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We present an analytic model and a methodology to determine the optimal packet scheduling
policy in a High Speed Downlink Packet Access (HSDPA) system. The optimal policy is the

one that maximizes cell throughput while maintaining a level of fairness between the users in

the cell. A discrete stochastic dynamic programming model for the HSDPA downlink scheduler
is presented. Value iteration is then used to solve for the optimal scheduling policy. We use a

FSMC (Finite State Markov Channel) to model the HSDPA downlink channel. A near optimal

heuristic scheduling policy is developed. Simulation is used to study the performance of the
resulted heuristic policy and compare it to the computed optimal policy.

Categories and Subject Descriptors: C.2.1 [Computer Systems Organization]: Computer
Communication Networks, Network Architecture and Design—wireless communication; G.1.6

[Mathematics of Computing]: Numerical Analysis, Optimization—Stochastic programming;

unconstrained optimization; G.1.10 [Mathematics of Computing]: Numerical Analysis—appli-
cations; G.3 [Mathematics of Computing]: Probability and Statistics—stochastic processes;

Markov processes; I.6.3 [Computing Methodologies]: Simulation and Modeling—applications,
model development

General Terms: Algorithms, Design, Performance, Theory

Additional Key Words and Phrases: Markov decision process, dynamic programming, optimal
scheduling, resource allocation, HSDPA systems, 3G wireless networks, cross-layer design

1. SUPPLEMENTARY MATERIALS

In this section, we include supplementary graphs and results that we removed from
the main text of the paper because of space limitation.

1.1 The additional sub-figures of Figure 5

Figures 4 and 5 in the main text describes the optimal policy structure for chunk
size c = 5 and c = 3 respectively and for different arrival and channel quality
parameters. However, in Figures 4 and 5 in the main text only the first two cases
(case (a) and case (b)) were presented. In this supplement, we provide all the cases
of Figure 4 (of the paper) in Figures 1–6. The cases of Figure 5 are shown in Figures
7–12 of this appendix.
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Fig. 1. Optimal and heuristic (dotted line) policies for two user case; c = 5 (i.e., 0,1,2 or 3 chunks

of size 5 can be assigned to a user), u = 5 (Symmetrical case).
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Fig. 2. Optimal and heuristic (dotted line) policies for two user case; c = 5 (i.e., 0,1,2 or 3 chunks
of size 5 can be assigned to a user), u = 5 (P (γ1 = 1)=0.8 and P (γ2 = 1)=0.5).
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Fig. 3. Optimal and heuristic (dotted line) policies for two user case; c = 5 (i.e., 0,1,2 or 3 chunks

of size 5 can be assigned to a user), u = 5 (P (z1 =5)=0.8 and P (z2 =5)=0.5).

 

 

 

 

Fig. 4. Optimal and heuristic (dotted line) policies for two user case; c = 5 (i.e., 0,1,2 or 3 chunks
of size 5 can be assigned to a user), u = 5 (P (γ1 =1)=0.8 and P (γ2 =1)=0.3).
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Fig. 5. Optimal and heuristic (dotted line) policies for two user case; c = 5 (i.e., 0,1,2 or 3 chunks

of size 5 can be assigned to a user), u = 5 (P (z1 = 5)=0.8 and P (z2 = 5)=0.3).

 

 

 

 

Fig. 6. Optimal and heuristic (dotted line) policies for two user case; c = 5 (i.e., 0,1,2 or 3 chunks
of size 5 can be assigned to a user), u = 5 (P (z1 = 5) = 0.8, P (z2 = 5) = 0.5, P (γ1 = 1) = 0.8
and P (γ2 = 1) = 0.5).
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Fig. 7. Optimal and heuristic (dotted line) policies for two user case; c = 3 (i.e., 0,1,2,3,4 or 5

chunks of size 3 can be assigned to a user), u = 5 (Symmetrical case).

 

 

 

 

 

 

 

 

Fig. 8. Optimal and heuristic (dotted line) policies for two user case; c = 3 (i.e., 0,1,2,3,4 or 5

chunks of size 3 can be assigned to a user), u = 5 (P (γ1 =1)=0.8 and P (γ2 =1)=0.5).
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Fig. 9. Optimal and heuristic (dotted line) policies for two user case; c = 3 (i.e., 0,1,2,3,4 or 5
chunks of size 3 can be assigned to a user), u = 5 (P (z1 =5)=0.8 and P (z2 =5)=0.5).
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Fig. 10. Optimal and heuristic (dotted line) policies for two user case; c = 3 (i.e., 0,1,2,3,4 or 5
chunks of size 3 can be assigned to a user), u = 5 (P (γ1 =1)=0.8 and P (γ2 =1)=0.3).
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Fig. 11. Optimal and heuristic (dotted line) policies for two user case; c = 3 (i.e., 0,1,2,3,4 or 5
chunks of size 3 can be assigned to a user), u = 5 (P (z1 = 5) = 0.8 and P (z2 = 5) = 0.3).

 

 

 

 

Fig. 12. Optimal and heuristic (dotted line) policies for two user case; c = 3 (i.e., 0,1,2,3,4
or 5 chunks of size 3 can be assigned to a user), u = 5 (P (z1 = 5) = 0.8, P (z2 = 5) = 0.5,

P (γ1 = 1) = 0.8 and P (γ2 = 1) = 0.5).
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SUPPLEMENTARY APPENDICES

This section contains all the appendices that were removed from the main text of
the paper. We will use (*) to indicate references to materials in the main text of
the paper to distinguish them from references in this supplement.

A. STATE TRANSITION PROBABILITY FOR *SECTION 3.5

To derive the state transition probability (Pss′(a)) that was introduced in *section
3, we start from *equation (4) as follows

P ′ss(a) ,Pr
(
s(t+1) = s′|s(t) = s,a(t) = a

)
= Pr(x′1, . . . , x

′
L, γ

′
1, . . . , γ

′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) (A.1)

where xi denote the queue size of user i, and γi is the FSMC state characterizing
the connectivity of user i wireless channel. Using conditioning we can decompose
the above joint probability as follows:

Pss′(a) = Pr(x′1, . . . , x
′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL)

·Pr(γ′1, . . . , γ′L|x′1, . . . , x′L, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) (A.2)

Applying conditioning again, the second part of equation (A.2) yields

Pss′(a) = Pr(x′1, . . . , x
′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL)

·Pr(γ′1|x′1, . . . , x′L, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL)
·Pr(γ′2|γ′1, x′1, . . . , x′L, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) · . . .
·Pr(γ′L|γ′1, . . . , γ′L−1, x

′
1, . . . , x

′
L, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) (A.3)

Since the wireless channel was modeled by means of a Markov process, the channel
state γi depends only on the most recent channel state. Hence, the channel state
transition probability can be written as:

Pr(γ′i|s) = Pr(γ′i|γi) , Pγiγ′
i

Accordingly, we can rewrite (A.3) as follows:

Pss′(a) = Pr(x′1, . . . , x
′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) ·

L∏
i=1

Pγiγ′
i

(A.4)

Following the same approach, the joint probability of the queue size (first term
in equation (A.2)) can be decomposed as follows:

Pr(x′1, . . . , x
′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) =
= Pr(x′1|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL)
·Pr(x′2|x′1, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) · . . .
·Pr(x′L|x′1, . . . , x′L−1, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) (A.5)

The evolution of the queue size (xi) is given by

x′i = min
(

[xi − yi]+ + z′i , B
)

= min
(

[xi − aiγic]+ + z′i , B
)

(A.6)

ACM Transactions on Modeling and Computer Simulation, submitted for review.
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Since the queue size corresponding to user i at the next time slot (x′i) depends on
its current queue size (xi), the given action ai, its channel state γi and the arrived
PDUs z′i during (t, t + 1] and is independent of all other queue sizes, actions and
channel conditions corresponding to the remaining users. Hence

Pr(x′i|s) = Pr(x′i|xi, γi, ai) , Pxix′
i
(γi, ai)

Therefore, equation (A.5) reduces to

Pss′(a) =
L∏
i=1

(
Pxix′

i
(γi, ai)Pγiγ′

i

)
(A.7)

The state transition probability will be the product of the individual user queues
state transition probabilities and their FSMC channel transition probabilities. The
underlining assumption is that Pγiγ′

i
can in practice be estimated from measure-

ments and provided to the scheduler. The term Pxix′
i
(γi, ai) will be derived in the

following section.

B. QUEUE STATE TRANSITION PROBABILITY FOR *SECTION 3.5

The queue transition probability is given by

Pxix′
i
(γi, ai) = Pr

(
xi(t+ 1) = x′i|xi(t) = xi, γi(t) = γi, ai(t) = ai

)
(B.1)

where

xi(t+ 1) = min
(

[xi(t)− yi(t)]+ + zi(t+ 1) , B
)

(B.2)

with yi(t) = ai(t)γi(t)c. From equation (B.2) we can differentiate two cases; (a)
[xi(t)− yi(t)]+ + zi(t + 1) < B and (b) [xi(t)− yi(t)]+ + zi(t + 1) ≥ B. The
objective of this section is to derive Pxix′

i
(γi, ai) for both cases. Substituting the

two cases in equation (B.1) yields the following

Case (a): [xi(t)− yi(t)]+ + zi(t+ 1) < B or equivalently

xi(t+ 1) = [xi(t)− yi(t)]+ + zi(t+ 1)

Equation (B.1) in this case can be rewritten as:

Pxix′
i
(γi, ai) =Pr

(
[xi(t)−yi(t)]++zi(t+1) = x′i |xi(t) = xi, γi(t)=γi, ai(t)=ai

)
= Pr

(
[xi − yi]+ + zi(t+ 1) = x′i

)
= Pr(zi(t+ 1) = x′i − [xi − yi]+

)
(B.3)

where yi = aiγic. The arrival process is assumed to be Bernoulli with parameter qi
for user i (*section 3.1) and is given by

zi(t) =

{
ui with probability qi
0 with probability 1− qi

(B.4)

Hence, the queue state transition probability in this case is

Pxix′
i
(γi, ai) =


qi if x′i = [xi − yi]+ + ui

1− qi if x′i = [xi − yi]+

0 Otherwise
(B.5)
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Case (b): [xi(t)− yi(t)]+ + zi(t+ 1) ≥ B or equivalently xi(t+ 1) = B. In this
case, one can conclude that Pxix′

i
(γi, ai) = 0 when x′i 6= B. The remaining of this

section is devoted to the calculation of PxiB(γi, ai) as follows:

PxiB(γi, ai) =Pr
(

[xi(t)−yi(t)]++zi(t+1) ≥ B |xi(t)=xi, γi(t)=γi, ai(t)=ai
)

= Pr
(

[xi − yi]+ + zi(t+ 1) ≥ B
)

= Pr(zi(t+ 1) ≥ B − [xi − yi]+) (B.6)

Similar to case (a), we can write equation (B.6) as follows

PxiB(γi, ai) =


1− qi if [xi − yi]+ ≥ B
qi if [xi − yi]+ + ui ≥ B
0 Otherwise

(B.7)

Using our knowledge of queue evolution process, we can summarize all the pos-
sible transitions in (B.7) by partitioning the probability space of PxiB(γi, ai) as
follows:

PxiB(γi, ai) =



1− qi if xi = B, γiai = 0
qi if xi = B, γiai = 0
qi if xi = B, 0 < γiaic ≤ ui
qi if xi < B, [xi − γiaic]+ + ui ≥ B
0 Otherwise

(B.8)

where the first case in equation (B.8) (corresponding to probability 1−qi) is the only
possible conditions for the first case in equation (B.7). The other three cases (cor-
responding to probability qi) represent all the possible partitions of the probability
space of the second case in equation (B.7).

The results obtained above in (B.5) and (B.8) can be summarized as follows

Pxix′
i
(γi, ai) =



1 if x′i = xi = B, γiai = 0
qi if x′i = xi = B, 0 < γiaic ≤ ui
qi if x′i = B, xi < B, [xi − γiaic]+ + ui ≥ B
qi if x′i < B, x′i = [xi − γiaic]+ + ui

1− qi if x′i < B, x′i = [xi − γiaic]+

0 Otherwise

(B.9)

C. DERIVATION OF THE QUEUE STATE TRANSITION PROBABILITY IN *SEC-
TION 5.3

In this section, we present the derivation of queue state transition probabilities when
retransmission is considered (*section 5.3). There are two parts for this derivation;
(a) when the transmission is successful (*equation (15)) and (b) when the trans-
mission is unsuccessful (*equation (16)). In case (a), the conditional probability
Pxix′

i|µi=1(γi, ai) is similar to that in equation (B.1) and the derivation is analogous
to that in the previous section and will not be repeated here.

The remainder of this section is devoted to derive the probability in case (b);
namely, the queue transition probability when the transmission is unsuccessful (i.e.,
ACM Transactions on Modeling and Computer Simulation, submitted for review.
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µi(t) = 0). In this case, no PDUs are removed from the scheduled queues at the
end of the current TTI (since the transmission was unsuccessful). The conditional
queue state transition probability is given by

Pxix′
i|µi=0(γi, ai),Pr

(
xi(t+1) = x′i|xi(t)=xi, γi(t) = γi, ai(t)=ai, µi=0

)
(C.1)

where xi(t+ 1) is given by *equation (12). Similar to section B, we can distinguish
the following two cases:

case (b1): [xi(t)− yi(t)µi(t)]+ + zi(t+ 1) < B; equivalently,

xi(t+ 1) = [xi(t)− yi(t)µi(t)]+ + zi(t+ 1)

Equation C.1 can be rewritten as:

Pxix′
i|µi=0(γi, ai) = Pr

(
[xi(t)− yi(t)µi(t)]+ + zi(t+ 1) = x′i |xi(t) = xi,

γi(t) = γi, ai(t) = ai, µi = 0
)

= Pr(xi + zi(t+ 1) = x′i)
= Pr(zi(t+ 1) = x′i − xi) (C.2)

As mentioned previously, zi(t) has Bernoulli distribution with parameter qi. There-
fore, the marginal queue state transition probability is given by

Pxix′
i|µi=0(γi, ai) =


qi if x′i = xi + ui

1− qi if x′i = xi

0 Otherwise
(C.3)

case (b2): [xi(t)− yi(t)µi(t)]+ + zi(t+ 1) ≥ B equivalently xi(t+ 1) = B, then
equation C.1 can be rewritten as

PxiB|µi=0(γi, ai) = Pr([xi(t)− yi(t)µi(t)]+ + zi(t+ 1) ≥ B |xi(t) = xi,

γi(t) = γi, ai(t) = ai, µi = 0)
= Pr(xi + zi(t+ 1) ≥ B)
= Pr(zi(t+ 1) ≥ B − xi) (C.4)

and Pxix′
i|µi=0(γi, ai) = 0 when x′i 6= B.

Using equation (B.4), we can conclude that

PxiB|µi=0(γi, ai) =


qi if xi + ui ≥ B and xi < B

1 if xi = B

0 Otherwise
(C.5)

The second case in equation C.5 is the aggregation of two events (arrival and no
arrival), since both events will result in x′i = B when xi = B, i.e., if the queue is
full initially and no PDUs are removed from this queue in the current TTI (due to
unsuccessful transmission), then the queue will remain full regardless of the arrival
status.
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Combining equations (C.3) and (C.5) yields

Pxix′
i|µi=0(γi, ai) =



1 if x′i = xi = B

qi if x′i = B, xi < B, xi + ui ≥ B
qi if x′i < B, x′i = xi + ui

1− qi if x′i < B, x′i = xi

0 Otherwise

(C.6)
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