‖2 + 1

(

|y̌2i−1|2|g1|2 + |y̌2i|2|g2|2

+ 2|y̌2i−1||y̌2i||g1||g2| cos (θg1−θg2−θi)
)

, (34)

where θgℓ = ∠gℓ, ℓ ∈ {1, 2}, and θi = ∠y̌2i−1−∠y̌2i. The

last term in (34) can be written as:

2|g1||g2|
T
∑

i=1

λ2
iσ

2
v |y̌2i−1||y̌2i| cos (θg1−θg2−θi)

λiσ2
v‖g‖2 + 1
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= 2|g1||g2|
(

T
∑

i=1

λ2
iσ

2
v |y̌2i−1||y̌2i| cos (θi)
λiσ2

v‖g‖2 + 1

)

cos (θg1−θg2)

+ 2|g1||g2|
(

T
∑

i=1

λ2
iσ

2
v |y̌2i−1||y̌2i| sin (θi)
λiσ2

v‖g‖2 + 1

)

sin (θg1−θg2) ,

= 2|g1||g2|C̄Y̌ (‖g‖2)×
(cos(β) cos (θg1−θg2) + sin(β) sin (θg1−θg2)) ,

= 2|g1||g2|C̄Y̌ (‖g‖2) cos (θg1−θg2−β) , (35)

where C̄Y̆ (‖g‖2) =
√

C2
1 + C2

2 , β = arctan

(

C2

C1

)

,

and C1 =
∑T

i=1

λ2
iσ

2
v |y̌2i−1||y̌2i| cos (θi)
λiσ2

v‖g‖2 + 1
, and C2 =

∑T
i=1

λ2
iσ

2
v |y̌2i−1||y̌2i| sin (θi)
λiσ2

v‖g‖2 + 1
. Using Λ̃ to denote the di-

agonal matrix whose ℓ-th element is given by Λ̃ℓ =
λ2
ℓσ

2
v

λℓσ2
v‖g‖2 + 1

, it can be verified that C1 = ℜ{Y̌ †
o Λ̃ Y̌e}

and C2 = ℑ{Y̌ †
o Λ̃ Y̌e}. Hence,

C̄2
Y̌
(‖g‖2)=σ4

v

T
∑

m=1
n=1

|y̌2m−1||y̌2n−1||y̌2m||y̌2n|cos (θm−θn)
λ−2
m λ−2

n (λmσ2
v‖g‖2+1)(λnσ2

v‖g‖2+1)
,

= |Y̌ †
o Λ̃ Y̌e|2. (36)

Using (35) and (36) in (34) yields:

S1 =
(

T
∑

i=1

λ2
iσ

2
v

(

|y̌2i−1|2|g1|2 + |y̌2i|2|g2|2
)

λiσ2
v‖g‖2 + 1

+ 2|g1||g2||Y̌ †
o Λ̃ Y̌e| cos (θg1−θg2−β)

)

. (37)

Substituting from (37) in (33) yields

fY |X,G,θµh
(Y |X,G, θµh

)=
1

π2T |Σ|2∏T
i=1(λiσ2

v‖g‖2+1)

× exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2 + |y̌2i|2
)

)

×

exp

(

T
∑

i=1

λ2
iσ

2
v

(

|y̌2i−1|2|g1|2 + |y̌2i|2|g2|2
)

λiσ2
v‖g‖2 + 1

)

× exp
(

2|g1||g2||Y̌ †
o Λ̃ Y̌e| cos (θg1−θg2−β)

)

. (38)

To obtain an expression for fY |X,θµh
(Y |X, θµh

), we av-

erage fY |X,G,θµh
(Y |X,G, θµh

) over the distributions of g1

and g2. In particular, we write

fY |X,θµh
(Y |X, θµh

) =

∫

g1

∫

g2

fY |X,G,θµh
(Y |X,G, θµh

)

× fg
1
(g1)fg

2
(g2)dg1dg2, (39)

where we have used the fact that g1 and g2 are independent

and identically distributed.

We will derive fg
1
(g1) and the derivation of fg

2
(g2) follows

mutatis mutandis.

fg
1
(g1) =

1

2π

∫ 2π

0

fg
1
|θ̄µg1

(g1|θµg1
)dθµg1

,

=
1

2π2σ2
g

∫ 2π

0

exp

(

−|g1−kgσge
jθµg1 |2

σ2
g

)

dθµg1
,

=

exp

(

−k2g−
|g1|2
σ2
g

)

2π2σ2
g

∫ 2π

0

exp

(

2kg|g1| cos
(

θµg1
−θg1

)

σg

)

dθµg1

=
1

πσ2
g

exp

(

−k2g−
|g1|2
σ2
g

)

I0

(

2kg|g1|
σg

)

. (40)

Analogously, we have

fg
2
(g2) =

1

πσ2
g

exp

(

−k2g−
|g2|2
σ2
g

)

I0

(

2kg|g2|
σg

)

. (41)

Using (38), (40) and (41) in (39) yields:

fY |X,θµh
(Y |X, θµh

) =

exp
(

−2k2g
)

π2T+2σ4
g |Σ|2

exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2 + |y̌2i|2
)

)

×
∫

g1

∫

g2

Io

(

2kg|g1|
σg

)

Io

(

2kg|g2|
σg

)

∏T
i=1 (λiσ2

v‖g‖2 + 1)
exp

(

−|g1|2+|g2|2
σ2
g

)

× exp

(

T
∑

i=1

λ2
iσ

2
v

(

|y̌2i−1|2|g1|2 + |y̌2i|2|g2|2
)

λiσ2
v‖g‖2 + 1

)

×

exp
(

2|g1||g2||Y̌ †
o Λ̃ Y̌e| cos (θg1−θg2−β)

)

dg1dg2, (42)

Note that g1 and g2 are complex variables. Hence, the

double integration in (42) is equivalent to quadruple real

integrations.

Let χ0 be the integration in (42). Using polar representation,

we write |gℓ| = rℓ, and dgℓ = rℓdrℓdθgℓ , ℓ ∈ {1, 2}, and

hence

χ0 =

∫ ∞

0

∫ ∞

0

Io

(

2kgr1
σg

)

Io

(

2kgr2
σg

)

∏T
i=1 (λiσ2

v(r
2
1 + r22) + 1)

×

exp

(

T
∑

i=1

λ2
iσ

2
v

(

|y̌2i−1|2r21 + |y̌2i|2r22
)

λiσ2
v(r

2
1 + r22) + 1

− r21 + r22
σ2
g

)

×
∫ 2π

0

∫ 2π

0

exp
(

2r1r2|Y̌ †
o Λ̃ Y̌e| cos (θg1−θg2−β)

)

dθg1dθg2

× r1r2dr1dr2. (43)

Let χ1 be the inner double integration in (43), it can be shown

that

χ1 = 4π2I0

(

2r1r2|Y̌ †
o Λ̃ Y̌e|

)

,

=4π2I0
(

2r1r2 C̄Y̌

(

r21 + r22
))

, (44)

Using the following change of variable: ρ2 = r21 + r22 ,

φ = arctan

(

r2
r1

)

, r1 = ρ cos (φ), r2 = ρ sin (φ), dr1dr2 =

ρdρdφ yields:

fY |X,θµh
(Y |X, θµh

) =
2 exp

(

−2k2g
)

π2Tσ4
g |Σ|2

×exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2 + |y̌2i|2
)

)

∫ ∞

0

∫ π
2

0

2ρ3sin (φ) cos (φ)
∏T

i=1 (λiσ2
vρ

2+1)
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×I0

(

2kgρ cos (φ)

σg

)

I0

(

2kgρ sin (φ)

σg

)

I0
(

ρ2sin(2φ) C̄Y̌

(

ρ2
))

×exp

(

T
∑

i=1

λ2
iσ

2
v

(

|y̌2i−1|2 cos2 (φ)+|y̌2i|2 sin2(φ)
)

ρ2

λiσ2
vρ

2 + 1
− ρ2

σ2
g

)

×dφdρ. (45)

Using the change of variables: u = sin2(φ), du =

2 sin (φ) cos (φ) dφ, t =
σ2
v ρ2

σ2
v ρ2 + 1

and
dt

σ2
v(1− t)2

= 2ρdρ

and defining t̄ = 1− t and ū = 1− u yields:

fY |X,θµh
(Y |X, θµh

) =
exp

(

−2k2g
)

π2Tσ4
gσ

4
v |Σ|2

× exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2 + |y̌2i|2
)

)

∫ 1

0

∫ 1

0

t t̄T−3

∏T
i=1 (λit+ t̄)

×I0

(

2kg
σgσv

√

tū

t̄

)

I0

(

2kg
σgσv

√

tu

t̄

)

I0

(

2t
√
uūC̄Y̌

(

t

σ2
v t̄

))

× exp

(

T
∑

i=1

λ2
i

(

|y̌2i−1|2ū+ |y̌2i|2u
)

t

λit+ t̄
− t

σ2
gσ

2
v t̄

)

dudt,

(46)

It can be shown that the argument of the last Bessel function

can be written as:

2t
√
uūC̄Y̌

(

t

σ2
v t̄

)

= |Y̌ †
o Λ̄(u, t) Y̌e|.

where Λ̄(u, t) is a diagonal matrix whose ℓ-th element is given

by Λ̄ℓ =
2 λ2

ℓ

√
uū t

λℓt+ t̄
.

To obtain an expression for fY |X(Y |X) we average

fY |X,θµh
(Y |X, θµh

) over the independent uniformly dis-

tributed phases θµh1
and θµh2

. In particular, we write

fY |X(Y |X) =

1

(2π)2

∫ 2π

0

∫ 2π

0

fY |X,θµh
(Y |X, θµh

)dθµh1
dθµh2

. (47)

Using (46) in (47) yields:

fY |X(Y |X) =
exp(−2k2g)

4π2T+2σ4
gσ

4
v |Σ|2

×
∫ 2π

0

∫ 2π

0

exp

(

−
T
∑

i=1

λi

(

|y̌2i−1|2+|y̌2i|2
)

)

Ψ(θµh1
,θµh2

)dθµh1
dθµh2

,

(48)

where

Ψ(θµh1
,θµh2

) =

∫ 1

0

∫ 1

0

tt̄T−3

∏T
i=1 (λit+ t̄)

I0
(

|Y̌ †
o Λ̄(u, t)Y̌e|

)

× exp

(

T
∑

i=1

λ2
i

(

|y̌2i−1|2ū+ |y̌2i|2u
)

t

λit+ t̄
− t

σ2
gσ

2
v t̄

)

× I0

(

2kg
σgσv

√

ūt

t̄

)

I0

(

2kg
σgσv

√

ut

t̄

)

dudt, (49)

The desired pdf is given by the expressions in (48) and (49).

These expressions can be presented more succinctly by in-

troducing matrix notation. In particular, using the fact that

Y̌o = Q†Ỹo = Q†
(

Yo−khσhe
θµh1 X

)

and Y̌e = Q†Ỹe =

Q†
(

Ye−khσhe
θµh2 X

)

, along with the fact that Σ−1 =

QΛQ†, for (48) we can write

T
∑

i=1

λi|y̌2i−1|2 =

(Yo − khσhe
θµh1 X)Σ−1(Yo − khσhe

θµh1 X), (50)

T
∑

i=1

λi|y̌2i|2 =

(Ye − khσhe
θµh2 X)†Σ−1(Ye − khσhe

θµh2 X), (51)

and, for (49) we can write:

T
∑

i=1

λ2
i |y̌2i−1|2ūt
λit+ t̄

=

ū(Yo−khσhe
θµh1 X)†Υ(Σ, t)(Yo−khσhe

θµh1 X), (52)

where Υ(Σ, t) = Σ−1(IT + t̄
t
Σ)−1. Analogously, it can be

shown that:

T
∑

i=1

λ2
i |y̌2i|2ut
λit+ t̄

=

u(Ye − khσhe
θµh2 X)†Υ(Σ, t)(Ye−khσhe

θµh2 X), (53)

|Y̌ †
o Λ̄(u, t) Y̌e| = 4uūt×

|(Yo−khσhe
θµh1 X)†Υ(Σ, t)(Ye−khσhe

θµh2 X)|, (54)

and

T
∏

i=1

(λit+ t̄) = |Λt+ t̄IT |. (55)

Using equations (50), (51), (52), (53), (54), and (55) in (48)

and (49) completes the proof.

APPENDIX B

PROOF OF LEMMA 1

To prove this lemma, we assume in (19) that the signal

resulting form the jammer transmission at the i-th receive

antenna, J i = giV , i ∈ {1, 2} is Gaussian distributed,

i.e., J i ∼ CN
(

0, σ2
gσ

2
vIT
)

. Under this assumption, it can

be seen from (19) that, conditioned on the vector of trans-

mitted symbols, X , the k-factor of the transmitter channel,

kh, and the phases vector of the transmitter channel mean

θµh
= [ θ∗

µh1

θ∗
µh2

]†, the pdf of the received signal vector,

Y , is given by:

fY |X,θµh
(Y |X, θµh

) =

fY o|X,θµh1

(Yo|X, θµh1
)fY e|X,θµh2

(Ye|X, θµh2
), (56)

where Y o and Y e are Gaussian distributed with the following

pdfs:

fY o|X,θµh1

(Yo|X, θµh1
) =

1

πT |ΣN |×
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exp
(

−(Yo − khσhe
jθµh1 X)†Σ−1

N (Yo − khσhe
jθµh1 X)

)

,

(57)

and

fY e|X,θµh2

(Ye|X, θµh2
) =

1

πT |ΣN |×

exp
(

−(Ye − khσhe
jθµh2 X)†Σ−1

N (Ye − khσhe
jθµh2 X)

)

,

(58)

where ΣN = σ2
hXX† + (σ2

gσ
2
v + σ2

Z)IT . Using the eigende-

composition Σ−1
N = QNΛNQ†

N , yields:

fY o|X,θµh1

(Yo|X, θµh1
)

=
1

πT |ΣN | exp
(

−
T
∑

i=1

λi|ŷ2i−1 − khσhx̂ie
jθµh1 |2

)

=
1

πT |ΣN | exp
(

−
T
∑

i=1

λi(|ŷ2i−1|2 + k2hσ
2
h|x̂i|2)

)

× exp

(

2khσh

T
∑

i=1

λi|ŷ2i−1||x̂i| cos(θµh1
+ αi)

)

, (59)

where ŷ2i−1, ŷ2i and x̂i are the i-th elements of Ŷo =
Q†

NYo, Ŷe = Q†
NYe, X̂ = Q†

NX , respectively, and αi =
∠x̂i − ∠ŷ2i−1.

Denoting the summation in the argument of the last expo-

nential in (59) by SN , we write

SN =
(

T
∑

i=1

λi|ŷ2i−1||x̂i| cos(αi)
)

cos(θµh1
)

+
(

T
∑

i=1

λi|ŷ2i−1||x̂i| sin(αi)
)

sin(θµh1
)

=
√

W 2
1 +W 2

2

(

cos(βo) cos(θµh1
) + sin(βo) sin(θµh1

)
)

=
√

W 2
1 +W 2

2 cos(θµh1
−βo), (60)

where W1 =
∑T

i=1 λi|ŷ2i−1||x̂i| cos(αi), W2 =
∑T

i=1 λi|ŷ2i−1||x̂i| sin(αi), and βo = arctan

(

W2

W1

)

. It can

be shown that W1 = ℜ{Ŷ †
o ΛN X̂} and W2 = ℑ{Ŷ †

o ΛN X̂},

which yields that

W 2
1 +W 2

2

=

T
∑

m,n=1

λmλn|ŷ2m−1||ŷ2n−1||x̂2m||x̌2n| cos (αm − αn)

= |Ŷ †
o ΛN X̂|2, (61)

where ΛN is the diagonal matrix of eigenvalues of Σ−1
N . Using

(60) and (61) in (59) yields:

fY o|X,θµh1

(Yo|X, θµh1
) =

1

πT |ΣN |

× exp

(

−
T
∑

i=1

λi(|ŷ2i−1|2 + k2hσ
2
h|x̂i|2)

)

× exp
(

2khσh|Ŷ †
o ΛN X̂| cos(θµh1

− βo)
)

. (62)

Analogously, it can be shown that:

fY e|X,θµh2

(Ye|X, θµh2
) =

1

πT |ΣN |

× exp

(

−
T
∑

i=1

λi(|ŷ2i|2 + k2hσ
2
h|x̂i|2)

)

× exp
(

2khσh|Ŷ †
e ΛN X̂| cos(θµh2

− βe)
)

. (63)

Using (62) and (63) in (56) yields:

fY |X,θµh
(Y |X, θµh

) =
1

π2T |ΣN |2

× exp

(

−
T
∑

i=1

λi(|ŷ2i−1|2 + |ŷ2i|2 + 2k2hσ
2
h|x̂i|2)

)

× exp
(

2khσh|Ŷ †
o ΛN X̂| cos(θµh1

−βo)
)

× exp
(

2khσh|Ŷ †
e ΛN X̂| cos(θµh2

−βe)
)

. (64)

To obtain fY |X(Y |X), we average the right hand side

of (64) over θµh1
and θµh2

, which yields:

fY |X(Y |X) =
1

π2T |ΣN |2

× exp

(

−
T
∑

i=1

λi(|ŷ2i−1|2 + |ŷ2i|2 + 2k2hσ
2
h|x̂i|2)

)

× I0

(

2khσh|Ŷ †
o ΛN X̂|

)

I0

(

2khσh|Ŷ †
e ΛN X̂|

)

. (65)

It can be readily verified that:

T
∑

i=1

λi|ŷ2i−1|2 = YoΣ
−1
N Yo, (66)

T
∑

i=1

λi|ŷ2i|2 = Y †
e Σ−1

N Ye, (67)

and
T
∑

i=1

λi|x̂i|2 = X† Σ−1
N X. (68)

Using (66), (67), and (68) in (65) completes the proof.

APPENDIX C

DERIVATION OF THE MARGINAL PDF fr1|X(r1|X)

For the case of kh = kg = 0, the distribution of the received

signal vector, Y , conditioned on the transmitted constellation

symbol, X , is given by fY |X(Y |X) in Eq. (15) on page 6 of

the revised manuscript, that is,

fY |X(Y |X) =

1

π2Tσ2T
g σ2T

v |Σ|2 exp
(

−Y †
o Σ−1 Yo − Y †

e Σ−1Ye

)

×
∫ 1

0

∫ 1

0

t ( t̄ )
T−3

|Λt+ t̄ IT |
I0

(

2
√
uūt|Y †

o Υ(Σ, t) Ye|
)

× exp
(

ū Y †
o Υ(Σ, t) Yo + u Y †

e Υ(Σ, t) Ye −
t

σ2
gσ

2
v t̄

)

× du dt, (69)



14

where Yo, Ye, Σ, Λ, Υ, σg and σh are as defined in Theorem 1.

Using T = 2, Σ−1 = QΛQ†, and setting

[

Ŷo

Ŷe

]

=
[

Q†
0

0 Q†

] [

Yo

Ye

]

. Since Q is a unitary matrix, the determinant

of the Jacobian of the transformation from

[

Yo

Ye

]

to

[

Ŷo

Ŷe

]

is

equal to 1, yielding fŶ |X(Ŷ |X) = fY |X(Y |X). Substituting

for T,Σ−1 and Ŷ in (69) yields:

fŶ |X(Ŷ |X) =

1

π4σ4
gσ

4
v |Σ|2

exp
(

−λ1

(

|ŷ1|2 + |ŷ2|2
)

− λ2

(

|ŷ3|2 + |ŷ4|2
))

×
∫ 1

0

∫ 1

0

t ( t̄ )−1

∏2
i=1(λit+ t̄)

I0

(

2
√
uūt

∣

∣

∣

∣

2
∑

i=1

λ2
i

λit+ t̄
ŷ2i−1ŷ2i

∣

∣

∣

∣

)

× exp

(

λ2
1t

λ1t+ t̄

[

|ŷ1|2ū+|ŷ2|2u
]

+
λ2
2t

λ2t+ t̄

[

|ŷ3|2ū+|ŷ4|2u
]

)

× exp

(

− t

σ2
gσ

2
v t̄

)

du dt. (70)

Using the series expansion of the Bessel function I0(·) in (70)

yields:

fŶ |X(Ŷ |X) =

1

π4σ4
gσ

4
v |Σ|2

exp
(

−λ1

(

|ŷ1|2 + |ŷ2|2
)

− λ2

(

|ŷ3|2 + |ŷ4|2
))

×
∫ 1

0

∫ 1

0

t ( t̄ )−1

∏2
i=1(λit+ t̄)

∞
∑

k=0

1

(k!)2

(

∣

∣

∣

∣

2
∑

i=1

λ2
i

√
uūt2y2i−1y2i
λit+ t̄

∣

∣

∣

∣

2k
)

×exp

(

λ2
1t

λ1t+ t̄

[

|ŷ1|2ū+|ŷ2|2u
]

+
λ2
2t

λ2t+ t̄

[

|ŷ3|2ū+|ŷ4|2u
]

)

× exp

(

− t

σ2
gσ

2
v t̄

)

dudt. (71)

It can be shown that (71) is equivalent to:

fŶ |X(Ŷ |X) =

1

π4σ4
gσ

4
v |Σ|2

exp
(

−λ1

(

|ŷ1|2 + |ŷ2|2
)

− λ2

(

|ŷ3|2 + |ŷ4|2
))

×
∫ 1

0

∫ 1

0

t ( t̄ )−1

∏2
i=1(λit+ t̄)

exp

(

− t

σ2
gσ

2
v t̄

)

S(Ŷ, u, t)

×exp

(

λ2
1t

λ1t+ t̄

[

|ŷ1|2ū+|ŷ2|2u
]

+
λ2
2t

λ2t+ t̄

[

|ŷ3|2ū+|ŷ4|2u
]

)

× dudt, (72)

where

S(Ŷ, t, u) =
∞
∑

k=0

1

(k!)2
((uūt2)k

(

α2
1|ŷ1|2|ŷ2|2 + α2

2|ŷ3|2|ŷ4|2+

2α1α2|ŷ1||ŷ2||ŷ3||ŷ4| cos(θ1 − θ2 − θ3+)
)k
), (73)

and

αi =
λ2
i

λit+ t̄
, i = 1, 2. (74)

Using the trinomial expansion:

(a+ b+ c)k=
k
∑

m=0

k−m
∑

n=0

k! an bm ck−n−m

m!n!(k−m−n)!
, (75)

where a = α2
1|ŷ1|2|ŷ2|2, b = 2α1α2|ŷ1||ŷ2||ŷ3||ŷ4| cos(θ1 −

θ2 − θ3+), and c = α2
2|ŷ3|2|ŷ4|2 yields:

S(Ŷ, t, u) =

∞
∑

k=0

(uūt2)k

k!
(76)

×
k
∑

m=0

(2α1α2|ŷ1||ŷ2||ŷ3||ŷ4| cos(θ1 − θ2 − θ3 + θ4))
m

m!

(77)

×
k−m
∑

n=0

(

α2
1|ŷ1|2|ŷ2|2

)n (

α2
2|ŷ3|2|ŷ4|2

)k−n−m

n!(k−m−n)!
. (78)

Using polar coordinates with ri =
√

ℜ{ŷi}+ ℑ{ŷi}, and

θi = arctan

(ℑ{ŷi}
ℜ{ŷi}

)

, i = 1, . . . , 4, in (71) yields:

fr,θ|X(r, θ|X) =
r1r2r3r4

π4σ4
gσ

4
v |Σ|2

× exp
(

−λ1

(

r21+r22
)

− λ2

(

r23+r24
))

∫ 1

0

∫ 1

0

t ( t̄ )−1

∏2
i=1(λit+ t̄)

× exp
(

α1t
[

r21ū+r22u
]

+α2t
[

r23ū+r24u
]

− t

σ2
gσ

2
v t̄

)

×
∞
∑

k=0

k
∑

m=0

(

uūt2)k(2α1α2r1r2r3r4
)m

cosm(θ1−θ2−θ3+θ4)

k! m!

×
k−m
∑

n=0

(

α2
1r

2
1r

2
2

)n (

α2
2r

2
3r

2
4

)k−n−m

n!(k−m−n)!
dudt, (79)

where r =
[

r1 r2 r3 r4
]†

and θ =
[

θ1 θ2 θ3 θ4
]†

.

To obtain fr|X(r), we integrate (79) over all possible values

of θ. We notice that [40]:

1) The integration over the period [0, 2π) of any odd power

of cos(β) is zero, i.e.,

∫ 2π

0

cosm(β)dβ = 0, for m odd. (80)

2) The integration over the period [0, 2π) of any even

power of cos(β) is given by:

∫ 2π

0

cosm(β)dβ =
1

2m

(

m

m/2

)

(2π). (81)

Using these facts, it suffices to consider m = 2ℓ. Using this

and substituting for the values of α1 and α2 from (74) in (79)

yields:

fr1,r2,r3,r4|X(r1, r2, r3, r4|X) =
1

σ4
gσ

4
v |Σ|2

×
∞
∑

k=0

⌊ k
2
⌋

∑

ℓ=0

k−2ℓ
∑

n=0

1

k! ℓ!2 n! (k−2ℓ−n)!

∫ 1

0

∫ 1

0

(uūt2)kt(t̄)−1

∏2
i=1(λit+ t̄)

× exp

(

− t

σ2
gσ

2
v t̄

)

(2r1)(r
2
1)

n+ℓ exp

(

−
(

λ2
1tu+ λ1t̄

λ1t+ t̄

)

r21

)
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× (2r2)(r
2
2)

n+ℓ exp

(

−
(

λ2
1tū+ λ1t̄

λ1t+ t̄

)

r22

)

× (2r3)(r
2
3)

k−n−ℓ exp

(

−
(

λ2
2tu+ λ2t̄

λ2t+ t̄

)

r23

)

× (2r4)(r
2
4)

k−n−ℓ exp

(

−
(

λ2
2tū+ λ2t̄

λ2t+ t̄

)

r24

)

×
(

λ2
1(λ2t+ t̄)

λ2
2(λ1t+ t̄)

)2(n+ℓ)(
λ2
2

λ2t+ t̄

)2k

dudt. (82)

To obtain fr1|X(r1|X), we proceed as follows:

fr1|X(r1|X) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

fr1,r2,r3,r4|X(r1, r2, r3, r4|X)dr2dr3dr4,

=
2r1

σ4
gσ

4
v |Σ|2

∞
∑

k=0

⌊ k
2
⌋

∑

ℓ=0

k−2ℓ
∑

n=0

1

k! ℓ!2 n! (k−2ℓ−n)!

×
∫ 1

0

∫ 1

0

(uūt2)kt(t̄)−1

∏2
i=1(λit+ t̄)

exp

(

− t

σ2
gσ

2
v t̄

)

(r21)
n+ℓ

× exp

(

−
(

λ2
1tu+ λ1t̄

λ1t+ t̄

)

r21

)

×
∫ ∞

0

(r22)
n+ℓ exp

(

−
(

λ2
1tū+ λ1t̄

λ1t+ t̄

)

r22

)

2r2dr2

×
∫ ∞

0

(r23)
k−n−ℓ exp

(

−
(

λ2
2tu+ λ2t̄

λ2t+ t̄

)

r23

)

2r3dr3

×
∫ ∞

0

(r24)
k−n−ℓ exp

(

−
(

λ2
2tū+ λ2t̄

λ2t+ t̄
r24

))

2r4dr4

×
(

λ2
1(λ2t+ t̄)

λ2
2(λ1t+ t̄)

)2(n+ℓ)(
λ2
2

λ2t+ t̄

)2k

dudt.

Setting r2i = u, 2ridri = du, i ∈ {2, 3, 4}, and using the

fact that:
∫ ∞

0

uq exp (−γu) du =
q!

γq+1
, (83)

where γ > 0 and q is a positive integer, yields (17).

APPENDIX D

PROOF OF LEMMA 3

Let QY |X(Y |X) be the likelihood function based on the

Gaussian approximation for which the covariance matrix is to

be optimized. For the cases in which kg = 0, it is shown in

Eq. (14) on page 5 of the revised manuscript that

QY |X(Y |X) =
1

π2T |Ξ|2 exp
(

−
(

Y †
o Ξ

−1Yo+Y †
e Ξ

−1Ye

))

,

(84)

where Ξ is the covariance matrix to be optimized.

For a given X , the Kullback-Leibler distance measure

between the exact likelihood function, fY |X(Y |X), and the

likelihood function based on the Gaussian approximation,

QY |X(Y |X), is given by

D
(

fY |X(Y |X)||QY |X(Y |X)
)

=
∫

Y

fY |X(Y |X) log

(

fY |X(Y |X)

QY |X(Y |X)

)

dY, (85)

i.e.,

D
(

fY |X(Y |X)||QY |X(Y |X)
)

=
∫

Y

fY |X(Y |X) log
(

fY |X(Y |X)
)

dY−
∫

Y

fY |X(Y |X) log
(

QY |X(Y |X)
)

dY. (86)

Our goal is to find an expression for

Ξ⋆(X) = arg min
Ξ ≻0

D
(

fY |X(Y |X)||QY |X(Y |X)
)

. (87)

To do so, we note that the first term on the right hand side

of (86) is independent of Ξ. Hence, to achieve our goal, it

suffices to solve the following optimization problem:

max
Ξ≻0

∫

Y

(

−Y †
o Ξ

−1Yo−Y †
e Ξ

−1Ye − 2log(|Ξ|)+2T log(π)
)

× fY |X(Y |X)dY. (88)

To solve this optimization problem, we let R = Ξ−1, and note

that because Ξ ≻ 0, R ≻ 0 . Using this change of variables,

we rewrite (88) as:

max
R ≻0

∫

Y

(

2 log(|R|)−
(

Y †
o RYo + Y †

e RYe

))

fY |X(Y |X)dY.

(89)

The function F (R) = 2 log(|R|) − Y †
o RYo − Y †

e RYe is

concave. Hence, differentiating (89) with respect to R and

solving for R that makes the derivative equal to zero yields

the optimal covariance for the given X , R⋆(X), provided that

the resulting R⋆(X) ≻ 0. Differentiating (89) yields

2
(

R⋆(X)
)−1

=

∫

Y

fY |X(Y |X)
(

YoY
†
o + YeY

†
e

)

dY

=

∫

Yo

fY o|X(Yo|X)
(

YoY
†
o

)

dYo

+

∫

Ye

fY e|X(Ye|X)
(

YeY
†
e

)

dYe. (90)

To complete the proof, it remains to show that R⋆(X) ≻ 0,

but this can be readily seen from (90), since its right hand

side is the statistical average of the sum of two rank-1

positive semidefinite matrices. Hence,
(

R⋆(X)
)−1 � 0. Since

the noise components of the entries of Y are statistically

independent of each other and of other components of Y , it

can be readily seen that |R⋆(X)| > 0, whereby R⋆(X) ≻ 0,

yielding the statement of the lemma.
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