
Early Experiences in Implementing the Bu�er Tree�

David Hutchinson

Anil Maheshwari

J�org�R�udiger Sack

Radu Velicescu

School of Computer Science
Carleton University

Ottawa� Ont�� Canada K�S �B�
e�mail fhutchins�maheshwa�sack�velicescg�scs�carleton�ca

ABSTRACT

Computer processing speeds are increasing rapidly due to the evolution of faster chips� parallel

processing of data� and more e�cient software� Users today have access to an unprecedented

amount of high quality� high resolution data through various technologies� This is resulting

in a growing demand for higher performance input and output mechanisms in order to pass

huge data sets from the external memory �EM�� or disk system� through the relatively small

main memory of the computer and back again� In recent years� research into external memory

algorithms has been growing to keep pace with the demand for innovation in this area�

EM algorithms for individual problems have been developed but few general purpose EM

tools have been designed� A fundamental tool is the bu�er tree� an external version of the �a�b��

tree� It can be used to satisfy a number of EM requirements such as sorting� priority queues�

range searching� etc� in a straightforward and I	O�optimal manner�

In this paper we describe an implementation of a bu�er tree� We describe benchmarking

tests which lead to an experimental determination of certain parameter values di�erent from

those originally suggested in the design of the data structure� We describe implementations of

two algorithms based on the bu�er tree
 an external memory treesort� and an external memory

priority queue� Our initial experiments with bu�er tree sort for large problem sizes indicate

that this algorithm easily outperforms similar algorithms based on internal memory techniques�

With some tuning of the bu�er tree parameters we are able to obtain performance consistent

with theoretical predictions for the range of problem sizes tested� We include comparisons with

TPIE Merge Sort�

We conclude that �a� the bu�er tree as a generic data structure appears to perform well in

theory and practice� and �b� measuring I	O e�ciency experimentally is an important topic that

merits further attention�

�� Introduction

The Input�Output bandwidth between fast internal memory and slower secondary storage is
the bottleneck in many large�scale applications� such as multimedia� GIS� land information systems�
seismic databases� satellite imagery� digital libraries� real�time applications and virtual reality� A
typical disk drive is a factor of ������� slower in performing a random access than is the main mem�
ory of a computer system� Present methodologies for addressing the performance issues involving
secondary storage can be classi�ed as follows 	�
��

�Research supported by the Natural Sciences and Engineering Research Council of Canada�

�

� increasing storage device parallelism� which improves the bandwidth between secondary mem�
ory and main memory�

� exploiting locality of reference via organization of the data and processing sequence�

� overlapping I�O with computation� e�g� using prefetching�

Some of the earliest work in external memory algorithms was done by Floyd 	��� and Hong and
Kong 	��� who studied matrix operations and fast Fourier transforms� Lower bounds for a number of
problems related to sorting were presented by Aggarwal and Vitter 	��� The classical I�O model was
introduced by Vitter and Shriver 	���� The uniprocessor� single disk version of this model represents
an EM computer system as a processor� some �xed amount of internal memory� and a disk� It is
described by the following parameters�

N is the number of elements in the problem instance�

M is the number of elements that can �t in the internal memory�

B is the number of elements per block�

where M � N and � � B � M

�
�

An Input	Output operation
I	O� is the process of reading or writing a block of B contiguous
data elements to or from the disk� The I�O complexity of an algorithm is de�ned as the total number
of I�Os that an algorithm performs� It is assumed in this model that the internal computation is
free� Several other I�O models have been proposed� see e�g� 	��� ��� ���� The theoretical framework
of the algorithms in this paper is based on the Parallel Disk I�O Model �PDM� proposed by Vitter
and Shriver 	����
Permutations and sorting have been very widely studied in the context of this model� see 	�� ��

� ��� ���� Algorithms for problems in computational geometry 	���
� �� �� ���� graph theory 	��
�� ��� and GIS 	
� have been presented� A number of general paradigms for designing external
memory algorithms have been proposed� These include simulation 	�� ��� ��� ���� merging 	�� ����
distribution 	��� ��� ��� and data structuring 	���
Recently there has been an increasing interest in implementation and experimental research work

targeted to I�O e�cient computation� Research work in this area includes�
�i� The TPIE �Transparent Parallel I�O Environment� project of Vengro� and Vitter 	��� �
� which
aims to collect implementations of existing algorithms within a common framework� and to make
development of new implementations easier�
�ii� Experiments by Chiang 	�� with four algorithms for the orthogonal segment intersection problem�
�iii� Cormen et al� 	��� ��� have reported on a number of implementation issues and results relat�
ing to I�O e�cient algorithms� including FFT computations using parallel processors� and FFT�
permutations� and sorting using the Parallel Disk Model�
Motivated by the goal of constructing I�O e�cient versions of commonly used internal memory

data structures� Arge 	�� �� proposed the data structuring paradigm� and in particular the Bu�er
Tree� A bu�er tree is an external memory search tree� It supports operations such as insert� delete�
search� deletemin� and it enables the transformation of a class of internal�memory algorithms to
external memory algorithms by exchanging the data structures used� A large number of external
memory algorithms have been proposed 	�� �� using the bu�er tree data structure� including sorting�
priority queues� range trees� segment trees� and time forward processing� These in turn are sub�
routines for many external memory graph algorithms� such as expression tree evaluation� centroid
decomposition� least common ancestor� minimum spanning trees� ear decomposition� There are a
number of major advantages of the bu�er tree approach� It applies to a large class of problems
whose solutions use search trees as the underlying data structure� This enables the use of many
normal internal memory algorithms� and �hides� the I�O speci�c parts of the technique in the data
structures� Several techniques based on the bu�er tree� e�g� time forward processing 	��� are simpler
than competitive EM techniques� and are of the same I�O complexity� or better� with respect to
their counterparts�

�

O(log n)

Buffer Root

Internal Node

Leaf Node

Leaves

(1 Disk Block Each)

 m

Figure �
 The bu�er tree

In this paper� we describe the issues arising out of our implementation of the bu�er tree� We
present an implementation of the bu�er tree� and show the �exibility and generality of the structure
by implementing EM sorting and an EM priority queue� To test the e�ciency of our implementation
we used sorting as an example� For data sets larger than the available main memory� our implemen�
tation of bu�er tree sort outperforms internal memory sort �e�g� qsort� by a large and increasing
margin� We use an EM merge sort algorithm from TPIE to provide comparative performance results
for the larger problem sizes� We observe that certain parameters suggested in 	�� �� may not provide
the best results in practice� By tuning these parameters we obtained improved results while main�
taining the same asymptotic worst case I�O complexity� The bu�er tree is a conceptually simple
data structure� and it turned out that implementation of these applications based on the bu�er tree
was straightforward� Therefore we can support the claim that the bu�er tree is a generic EM data
structure that performs well in theory and practice�
While the bu�er tree gives us an I�O�optimal sort� our timing studies of the implementation

indicate that its performance is sensitive to some nonlinearities in the environment or algorithm�
Experimental results show that these non�linearities are reduced by an optimal choice of parameters�

�� The Bu�er Tree

In this section we describe the bu�er tree data structure of Arge 	�� ��� with two update operations�
namely insert and delete� Subsequently� we will discuss how we can perform sorting and maintain a
priority queue using a bu�er tree�
Let N be the total number of update operations� M be the size of the internal memory and B

be the block size and set m � M�B and n � N�B� The bu�er tree is an �a� b��tree 	���� where
a � m�
 and b � m� augmented with a bu�er in each node of size ��m� blocks� Each node �with
the exception of the root� has a fan out �number of children� between m�
 and m� Each node also
contains partitioning elements� or �splitters� which delimit the range of keys that will be routed
to each child� The number of splitters is one less than the fanout of the node� The height of the
bu�er tree is O�logm n� �see Figure ��� Since the bu�er tree is an extension of the �a� b��tree� the
computational complexity analyses of the various �a� b��tree operations still apply� The bu�ers are
used to defer operations� to allow their execution in a �lazy manner�� thus achieving the necessary
blocking for performing operations e�ciently in external memory� A bu�er is full if it has more
than m�� blocks�
For any update operation� a request element is created� consisting of the record to be inserted or

deleted� a �ag denoting the type of the operation� and an automatically generated time stamp� Such
request elements are collected in the internal memory until a block of B requests has been formed�
The request elements� as a block� are inserted into the bu�er of the root using one I�O� If the bu�er
of the root contains less than m�� blocks there is nothing else to be done in this step� Otherwise
the bu�er is emptied by a bu�er�emptying process�
The bu�er�emptying process at an internal node requires O�m� I�Os� since we load m�� blocks

into the internal memory and distribute the elements among the ��m� children of that node� A
bu�er�emptying process at a leaf may require rebalancing the underlying �a� b��tree� An �a� b��tree
is rebalanced by performing a series of �splits� in the case of an insertion or a series of �fuse� and
�share� operations in the case of a delete 	���� Before performing a rebalance operation� we ensure

that the bu�ers for the corresponding nodes are empty� This is achieved by �rst doing the bu�er�
emptying process at the node involved� The deletion of a block may involve the initiation of several
bu�er�emptying processes� By using dummy blocks during the deletion process� a bu�er emptying
process can be protected from interference by other processes� �See 	�� for details��
The analysis �i�e�� the I�O complexity� of operations on the bu�er tree is obtained by adapting the

amortization arguments for �a� b� trees 	���� Each update element� on insertion into the root bu�er�

is given O� logm n
B
� credits� Each block in the bu�er of node v holds O�the height of the tree rooted

at v� credits� For an internal node� its bu�er is emptied only if it gets full and moreover this requires
O�m� I�O�s� Therefore� ignoring the cost of rebalancing� the total cost of all bu�er emptying on
internal nodes is bounded by O�n log

m
n� I�Os� The total number of rebalance operations required in

an �a� b��tree� where b � �a� over K update operations on an initially empty �a�b��tree� is bounded
by K��b��� a�� Therefore� for N update operations� on an �m�
�m��tree� the total number of
rebalance operations is bounded by O�n�m�� Moreover� each rebalance operation may require a
bu�er�emptying process as well as updating the partitioning elements� and therefore may require up
to O�m� I�Os� Thus the total cost of rebalancing is O�n� I�Os� The cost of emptying leaf nodes is
bounded by the sorting operation� We summarize�

Theorem ��
Arge �� ��� The total cost of an arbitrary sequence of N intermixed insert and delete
operations on an initially empty bu�er tree is O�n log

m
n� I	O operations�

���� Sorting
A bu�er tree can be used to sort N items as follows� First insert N items into the bu�er tree

followed by an empty	write operation� This is accomplished by performing a bu�er�emptying process
on every node starting at the root� followed by reporting the elements in all the leaves in the sorted
order� This can be done within the complexity of computing the bu�er tree data�structure�

Corollary ��
Arge ��� N elements can be sorted in O�n logm n� I	O operations using the bu�er
tree�

The PDM compares competing EM algorithms according to the asymptotic number of I�O
operations they require to solve a given problem of size N� By this model� the bu�er tree sorting
algorithm 	�� is optimal� as the number of I�O operations matches the lower bound ��n logm n�
for the sorting problem 	���� In practice� however� other factors can also a�ect the running time�
Cormen and Hirschl 	��� observe that many PDM applications are not I�O bound� which suggests
that CPU time is an important factor to be considered� A model which includes both I�O and CPU
time is presented in 	����

���� Priority Queues
A dynamic search tree can be used as a priority queue� since in general� the leftmost leaf of the

search tree contains the smallest element� We can use the bu�er tree for maintaining a priority queue
in external memory by permitting the update operation described previously for insertion into the
priority queue and adding a deletemin operation� It is not necessarily true that the smallest element
is in the leftmost leaf in the bu�er tree� as it could be in the bu�er of any node on the path from
the root to the leftmost leaf� In order to extract the minimum element� i�e�� execute the deletemin
operation� a bu�er�emptying process must �rst be performed on all nodes on the path from the root
to the leftmost leaf� After the bu�er emptying the leftmost leaf consists of the B smallest elements�
and the children of the leftmost node in the bu�er tree consists of at least the m

�
B smallest elements�

These elements can be kept in the internal memory� and at least m
�
B deletemins can be answered

without doing any additional I�O� In order to obtain correct results for future deletemins� any new
insertion�deletion must be checked �rst with these elements in the internal memory� This realization
of a priority queue does not support the changing of priorities on elements already in the queue�

Theorem ��
Arge ��� The total cost of an arbitrary sequence of N insert� delete and deletemin
operations on an initially empty bu�er tree is O�n logm n� I	O operations�

�For a single disk� n is the number of disk blocks in the problem� m is the number of disk blocks that �t into the
memory size M �

�

�� Implementation Issues

���� Implementation of the Bu�er Tree
������ The
a�b��Tree
The bu�er tree is an �a�b��tree with bu�ers added to each tree node� One source of code for an

�a�b��tree is LEDA 	���� It quickly became clear� however� that this code was designed speci�cally
for internal memory usage� as nodes were linked by many pointers to support a wide range of
higher level operations� Converting the various pointers of the �a�b��tree implementation to external
memory representations turned out to be time consuming and ine�ective for a data structure that
was required to be I�O e�cient� Too many I�O operations were required to update a single �eld in
a child or parent of the node in memory to give attractive EM performance�

������ The Bu�ers
Each node of the bu�er tree has an associated bu�er� which may contain between � and m��

blocks �between � and kM�� bytes� of data� which have not yet been inserted into the �a�b��tree
part of the bu�er tree� The fanout of an internal node is at most m� Therefore� for a bu�er tree
consisting of � levels� there may exist up to m��� bu�ers� each kM�� bytes in size�
Our implementation currently models each bu�er as a Unix �le� Due to restrictions on the

number of Unix �les that could be open at a time� each bu�er �le is closed after use and reopened
when necessary� The time required by �le open and close operations� as measured in our tests� was
small� However� preliminary experiments suggest that this scheme may limit the e�ectiveness of
asynchronous I�O� since the �le close operation must wait for any outstanding I�O to complete� In
this paper we report primarily on our experiences using synchronous I�O�

������ Compatibility� Usability and Accessibility
We wanted our implementation to be compatible with the use of LEDA 	��� and with TPIE 	���

���� The large number of algorithms and data structures available in LEDA forms an attractive
context for implementation of internal memory algorithms� which are often components of a larger
external memory system� For example� the external memory priority queue uses an internal memory
priority queue as a component� The collection of e�cient external memory techniques provided by
TPIE forms an attractive workbench for building and testing new EM implementations� We expect
to use TPIE services in a later version of our implementation and perhaps o�er it as an addition
to the library� We chose C�� as our implementation language to preserve potential compatibility
with these code libraries� In addition� we adopted the automated documentation tools from LEDA�

���� Implementation of an EM Sort Using the Bu�er Tree
A bu�er tree can be made to sort a data set simply by inserting the data into the tree� and then

force�emptying the bu�ers� Our implementation allows the leaves to be read sequentially from left
to right� thus the implementation of sorting was straightforward�

���� Implementation of an EM Priority Queue
The bu�er tree can be modi�ed to construct an I�O�optimal priority queue with insert and

deletemin operations in EM 	��� Our implementation is obtained as follows�

� The leftmost leaf node of the bu�er tree� together with its associated m

�
to m leaf blocks are

kept in internal memory� instead of on disk� The �a�b��tree nodes on the path from the root
to the leftmost leaf are also kept in memory� For typical values of M � N � B� a� and b these
�a�b��tree nodes make a negligible impact on internal memory consumption�

� The data records in memory are organized using an appropriate internal memory priority
queue� In our initial implementation� this is a conventional heap� originally obtained from
LEDA�

�This may increase temporarily during a bu�er emptying process�

�

� Any requests that would normally be inserted into the root bu�er of the bu�er tree are �rst
compared to the leftmost splitters of the �a�b��tree nodes on the path from the root to the
leftmost leaf� As argued above� this gives a small constant number of comparisons in practice�
If a request would be routed to the cached data blocks� it is inserted directly into the internal
heap� Otherwise� it is inserted into the bu�er tree in a �normal� fashion�

� The balance of the underlying �a�b��tree is maintained in a normal fashion� If the leftmost leaf
node under�ows� sharing or fusing with siblings will occur� If it over�ows� splitting may occur
as it would in an �a�b��tree�

���� Testing Platform and Parameters
We performed most of our development and experimental work on a network of sixteen ��� MHz

Pentiums� each with �� MB of internal memory and a pair of � GB hard disks used exclusively for
data storage� A central � GB hard disk is available via NFS for program storage� The processors
each run the Linux operating system� Although we did not use it except for NFS access to the
central program storage� the processors are interconnected by a fast ethernet switch� We found that
our experimental timings were reproducible between processors� and so we were able to run multiple
timing tests independently� simultaneously� and reliably on this platform�
We chose k � �� bytes as the record size for our tests� A record �sometimes we will call it an

element� consisted of four integer �
 byte� �elds� a key� an associated �data �eld�� a timestamp� and
an operation type �insert�delete�query� �eld� We chose kB �
�� bytes� since this was the system
page size� We chose kM � ���KB �m������ which is small� but allowed us to choose manageable
problem sizes �from a disk space point of view� yet still apply stress to our algorithms�

���� Testing
In order to obtain meaningful performance results� we attempted to control the following factors�

Contention with other processes or users of the machine for machine resources such as memory�
CPU and disks� We perform the testing on dedicated machines� and so the results were not a�ected
by other users� The Unix operating system spontaneously initiates various system tasks to perform
routine maintenance and monitoring functions� thus it is not easy to avoid contending with these
tasks for system resources� Smaller test runs may vary signi�cantly due to these e�ects� However�
on the larger test runs� the in�uence of system tasks on the run time can generally be ignored�

Virtual memory e�ects such as the �transparent� behaviour of the operating system to swap parts
of the program image between main memory and secondary storage� The swapping of portions of a
task to disk to make room for another activity can occur without warning or noti�cation� In our
tests we attempted to minimize the likelihood of this occuring by choosing kM � the problem size in
bytes� to be much smaller than the physical memory size� For instance� on our Linux machines with
��MB of physical memory� we performed the majority of our tests using kM � ���KB� Another
tactic is to use the Linux mlockall service call to lock the application into memory� This seems to
work reasonably well in some cases� and does allow the application to use up to �� of the physical
memory without fear of being a�ected by virtual memory e�ects� However� the requesting program
must be running with �root� privileges for the request to be honoured�

���� Test Results
������ Comparison to Quicksort
We found that the bu�er tree easily outperformed the �built�in� internal memory quicksort

technique� A simple quicksort program was written using the built�in C function �qsort�� Figure �
shows the results for a range of problem sizes� For larger input sets� the �recursive� quicksort program
ran out of stack space on our system� but by that time the internal sort was slowing due to virtual
memory e�ects and the bu�er tree was already outperforming it�

������ Tuning the Bu�er Tree
We discovered that the value of b relative to m is important to the performance of bu�er tree sort

on random data� For bu�ers of size m

�
and �a� b� � �m

�
�m� as suggested in 	��� we obtain �partial�

�

0

50

100

150

200

250

300

350

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

T
im

e
(s

ec
)

Number of Items (x 1,000,000)

Internal Quicksort
Buffer Tree

Figure �
 Timings for Internal Quicksort and Bu�er Tree Sort on Random Inputs
 For problem

sizes larger than �� million items the internal quicksort failed due to lack of internal memory�

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
)

Millions of Data Elements

Different Fanouts (IOSTREAM)

IOS b=m
IOS b=m/7
IOS b=m/8
IOS b=m/9

TPIE Merge Sort

Figure �
 Timings for Bu�er Tree Sort and TPIE Merge Sort
 TMS ran out of disk space at

about �� million elements because it keeps its original data �le� BTS does not require that all of

the input data be available before it begins� and does not require a separate �le for the original

data�

block sizes of approximately B
�
keys pushed to the next level for each of �perhaps� m children of a

node whenever the parent�s bu�er is emptied� Reducing the fanout� while maintaining the bu�er
size increases the expected number of elements in each block� We found that �a� b� � �m

��
� m
�
� gave

the best performance in our tests� Smaller or larger values of b resulted in longer run times� Figure �
shows running time curves for Bu�er Tree Sort �BTS� and for TPIE Merge Sort �TMS�� Results for
BTS are shown for several values of b� where a � b�
 in all cases� Both TMS and BTS are running
with synchronous I�O and single bu�ering� The TPIE MMB stream option is used� The Bu�er Tree
is using the !iostream� access method� BTS performance is best for about b � m

�
and gets worse if b

di�ers much from this value� BTS with b � m�� has running times that change nearly linearly with
the problem size for the problem sizes shown�
We caution that our experiments focussed on �nding support for the predictions of asymptotic

behaviour of Bu�er Tree Sort� The actual running times of BTS may be improved by further tuning�
and the performance of TPIE Merge Sort may improve with other choices of parameters and options�
We found the increased speed with smaller b intriguing� and so we counted the number of block

pushes performed by the algorithm� A block push occurs when data is pushed to a child bu�er after
the parent�s bu�er becomes full� It may consist of a partial block� a full block� or more than a block

�

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 B

lo
ck

 P
us

he
s

Millions of Data Elements

Block Pushes for Different Fanouts

b=m
b=m/3
b=m/5
b=m/6
b=m/7
b=m/8
b=m/9

Figure �
 Number of Block Pushes for Bu�er Tree Sort on Random Inputs

of request elements� Reducing the fanout increases the expected size of the data in a block push� and
therefore may reduce the number required� and the number of I�O operations as a result� Figure

shows the relationship between several fanout values b and the number of block pushes over a range
of input sizes� The reduction in block pushes seems to be the major reason for the improvement in
running time between b � m and b � m

�
�

������ Non�linearities in the Running Time
We observed that contrary to predictions of the I�O model� for random input data our bu�er tree

sort implementation tended to have non�linear run times as the problem size increased� �Actually�
we expect the running time to increase more than linearly by a logarithmic factor� However� since
the base of this logarithm is large� the predicted increase in running time is close to linear for the
range of problem sizes considered��
Figure � shows a graph of problem size versus runtime for random input data and b � m� Also

shown in this graph are curves for the various activities of the bu�er tree� i�e�� a breakdown of
where this time is spent� The total running time appears to be increasing superlinearly with the
problem size� Total Running Time is the sum of running time for Insertions plus Force Empty All
Bu�ers� Running time for Insertions is composed of the sum of Insertion� Empty Internal Bu�ers
plus Insertion� Empty Leaf Bu�ers� Both of these seem to be more than linear with the problem
size� However� referring to Figure
� the number of block pushes is not increasing superlinearly�
Adjusting the parameter b in the bu�er tree both reduced the number of I�O operations performed

by BTS and apparently removed the non�linear behaviour in our tests� Figure � shows the same
graph as Figure � for b � m��� In contrast to Figure �� the Total Running Time curve is quite linear
after about �� million elements� The component curves in the �gure are equally well behaved�
While the constant represented by the slope of the running time curve is larger for BTS than for

TMS� we note that BTS is an online sorting technique and therefore addresses a di�erent situation
than does TMS� �See Figure ���

������ Experiments with Parallel Disks
We experimented brie�y with storing the bu�er tree on multiple disks� by striping the bu�ers and

leaves across two disks� We obtained a multiple disk driver �the �PDM API�� from Tom Cormen
at Dartmouth College� and ported it from the DEC Alpha environment to Linux without much
di�culty� To manage concurrent disk access� the PDM API requires a Posix threads implementation�
which we obtained from Florida State University� Perhaps due to the large data cache maintained
by Linux� we found that large data volumes were required before two parallel disks outperformed
a single disk for a simple �write�as�quick�as�you�can� application� For bu�er tree sort this would
require a single block push to be very large� We tried increasing m to allow this and did see
marginally better performance with two disks for moderate values of n� Unfortunately� as n grew

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
)

Millions of Data Elements

Breakdown of Buffer Tree Activities b=m

Total Running Time
Insertion

Force Empty Buffers
Insertion:Empty Internal Buffers

Insertion:Empty Leaf Buffers

Figure �
 Timings for Bu�er Tree Sort on Random Inputs� �a� b� � �m
�
�m�� m � ���� B � ����

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
)

Millions of Data Elements

Breakdown of Buffer Tree Activities b=m/8

Total Running Time
Insertion

Force Empty Buffers
Insertion:Empty Internal Buffers

Insertion:Empty Leaf Buffers

Figure �
 Timings for Bu�er Tree Sort on Random Inputs� �a� b� � �m
��
� m
�
�� m � ���� B � ����

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
)

Millions of Data Elements

Pipelined Sort

Total Running Time
Insertion

Force Empty Buffers
TPIE Merge Sort

Figure �
 Pipelining sort with generation of inputs
 if the generation of the inputs is su�ciently

time consuming� Bu�er Tree Sort can provide a speed advantage over o�ine methods by permit�

ting the insertion time to be hidden by the time to generate its inputs� The time to Force Empty

Bu�ers then may be the only time that remains �visible��

���

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
)

Millions of Data Elements

Comparison of PDM and Iostream Access Methods

IOS b=m
PDM b=m

IOS b=m/8
PDM b=m/8

Figure
 Running Times of PDM and Iostream I	O Access Methods
 The PDM uses asyn�

chronous I	O and this seems to give it an advantage for the larger fanouts

towards a more interesting size we began to see our performance degrade� apparently due to virtual
memory e�ects� We concluded that we needed more real memory for this sort of experiment�
Figure � shows running times for a single disk under the PDM API and C�� iostream access

methods� The PDM API could be expected to be slightly slower as it introduces some extra compu�
tation such as its use of threads� This seems to be true in the case of b � m

�
� but its ability to overlap

computation with I�O �asynchronous I�O� seems to allow it to outperform in the case b � m�

�� Conclusions

In this paper we describe an implementation of a bu�er tree and two EM algorithms based on
the bu�er tree� an external memory treesort� and an external memory priority queue�
Our tests on random input sets lead to an experimental determination of parameter values

di�erent from those originally suggested in the design of the data structure�
Although the running times of our treesort implementation �BTS� with parameter b � m clearly

show non�linearities� b � m

�
produced a running time curve which is for practical purposes a straight

line when the problem size is more than �� million elements� The application was also heavily I�O
bound� This supports the prediction of the algorithm 	�� and the model 	��� that the asymptotic
running time is ��n logm n� I�Os and the number of I�O operations is the dominant issue in the
algorithm�
The non�linear behaviour of BTS with parameter b � m was manifested to various degrees

in some of the other fanouts which we tried� While we expected some e�ect on running time
as this parameter was varied� the sensitivity to non�linearity is troubling and we do not rule out
implementation decisions as a possible cause� We hope that by further unit testing and performance
measurements of the various components we will soon be able to explain this behaviour�
We conclude that �a� the bu�er tree as a generic data structure appears to perform well in

theory and practice� and �b� measuring I�O e�ciency experimentally is an important topic that
merits further attention�

���� Acknowlegements
We would like to thank Lars Arge and Je� Vitter for their encouragement and interest in this

work� Tom Cormen for providing the PDM API� and Doron Nussbaum and Darren Vengro� for
helpful discussions�

���

References

	�� A� Aggarwal and J� S� Vitter� The Input�Output complexity of sorting and related problems�
CACM� ���������"����� ����

	�� L� Arge� The bu�er tree� A new technique for optimal I�O�algorithms� In Proc� Workshop on
Algorithms and Data Structures� LNCS ���� pages ��
"�
�� ���

	�� L� Arge� E�cient External�Memory Data Structures and Applications� PhD thesis� University
of Aarhus� ���

	
� L� Arge� D� E� Vengro�� and J� S� Vitter� External�memory algorithms for processing line
segments in geographic information systems� In ESA� LNCS ���� pages ��"���� ���

	�� R� D� Barve� E� F� Grove� and J� S� Vitter� Simple randomized mergesort on parallel disks� In
Proc� ACM SPAA� ���

	�� Y��J� Chiang� Experiments on the practical I�O e�ciency of geometric algorithms� Distribution
sweep vs� plane sweep� In Proc� Workshop on Algorithms and Data Structures� LNCS ���� pages
�
�"���� ���

	�� Y��J� Chiang et al� External�memory graph algorithms� In Proc� ACM�SIAM Symp� on Discrete
Algorithms� pages ��"�
� ���

	�� Yi�Jen Chiang� Dynamic and I	O�E�cient Algorithms for Computational Geometry and Graph
Problems� Theoretical and Experimental Results� PhD thesis� Brown University� August ���

	� Thomas H� Cormen� Virtual Memory for Data Parallel Computing� PhD thesis� Department
of Electrical Engineering and Computer Science� Massachusetts Institute of Technology� ���

	��� Thomas H� Cormen and Melissa Hirschl� Early Experiences in Evaluating the Parallel Disk
Model with the ViC# Implementation� Technical Report PCS�TR����� Dartmouth College�
Computer Science� Hanover� NH� September ���

	��� Thomas H� Cormen and David Kotz� Integrating theory and practice in parallel �le systems�
In Proceedings of the ���� DAGS	PC Symposium� pages �
"�
� Hanover� NH� June ���
Dartmouth Institute for Advanced Graduate Studies�

	��� F� Dehne� W� Dittrich� and D� Hutchinson� E�cient external memory algorithms by simulating
coarse�grained parallel algorithms� Proc� ACM SPAA� pages ���"���� ���

	��� R� W� Floyd� Permuting information in idealized two�level storage� In Complexity of Computer
Calculations� pages ���"��� ���� R� Miller and J� Thatcher� Eds� Plenum� New York�

	�
� G� A� Gibson� J� S� Vitter� and J� Wilkes� Report of the working group on storage I�O issues
in large�scale computing� ACM Computing Surveys� ���
�� December ���

	��� M� T� Goodrich� J��J� Tsay� D� E� Vengro�� and J� S� Vitter� External�memory computational
geometry� In FOCS� pages ��
"���� ���

	��� J� W� Hong and H� T� Kung� I�O complexity� The red�blue pebble game� In STOC� pages
���"���� ����

	��� S� Huddleston and K� Mehlhorn� A new data structure for representing sorted lists� Acta
Informatica� ������"��
� ����

	��� K� Mehlhorn and S� N�aher� LEDA� A platform for combinatorial and geometric computing�
CACM� ����"���� ���

	�� M� H� Nodine� M� T� Goodrich� and J� S� Vitter� Blocking for external graph searching� Algo�
rithmica� ���������"��
� ���

���

	��� M� H� Nodine and J� S� Vitter� Large�scale sorting in parallel memories� In ACM SPAA� pages
�"�� ���

	��� M� H� Nodine and J� S� Vitter� Deterministic distribution sort in shared and distributed memory
multiprocessors� In ACM SPAA� pages ���"��� ���

	��� J�F� Sibeyn and M� Kaufmann� Bsp�like external�memory computation� In Proc� �rd Italian
Conference on Algorithms and Complexity� ���

	��� M� Smid� Dynamic Data Structures on Multiple Storage Media� PhD thesis� University of
Amsterdam� ���

	�
� D� E� Vengro�� A transparent parallel I�O environment� In Proc� ���� DAGS Symposium on
Parallel Computation� �
�

	��� D� E� Vengro�� TPIE User Manual and Reference� Duke University� ���

	��� D� E� Vengro� and J� S� Vitter� Supporting I�O�e�cient scienti�c computation in TPIE� In
Proc� IEEE Symp� on Parallel and Distributed Computing� ���

	��� J� S� Vitter and M� H� Nodine� Large�scale sorting in uniform memory hierarchies� Journal of
Parallel and Distributed Computing� ������"��
� ���

	��� J� S� Vitter and E� A� M� Shriver� Algorithms for parallel memory� I� Two�level memories�
Algorithmica� ����"������"�
�� �
�

���

