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Abstract

Block-wise access to data is a central theme in
the design of efficient ezternal memory (EM) al-
gorithms. A second important issue, when more
than one disk is present, is fully parallel disk I/0O.
In this paper, we present a deterministic simulation
technique which transforms Coarse Grained Multi-
computer (CGM) algorithms into parallel external
memory algorithms. It optimizes block-wise data
access and parallel disk I/O and, at the same time,
utilizes multiple processors connected via a com-
munication network or shared memory. We obtain
new improved parallel external memory algorithms
for a large number of problems including sorting,
permutation, matrix transpose, several geometric
and GIS problems including 3D convex hulls (2D
Voronoi diagrams), and various graph problems.

We show that parallel algorithms known for the
CGM model can be used to obtain external mem-
ory algorithms that seem to have better I/O com-
plexity than the well known lower bounds for var-
ious problems, including sorting. In certain cases,
a similar phenomenon can also occur for BSP al-
gorithms. We explain this apparent contradiction
by examining the parameter values which permit
the ubiquitous log,;,g(N/B) term in the I/O com-
plexity to become a constant. We show that such
a parameter constellation arises naturally in coarse
grained parallel algorithms and the external mem-
ory domain.

The practicality of our methods is demon-

'Research partially supported by the Natural Sciences
and Engineering Research Council of Canada.

23chool of Computer Science, Carleton University, Ot-
tawa, Canada K1S 5B6, {dehne, hutchins, maheshwa}
@scs. carleton. ca.

*Bosch Telecom GmbH, UC-ON/ERS, GerberstraBe 33,
71522 Backnang, Germany.

“Research partially supported by Almerco, Inc.

strated in a prototype implementation on a net-
work of Pentium processors connected via a 2 GB
Ethernet switch and with multiple disks per pro-
Cessor.

1 Introduction

1.1 Motivation

Some of the key applications of parallel computing
include astrophysical models, genetic sequencing,
geographic information systems, ecological mod-
els, weather prediction, telecommunications appli-
cations, commercial digital video and audio, digi-
tal libraries, government information systems, and
biological models for medical applications. Re-
searchers in all of these applications currently face
data sets of terabyte size (perhaps increasing to
petabytes in the foreseeable future). If parallel
computing is to succeed in these areas, it needs to
solve the problem of how to obtain efficient parallel
disk I/O. Research in ezxternal memory (EM) al-
gorithms has recently received considerable atten-
tion. Primary references are the report of the ACM
workshop on strategic directions in computing re-
search, ed. by Gibson, Vitter and Wilkes [30] and
Vitter’s survey [47]. The main questions are, how
to optimize block-wise and simultaneous access to
multiple disks, and how to combine this with a par-
allel processing environment where multiple pro-
cessors (each with multiple disks) are connected
via a communication network or shared memory.
Closely related problems are how to include the ef-
fects of network caching and multi level memory
hierarchies in general.



1.2 Review: Parallel Disk Model and
Previous Results

We outline a few results on EM algorithms which
relate directly to our work. A more complete sur-
vey can be found in [47].

A well studied model of computation for EM
algorithms is the Parallel Disk Model (PDM) in-
troduced by Vitter and Shriver [49]. It is used to
model the two level memory hierarchy consisting of
parallel disks connected to one or more processors
which communicate via a shared internal memory
or a hypercube like network. The PDM uses the
following parameters: N = problem size, M = in-
ternal memory size, B = block transfer size, D =
number of disk drives, and p = number of proces-
sors, where M < N,and 1 < DB < M/2. All sizes
are in units of application data items. The PDM
cost measure is the number of I/O operations re-
quired by an algorithm, where DB items can be
transferred between the internal memory and the
disk system in a single I/O operation.

Floyd [29] studied sorting (and matrix trans-
pose) in a single-disk single-processor model, where
B = M/2 = ©(N°), for some constant ¢ > 0,
and provided upper and lower I/O bounds. Agar-
wal and Vitter [3] generalized Floyd’s model and
provided matching upper and lower I/O bounds
for several problems, and these bounds apply to
the PDM model. The lower bound for sort-
ing states that the worst-case number of I/0’s
required for sorting is O(Z5 log% 3, 47).
Several EM algorithms exist for sorting, includ-
ing [2, 3, 4, 36, 37, 49, 50, 38]. Surprisingly,
it turns out that performing a permutation re-
quires ©(min{%¥, 25 log% 21) 1/0s [3, 47), while
the same can be performed in linear time in the
RAM model. Similarly, the worst-case number
of I/Os required to transpose a p X ¢ matrix
from row-major order to column-major order is
@(%log% min(M,p,q,%)) [3, 47]. Cormen et
al. [21] have studied the optimal number of I/Os
required to perform several special classes of per-
mutations. This includes permutations arising in
matrix transpose, FFTs, hypercubes, matrix re-
blocking. Arge et al. [7] show that any prob-
lem which requires Q(N log N) comparisions in the
comparision model, requires Q(% log M X)1/0s in
the PDM model.

EM algorithms have been proposed for a num-

1 N N
log% & is defined to mean max{1, log% 5}

ber of problems arising in computational geome-
try [8, 6, 23, 32], geographical information systems
[8, 43], and graphs [5, 15, 34, 41]. Over the last few
years, comprehensive computing and cost models,
that incorporate multi-disks and multi-processors
have been proposed [17, 25, 28, 35]. Several sug-
gestions have been made regarding the simulation
of parallel algorithms as EM algorithms. This in-
cludes the results of Chiang et al. [15] on simulat-
ing PRAM algorithms and the results of Dehne et
al. [25] and Dittrich et al [28] on simulating BSP,
CGM and BSP* algorithms (see also [9, 39]).

1.3 New Results

Cormen and Goodrich [17] posed the Challenge of
combining BSP like parallel algorithms with the
the requirements for parallel disk I/O. Solutions
based on probablistic methods were presented in
[25] and [28]. In this paper, we present determin-
istic solutions which are based on a determinis-
tic simulation of parallel algorithms for the Coarse
Grained Multicomputer (CGM) model and answer
the challenge. The analysis of the I/O complexity
of our algorithms is done as in the PDM model.
(In addition, we also analyze the running time and
communication time.) The obtained results not
only improve on the previous bounds but also have
the interesting property of being better than the
I/O complexity lower bounds listed in Section 1.2.
We explain the latter by pointing out that the I/O
complexity lower bounds were proven for arbitrary
ranges over the various parameters involved and
do not hold if one restricts them to a particular
parameter range. We show however, that our pa-
rameter range is both interesting and useful in the
EM domain.

We first review some definitions for the BSP
and CGM model; consult [25, 42, 27] for more
details. A BSP algorithm A on a fixed problem
instance P and computer configuration C can be
characterized by the parameters (N, v, A, g, L),
where N is the problem size (in problem items), v
is the number of processors, g is the time required
for a communication operation, L is the minimum
time required for the processors to synchronize,
and X is the number of BSP supersteps required
by A on P and C. (The times are in number of
processor cycles.) A CGM algorithm is a special
case of a BSP algorithm where the communication
part of each superstep consists of exactly one h-
relation with h = @(%) Such a superstep is called
a round. An algorithm for a CGM with multiple



disks attached to each processor (see Figure 9) is
referred to as an EM-CGM algorithm.
The following outlines the results obtained.

1. We show that any v processor CGM al-
gorithm A with A supersteps/rounds, local
memory size p, computation time § + AL,
communication time ga + AL and message
size @(%) can be simulated, deterministi-
cally, as a p-processor EM-CGM algorithm
A’ with computation time (8 + O(Au)) +
%)\L, communication time ;—)ga + %)\L, and
I/0 time 2G-O(Af5) + S AL for M = O(u),
N =Q@DB),B=0(%).

Let g(N), L(N), v(N) be increasing func-
tions of N. If A is c-optimal (see Appendix
for definition) on the CGM for g < g(N),
L < L(N) and v < v(N), then A is ¢
optimal for g = wAw), g < gN), G =
BD - 0( ) and L < L(N) - £ A" is work-
optimal, communlcatlon—eﬁicient, and I/0-
efficient (see Appendix for definitions) if A
is work-optimal and communication-efficient,
B =0\, g <g(N), G=BD-0(;3), and
L<L(N)-2

While our parameter space is constrained to
a coarse grained scenario which is typical
of the CGM constraints for parallel compu-
tation, we show that this parameter space
is both interesting and appropriate for EM
computation. We show that this constraint
permits several fundamental problems to be
solved in lower I/O complexity than is per-
mitted by the general lower bounds reported
by [3, 47, 7]. This answers questions of Cor-
men [16] and Vitter [48] on the apparent con-
tradictions between the results of [25] and the
previously stated lower bounds.

2. We obtain new, simple, parallel EM algo-
rithms for sorting, permutation, and matriz
transpose with I/O complexity O(pDB)

3. We obtain parallel EM algorithms with I/O
complexity O( 5) for the following com-

putational geometry/GlS problems : (a) 3-
dimensional convex hull and planar Voronoi
diagram (these results are probabilistic since
the underlying CGM algorithms are prob-
abilistic), (b) lower envelope of line seg-
ments (here, N denotes the size of the input

plus output), (c) area of union of rectangles,
(d) 3D-maxima, (e) nearest neighbour prob-
lem for planar point set, (f) weighted domi-
nance counting for planar point set, (g) uni-
directional and multi-directional separability.

4. We obtain parallel EM algorithms with I/O

(Nlo

complexity O ) for the following com-

putational geometry/GIS and graph prob-
lems: (a) trapezoidal decomposition (b) tri-
angulation (c) segment tree construction, (d)
batched planar point location,

5. We obtain parallel EM algorithms with I/O

Nlogv v)

complexity O( for the following com-

putational geometry/GIS and graph prob-
lems: (a) list ranking, (b) Euler tour of a tree,
(c) connected components, (d) spanning for-
est, (e) lowest common ancestor in a tree, (f)
tree contraction, (g) expression tree evalua-
tion, (h) open ear decomposition, (i) bicon-
nected components.

6. In contrast to previous work, all of our meth-
ods are also scalable with respect to the num-
ber of processors.

7. We have implemented a prototype applica-
tion of our method on a network of Pentium
processors connected via a 2 GB Ethernet
switch and with multiple disks per proces-
sor. Experimental evidence shows that our
approach is practical.

Items (2), (3), (4) and (5) above are described
in more detail in Figure 5. These results are
subject to the conditions N = Q(vDB), N >
v?B +v*(v — 1)/2, and N > v®, where k > 1 is
a constant that depends on the problem. The lat-
ter constraint arises in the CGM algorithm which
we simulate. For the problems examined in this
paper, k < 3.

Our results show that the EM-CGM is a good
generic programming model that facilitates the de-
sign of I/O-efficient algorithms in the presence of
multi-processors and multi-disks. It has relatively
few parameters, generalizes the PDM model, and
answers the challenge of [17].

By generating programs for a single proces-
sor computer from coarse grained parallel algo-
rithms, our approach can also be used to control
cache memory faults. This supports a suggestion
of Vishkin [45, 46].



1.4 Practicality of Owur Parameter

Bounds

The parameter space for EM problems which we
are proposing in this paper is both practical and
interesting. The logarithmic term in the I/O com-
plexity of sorting is bounded by a constant c¢ if
(%)C > %, where M = % Since this constraint
involves the parameters v, B, N, ¢, we have a four-
dimensional constraint space. For practical pur-
poses, the parameter B can be fixed at about 103
for disk I/O (see Figure 8) [40]. This reduces the
parameter space to three dimensions. We plot the
surface N°! = v°B°! in Figure 6. Any point
on or above the surface represents a valid set of
parameters for the elimination of the logarithmic
factor. It can be seen from Figure 6 that the loga-
rithmic factor can be replaced by a constant ¢ = 2
for as many as v = 10000 processors, provided that
the problem size is approximately 100 giga-items or
more. For a larger constant, say ¢ = 3, the prob-
lem size need only be 1 giga-item for v = 10000. It
can also be seen from Figure 6 that for a smaller
numbers of processors the necessary problem size
for ¢ = 2 is much smaller. This can be seen more
clearly in Figure 7 which represents the same data
as Figure 6, but for fixed ¢ = 2. For 100 processors
or less, for instance, we see from Figure 7 that any
problem size greater than about 10 mega-items is
sufficient.

2 Deterministic Simulation of
CGM Algorithms as EM-CGM
Algorithms

In this section we describe a deterministic sim-
ulation for CGM and other BSP-like algorithms
whose communication can be characterized by h-
relations. For ease of exposition, we focus on the
CGM case. In Section 5 we consider other BSP-
like algorithms. Due to lack of space, proofs are
omitted in most cases. Some are provided in the
Appendix.

Each communication superstep of the underly-
ing CGM algorithm will be divided into a sending
superstep and a receiving superstep. During a send-
ing superstep, messages are generated, and during
a receiving superstep they are received. A com-
pound superstep is composed of a receiving, a com-
putation, and a sending superstep.The execution
of a CGM algorithm proceeds as a series of com-
pound supersteps, and can therefore be simulated

by repeated application of the simulation steps for
a single compound superstep.

The processors of the CGM machine will be
called wvirtual processors, and v will denote their
number. The context of a virtual processor is the
local memory it uses, and the context size of a vir-
tual processor is the maximum size of its context
used during the computation. The maximum con-
text size of all virtual processors is p = (). We
will denote the maximum size of the data sent or
received by any virtual processor over all super-
steps by v = O(L).

We describe a simulation (which we assume is
running on a real machine C’) of a CGM algorithm
A for an (imaginary) v-processor machine. The
simulation models message transmissions of A by
disk I/O. The resulting algorithm A" on P and C’
can be characterized by the parameters (N, p, M,
D, B, G, X, ¢, L'), where p < v is the number of
real processors, M = Q(&) is the size of the local
memory on each of the real processors, D is the
number of disk drives on each real processor, B is
the transfer block size to the disks, ¢’ is the the
time required for a communication operation on
the real machine, G is the time for a parallel I/O
operation of DB items of P to the D disks of a
local processor, L' is the time required for the real
processors to synchronize, and )\’ is the number of
supersteps performed by A’ on P and C’.

2.1 Single Processor Target Machine

In this section we describe a deterministic simula-
tion technique that permits a CGM algorithm to
be simulated as an external memory algorithm on a
single processor target machine. We first consider
the simulation of a single compound superstep, and
in particular, how the contexts and messages of the
virtual processors can be stored on disk and re-
trieved efficiently in the next superstep. The man-
agement of the contexts is straightforward. Since
we know the size of the contexts of the processors,
we can distribute the contexts deterministically.

The main issue is how to organize the gener-
ated messages on the D disks so that they can
be accessed using blocked and fully parallel I/O
operations. This task is simpler if the messages
have a fixed length. Although a CGM algorithm
has the property that ©(L) data is deemed to be
exchanged by each processor in every superstep,
there is no guarantee on the size of individual mes-
sages. Algorithm BalancedRouting gives us a tech-
nique for achieving fixed size messages.



Algorithm 1 BalancedRouting (from [10])
Input: Each of the v processors has % elements,
which are divided into v messages, each of arbitrary
length < % Let msg;; denote the message to be
sent from processor ¢ to processor j, and let |msg;;|
be the length of such a message.

Output: The v messages in each processor are
delivered to their final destinations in two balanced
rounds of communication, and each processor then

contains at most h data.

Superstep A: For i = 0 to (v — 1) in parallel
Processor ¢ allocates v local bins, one for each
processor

For 7 =0to (v—1)

(1) For £ =0 to |msg;;|
Processor 7 allocates the word of
msg;; to local bin (¢ + j 4+ ¢) mod v

gth

(2) Processor i sends bin j to processor j

Superstep B: For j =0 to (v — 1) in parallel
(3) Processor j reorganizes the messages it re-
ceived in Step 2 into bins according to each
element’s final destination

(4) Processor j routes the contents of bin & to
processor k, for 0 < k <wv—1

Observation 1 If bin,,, is the smallest bin cre-
ated at a processor in step (1) of Superstep A,

then the other (v — 1) bins can contain at most

1424 4 (v—1) = 2zl

does bing,in (see Figure 1).

more elements than

Theorem 1 We are given v processors, and n

data items. Fach processor has exactly % data to be
redistributed among the processors, and no proces-
sor is to be the recipient of more than h data. The
redistribution can be accomplished in two commu-
nication rounds of balanced communication: (/})

Messages in the first round are at least .5 — 5=,

v—

and at most T + v=L in size, and (B) Messages in

the second round are at least % — ”51, and at most

h =

o+ 5 in size.

Proof Sketch. The maximum message sizes were
shown in [10]. The proof of the minimum message

sizes relies on Observation 1; see Figure 1. O

The notion of an h-relation is often used in the
analysis of parallel algorithms based on BSP-like
models (e.g. BSP, BSP*, CGM). An h-relation is

Bin Numbers

0000 000
Q000000 .
0000 000
000 000
00000 :
o 000 -
000 -
00 -
o

Figure 1: Ilustration of maximum im-
balance in the bin sizes of a processor
during superstep A. The light circles rep-
resent evenly placed elements and the
dark circles are unevenly placed, or “ex-
tra” ones. The maximum bin size (bin
v—1 in the diagram) is at most % more
than the average, and the minimum bin
size (bin 0 in the diagram) is at most 25
less than the average.

a communication superstep in which each of the v
processors sends and receives at most h data items.
It is typically used in bounding the communication
complexity in an asymptotic analysis. Based on
this usage of an h-relation, we have:

Corollary 1 An arbitrary h—relation can be re-
placed by two “balanced” h—relations whose mes-
sage size is bounded by % — ”2;1 and % + %

Lemma 1 An arbitrary minimum message size
bmin can be assured provided that

1)2(1)2— 1) (1)

where N is the total number of problem items
summed over the v processors.

N > 0*bgin +

Assurances regarding the minimum message
size are particularly relevant to the BSP* model.
In Section 5 we outline the use of Theorem 1 for
creating BSP* algorithms from BSP algorithms.
First, however, we look at the deterministic simu-
lation of CGM agorithms as EM-CGM algorithms.
Not every CGM algorithm will require balancing,
but Lemma 2 ensures that we can obtain balanced
message sizes when necessary by increasing the
number of supersteps by a factor of 2.



Lemma 2 Let A be a CGM algorithm with N
data, v processors, and X\ communication steps.
The X communication steps of A can be replaced
by 2\ steps of balanced communication in which
the minimum message size is Q(B) and the maz-

imum message size S 2 - % provided that N >

2B + D)

We will now turn to the actual simulation results,
which rely on a message size of k%, for a known
constant £ > 1. As we have seen, this is guaran-
teed by Lemma 2. Not every CGM algorithm will
require Lemma, 2; see Matrix Transpose in Section
3 for an example.

Lemma 3 A compound superstep of a v-processor
CGM algorithm A with computation time T + L,
communication time g - O(%) + L, message size
k%, for a known constant k > 1, and local memory
size |4 can be simulated in a compound superstep of
a single processor EM-CGM algorithm in computa-
tion time v7+O(vp) and 1/0 time G-O(45+ 1)
provided that M > p, D = O(Z5), and B = O(%)

Algorithm 2 simulates a compound superstep
of a v-processor CGM on a single processor EM-
CGM with D disks. Due to lack of space we omit
many of the details; see Appendix.

Algorithm 2 : SeqCompoundSuperstep
Input: For each i€{0,...,v — 1} the blocks of the
context are stored on the disks in consecutive for-
mat?, and the arriving messages of virtual proces-
sor ¢ are spread over the D disks consecutive for-
mat.

Output: (i) The (changed) contexts of the v simu-
lated processors are spread across the disks in con-
secutive format. (ii) The generated messages for
each processor in the next superstep are stored in
consectutive format on the disks.

Fori:=0tov—1
(a) Read the context of virtual processor i from
the disks into memory.

(b) Read the packets received by virtual proces-
sor 4 from the disks.

2We say that a disk read /write operation on D blocks is

consecutive when the ¢** block, 0 < ¢ < D is read /written
from/to disk (d + q) mod D on track Tp + |[(d + ¢)/D],
where Tp is the track used for the first of the D blocks to be
read/written, and d is the disk offset (from disk 0) for the
first of the D blocks to be read/written.

To Proc. j+2

Fromi

To Proc. j+1

Fromi

ToProc.

Fromi

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Figure 2: Tllustration of the layout of
message blocks on the disks. In the ex-
ample we have D = 5 and message size
b’ = 2 blocks. Messages from processor 7
to processors 7, 7+1, and j7+2 are shown
as shaded rectangles. Messages to con-
secutively numbered processors are stag-
gered on the disks to permit D blocks to
be written in parallel.

(c) Simulate the local computation of virtual
processor of i.

(d) Write the packets which were sent by virtual
processor ¢ to the D disks in the staggered
format illustrated in Figure 2. See appendix
for details.

(e) Write the changed context of virtual proces-
sor ¢ back to the D disks (in consecutive for-
mat).

Theorem 2 A v processor CGM algorithm A with
A supersteps, local memory size u, running time
B+g-OE)+ AL, and message size O(%) can
be simulated as a single processor EM-CGM al-
gorithm A" with time v 4+ O(lvp) + G - O(Ag5)
for M = O(u), N = Q(v?B), and N = Q(vDB).
In particular, algorithm A’ is c-optimal if A is c-
optimal, B = w(Ap) and G = DB - 0()%). Fur-
thermore, algorithm A’ is work-optimal and I/0-
efficient if A is work-optimal and communication-

efficient, B = Q(Ap) and G = DB - O()\%)

Proof Sketch.  We use the results of Lemma
3. The computation time required to simulate
the computation steps of A is v3. The compu-
tational overhead associated with the I/O steps
(Steps (a),(b),(d),(e)) is O(Avu) + O(AN). Since
v > N the total computation time is bounded by



vB + O(Avp).
therefore need )\vu = o(vf), or B = w(Au).
that when s = ©(£), we can substitute 8 = w
for B = w(Ap). For work- optimality, we require
that Avp = O(vp), or = Q(Au).

The I/O time (Steps (a),(b),(d),(e)) is G -
[OAAL) + O(AE)], which is bounded by G -
O(Ap5). For c-optimality, we require the I/O time
to be in o(vf3), which means that G = DB - 0()\—’8“).
For I/O-efficiency, we require the I/O time to be

in O(vf3), which means that G = DB- O(£%). O

When c-optimality is required, we
Note
(37)

2.2 Multiple Processor Target Machine

For the case of p > 1 processors on the EM-CGM
machine we simulate a compound superstep of a
CGM algorithm A using the algorithm ParCom-
poundSuperstep, shown below. Unlike in the case
of a single real processor, we are now forced to per-
form real communication between the real proces-
sors of the target machine. Each real processor i,
0 <1< p-—1, executes algorithm ParCompound-
Superstep in parallel. For ease of exposition, we
assume that p divides v.

Algorithm 3 : ParCompoundSuperstep
Objective: Simulation of a compound superstep
of a v-processor CGM on a p-processor EM-CGM.
Input: The message and context blocks of the vir-
tual processors are divided among the real proces-
sors and their local dlsks Each real processor ¢,
0<i<(p—1)holds O( ) blocks of messages and

17% blocks of context, and each local disk contains

O(pDB) blocks of messages and O(pDB) blocks of
context.

Output: The changed contexts and generated
messages distributed as required for the next com-
pound superstep.

Forijto}%—ldo
(a) Read the context for virtual processor Zi+ j
from the local disks.

(b) Read any message blocks addressed to virtual
processor %i + 7 from the local disks.

(c) Simulate the computation supersteps of vir-
tual processor ;—)i + 7, collecting all generated
messages in the local internal memory.

(d) Send all generated messages to the required
(real) destination processor. Upon arrival,
the messages are arranged within the inter-
nal memory of the real destination processor
and then written to its disks as in the single
processor simulation; see Algorithm 2.

(d) Write the contexts for virtual processor 2i+j
back to the local disks; see Algorithm 2.

Lemma 4 A compound superstep of a v-processor
CGM algorithm A with computation time T + L,
communication time g - O(%) + L, message size
@(vﬂ?), and local memory size p can be simulated
as % compound supersteps of a p-processor EM-

CGM algorithm A’ in parallel computation time
ST+0(2p)+ 2L and 1/0 time G-O(G- ;—D’%)—i- L,

forp<wv, N =Q(vDB), and B = O(v )

Theorem 3 A v processor CGM algorithm A with
A supersteps, computation time (B + AL, com-
munication time ga 4+ AL, local memory size p
and message size @(%) can be simulated as a p-
processor EM-CGM algorithm A" with computation
time 2(8 + O(Aw)) + AL, communication time
sga+ ZAL, and 1/0 time 3G - O(Afp) + JAL
for M = O(p), p < v, N = QwDB), and N =
Qv?B). Let g(N), L(N), and v(N) be increasing
functions of N. If A is c-optimal on the CGM for
g < g(N), L < L(N) and v < v(N), then A’ is
a c-optimal EM-CGM algorithm for B = w(A\u),
9 <g(N), G=BD-o(£) and L < L(N)-2. A’ is
work-optimal, communication-efficient, and 1/0-
efficient if A is work-optimal and communication-
efficient, B = Q(\p), g < g(N), G = BD - O(%),
and L < L(N) -2

Proof Sketch. We use the results of Lemma
4. The computation time required to simulate the
computation steps of A is ]% B. The computational

overhead associated with the I/O and communi-
cation steps (Steps (a),(b),(d),(e)) is O(3An) +
O(%A%). Since p > &, the total computation time
is bounded by 28+ O(ZAn). When c-optimality is
required, we need 8 = w(Ap). Note that in many
cases % = ©(p). Also, when only work-optimality
is required, 5 = Q(Ap) suffices.

The I/O time (Steps (a),(b),(d),(e)) is G -
B5) + O(Apg)], which is bounded by G -

[O(A\ 55
O(AL).

For c-optimality, we require the I/O tlme



to be in o(3 /), which means that G = DB - O(A_i)'

For I/O-efficiency we need only that G = DB -
O()\%) Since the number of supersteps increases
by a factor of - we require that L < L(N) - Lo

3 New EM Algorithms

A number of important problems have been shown
to have non-linear I/O complexity [3, 7, 47]. The
purpose of this section is to illustrate that, for a
restricted parameter space that arises naturally in
the EM domain, these problems have better I/O
complexity than suggested by the lower bounds
(which apply to a more general parameter con-
stellation). Figure 5 lists a large number of prob-
lems for which we obtain new EM-CGM algorithms
with lower I/O complexity by simulating CGM al-
gorithms using Theorem 3.

3.1 Fundamental Problems

We first present new EM-CGM algorithms, ob-
tained via Lemma 2 and Theorem 3, for the funda-
mental problems of sorting, permutation and ma-
trix transpose. For each of these problems a CGM
algorithm uses A = O(1) communication rounds,
and O(%) internal memory per processor.

Sorting: The time complexity of sorting IV items
is ©(N Ig N) on a RAM. On the PDM, sorting has
been shown to have I/O complexity O(l)—]\§B log M %)

for general values of N, M, D, and B [3, 47]. How-
ever, for % > v, € > 0 a fixed constant, we can
achieve I/O complexity O( 1%) by simulating the
deterministic CGM sorting algorithm of Goodrich
[31] for N > maz{v'*T¢,vDB}.

Permutation: Permutation of N items
on a RAM has time complexity ©(N). On
the PDM, this problem has I/O complexity
@(min(%,D—]\glogM/B%) (see [3, 47]). How-
ever, we can achieve I/O complexity O(I%)

by simulating algorithm CGMPermute, for N >
max{vi*t¢, vDB}.

Algorithm 4 CGMPermute

V is an N element vector containing items to be
permuted. P is a corresponding N element vector
containing new indices for each element of V.
Input: Each processor i, 0 < i < (v — 1) holds an
% element vector V;, containing elements % - % to

(i+1) -2 —10fV, and an & element vector P;,
containing elements i - & to (i + 1) - &£ — 1 of P.
Output: Each processor ¢ contains items i - % to
(i +1) - ¥ — 1 of the permuted vector V'

Assumpt%)on: v divides N evenly.
1. Each processor 4, 0 < 7 < (v — 1) sends
the items of V; to the processors holding the
items indicated by P;.

2. Each processor performs the necessary rear-
rangements in its local memory to complete
the calculation of P.

Transpose: Transposing a k X £ matrix, where
N = kf takes ©(N) time on a RAM. On the Par-
allel Disk Model, this problem has I/O complex-

ity @(%logmf:g((j\j/\[/}%’)w B)) [3, 47). However, we

can achieve I/O complexity O(]%) by simulating
an algorithm CGMTranspose, similar to CGMPer-
mute, for N > maz{v?, vDB}.

Theorem 4 Sorting, permutation, and matriz
transpose can be performed on a p-processor EM-
CGM in O(I%) I/0 operations, provided N =

QwBD), N > v*B + @, and N > v®, where
constant k > 1 depends on the problem.

3.2 External Memory Algorithms Made
Available by the Simulation

Figure 5 lists a number of important problems aris-
ing in computational geometry, GIS, and graph
algorithms, for which we report EM-CGM algo-
rithms created by our technique, together with
their I/O complexity and that of the previously
best known algorithm for the problem. In some
cases, we obtain a better I/O complexity, and in
other cases we obtain the same I/O complexities
as previously known. In each case, however, our
algorithm is scalable not only in terms of the num-
ber of disks per processor but also in terms of the
number of processors used. Previous algorithms
were often not efficient in a multiprocessor envi-
ronment (particularly in a distributed memory en-
vironment), and in many cases it is not clear how
they could be adapted to parallel disks.

4 Experiments

In recent years there have been a small but growing
number of implementation projects which focused
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on EM issues. References in this regard include
the TPIE project [44], as well as [33, 14, 19, 18,
20, 22]. Our implementation results indicate that
EM-CGM algorithms obtained via the techniques
of this paper will likely be an important component
of an EM workbench.

Preliminary implementation experiments with
sorting support our predictions of linear running
time. Figure 3 shows running times for a CGM
sorting algorithm a) using virtual memory and
LAM-MPI (see [1]), and b) converted to an EM-
CGM algorithm by our deterministic simulation.
As expected, multiple disks also reduce the run-
ning time. Figure 4 shows the running time of
EM-CGM sort with one and two disks respectively.

5 Extensions

BSP and BSP* Algorithms: The result of
Corollary 1 can be applied to any algorithm which
communicates exclusively via h-relations. The con-

cept of an h-relation is relevant primarily with re-
spect to whether it is an assumption in the analysis
of the algorithm in question. Typically, a good al-
gorithm has been shown to be asymptotically opti-
mal when the communication volume to and from
each processor is bounded by some A in each super-
step. Using Lemma 1 we can additionally ensure
any desired minimum communication block size of
b at the cost of at most doubling the number of
communication rounds for problems with sufficient
slackness. Here we use the term “communication”
to mean either I/O or conventional message pass-
ing. This leads to a number of results:

1. Conforming BSP algorithms can be con-
verted to BSP* algorithms with b = h’y% —
%, where R, 1s the minimum value of A
used in any communication superstep.

2. Conforming BSP algorithms can be con-
verted to EM-BSP algorithms and c-
optimality is preserved.

3. Conforming BSP* algorithms can be con-
verted to EM-BSP* algorithms and c-
optimality is preserved.

The term “conforming” in items (1), (2), and
(3) above refers to the need for the bounding con-
cept of an h-relation to be a universal assumption
in the analysis of the original BSP-like algorithm
for each of its communication rounds. It is conve-
nient, but not necessary, that the same value of h
be used in every round.

Cache Memories: So far, we have considered
only the interaction between the main memory and
the external disk system. Many of the same is-
sues also arise between the cache memory and main
memory layers of the memory hierarchy. For sim-
plicity, let us consider a computer with a two level
memory hierarchy consisting of only a cache, and
a main memory. The lower bounds for the number
of block accesses required on fundamental prob-
lems such as sorting, permutation, matrix trans-
pose [3] apply to this interface as well. Let N = M
be the size of a problem stored in the main mem-
ory, let M; be the size of a cache memory I, and
let By be the size of blocks transferred between I
and the main memory. Our results indicate that
if (Aé[—;)c = N, the logarithmic term in the I/O
complexity vanishes, to be replaced by a constant.
There may therefore be concrete and significant
savings to be realized in computation time on se-
quential computers if the cache design takes these



results into account, and programs are formulated
as parallel algorithms with virtual processor sizes
tuned to the available cache memory. We refer the
interested reader to the work of Vishkin [45, 46] for
related ideas.
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uation

Lowest common ancestor, Tree
contraction, expression tree eval-

Problem PDM I/O Complexity New I/O
Description Complexity in CGM Model Complexity®
Group A: Fundamental Algorithms”
Sorting O(g5 logy ) [3, 47] O(H1ee ) [31] O(57)
A=0(1), M =0(%)
Permutation O(min(%, 2% log Xy [3, O(Nl‘;gN) [this par;ver] O(pDLB)
47] X=0(1), M = 0(¥)
Matrix transpose® O(45 log mli:gg(]\]{/f’ljﬁ’)N/B)) O(F12 ) [this pa[])\;ar] O(pDLB)
[3, 47] A=0(1), M =0(5)
Group B: GIS and Computational Geometry Algorithms
Polygon triangulation, Trape- o(% log i ) [8] T= O(Nl(;gN , [13] O(Nplg%N)
zoidal decomposition, Segment A=0(1), M = O(XMesl)
tree construction, Next Element ' v
Search on line segments?
Batched planar point location O((% + k) log i 2) 8] T=0( Nl(;gN) [13] O(Nplg%N)
A=0(1), M = O(FEX)
3D convex hull, 2D Voronoi dia- | O(% logu %) [32] T= O(Nlc;gN) [24] O(lzDLB)
gram, Delaunay triangulation © A=0(1), M =0(Y)
Lower  envelope  of  non- T= O(Nl‘;gN) [27] O(pDLB)
intersecting line segments A=0(1), M = O(%)
Generalized lower envelope of T= O(Nl‘;gN) [27] O(Z\;o‘D(g))
line segments A=0(1), M = O(Na}gN))
Area of Union of Rectangles, 3D- O(%logu %) [32] O(—l‘;gﬂ) [27 O(pDLB)
maxima, 2D-nearest neighbors of A=0(1), M = O(X)
a point set B
2D-weighted dominance count- 7=0( Nl‘;gN )s O(pDLB)
ing, Uni-directional and multi- A=0(1),M =0(%) [27]
directional separability
Group C: Graph Algorithms
List ranking, Euler tour of tree, | O(% log i £ [15] A =0(logv), 7 = O(£) O(Z\;gng)

Connected components,

ponentsf

span-

ning forest, Ear and open ear de-
composition, Biconnected com-

A =0(logv), T = O(¥EE)
M = O(¥£F) [12]

O( (V+E)logv

pDB

)

Figure 5: Overview of New EM Algorithms in Comparison To Previous Results.

*These results are subject to the conditions N = Q(vDB), N > v>*B+v*(v—1)/2, and N > v", where « > 1 is a constant

that depends on the problem. For the problems examined in this paper, x < 3.

’The PDM I/O complexities listed for this group apply also to multiple processors when the interconnection method is a

°k, ¢ are the number of columns and rows, respectively, where N = k.

shared RAM, hypercubic network, or cube-connected cycles. The PDM parameter D is the number of disks in total, while
our parameter D is the number of disks on each processor. They are equivalent if p = 1.

“The PDM I/O complexities for this group are documented for the single processor, single disk case. We are not aware

of multi-disk or multi-processor extensions.

“The PDM I/O complexities previously reported for these problems apply to a PRAM-like interconnection only.
ffor a graph of V vertices and E edges
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6 Appendix

6.1 BSP-like Models

We adopt a family of models in this paper
which were first introduced in [25], and which in-
corporate the parameters of the PDM, except for
two small differences. We will assume that each of
the p processors has D local disk drives, and M
local memory. Our models are described in more
detail in Section 6.2.

The BSP (Bulk Synchronous Parallel) Model
was introduced in 1990 [42]. A BSP computer is a
collection of processor/memory modules connected
by a router that can deliver messages in a point to
point fashion between the processors. A BSP-style
computation is divided into a sequence of super-
steps separated by barrier synchronizations. Each
superstep comsists of a computation superstep and
a communication superstep. In a computation su-
perstep the processors perform computations on
data that was present locally at the beginning of
the superstep. In a communication superstep data
is exchanged among the processors via the router.
A BSP computer has the following parameters:

p is the number of processors,

L is the minimum time between synchroniza-
tion steps

g is the minimum time required by the router
to deliver a unit of data
All times are in basic computation units.

A BSP algorithm with a total of A super-
steps has the following computation and commu-
nication costs: The computation cost of the al-
gorithm is Teopp = 22:1 wiomp. The time ex-
pended in the i-th computation superstep wiomp =
max{f/,tl, ..., tp}, where ¢; is the number of basic
computation operations performed by processor j
in the i-th superstep. The communication cost is
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where the i-th communi-
i _ P
comm — maxj:l

_ A 7
Tcomm - i=1 Weomm>

cation superstep is assigned cost w
{W,omm.;}- Here, wl,.. . is the communication
cost incurred by processor j in the i-th super-
step. Assuming that processor j receives messages
of lengths rq,...,r; and sends messages of lengths
{s1,...,8j#} during the i-th superstep, w;

!

S i+ s}

The BSP* model was introduced in 1995 [11]
as an extension of BSP to account for the increased
performance that can often be achieved if com-
munication between processors is performed in a
blockwise fashion. It introduces an additional pa-
rameter b which is the packet size, the minimum
size that messages must have in order to take full
advantage of the bandwidth of the router. Mes-
sages of length smaller than b are charged the same
cost as messages of length b. A BSP* computer can
be characterized by the following parameters:

p is the number of processors

b is the packet size

g is the time (measured in basic computation
units) to transport a packet of size b between pro-
cessors

L is the minimum time (measured in basic com-
putation units) to perform a barrier synchroniza-
tion between the processors

7 _
comm,j —

maa{L, §(

The BSP* model assigns the same cost to an
algorithm as the BSP model except that w!

. comm,j —
maz{L,g(3 1 [F]+ =1 [FD}

The CGM (Coarse Grained Multicomputer)
model was introduced in 1993 [27, 26, 24]. It
uses only two parameters, n and p, and assumes
a collection of p processors with n/p local mem-
ory, each connected by a router that can deliver
messages in a point to point fashion. A CGM al-
gorithm consists of an alternating sequence of com-
putation and communication rounds separated by
barrier synchronizations. A computation round is
equivalent to a computation superstep in the BSP
model, and the total computation cost Ttopm,, is de-
fined analogously. A communication round con-
sists of a single h-relation with h < n/p. The cost
W omm Of every communication round is bounded
by the same value, H,, ,. Therefore, the total com-
munication cost Teomm of a CGM algorithm with A
communication rounds is simply Teomm = AH, p.
Algorithms do usually require a lower bound on
n/p >> 1, eg. n/p>porn/p>p°[27, 26, 24] .
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The CGM model works particularly well in the case
where the overall computation speed is consider-
ably larger than the overall communication speed.

We shall refer to the BSP, BSP*, and CGM
models as BSP-like models. The term h-relation is
commonly used to refer to a communication step
on such a computer in which messages of length
at most h bytes are sent and received by every
processor.

6.2 The EM-CGM Model

The EM-CGM Model was first introduced in [25].
The basic idea is illustrated in Figure 9. In ad-
dition to its local memory, each processor has an
external memory in the form of a set of hard disks.
The CGM model is extended to its external mem-
ory version EM-CGM by the addition of the fol-
lowing parameters:

M is the local memory size of each processor,

D is the number of disk drives of each proces-
sor,

B is the transfer block size of a disk drive, and

G is the ratio of local computational capacity
(number of local computation operations) divided
by local I/O capacity (number of blocks of size B
that can be transferred between the local disks and
memory) per unit time.

In many practical cases, all processors have the
same number of disks. We restrict ourselves to that
case, although the model does not forbid different
numbers of drives and memory sizes for each pro-
cessor. We denote the disk drives of each processor
by Dy,D1,...Dp_1. Each drive consists of a se-
quence of tracks (consecutively numbered starting
with 0) which can be accessed by direct random
access using their unique track number. A track
stores exactly one block of B records.
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Each processor can use all of its D disk drives
concurrently, and transfer D x B items from the
local disks to its local memory in a single I/O op-
eration and at cost G. In such an operation, we
permit only one track per disk to be accessed with-
out any restriction on which track is accessed on
each disk. We assume that a processor can store in
its local memory at least one block from each local
disk at the same time, i.e., M > DB.

Like a computation on the CGM model, the
computation on the EM-CGM model proceeds in
a succession of supersteps. We adapt communica-
tion and computation supersteps from the CGM
model and allow multiple I/O-operations during a
single computation superstep. For the EM-CGM
model, the computation cost, f.omp, and commu-
nication cost, tcomm, are the same as for the CGM
model. The total cost of each superstep is defined
as teomp + tcomm +trj0 + L. Each I/O operation
costs G time units. The I/O cost 7/ of each CGM
round is identical, and represents the I/O cost for
simulating an h-relation with h = n/p.

Note that the model gives incentives to access
all disk drives using block transfers. For instance,
a single processor EM-CGM with D disks is capa-
ble of transferring a block of B items to or from
each disk in a single I/O operation. An operation
involving fewer elements incurs the same cost.

6.3 The EM-BSP and EM-BSP* Mod-
els

The EM-BSP and EM-BSP* models are defined
analogously to the EM-CGM model. To the BSP
and BSP* models the following additonal parame-
ters are added:

M local memory size at each processor,

D number of disk drives at each processor,

B transfer block size for a local disk drive, and

G ratio of local computational capacity to local
I/O capacity.

The cost of each EM-BSP or BSP* superstep is
defined as tcomp +tcomm +1; /ot L where .o, and
teomm refer to the computation time and commu-
nication time as defined for the BSP* model. The
term 7/ is the additional I/O cost charged for the

superstep, where 7,0 = max?zl{w}‘/o}, and wg/o
is the I/O-cost incurred by processor j. Each I/O
operation costs G time units.

We shall refer to the BSP, BSP* and CGM
models collectively as BSP-like models.



6.4 EM Cost Model
We adopt the cost model proposed in [25, 28].

Definition 1 [25] Let A be the optimal sequential
algorithm on the RAM for the problem under con-
sideration, and let T(A) be its worst case running
time. Let ¢ be a constant with ¢ > 1. A c-optimal
EM algorithm A* meets the following criteria:

e The ratio ¢ between the computation times of

A* and T(A)/p is ¢+ o(1).

o The ratio & between the communication time
of A* and the computation time T(A)/p is

o(1).

e The ratio n between the I/O-time of A* and
the computation time T(A)/p is o(1).

All asymptotic bounds refer to the problem size N
as N — o0.

We say that a EM algorithm is one-optimal if it is
c-optimal for ¢ = 1. The constraint on ¢ is another
way of saying that A* must be work optimal. The
constraints on ¢ and 7 ensure that the communi-
cation and I/O time do not affect the asymptotic
running time, even by a constant factor.

We will use the terms communication-efficient
and I/O-efficient to describe an algorithm for
which ¢ and 7, respectively, are O(1). An al-
gorithm which is work-optimal, communication-
efficient, and I/O-efficient, therefore, is one whose
running time complexity is no worse than the com-
plexity T'(A)/p. Constant factors are ignored. We
will call an algorithm I/0-optimal if the number
of I/O operations matches the lower bound for the
number of I/Os required to solve the problem.

This definition applies equally well to EM-BSP,
EM-BSP* and EM-CGM algorithms. In the inter-
ests of brevity and ease of exposition, we focus pri-
marily on the EM-CGM case. Conditions on the
input size n and the parameters, p, b, g, B, G,
L and M are specified that are sufficient for the
algorithm to make sense and the bounds on ¢, &
and 7 to hold. The restrictions on the parame-
ters are functions p(N), b(N), g(N), B(N), G(N),
L(N), and M(N) that grow with the input size N.
This guarantees that the algorithms run efficiently
on real parallel machines, from those with large
parameter values, i.e., large bandwidth and large
latency which require large messages to operate ef-
ficiently, to those with small network bandwidth
and small latency.
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6.5 Proof of Theorem 1

The proof of the maximum message sizes is given
in [10]. In the following, we give a proof for the
minimum message sizes. In round A each processor
initially has % data. At the end of Superstep B,
each processor will have at most A data.

First, we consider the minimum message size
in Superstep A. Due to the round robin allocation
mechanism, a given bin after Step 1 will contain at
most one more element of a message to processor j
than does any other bin. Let us fix any processor .
Consider the bin sizes after all of the messages have
been distributed among the bins by processor 7 (see
Figure 1). Clearly, all of the bins will contain at
least as many elements as the smallest bin, b1, -
Let e; be the number of extra elements (more than
this minimum) in bin j at Step 2. The crucial
observation is that if bin,,, is the smallest bin,
then the other (v — 1) bins can hold at most 1 +
24+ ..+ (w-—-1) = —U(vgl) extra elements. Thus,
L = v|binmin| + X_;e; Since U(v—;l) > Y, e, we
have |bin,n| > v% — %

We now turn to the message sizes in Superstep
B. The elements which arrive at processor j as a
result of Step 2 are the contents of the j local
bins formed in Step 1 at each of the processors 0
through v — 1. We can think of the 5 local bin
of each of the v processors as a component of a
single, global superbin, which is the union of the
4§ local bins of all v processors. Consider only the
messages destined for a fixed processor k which are
held by each processor 7, 0 < ¢ < v — 1, prior to
Step 1. These are allocated among the superbins,
starting with superbin (7 + k) mod v by Step 1.
Superbin 5 now contains the message which is to
be sent from processor j to processor k in Step 4.

In a similar manner to the analysis of super-
step A, let E; be the number of extra elements
in superbin j after Step 1. Let sbin,,;, be the
superbin which contains the minimum number of
elements after Step 1, and hence |sbin,;,| repre-
sents the minimum message size in Step 4. When
processor k is one of the processors which re-
ceives the maximum h data elements, we have

h = v|8binn| +3; Ej, and since ”(”2_1) >, Ej,
’l)—l D

2

we have |sbin,in| > %



6.6 Proof of Corollary 1

For h = h >
we have a message size of at most % + ==
each of the two rounds of communication. We can
reproduce the precise conditions of Theorem 1 by
adding dummy items if necessary in Superstep A
to ensure that 2 = h.

We can assume a minimum message size of
% — % in the second round because the cost of
communication is bounded by the assumption of
an h-relation. When every processor is the des-
tination of h data, it does not affect the worst
case complexity of the superstep. We can there-
fore assume that every processor receives h data
(by adding dummy items for the sake of the argu-
ment). Hence the minimum message size for any
processor in Superstep B becomes % — % with-
out affecting the asymptotic communication cost
of the superstep. O

In Theorem 1, clearly h >

2|3

6.7 Proof of Lemma 1

From Corollary 1, we can achieve a minimum mes-

sage size b, provided that b,,;, < Uﬂz _ u51. O

6.8 Proof of Lemma 2

The minimum and maximum message sizes follow
from Corollary 1, with A = %, and the constraint

that & + 251 < 2. X This is true if N > L0
which is absorbed by (1) from Lemma 1. 0

6.9 Proof of Lemma 3

We use the results of Lemma 2. Since messages
are at most 2- % < 2% in size we can allocate fixed
sized slots for them on the disks while preserving an
O(vu) disk space requirement. In many practical
EM situations 2% will be a significant overestimate

of the maximum message size, as v << Uﬂz The
assurance of minimum message size (B) implies
that I/O operations will be blocked?.

We simulate a compound superstep of A us-
ing algorithm SeqCompoundSuperstep. The algo-
rithm expects the input messages to the virtual
processors in the current superstep to be organized

3Although a CGM algorithm may occasionally use
smaller messages than B, it is charged for an %-relation
in each superstep as if every processor sent and received h
data
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(by destination) in a parallel format on the disks,
and it also writes the messages generated in the
current superstep to the disks in a parallel format.
We use the phrase “a parallel format” to mean an
arrangement of the data that permits fully parallel
access to the disks, both for writing the messages,
and for reading them back in a different order in
the next superstep. Two instances of a parallel
format are the consecutive and staggered formats.

Consecutive format: We say that a disk
read/write operation on D blocks is consecutive
when the ¢'" block, 0 < ¢ < D is read/written
from/to disk (d + ¢) mod D on track Tp + [(d +
q)/D|, where Ty is the track used for the first of
the D blocks to be read/written, and d is the disk
offset (from disk 0) for the first of the D blocks to
be read/written.

Staggered format: We say that a disk read/write
operation on D blocks involving n messages, each
of size at most b’ blocks, is staggered when the ¢*
block, 0 < ¢ < (b' — 1) of the 5" message, 0 < j <
(n — 1) is read/written from/to disk (d + S + q)
mod D on track Ty + | (d + S + q)/D], where Tj
is the track used for the blocks of the 0! message,
d is the disk offset (from disk 0) for the first of
the D blocks to be read/written, and [S/D] is the
number of tracks by which consecutive messages
are to be staggered (separated).

Details of Algorithm 2

Details of Steps (a) and (e): Since we know
the size of the contexts of the processors, we can
distribute the contexts deterministically. We re-
serve an area of total size vy on the disks, 75
blocks on each disk, where we store the contexts.
We split the context V; of virtual processor j into
blocks of size B and store the i-th block of V; on

L
disk (i +j%) mod D using track {%J. Since

the context of each processor is now in striped for-
mat on the disks, we can easily read and write the
contexts using D disks in parallel for every I/O
operation.

Details of Step (b): The previous compound su-
perstep guaranteed that the blocks which contain
the messages destined for the current processor are
stored in consecutive format on the disks. There-
fore, we can use a similar technique to fetch the
messages as we used to fetch the contexts.

Details of Step (d): After the Computation



Phase, all messages sent by the current virtual pro-
cessor have been generated and stored in internal
memory. The coarse-grained nature of the under-
lying BSP-like algorithm results in large messages,
(see Lemma 2) which are as long or longer than the
block size B. We cut the messages into blocks of
size B. Each block inherits the destination address
from its original message. In Z5 rounds, we write
the blocks out to the disks, as described in detail
below.

Let b represent the maximum message size, and
let b’ represent the maximum number of disk blocks
per message. Hence, b’ = [£]. Let msg;; repre-
sent the message sent from processor v; to pro-
cessor v; in one communication superstep. We
will store the messages destined for a fixed pro-
cessor j in standard consecutive format, beginning
with msgo; and ending with msg,_1 ;. We ensure
that the first block of msg; ;41 is assigned to disk
(bo +b") mod D, for 0 < j < p— 2, where by is the
disk number of the first block for msg;;. In other
words, the starting block positions for messages to
consecutive processors are appropriately staggered
on the disks to ensure that we can write blocks
of messages to consecutively numbered processors
in a single parallel I/O when & mod D # 0. Let

T, =3 [%] be the track offset for msgg; (the
first such message destined for processor v;). Let
d; = jb' mod D be the disk offset (from disk 0)
for the first block of msgg;. The ¢ block of msg;;
is assigned to disk (d; + b’ + ¢) mod D on track
Tj+ |(dj +14b' +q)/D]. This storage scheme main-
tains what we will call the messaging matriz across
the parallel disks. The messages destined to a par-
ticular virtual processor are stored in a band, or
stripe of consecutive parallel tracks.

Outgoing message blocks are placed in a
FIFO queue for servicing by procedure Disk Write.
DiskWrite removes at most D blocks from the
queue in each write cycle and writes them to the
disks in a single write operation. Blocks are ser-
viced strictly in FIFO order. Blocks will be added
to the current write cycle and removed from the
queue until a block is encountered whose disk num-
ber conflicts with that of an earlier block in the
current write cycle.

Since the messages destined for any given pro-
cessor are stored in consecutive format on the
disks, we can read the messages received by a vir-
tual processor using D disks in parallel for every
I/O operation. Except possibly for the last, each
parallel read performed by the simulation of pro-
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cessor v; will obtain D message blocks. By stagger-
ing the first message blocks for consecutive virtual
processors across the disks, we can achieve fully
parallel writes to the disks.

The scheme just described requires two copies
of the messaging matrix because the messages gen-
erated by virtual processor ¢ in compound super-
step k must be stored on disk before virtual pro-
cessor 4+ 1 can process the messages generated for
it in compound superstep k — 1.

We can avoid this extra space requirement,
however, as follows.

Observation 2 By alternating between
{consecutive reads,  staggered writes} and
{staggered reads, consecutive writes} in suc-
cessive compound supersteps, the simulation can
achieve fully parallel I/O on all message blocks
with a single copy of the messaging matriz.

SeqCompoundSuperstep loads each virtual proces-
sor into the real memory, requiring that M > pu.
Since the messages sent or received in a superstep

by a virtual processor are h = (L) in total size,

we require that 2= = (D) to ensure that our I/O
scheme for messages is efficient. This means that
D = 0(%).

Disk Space: The disk space needed by the simu-
lation is the total context size vy, which includes
space for messages. At most one track is wasted
for each virtual processor. The space used on each
disk is O(4k), since & = Q(DB).

Computation Time: Steps (a) and (e) of algorithm
SeqCompoundSuperstep require computation time
O(vp). In Steps (b) and (d), O(Y) message data
is routed for each virtual processor. Over all v pro-
cessors, this adds O(N) computation time overall,
which can be ignored. Step (c) consumes v7 com-
putation time.

I/O Time: Steps (a) and (e) consume O(G35)
time, and steps (b) and (d) consume O(G 2%) time.
Since O(N/p) message data is sent in each super-
step, and N/p < p we have time O(Gpl5) due to
I/0 overall.

Thus, overall, the computation time is vt +
O(vp) and the I/O-time is O(Gp5). O

6.10 Proof of Lemma 4

We have p < v real processors, so the time to sim-

ulate Step (c) is 7. Computational overhead is



contributed by %(O(,u)—l—O(%)), due to swapping of
contexts (Steps (a),(d)) and messaging I/O (Steps
(b),(d)). As before, the computational overhead is
dominated by the cost of swapping contexts. The
original compound superstep is replaced by % com-
pound supersteps on the target machine.

The I/O time is determined by the cost of swap-
ping contexts plus the cost of simulating the origi-

nal messaging via I/O. These costs are G- - 55 and

G- %O(%) respectively, and the total is dominated
by G - %%. O
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