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Abstract

Block�wise access to data is a central theme in
the design of e�cient external memory �EM� al�
gorithms� A second important issue� when more
than one disk is present� is fully parallel disk I�O�
In this paper� we present a deterministic simulation
technique which transforms Coarse Grained Multi�
computer �CGM� algorithms into parallel external
memory algorithms� It optimizes block�wise data
access and parallel disk I�O and� at the same time�
utilizes multiple processors connected via a com�
munication network or shared memory� We obtain
new improved parallel external memory algorithms
for a large number of problems including sorting�
permutation� matrix transpose� several geometric
and GIS problems including 	D convex hulls �
D
Voronoi diagrams�� and various graph problems�

We show that parallel algorithms known for the
CGM model can be used to obtain external mem�
ory algorithms that seem to have better I�O com�
plexity than the well known lower bounds for var�
ious problems� including sorting� In certain cases�
a similar phenomenon can also occur for BSP al�
gorithms� We explain this apparent contradiction
by examining the parameter values which permit
the ubiquitous logM�B�N�B� term in the I�O com�
plexity to become a constant� We show that such
a parameter constellation arises naturally in coarse
grained parallel algorithms and the external mem�
ory domain�

The practicality of our methods is demon�
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strated in a prototype implementation on a net�
work of Pentium processors connected via a 
 GB
Ethernet switch and with multiple disks per pro�
cessor�

� Introduction

��� Motivation

Some of the key applications of parallel computing
include astrophysical models� genetic sequencing�
geographic information systems� ecological mod�
els� weather prediction� telecommunications appli�
cations� commercial digital video and audio� digi�
tal libraries� government information systems� and
biological models for medical applications� Re�
searchers in all of these applications currently face
data sets of terabyte size �perhaps increasing to
petabytes in the foreseeable future�� If parallel
computing is to succeed in these areas� it needs to
solve the problem of how to obtain e�cient parallel
disk I�O� Research in external memory �EM� al�
gorithms has recently received considerable atten�
tion� Primary references are the report of the ACM
workshop on strategic directions in computing re�
search� ed� by Gibson� Vitter and Wilkes �	� and
Vitter�s survey ���� The main questions are� how
to optimize block�wise and simultaneous access to
multiple disks� and how to combine this with a par�
allel processing environment where multiple pro�
cessors �each with multiple disks� are connected
via a communication network or shared memory�
Closely related problems are how to include the ef�
fects of network caching and multi level memory
hierarchies in general�

�



��� Review� Parallel Disk Model and
Previous Results

We outline a few results on EM algorithms which
relate directly to our work� A more complete sur�
vey can be found in ����

A well studied model of computation for EM
algorithms is the Parallel Disk Model �PDM� in�
troduced by Vitter and Shriver ���� It is used to
model the two level memory hierarchy consisting of
parallel disks connected to one or more processors
which communicate via a shared internal memory
or a hypercube like network� The PDM uses the
following parameters� N � problem size� M � in�
ternal memory size� B � block transfer size� D �
number of disk drives� and p � number of proces�
sors� whereM � N � and � � DB �M�
� All sizes
are in units of application data items� The PDM
cost measure is the number of I�O operations re�
quired by an algorithm� where DB items can be
transferred between the internal memory and the
disk system in a single I�O operation�

Floyd �
� studied sorting �and matrix trans�
pose� in a single�disk single�processor model� where
B � M�
 � ��N c�� for some constant c � ��
and provided upper and lower I�O bounds� Agar�
wal and Vitter �	 generalized Floyd�s model and
provided matching upper and lower I�O bounds
for several problems� and these bounds apply to
the PDM model� The lower bound for sort�
ing states that the worst�case number of I�O�s
required for sorting is �� N

BD logM
B

N
B �� �	� ���

Several EM algorithms exist for sorting� includ�
ing �
� 	� �� 	�� 	�� ��� ��� 	�� Surprisingly�
it turns out that performing a permutation re�
quires ��minfND �

N
BD logM

B

N
B g� I�Os �	� ��� while

the same can be performed in linear time in the
RAM model� Similarly� the worst�case number
of I�Os required to transpose a p � q matrix
from row�major order to column�major order is
�� N

BD logM
B
min�M�p� q� NB �� �	� ��� Cormen et

al� �
� have studied the optimal number of I�Os
required to perform several special classes of per�
mutations� This includes permutations arising in
matrix transpose� FFTs� hypercubes� matrix re�
blocking� Arge et al� �� show that any prob�
lem which requires ��N logN� comparisions in the
comparision model� requires ��NB logM

B

N
B � I�Os in

the PDM model�
EM algorithms have been proposed for a num�

�logM
B

N
B
is dened to mean maxf�� logM

B

N
B
g�

ber of problems arising in computational geome�
try ��� �� 
	� 	
� geographical information systems
��� �	� and graphs ��� ��� 	�� ��� Over the last few
years� comprehensive computing and cost models�
that incorporate multi�disks and multi�processors
have been proposed ���� 
�� 
�� 	�� Several sug�
gestions have been made regarding the simulation
of parallel algorithms as EM algorithms� This in�
cludes the results of Chiang et al� ��� on simulat�
ing PRAM algorithms and the results of Dehne et
al� �
� and Dittrich et al �
� on simulating BSP�
CGM and BSP� algorithms �see also ��� 	���

��� New Results

Cormen and Goodrich ��� posed the Challenge of
combining BSP like parallel algorithms with the
the requirements for parallel disk I�O� Solutions
based on probablistic methods were presented in
�
� and �
�� In this paper� we present determin�
istic solutions which are based on a determinis�
tic simulation of parallel algorithms for the Coarse
Grained Multicomputer �CGM� model and answer
the challenge� The analysis of the I�O complexity
of our algorithms is done as in the PDM model�
�In addition� we also analyze the running time and
communication time�� The obtained results not
only improve on the previous bounds but also have
the interesting property of being better than the
I�O complexity lower bounds listed in Section ��
�
We explain the latter by pointing out that the I�O
complexity lower bounds were proven for arbitrary
ranges over the various parameters involved and
do not hold if one restricts them to a particular
parameter range� We show however� that our pa�
rameter range is both interesting and useful in the
EM domain�

We �rst review some de�nitions for the BSP
and CGM model� consult �
�� �
� 
� for more
details� A BSP algorithm A on a �xed problem
instance P and computer con�guration C can be
characterized by the parameters �N � v� �� g� L��
where N is the problem size �in problem items�� v
is the number of processors� g is the time required
for a communication operation� L is the minimum
time required for the processors to synchronize�
and � is the number of BSP supersteps required
by A on P and C� �The times are in number of
processor cycles�� A CGM algorithm is a special
case of a BSP algorithm where the communication
part of each superstep consists of exactly one h�
relation with h � ��Nv �� Such a superstep is called
a round� An algorithm for a CGM with multiple






disks attached to each processor �see Figure �� is
referred to as an EM�CGM algorithm�

The following outlines the results obtained�

�� We show that any v processor CGM al�
gorithm A with � supersteps�rounds� local
memory size �� computation time � � �L�
communication time g	 � �L and message
size ��Nv� � can be simulated� deterministi�
cally� as a p�processor EM�CGM algorithm
A� with computation time v

p�� � O����� �
v
p�L� communication time v

pg	 � v
p�L� and

I�O time v
pG �O�� �

DB �� v
p�L for M � �����

N � ��vDB� � B � O�Nv� � �

Let g�N�� L�N�� v�N� be increasing func�
tions of N � If A is c�optimal �see Appendix
for de�nition� on the CGM for g � g�N��
L � L�N� and v � v�N�� then A� is c�
optimal for � � 
����� g � g�N�� G �

BD � o� �
�� � and L � L�N� � pv � A� is work�

optimal� communication�e�cient� and I�O�
e�cient �see Appendix for de�nitions� if A
is work�optimal and communication�e�cient�
� � ������ g � g�N�� G � BD � O� �

�� �� and

L � L�N� � pv �

While our parameter space is constrained to
a coarse grained scenario which is typical
of the CGM constraints for parallel compu�
tation� we show that this parameter space
is both interesting and appropriate for EM
computation� We show that this constraint
permits several fundamental problems to be
solved in lower I�O complexity than is per�
mitted by the general lower bounds reported
by �	� ��� �� This answers questions of Cor�
men ��� and Vitter ��� on the apparent con�
tradictions between the results of �
� and the
previously stated lower bounds�


� We obtain new� simple� parallel EM algo�
rithms for sorting� permutation� and matrix
transpose with I�O complexity O� N

pDB ��

	� We obtain parallel EM algorithms with I�O
complexity O� N

pDB � for the following com�

putational geometry�GIS problems � �a� 	�
dimensional convex hull and planar Voronoi
diagram �these results are probabilistic since
the underlying CGM algorithms are prob�
abilistic�� �b� lower envelope of line seg�
ments �here� N denotes the size of the input

plus output�� �c� area of union of rectangles�
�d� 	D�maxima� �e� nearest neighbour prob�
lem for planar point set� �f� weighted domi�
nance counting for planar point set� �g� uni�
directional and multi�directional separability�

�� We obtain parallel EM algorithms with I�O

complexity O�N logN
pDB � for the following com�

putational geometry�GIS and graph prob�
lems� �a� trapezoidal decomposition �b� tri�
angulation �c� segment tree construction� �d�
batched planar point location�

�� We obtain parallel EM algorithms with I�O

complexity O�N log v
pDB � for the following com�

putational geometry�GIS and graph prob�
lems� �a� list ranking� �b� Euler tour of a tree�
�c� connected components� �d� spanning for�
est� �e� lowest common ancestor in a tree� �f�
tree contraction� �g� expression tree evalua�
tion� �h� open ear decomposition� �i� bicon�
nected components�

�� In contrast to previous work� all of our meth�
ods are also scalable with respect to the num�
ber of processors�

�� We have implemented a prototype applica�
tion of our method on a network of Pentium
processors connected via a 
 GB Ethernet
switch and with multiple disks per proces�
sor� Experimental evidence shows that our
approach is practical�

Items �
�� �	�� ��� and ��� above are described
in more detail in Figure �� These results are
subject to the conditions N � ��vDB�� N �
v�B � v��v � ���
� and N � v�� where � � � is
a constant that depends on the problem� The lat�
ter constraint arises in the CGM algorithm which
we simulate� For the problems examined in this
paper� � � 	�

Our results show that the EM�CGM is a good
generic programming model that facilitates the de�
sign of I�O�e�cient algorithms in the presence of
multi�processors and multi�disks� It has relatively
few parameters� generalizes the PDM model� and
answers the challenge of ����

By generating programs for a single proces�
sor computer from coarse grained parallel algo�
rithms� our approach can also be used to control
cache memory faults� This supports a suggestion
of Vishkin ���� ���

	



��� Practicality of Our Parameter
Bounds

The parameter space for EM problems which we
are proposing in this paper is both practical and
interesting� The logarithmic term in the I�O com�
plexity of sorting is bounded by a constant c if
�MB �c � N

B � where M � N
v � Since this constraint

involves the parameters v� B� N � c� we have a four�
dimensional constraint space� For practical pur�
poses� the parameter B can be �xed at about ���

for disk I�O �see Figure �� ���� This reduces the
parameter space to three dimensions� We plot the
surface N c�� � vcBc�� in Figure �� Any point
on or above the surface represents a valid set of
parameters for the elimination of the logarithmic
factor� It can be seen from Figure � that the loga�
rithmic factor can be replaced by a constant c � 

for as many as v � ����� processors� provided that
the problem size is approximately ��� giga�items or
more� For a larger constant� say c � 	� the prob�
lem size need only be � giga�item for v � ������ It
can also be seen from Figure � that for a smaller
numbers of processors the necessary problem size
for c � 
 is much smaller� This can be seen more
clearly in Figure � which represents the same data
as Figure �� but for �xed c � 
� For ��� processors
or less� for instance� we see from Figure � that any
problem size greater than about �� mega�items is
su�cient�

� Deterministic Simulation of
CGMAlgorithms as EM�CGM
Algorithms

In this section we describe a deterministic sim�
ulation for CGM and other BSP�like algorithms
whose communication can be characterized by h�
relations� For ease of exposition� we focus on the
CGM case� In Section � we consider other BSP�
like algorithms� Due to lack of space� proofs are
omitted in most cases� Some are provided in the
Appendix�

Each communication superstep of the underly�
ing CGM algorithm will be divided into a sending
superstep and a receiving superstep� During a send�
ing superstep� messages are generated� and during
a receiving superstep they are received� A com�
pound superstep is composed of a receiving� a com�
putation� and a sending superstep�The execution
of a CGM algorithm proceeds as a series of com�
pound supersteps� and can therefore be simulated

by repeated application of the simulation steps for
a single compound superstep�

The processors of the CGM machine will be
called virtual processors� and v will denote their
number� The context of a virtual processor is the
local memory it uses� and the context size of a vir�
tual processor is the maximum size of its context
used during the computation� The maximum con�
text size of all virtual processors is � � ��Nv �� We
will denote the maximum size of the data sent or
received by any virtual processor over all super�
steps by � � ��Nv ��

We describe a simulation �which we assume is
running on a real machine C�� of a CGM algorithm
A for an �imaginary� v�processor machine� The
simulation models message transmissions of A by
disk I�O� The resulting algorithm A� on P and C�

can be characterized by the parameters �N � p� M �
D� B� G� ��� g�� L��� where p � v is the number of
real processors� M � ��Nv � is the size of the local
memory on each of the real processors� D is the
number of disk drives on each real processor� B is
the transfer block size to the disks� g� is the the
time required for a communication operation on
the real machine� G is the time for a parallel I�O
operation of DB items of P to the D disks of a
local processor� L� is the time required for the real
processors to synchronize� and �� is the number of
supersteps performed by A� on P and C��

��� Single Processor Target Machine

In this section we describe a deterministic simula�
tion technique that permits a CGM algorithm to
be simulated as an external memory algorithm on a
single processor target machine� We �rst consider
the simulation of a single compound superstep� and
in particular� how the contexts and messages of the
virtual processors can be stored on disk and re�
trieved e�ciently in the next superstep� The man�
agement of the contexts is straightforward� Since
we know the size of the contexts of the processors�
we can distribute the contexts deterministically�

The main issue is how to organize the gener�
ated messages on the D disks so that they can
be accessed using blocked and fully parallel I�O
operations� This task is simpler if the messages
have a �xed length� Although a CGM algorithm
has the property that ��Nv � data is deemed to be
exchanged by each processor in every superstep�
there is no guarantee on the size of individual mes�
sages� Algorithm BalancedRouting gives us a tech�
nique for achieving �xed size messages�

�



Algorithm � BalancedRouting �from ����
Input� Each of the v processors has �n

v elements�
which are divided into v messages� each of arbitrary
length � �n

v � Let msgij denote the message to be
sent from processor i to processor j� and let jmsgijj
be the length of such a message�
Output� The v messages in each processor are
delivered to their �nal destinations in two balanced
rounds of communication� and each processor then
contains at most �h data�

Superstep A� For i � � to �v � �� in parallel
Processor i allocates v local bins� one for each
processor

For j � � to �v � ��

��� For  � � to jmsgij j
Processor i allocates the th word of
msgij to local bin �i� j� � mod v

�
� Processor i sends bin j to processor j

Superstep B� For j � � to �v � �� in parallel
�	� Processor j reorganizes the messages it re�

ceived in Step 
 into bins according to each
element�s �nal destination

��� Processor j routes the contents of bin k to
processor k� for � � k � v � �

Observation � If binmin is the smallest bin cre�
ated at a processor in step ��� of Superstep A�
then the other �v � �� bins can contain at most

� � 
 � ��� � �v � �� � v�v���
� more elements than

does binmin �see Figure ���

Theorem � We are given v processors� and �n
data items� Each processor has exactly �n

v data to be
redistributed among the processors� and no proces�
sor is to be the recipient of more than �h data� The
redistribution can be accomplished in two commu�
nication rounds of balanced communication	 �A�
Messages in the 
rst round are at least �n

v� �
v��
� �

and at most �n
v� �

v��
� in size� and �B� Messages in

the second round are at least
�h
v �

v��
� � and at most

�h
v � v��

� in size�

Proof Sketch� The maximummessage sizes were
shown in ���� The proof of the minimum message
sizes relies on Observation �� see Figure �� �

The notion of an h�relation is often used in the
analysis of parallel algorithms based on BSP�like
models �e�g� BSP� BSP�� CGM�� An h�relation is

Number of
Extra Items

0 1 3 4

1

2

3

Bin Numbers

Evenly-Placed
Items

v-3 v-2 v-1

v-3

v-2

v-1

Figure �� Illustration of maximum im�
balance in the bin sizes of a processor
during superstep A� The light circles rep�
resent evenly placed elements and the
dark circles are unevenly placed� or �ex�
tra ones� The maximum bin size �bin
v�� in the diagram� is at most v��

� more
than the average� and the minimum bin
size �bin � in the diagram� is at most v��

�
less than the average�

a communication superstep in which each of the v
processors sends and receives at most h data items�
It is typically used in bounding the communication
complexity in an asymptotic analysis� Based on
this usage of an h�relation� we have�

Corollary � An arbitrary h�relation can be re�
placed by two �balanced� h�relations whose mes�
sage size is bounded by h

v �
v��
� and h

v � v��
� �

Lemma � An arbitrary minimum message size
bmin can be assured provided that

N � v�bmin �
v��v � ��



���

where N is the total number of problem items
summed over the v processors�

Assurances regarding the minimum message
size are particularly relevant to the BSP� model�
In Section � we outline the use of Theorem � for
creating BSP� algorithms from BSP algorithms�
First� however� we look at the deterministic simu�
lation of CGM agorithms as EM�CGM algorithms�
Not every CGM algorithm will require balancing�
but Lemma 
 ensures that we can obtain balanced
message sizes when necessary by increasing the
number of supersteps by a factor of 
�

�



Lemma � Let A be a CGM algorithm with N
data� v processors� and � communication steps�
The � communication steps of A can be replaced
by 
� steps of balanced communication in which
the minimum message size is ��B� and the max�
imum message size is 
 � N

v� provided that N �

v�B � v��v���
�

We will now turn to the actual simulation results�
which rely on a message size of k N

v� � for a known
constant k � �� As we have seen� this is guaran�
teed by Lemma 
� Not every CGM algorithm will
require Lemma 
� see Matrix Transpose in Section
	 for an example�

Lemma � A compound superstep of a v�processor
CGM algorithm A with computation time � � L�
communication time g � O�Nv � � L� message size

k N
v� � for a known constant k � �� and local memory

size � can be simulated in a compound superstep of
a single processor EM�CGM algorithm in computa�
tion time v��O�v�� and I�O time G�O� N

BD� v�
DB �

provided that M � �� D � O� N
vB �� and B � O�N

v�
��

Algorithm 
 simulates a compound superstep
of a v�processor CGM on a single processor EM�
CGM with D disks� Due to lack of space we omit
many of the details� see Appendix�

Algorithm � � SeqCompoundSuperstep
Input� For each i�f�� � � � � v � �g the blocks of the
context are stored on the disks in consecutive for�
mat�� and the arriving messages of virtual proces�
sor i are spread over the D disks consecutive for�
mat�
Output� �i� The �changed� contexts of the v simu�
lated processors are spread across the disks in con�
secutive format� �ii� The generated messages for
each processor in the next superstep are stored in
consectutive format on the disks�

For i � � to v � �

�a� Read the context of virtual processor i from
the disks into memory�

�b� Read the packets received by virtual proces�
sor i from the disks�

�We say that a disk read�write operation on D blocks is
consecutive when the qth block� � � q � D is read�written
from�to disk �d � q� mod D on track T� � b�d � q��Dc�
where T� is the track used for the rst of the D blocks to be
read�written� and d is the disk o�set �from disk �� for the
rst of the D blocks to be read�written�

To Proc. j+1

To Proc. j

To Proc. j+2

From i

From i

From i

Disk 0 Disk 1 Disk 4Disk 3Disk 2

Figure 
� Illustration of the layout of
message blocks on the disks� In the ex�
ample we have D � � and message size
b� � 
 blocks� Messages from processor i
to processors j� j��� and j�
 are shown
as shaded rectangles� Messages to con�
secutively numbered processors are stag�
gered on the disks to permit D blocks to
be written in parallel�

�c� Simulate the local computation of virtual
processor of i�

�d� Write the packets which were sent by virtual
processor i to the D disks in the staggered
format illustrated in Figure 
� See appendix
for details�

�e� Write the changed context of virtual proces�
sor i back to the D disks �in consecutive for�
mat��

Theorem � A v processor CGM algorithm A with
� supersteps� local memory size �� running time
� � g � O�Nv � � �L� and message size ��Nv� � can
be simulated as a single processor EM�CGM al�
gorithm A� with time v� � O��v�� � G � O�� v�

DB �

for M � ����� N � ��v�B�� and N � ��vDB��
In particular� algorithm A� is c�optimal if A is c�
optimal� � � 
���� and G � DB � o� �

���� Fur�

thermore� algorithm A� is work�optimal and I�O�
ecient if A is work�optimal and communication�
ecient� � � ����� and G � DB � O� �

�� ��

Proof Sketch� We use the results of Lemma
	� The computation time required to simulate
the computation steps of A is v�� The compu�
tational overhead associated with the I�O steps
�Steps �a���b���d���e�� is O��v�� � O��N�� Since
v� � N the total computation time is bounded by

�



v� � O��v��� When c�optimality is required� we
therefore need �v� � o�v��� or � � 
����� Note
that when � � ��Nv �� we can substitute � � 
��Nv �
for � � 
����� For work�optimality� we require
that �v� � O�v��� or � � ������

The I�O time �Steps �a���b���d���e�� is G �
�O�� v�

DB � � O��N
D �� which is bounded by G �

O�� v�
DB �� For c�optimality� we require the I�O time

to be in o�v��� which means that G � DB � o� �
�� ��

For I�O�e�ciency� we require the I�O time to be

in O�v��� which means that G � DB � O� �
�� �� �

��� Multiple Processor Target Machine

For the case of p � � processors on the EM�CGM
machine we simulate a compound superstep of a
CGM algorithm A using the algorithm ParCom�
poundSuperstep� shown below� Unlike in the case
of a single real processor� we are now forced to per�
form real communication between the real proces�
sors of the target machine� Each real processor i�
� � i � p� �� executes algorithm ParCompound�
Superstep in parallel� For ease of exposition� we
assume that p divides v�

Algorithm � � ParCompoundSuperstep
Objective� Simulation of a compound superstep
of a v�processor CGM on a p�processor EM�CGM�
Input� The message and context blocks of the vir�
tual processors are divided among the real proces�
sors and their local disks� Each real processor i�
� � i � �p��� holds O� NpB � blocks of messages and
v�
pB blocks of context� and each local disk contains

O� N
pDB � blocks of messages and O� v�

pDB � blocks of
context�
Output� The changed contexts and generated
messages distributed as required for the next com�
pound superstep�

For j � � to v
p � � do

�a� Read the context for virtual processor v
p i� j

from the local disks�

�b� Read any message blocks addressed to virtual
processor v

p i� j from the local disks�

�c� Simulate the computation supersteps of vir�
tual processor v

pi� j� collecting all generated

messages in the local internal memory�

�d� Send all generated messages to the required
�real� destination processor� Upon arrival�
the messages are arranged within the inter�
nal memory of the real destination processor
and then written to its disks as in the single
processor simulation� see Algorithm 
�

�d� Write the contexts for virtual processor v
pi�j

back to the local disks� see Algorithm 
�

Lemma � A compound superstep of a v�processor
CGM algorithm A with computation time � � L�
communication time g � O�Nv � � L� message size

��Nv� �� and local memory size � can be simulated
as v

p compound supersteps of a p�processor EM�

CGM algorithm A� in parallel computation time
v
p��O�vp���

v
pL and I�O time G�O�G� vp

�
DB �� v

pL�

for p � v� N � ��vDB�� and B � O�Nv� ��

Theorem � A v processor CGM algorithm A with
� supersteps� computation time � � �L� com�
munication time g	 � �L� local memory size �
and message size ��N

v�
� can be simulated as a p�

processor EM�CGM algorithm A� with computation
time v

p�� � O����� � v
p�L� communication time

v
pg	 � v

p�L� and I�O time v
pG � O�� �

DB � � v
p�L

for M � ����� p � v� N � ��vDB�� and N �
��v�B�� Let g�N�� L�N�� and v�N� be increasing
functions of N � If A is c�optimal on the CGM for
g � g�N�� L � L�N� and v � v�N�� then A� is
a c�optimal EM�CGM algorithm for � � 
�����

g � g�N�� G � BD �o� �
�� � and L � L�N� � pv � A

� is

work�optimal� communication�ecient� and I�O�
ecient if A is work�optimal and communication�
ecient� � � ������ g � g�N�� G � BD � O� �

�� ��

and L � L�N� � pv �

Proof Sketch� We use the results of Lemma
�� The computation time required to simulate the
computation steps of A is v

p�� The computational

overhead associated with the I�O and communi�
cation steps �Steps �a���b���d���e�� is O�vp��� �

O�vp�
N
v �� Since � �

N
v � the total computation time

is bounded by v
p��O�vp���� When c�optimality is

required� we need � � 
����� Note that in many
cases N

v � ����� Also� when only work�optimality
is required� � � ����� su�ces�

The I�O time �Steps �a���b���d���e�� is G �
�O�� v�

DB � � O�� N
DB �� which is bounded by v

pG �

O�� �
DB �� For c�optimality� we require the I�O time

�



to be in o�vp��� which means that G � DB � o� �
�� ��

For I�O�e�ciency we need only that G � DB �

O� �
�� �� Since the number of supersteps increases

by a factor of v
p we require that L � L�N� � pv � �

� New EM Algorithms

A number of important problems have been shown
to have non�linear I�O complexity �	� �� ��� The
purpose of this section is to illustrate that� for a
restricted parameter space that arises naturally in
the EM domain� these problems have better I�O
complexity than suggested by the lower bounds
�which apply to a more general parameter con�
stellation�� Figure � lists a large number of prob�
lems for which we obtain new EM�CGM algorithms
with lower I�O complexity by simulating CGM al�
gorithms using Theorem 	�

��� Fundamental Problems

We �rst present new EM�CGM algorithms� ob�
tained via Lemma 
 and Theorem 	� for the funda�
mental problems of sorting� permutation and ma�
trix transpose� For each of these problems a CGM
algorithm uses � � O��� communication rounds�
and O�Nv � internal memory per processor�

Sorting� The time complexity of sorting N items
is ��N lgN� on a RAM� On the PDM� sorting has
been shown to have I�O complexity O� N

DB logM
B

N
B �

for general values of N � M � D� and B �	� ��� How�
ever� for N

v � v�� � � � a �xed constant� we can

achieve I�O complexity O� N
pBD � by simulating the

deterministic CGM sorting algorithm of Goodrich
�	� for N � maxfv���� vDBg�

Permutation� Permutation of N items
on a RAM has time complexity ��N�� On
the PDM� this problem has I�O complexity
��min�ND �

N
DB logM�B

N
B � �see �	� ���� How�

ever� we can achieve I�O complexity O� N
pBD �

by simulating algorithm CGMPermute� for N �
maxfv���� vDBg�

Algorithm � CGMPermute
V is an N element vector containing items to be
permuted� P is a corresponding N element vector
containing new indices for each element of V�
Input	 Each processor i� � � i � �v � �� holds an
N
v element vector Vi� containing elements i � Nv to

�i � �� � Nv � � of V� and an N
v element vector Pi�

containing elements i � Nv to �i� �� � Nv � � of P�

Output	 Each processor i contains items i � Nv to

�i� �� � Nv � � of the permuted vector V ��
Assumption	 v divides N evenly�

�� Each processor i� � � i � �v � �� sends
the items of Vi to the processors holding the
items indicated by Pi�


� Each processor performs the necessary rear�
rangements in its local memory to complete
the calculation of P�

Transpose� Transposing a k �  matrix� where
N � k takes ��N� time on a RAM� On the Par�
allel Disk Model� this problem has I�O complex�

ity �� N
BD

logmin�M�k���N�B�
log�M�B� � �	� ��� However� we

can achieve I�O complexity O� N
pBD � by simulating

an algorithm CGMTranspose� similar to CGMPer�
mute� for N � maxfv�� vDBg�

Theorem � Sorting� permutation� and matrix
transpose can be performed on a p�processor EM�
CGM in O� N

pBD � I�O operations� provided N �

��vBD�� N � v�B � v��v���
� � and N � v�� where

constant � � � depends on the problem�

��� External Memory AlgorithmsMade
Available by the Simulation

Figure � lists a number of important problems aris�
ing in computational geometry� GIS� and graph
algorithms� for which we report EM�CGM algo�
rithms created by our technique� together with
their I�O complexity and that of the previously
best known algorithm for the problem� In some
cases� we obtain a better I�O complexity� and in
other cases we obtain the same I�O complexities
as previously known� In each case� however� our
algorithm is scalable not only in terms of the num�
ber of disks per processor but also in terms of the
number of processors used� Previous algorithms
were often not e�cient in a multiprocessor envi�
ronment �particularly in a distributed memory en�
vironment�� and in many cases it is not clear how
they could be adapted to parallel disks�

� Experiments

In recent years there have been a small but growing
number of implementation projects which focused

�
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on EM issues� References in this regard include
the TPIE project ���� as well as �		� ��� ��� ���

�� 

� Our implementation results indicate that
EM�CGM algorithms obtained via the techniques
of this paper will likely be an important component
of an EM workbench�

Preliminary implementation experiments with
sorting support our predictions of linear running
time� Figure 	 shows running times for a CGM
sorting algorithm a� using virtual memory and
LAM�MPI �see ���� and b� converted to an EM�
CGM algorithm by our deterministic simulation�
As expected� multiple disks also reduce the run�
ning time� Figure � shows the running time of
EM�CGM sort with one and two disks respectively�

� Extensions

BSP and BSP� Algorithms� The result of
Corollary � can be applied to any algorithm which
communicates exclusively via h�relations� The con�

cept of an h�relation is relevant primarily with re�
spect to whether it is an assumption in the analysis
of the algorithm in question� Typically� a good al�
gorithm has been shown to be asymptotically opti�
mal when the communication volume to and from
each processor is bounded by some h in each super�
step� Using Lemma � we can additionally ensure
any desired minimum communication block size of
b at the cost of at most doubling the number of
communication rounds for problems with su�cient
slackness� Here we use the term �communication 
to mean either I�O or conventional message pass�
ing� This leads to a number of results�

�� Conforming BSP algorithms can be con�
verted to BSP� algorithms with b � hmin

v �
v��
� � where hmin is the minimum value of h

used in any communication superstep�


� Conforming BSP algorithms can be con�
verted to EM�BSP algorithms and c�
optimality is preserved�

	� Conforming BSP� algorithms can be con�
verted to EM�BSP� algorithms and c�
optimality is preserved�

The term �conforming in items ���� �
�� and
�	� above refers to the need for the bounding con�
cept of an h�relation to be a universal assumption
in the analysis of the original BSP�like algorithm
for each of its communication rounds� It is conve�
nient� but not necessary� that the same value of h
be used in every round�

Cache Memories� So far� we have considered
only the interaction between the main memory and
the external disk system� Many of the same is�
sues also arise between the cache memory and main
memory layers of the memory hierarchy� For sim�
plicity� let us consider a computer with a two level
memory hierarchy consisting of only a cache� and
a main memory� The lower bounds for the number
of block accesses required on fundamental prob�
lems such as sorting� permutation� matrix trans�
pose �	 apply to this interface as well� Let N � M
be the size of a problem stored in the main mem�
ory� let MI be the size of a cache memory I� and
let BI be the size of blocks transferred between I
and the main memory� Our results indicate that
if �MI

BI
�c � N � the logarithmic term in the I�O

complexity vanishes� to be replaced by a constant�
There may therefore be concrete and signi�cant
savings to be realized in computation time on se�
quential computers if the cache design takes these

�



results into account� and programs are formulated
as parallel algorithms with virtual processor sizes
tuned to the available cache memory� We refer the
interested reader to the work of Vishkin ���� �� for
related ideas�
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Problem PDM I�O Complexity New I�O
Description Complexity in CGM Model Complexitya

Group A� Fundamental Algorithmsb

�� Sorting �� N
BD logM

B

N
B � 	
� �� O�N logN

v � 	
�� O� N
pDB �

� � O���� M � O�NB �

�� Permutation ��min�ND �
N
DB logM

B

N
B � 	
�

��

O�N logN
v � 	this paper�

� � O���� M � O�NB �

O� N
pDB �


� Matrix transposec �� N
BD

logmin�M�k���N�B�
log�M�B� �

	
� ��

O�N logN
v � 	this paper�

� � O���� M � O�NB �

O� N
pDB �

Group B� GIS and Computational Geometry Algorithms

�� Polygon triangulation� Trape�
zoidal decomposition� Segment
tree construction� Next Element
Search on line segmentsd

O�NB logM
B

N
B � 	�� � � O�N logN

v �� 	�
�

� � O���� M � O�N logN
v �

O�N logN
pDB �

�� Batched planar point location O��NB � k� logM
B

N
B � 	�� � � O�N logN

v � 	�
�

� � O���� M � O�N logN
v �

O�N logN
pDB �


� 
D convex hull� �D Voronoi dia�
gram� Delaunay triangulation e

O�NB logM
B

N
B � 	
�� � � �O�N logN

v � 	���

� � �O���� M � �O�Nv �

�O� N
pDB �

�� Lower envelope of non�
intersecting line segments

� � O�NlogN
v � 	��

� � O���� M � O�NB �

O� N
pDB �

�� Generalized lower envelope of
line segments

� � O�NlogN
v � 	��

� � O���� M � O�N��N�
B �

O�N��N�
pDB �

�� Area of Union of Rectangles� 
D�
maxima� �D�nearest neighbors of
a point set

O�NB logM
B

N
B � 	
�� O�N logN

v � 	��

� � O���� M � O�NB �

O� N
pDB �

� �D�weighted dominance count�
ing� Uni�directional and multi�
directional separability

� � O�N logN
v ��

� � O����M � O�NB � 	��

O� N
pDB �

Group C� Graph Algorithms

�� List ranking� Euler tour of tree�
Lowest common ancestor� Tree
contraction� expression tree eval�
uation

O�NB logM
B

N
B � 	��� � � O�log v�� � � O�Nv �

M � O�Nv � 	���

O�N log v
pDB �

�� Connected components� span�
ning forest� Ear and open ear de�
composition� Biconnected com�
ponentsf

O�minfV
�

B logM
B

V
B �

log V
M � EB logM

B

E
B g� 	���

� � O�log v�� � � O�V�E
v �

M � O�V�E
v � 	���

O� �V�E� log v
pDB �

Figure �� Overview of New EM Algorithms in Comparison To Previous Results�

aThese results are subject to the conditions N � ��vDB�� N � v�B�v��v������ and N � v�� where � � � is a constant
that depends on the problem� For the problems examined in this paper� � � 
�

bThe PDM I�O complexities listed for this group apply also to multiple processors when the interconnection method is a
shared RAM� hypercubic network� or cube�connected cycles� The PDM parameter D is the number of disks in total� while
our parameter D is the number of disks on each processor� They are equivalent if p � ��

ck� � are the number of columns and rows� respectively� where N � k��
dThe PDM I�O complexities for this group are documented for the single processor� single disk case� We are not aware

of multi�disk or multi�processor extensions�
eThe PDM I�O complexities previously reported for these problems apply to a PRAM�like interconnection only�
ffor a graph of V vertices and E edges
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� Appendix

��� BSP�like Models

We adopt a family of models in this paper
which were �rst introduced in �
�� and which in�
corporate the parameters of the PDM� except for
two small di"erences� We will assume that each of
the p processors has D local disk drives� and M
local memory� Our models are described in more
detail in Section ��
�

The BSP �Bulk Synchronous Parallel� Model
was introduced in ���� ��
� A BSP computer is a
collection of processor�memory modules connected
by a router that can deliver messages in a point to
point fashion between the processors� A BSP�style
computation is divided into a sequence of super�
steps separated by barrier synchronizations� Each
superstep comsists of a computation superstep and
a communication superstep� In a computation su�
perstep the processors perform computations on
data that was present locally at the beginning of
the superstep� In a communication superstep data
is exchanged among the processors via the router�
A BSP computer has the following parameters�

p is the number of processors�
$L is the minimum time between synchroniza�

tion steps
$g is the minimum time required by the router

to deliver a unit of data
All times are in basic computation units�

A BSP algorithm with a total of � super�
steps has the following computation and commu�
nication costs� The computation cost of the al�
gorithm is Tcomp �

P�
i
�w

i
comp� The time ex�

pended in the i�th computation superstep wi
comp �

maxf$L� t�� ���� tpg� where tj is the number of basic
computation operations performed by processor j
in the i�th superstep� The communication cost is

Tcomm �
P�

i
� wi
comm� where the i�th communi�

cation superstep is assigned cost wi
comm � maxpj
�

fwi
comm�jg� Here� wi

comm�j is the communication
cost incurred by processor j in the i�th super�
step� Assuming that processor j receives messages
of lengths r�� ���� rj� and sends messages of lengths

fs�� ���� sj��g during the i�th superstep� wi
comm�j �

maxf$L� $g�
Pj�

u
� ri �
Pj��

u
� si�g�

The BSP� model was introduced in ���� ���
as an extension of BSP to account for the increased
performance that can often be achieved if com�
munication between processors is performed in a
blockwise fashion� It introduces an additional pa�
rameter b which is the packet size� the minimum
size that messages must have in order to take full
advantage of the bandwidth of the router� Mes�
sages of length smaller than b are charged the same
cost as messages of length b� A BSP� computer can
be characterized by the following parameters�

p is the number of processors
b is the packet size
g is the time �measured in basic computation

units� to transport a packet of size b between pro�
cessors

L is the minimum time �measured in basic com�
putation units� to perform a barrier synchroniza�
tion between the processors

The BSP� model assigns the same cost to an
algorithm as the BSP model except that wi

comm�j �

maxfL� g�
Pj�

u
� d
ri
b e�

Pj��

u
� d
si
b e�g�

The CGM �Coarse Grained Multicomputer�
model was introduced in ���	 �
�� 
�� 
�� It
uses only two parameters� n and p� and assumes
a collection of p processors with n�p local mem�
ory� each connected by a router that can deliver
messages in a point to point fashion� A CGM al�
gorithm consists of an alternating sequence of com�
putation and communication rounds separated by
barrier synchronizations� A computation round is
equivalent to a computation superstep in the BSP
model� and the total computation cost Tcomp is de�
�ned analogously� A communication round con�
sists of a single h�relation with h � n�p� The cost
wi
comm of every communication round is bounded

by the same value� Hn�p� Therefore� the total com�
munication cost Tcomm of a CGM algorithm with �
communication rounds is simply Tcomm � �Hn�p�
Algorithms do usually require a lower bound on
n�p �� �� e�g� n�p � p or n�p � p� �
�� 
�� 
� �

��
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Figure �� Illustration of a Parallel Ma�
chine with External Memory

The CGMmodel works particularly well in the case
where the overall computation speed is consider�
ably larger than the overall communication speed�

We shall refer to the BSP� BSP�� and CGM
models as BSP�like models� The term h�relation is
commonly used to refer to a communication step
on such a computer in which messages of length
at most h bytes are sent and received by every
processor�

��� The EM�CGM Model

The EM�CGM Model was �rst introduced in �
��
The basic idea is illustrated in Figure �� In ad�
dition to its local memory� each processor has an
external memory in the form of a set of hard disks�
The CGM model is extended to its external mem�
ory version EM	CGM by the addition of the fol�
lowing parameters�

M is the local memory size of each processor�
D is the number of disk drives of each proces�

sor�
B is the transfer block size of a disk drive� and
G is the ratio of local computational capacity

�number of local computation operations� divided
by local I�O capacity �number of blocks of size B
that can be transferred between the local disks and
memory� per unit time�

In many practical cases� all processors have the
same number of disks� We restrict ourselves to that
case� although the model does not forbid di"erent
numbers of drives and memory sizes for each pro�
cessor� We denote the disk drives of each processor
by D	�D�� � � �DD��� Each drive consists of a se�
quence of tracks �consecutively numbered starting
with �� which can be accessed by direct random
access using their unique track number� A track
stores exactly one block of B records�

Each processor can use all of its D disk drives
concurrently� and transfer D � B items from the
local disks to its local memory in a single I�O op�
eration and at cost G� In such an operation� we
permit only one track per disk to be accessed with�
out any restriction on which track is accessed on
each disk� We assume that a processor can store in
its local memory at least one block from each local
disk at the same time� i�e�� M � DB�

Like a computation on the CGM model� the
computation on the EM�CGM model proceeds in
a succession of supersteps� We adapt communica�
tion and computation supersteps from the CGM
model and allow multiple I�O�operations during a
single computation superstep� For the EM�CGM
model� the computation cost� tcomp� and commu�
nication cost� tcomm� are the same as for the CGM
model� The total cost of each superstep is de�ned
as tcomp � tcomm � tI�O � L� Each I�O operation
costs G time units� The I�O cost tI�O of each CGM
round is identical� and represents the I�O cost for
simulating an h�relation with h � n�p�

Note that the model gives incentives to access
all disk drives using block transfers� For instance�
a single processor EM�CGM with D disks is capa�
ble of transferring a block of B items to or from
each disk in a single I�O operation� An operation
involving fewer elements incurs the same cost�

��� The EM�BSP and EM�BSP	 Mod�
els

The EM�BSP and EM�BSP� models are de�ned
analogously to the EM�CGM model� To the BSP
and BSP� models the following additonal parame�
ters are added�

M local memory size at each processor�
D number of disk drives at each processor�
B transfer block size for a local disk drive� and
G ratio of local computational capacity to local

I�O capacity�

The cost of each EM�BSP or BSP� superstep is
de�ned as tcomp� tcomm� tI�O�L where tcomp and
tcomm refer to the computation time and commu�
nication time as de�ned for the BSP� model� The
term tI�O is the additional I�O cost charged for the

superstep� where tI�O � maxpj
�fw
j
I�Og� and wj

I�O

is the I�O�cost incurred by processor j� Each I�O
operation costs G time units�

We shall refer to the BSP� BSP� and CGM
models collectively as BSP�like models�

��



��� EM Cost Model

We adopt the cost model proposed in �
�� 
��

De
nition � ���� Let A be the optimal sequential
algorithm on the RAM for the problem under con�
sideration� and let T �A� be its worst case running
time� Let c be a constant with c � �� A c�optimal
EM algorithm A� meets the following criteria	

� The ratio � between the computation times of
A� and T �A��p is c� o����

� The ratio � between the communication time
of A� and the computation time T �A��p is
o����

� The ratio � between the I�O�time of A� and
the computation time T �A��p is o����

All asymptotic bounds refer to the problem size N
as N ���

We say that a EM algorithm is one�optimal if it is
c�optimal for c � �� The constraint on � is another
way of saying that A� must be work optimal� The
constraints on � and � ensure that the communi�
cation and I�O time do not a"ect the asymptotic
running time� even by a constant factor�

We will use the terms communication�ecient
and I�O�ecient to describe an algorithm for
which � and �� respectively� are O���� An al�
gorithm which is work�optimal� communication�
e�cient� and I�O�e�cient� therefore� is one whose
running time complexity is no worse than the com�
plexity T �A��p� Constant factors are ignored� We
will call an algorithm I�O�optimal if the number
of I�O operations matches the lower bound for the
number of I�Os required to solve the problem�

This de�nition applies equally well to EM�BSP�
EM�BSP� and EM�CGM algorithms� In the inter�
ests of brevity and ease of exposition� we focus pri�
marily on the EM�CGM case� Conditions on the
input size n and the parameters� p� b� g� B� G�
L and M are speci�ed that are su�cient for the
algorithm to make sense and the bounds on �� �
and � to hold� The restrictions on the parame�
ters are functions p�N�� b�N�� g�N�� B�N�� G�N��
L�N�� and M�N� that grow with the input size N �
This guarantees that the algorithms run e�ciently
on real parallel machines� from those with large
parameter values� i�e�� large bandwidth and large
latency which require large messages to operate ef�
�ciently� to those with small network bandwidth
and small latency�

��
 Proof of Theorem �

The proof of the maximum message sizes is given
in ���� In the following� we give a proof for the
minimummessage sizes� In round A each processor
initially has �n

v data� At the end of Superstep B�

each processor will have at most �h data�
First� we consider the minimum message size

in Superstep A� Due to the round robin allocation
mechanism� a given bin after Step � will contain at
most one more element of a message to processor j
than does any other bin� Let us �x any processor i�
Consider the bin sizes after all of the messages have
been distributed among the bins by processor i �see
Figure ��� Clearly� all of the bins will contain at
least as many elements as the smallest bin� binmin�
Let ej be the number of extra elements �more than
this minimum� in bin j at Step 
� The crucial
observation is that if binmin is the smallest bin�
then the other �v � �� bins can hold at most � �


 � ��� � �v � �� � v�v���
� extra elements� Thus�

�n
v � vjbinminj �

P
j ej Since v�v���

� �
P

j ej � we

have jbinminj �
�n
v� �

v��
� �

We now turn to the message sizes in Superstep
B� The elements which arrive at processor j as a
result of Step 
 are the contents of the jth local
bins formed in Step � at each of the processors �
through v � �� We can think of the jth local bin
of each of the v processors as a component of a
single� global superbin� which is the union of the
jth local bins of all v processors� Consider only the
messages destined for a �xed processor k which are
held by each processor i� � � i � v � �� prior to
Step �� These are allocated among the superbins�
starting with superbin �i � k� mod v by Step ��
Superbin j now contains the message which is to
be sent from processor j to processor k in Step ��

In a similar manner to the analysis of super�
step A� let Ej be the number of extra elements
in superbin j after Step �� Let sbinmin be the
superbin which contains the minimum number of
elements after Step �� and hence jsbinminj repre�
sents the minimum message size in Step �� When
processor k is one of the processors which re�
ceives the maximum h data elements� we have
�h � vjsbinminj�

P
j Ej� and since v�v���

� �
P

j Ej �

we have jsbinminj �
�h
v �

v��
� �

��



��� Proof of Corollary �

In Theorem �� clearly �h � �n
v � For h � �h � �n

v

we have a message size of at most h
v � v��

� for
each of the two rounds of communication� We can
reproduce the precise conditions of Theorem � by
adding dummy items if necessary in Superstep A
to ensure that �n

v � h�
We can assume a minimum message size of

h
v �

v��
� in the second round because the cost of

communication is bounded by the assumption of
an h�relation� When every processor is the des�
tination of h data� it does not a"ect the worst
case complexity of the superstep� We can there�
fore assume that every processor receives h data
�by adding dummy items for the sake of the argu�
ment�� Hence the minimum message size for any
processor in Superstep B becomes h

v �
v��
� with�

out a"ecting the asymptotic communication cost
of the superstep� �

��� Proof of Lemma �

From Corollary �� we can achieve a minimummes�
sage size bmin provided that bmin �

N
v� �

v��
� � �

��� Proof of Lemma �

The minimum and maximum message sizes follow
from Corollary �� with h � N

v � and the constraint

that N
v� �

v��
� � 
 � Nv� � This is true if N � v��v���

� �
which is absorbed by ��� from Lemma �� �

�� Proof of Lemma �

We use the results of Lemma 
� Since messages
are at most 
 � hv � 
Nv� in size we can allocate �xed
sized slots for them on the disks while preserving an
O�v�� disk space requirement� In many practical
EM situations 
N

v�
will be a signi�cant overestimate

of the maximum message size� as v �� N
v� � The

assurance of minimum message size ��B� implies
that I�O operations will be blocked��

We simulate a compound superstep of A us�
ing algorithm SeqCompoundSuperstep� The algo�
rithm expects the input messages to the virtual
processors in the current superstep to be organized

�Although a CGM algorithm may occasionally use
smaller messages than B� it is charged for an N

v
�relation

in each superstep as if every processor sent and received h
data

�by destination� in a parallel format on the disks�
and it also writes the messages generated in the
current superstep to the disks in a parallel format�
We use the phrase �a parallel format to mean an
arrangement of the data that permits fully parallel
access to the disks� both for writing the messages�
and for reading them back in a di"erent order in
the next superstep� Two instances of a parallel
format are the consecutive and staggered formats�

Consecutive format� We say that a disk
read�write operation on D blocks is consecutive
when the qth block� � � q � D is read�written
from�to disk �d � q� mod D on track T	 � b�d �
q��Dc� where T	 is the track used for the �rst of
the D blocks to be read�written� and d is the disk
o"set �from disk �� for the �rst of the D blocks to
be read�written�

Staggered format� We say that a disk read�write
operation on D blocks involving n messages� each
of size at most b� blocks� is staggered when the qth

block� � � q � �b� � �� of the jth message� � � j �
�n � �� is read�written from�to disk �d � S � q�
mod D on track T	 � b�d � S � q��Dc� where T	
is the track used for the blocks of the �th message�
d is the disk o"set �from disk �� for the �rst of
the D blocks to be read�written� and dS�De is the
number of tracks by which consecutive messages
are to be staggered �separated��

Details of Algorithm �

Details of Steps �a� and �e�	 Since we know
the size of the contexts of the processors� we can
distribute the contexts deterministically� We re�
serve an area of total size v� on the disks� v�

DB
blocks on each disk� where we store the contexts�
We split the context Vj of virtual processor j into
blocks of size B and store the i�th block of Vj on

disk
�
i� j �B

�
modD using track

�
i�j �

B

D

�
� Since

the context of each processor is now in striped for�
mat on the disks� we can easily read and write the
contexts using D disks in parallel for every I�O
operation�

Details of Step �b�	 The previous compound su�
perstep guaranteed that the blocks which contain
the messages destined for the current processor are
stored in consecutive format on the disks� There�
fore� we can use a similar technique to fetch the
messages as we used to fetch the contexts�

Details of Step �d�	 After the Computation

��



Phase� all messages sent by the current virtual pro�
cessor have been generated and stored in internal
memory� The coarse�grained nature of the under�
lying BSP�like algorithm results in large messages�
�see Lemma 
� which are as long or longer than the
block size B� We cut the messages into blocks of
size B� Each block inherits the destination address
from its original message� In 	

BD rounds� we write
the blocks out to the disks� as described in detail
below�

Let b represent the maximum message size� and
let b� represent the maximum number of disk blocks
per message� Hence� b� � d b

B e� Let msgij repre�
sent the message sent from processor vi to pro�
cessor vj in one communication superstep� We
will store the messages destined for a �xed pro�
cessor j in standard consecutive format� beginning
with msg	j and ending with msgp���j� We ensure
that the �rst block of msgi�j�� is assigned to disk
�b	 � b�� mod D� for � � j � p� 
� where b	 is the
disk number of the �rst block for msgij � In other
words� the starting block positions for messages to
consecutive processors are appropriately staggered
on the disks to ensure that we can write blocks
of messages to consecutively numbered processors
in a single parallel I�O when b� mod D 	� �� Let

Tj � j � dvb
�

D e be the track o"set for msg	j �the
�rst such message destined for processor vj�� Let
dj � jb� mod D be the disk o"set �from disk ��

for the �rst block of msg	j� The q
th block of msgij

is assigned to disk �dj � ib� � q� mod D on track
Tj � b�dj � ib�� q��Dc� This storage scheme main�
tains what we will call the messaging matrix across
the parallel disks� The messages destined to a par�
ticular virtual processor are stored in a band� or
stripe of consecutive parallel tracks�

Outgoing message blocks are placed in a
FIFO queue for servicing by procedure DiskWrite�
DiskWrite removes at most D blocks from the
queue in each write cycle and writes them to the
disks in a single write operation� Blocks are ser�
viced strictly in FIFO order� Blocks will be added
to the current write cycle and removed from the
queue until a block is encountered whose disk num�
ber con%icts with that of an earlier block in the
current write cycle�

Since the messages destined for any given pro�
cessor are stored in consecutive format on the
disks� we can read the messages received by a vir�
tual processor using D disks in parallel for every
I�O operation� Except possibly for the last� each
parallel read performed by the simulation of pro�

cessor vj will obtainD message blocks� By stagger�
ing the �rst message blocks for consecutive virtual
processors across the disks� we can achieve fully
parallel writes to the disks�

The scheme just described requires two copies
of the messaging matrix because the messages gen�
erated by virtual processor i in compound super�
step k must be stored on disk before virtual pro�
cessor i�� can process the messages generated for
it in compound superstep k � ��

We can avoid this extra space requirement�
however� as follows�

Observation � By alternating between
fconsecutive reads� staggered writesg and
fstaggered reads� consecutive writesg in suc�
cessive compound supersteps� the simulation can
achieve fully parallel I�O on all message blocks
with a single copy of the messaging matrix�

SeqCompoundSuperstep loads each virtual proces�
sor into the real memory� requiring that M � ��
Since the messages sent or received in a superstep
by a virtual processor are h � ��Nv � in total size�

we require that N
vB � ��D� to ensure that our I�O

scheme for messages is e�cient� This means that
D � O� N

vB ��
Disk Space	 The disk space needed by the simu�
lation is the total context size v�� which includes
space for messages� At most one track is wasted
for each virtual processor� The space used on each
disk is O� v�

DB �� since N
v � ��DB��

Computation Time	 Steps �a� and �e� of algorithm
SeqCompoundSuperstep require computation time
O�v��� In Steps �b� and �d�� O�Nv � message data
is routed for each virtual processor� Over all v pro�
cessors� this adds O�N� computation time overall�
which can be ignored� Step �c� consumes v� com�
putation time�
I�O Time	 Steps �a� and �e� consume O�G v�

DB �

time� and steps �b� and �d� consumeO�G N
DB � time�

Since O�N�p� message data is sent in each super�
step� and N�p � � we have time O�G v�

DB � due to
I�O overall�

Thus� overall� the computation time is v� �
O�v�� and the I�O�time is O�G v�

DB �� �

���� Proof of Lemma �

We have p � v real processors� so the time to sim�
ulate Step �c� is v

p� � Computational overhead is

��



contributed by v
p�O����O�Np ��� due to swapping of

contexts �Steps �a���d�� and messaging I�O �Steps
�b���d��� As before� the computational overhead is
dominated by the cost of swapping contexts� The
original compound superstep is replaced by v

p com�

pound supersteps on the target machine�
The I�O time is determined by the cost of swap�

ping contexts plus the cost of simulating the origi�
nal messaging via I�O� These costs are G� vp

�
DB and

G� vpO� N
vD � respectively� and the total is dominated

by G � vp
�
DB � �
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