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Abstract. We describe a study on using case-based learning techniques in a 

goal-driven autonomy (GDA) agent for real-time strategy games. The two case 

bases in our Learning GDA (LGDA) agent store (1) the expected states that an 

agent can reach when executing an action in and (2) the next goals to pursue 

when a discrepancy occurs between the expected and encountered states. We 

report on an ablation study that demonstrates performance gains using LGDA. 

Keywords: Case-based learning, goal-driven autonomy, real-time strategy  

1     Introduction 

Goal-driven autonomy (GDA) is a goal reasoning model in which agents continuously 
monitor the current plan’s execution and assess whether the encountered states match 
expectations (Molineaux et al., 2010). When GDA agents detect a state discrepancy 
(i.e., when the expected and actual states mismatch), they consider whether to 
formulate new goals that, if achieved, would fulfill an objective such as maximizing a 
long-term reward. This monitoring process and the long-term objective of maximizing 
a reward is reminiscent of reinforcement learning (RL) (Sutton & Barto, 1994). We 
claim that, by explicitly representing expectations and discrepancies, GDA agents can 
adapt to discrepancies in dynamic environments more quickly than can RL agents. 

We present a GDA learning algorithm that can learn expectations and 
discrepancies for combat tasks in a real-time strategy (RTS) game, and use the 
popular Wargus game engine for our environment (Aha et al., 2005; Judah et al., 
2010). In combat tasks, players maneuver their units to defeat their opponent’s units. 
This task is complex for two reasons. First, multiple unit types exist (with varying 
capabilities), and RTS games follow a rock-paper-scissors model that forces players 
to adequately use friendly units based on their types. For example, archers are long-
ranged units that can quickly eliminate footmen, which are slow and can only attack 
at close range. In turn, fast-moving knights can easily eliminate archers using their 
melee attack. Finally, footmen can eliminate knights by swarming them. Second, RTS 
games assign units to tactical roles, where each unit in a group assumes a role based 
on its type and also the types of other units in its group. For example, footmen can 
play the role of tanks, archers can play the role of heavy artillery, and knights can 
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play reserve roles, in case something goes wrong. However, if the group lacks 
footmen, then knights can play the role of tanks. 

These two characteristics pose challenges for methods that learn combat tasks. 
This difficulty is compounded by other characteristics of RTS games: adversarial 
agents, real-time action execution, and non-deterministic actions (e.g., a stochastic 
function determines the amount of damage incurred when one unit attacks another). 

We are interested in agents that automatically learn which goals are best to 
achieve, throughout a game, by reasoning about (1) expectations during plan 
execution and (2) discrepancies that occur between expected and encountered states. 
LGDA accomplishes these by learning two case bases: an expectations case base, 
which records the expected states encountered, and a goal formulation case base, 
which records the next goal to pursue when a discrepancy occurs. 

 In Section 2, we define GDA concepts by using the Wargus game elements and 
by contrasting them with well-known RL concepts. Section 3 presents our techniques 
for case-based learning; we contrast these with the RL cycle. Section 4 presents an 
example of a learning episode. Section 5 presents our empirical evaluation. We 
discuss related work in Section 6 and future work in Section 7. 

 2     Elements of the Learning Goal-Driven Autonomy Algorithm 

LGDA is given the basic action model S: S ´ A à 2
S
, where S denotes, for each state 

sÎS and each action aÎA, the sets of states S(s,a) that can be reached when a is 
executed in s. This is the same as the state transition model learned by RL agents and 
is equivalent to the action model required by planning agents. For example, state 
information may include that an archer is within attacking range of an enemy 
footman. After executing an attack action, the environment state may indicate that the 
footman is killed, the archer is killed, or both are killed.  

LGDA doesn’t know (1) which actions are “best” for any given state, or (2) the 

probability that, when executing action a on state s, it will reach a state s′. In our 

example, the agent doesn’t know the probability that the archer or footman will kill its 

opponent. This is reminiscent of RL agents, which use this information to learn the 

value V(s) of being in any state s, and the value Q(s,a) of executing a in state s. 
However, GDA agents also know the goals G that can be pursued. For example, a 

goal “divide and conquer” may require splitting a force into two groups, with the first 
advancing towards the enemy from the north and the latter from the south. 
Furthermore, for each goal g, LGDA is given the policy pg: S à 2

[0,1] ´ A
, which 

indicates how to achieve g by mapping, for every state s, the  probability distribution 
pg(s), which is a collection of pairs (p,a), where p is the probability that action a is 
taken. Acquiring such policies automatically is possible as demonstrated in Gillespie 
et al. (2010), which observes a player’s actions while pursuing a goal g and records 
the probability distribution pg(s) for each state s over multiple games.  

Initially, LGDA has no knowledge about which goal in G it should pursue at a 
given time or the semantics of these goals g (i.e., what they achieve). It is also not 
given the semantics of their policies pg. However, if it can learn this information, then 
LGDA could self-determine which goal it should pursue, and could constantly 
monitor the environment to make sure that the states it encounters are as expected. 
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One way that LGDA can learn the meaning of the goal g is by inspecting pg(s) for 
each state s to examine the possible actions and the probability of taking them, and 
then observe for each action a in pg(s), the states S(s,a) that could be reached. 
However, it is difficult to automatically elicit from these inspections anything 
resembling our description of the “divide and conquer” goal. Instead, LGDA learns 
(during environment interactions) the expectations case base (ECB), which records 
the expected states encountered, and the goal formulation case base (GFCB), which 
records the next goal to pursue when a discrepancy occurs.  

The ECB enhances the state transition model by defining the probability that a 
state s′ will be reached when taking action a in state s. More precisely, ECB computes 
the mapping S ´ A à 2

[0,1] ´ S
, where for each state-action pair (s,a), it returns a 

probability distribution ECB(s,a) as a collection of pairs (p,s′), where p is the 
probability that state s′ is reached when executing action a in state s.  

 We use a standard feature-value vector representation to represent a state. More 
precisely, we define a state as an n-tuple vector of values s = (v1,…,vn), where each 
value vi is of some type Ti. In our Wargus scenarios, armies include multiple unit 
types. Given this, our states are vectors s=(f,a,m,k,f’,a’,m’k’), which respectively 
denote the number of footmen, archers, mages, and knights in the army being 
controlled by our team and those controlled by the opponent. This simple model 
works surprisingly well in scenarios where no units and buildings can be created, 
maps have no obstacles and the available units from the opponents are observable. 

We define a state discrepancy (or simply a discrepancy) as an n-vector of binary 
values (b1,…,bn). Given two states x and s′ (i.e., the expected and actual states), the 
discrepancy value for the coordinate k, bk, is defined as 1 if x and s′ have the same 
value on coordinate k and 0 if otherwise. 
The GFCB denotes, for a goal g being pursued and a discrepancy d, the expected 
value of pursuing another goal g′ given (g,d). More precisely, GFCB computes the 
mapping G ´ D  à 2

[0,1] ´ G
, where for each goal discrepancy pair (g,d), it returns a 

probability distribution GFCB(g,d) as a collection of pairs (v,g′), where v is the 
expected value of selecting goal g′ when (g,d) occurs. 

3     The Feedback Loop in LGDA 

Figure 1 presents the feedback loop that our learning agent LGDA follows when 

performing goal-driven autonomy after training. LGDA’s inputs are a collection of 

goals and a collection of policies, one policy pg for each goal g. The outputs from 

training are the expectations case base ECB and the goal formulation case base 

GFCB; we discuss learning these below. LGDA begins with some given goal g = ginit 

and an initial state s = s0 (Label 1). The following steps are repeated while LGDA 

interacts with the environment (i.e., in this paper, Wargus). For further details about 

LGDA please see Jaidee et al. (2011): 

 

1. Given s and g, the next action a is computed by executing policy pg. Thus, a 

is chosen according to the probability distribution pg(s) (Label 2). 

2. Action a is executed in the environment, resulting in a new state s′ (Label 3). 
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3. After a fixed amount of time, s′ is compared against the expected state x 

(Label 4). Since expected states have a probability distribution, the expected 

state is computed as the one with the maximum probability: 

x = maxp {(x,p) Î ECB(s,a)}. 

4. A discrepancy d occurs 

whenever x ¹ s′ and it is computed as 

described in Section 2. When a 

discrepancy occurs a new goal g′ is 

selected based on (g,d) (Label 5). The 

new goal is selected with an e-greedy 

selection process: with a probability 

1-e a random goal in GFCB(g,d) is 

selected; with probability e, the goal 

with the highest expected value is 

computed: 

g′ = maxv {(g′,v) Î GFCB(g,d)} 

Learning the Expectations Case 

Base. In Step 3, the values of s, a, and 

s′ are used to update the ECB’s 

probabilities for ECB(s,a) by 

incorporating the new occurrence of 

(s,a,s′). If an entry (s′,p) already exists 

in ECB(s,a), then its probability is 

increased (and the probabilities of the 

other entries are decreased). If the entry 

(s′,p) does not exist in ECB(s,a), then a new one is added with a low probability (and 

the probabilities of the other entries are slightly decreased). 

Learning the Goal Formulation Case Base. In Step 4, the values of g, d, and g′ are 

used to update GFCB via Q-learning (Sutton & Barto, 1998). LGDA maps Q-learning 

states to (g,d) pairs and maps actions to the next goal g′. Hence, Q((g,d),g′) represents 

the expected value of taking goal g′ when g and d are the current goal and 

discrepancy. The reward is taken from the environment after executing an action. In a 

Wargus game, the reward is the difference in score between the time that an action a 

is selected and the time when its execution ends. Hence, our formulation seeks to 

choose new goals that maximize the game score. 

4     Domain Model and Example 

To demonstrate case-based learning of GDA agents for real-time strategy combat 

tasks, we use Wargus for our environment (Figure 2). Wargus is a modified version of 

Warcraft IIÒ, which is a RTS game developed by Blizzard Entertainment. 

Figure 1: Information flow in LGDA 
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Wargus is a multiplayer combat game. In our experiments, we use two competing 
teams. Each team includes multiple types of units. Units vary in their number of hit 
points. When a unit is attacked, its hit points are decreased. When a unit’s hit points is 
reduced to zero, it dies (i.e., is removed from the game). When a unit A of one team 
kills a unit B of another team, the score of unit A’s team is increased. For combat 
tasks, the game ends when all units of one team are eliminated. 

Teams are initially composed of n units of k different types. States are 2k-tuples 
(x1,x2,…xk,y1,y2,…,yk) where xi and yi are the current number of units of type i on our 
team and the opponent team, respectively. The first half of the vector encodes the 
number of units for the first team of each type ti and the second half the types of units 
of each type ti-k for the second team. The states include information about only the 
current units. Thus, each value is an integer in the range [0,n], and the number of units 
per team also remains in the range [0,n]. In our experiments we have 5 types: 
footmen, archers, knights, mages, and ballistae. Actions are n-tuples (a1, a2,… an-1, 
an), where ai Î {0,1,…,k-1,k} such that 0 indicates that the unit does nothing and ai ≥ 
1 indicates that unit i will attack an opponent unit of type ai. 

The utility U of state s is defined by the function U(s) = F(s)–E(s), where F(s) is 

our team’s score and E(s) is the enemy’s score. The discrepancy between states s and 

s′ is a 2k-dimensional vector (v0,v1,…vk-1,vk,vk+1,… ,v2k-2,v2k-1), where vi is true (i.e., 1) 

if s and s′ have the same value in coordinate i and false otherwise. 

Example. Suppose each team has four units of two different types, the current goal g 

is HiMaxHPTeam (see Table 1 for a description of the goals) and the current state 

state s is (2,2,1,2). Suppose that according to policy pg the next action a is (0,0,0,0) 

and according to ECB the expected state  for (s,a) is ( ). Suppose the resulting 

state after executing a in s is (1,2,1,2). LGDA will calculate the discrepancy  

between the current and expected states. Here, d is (false, true, false, true). The next 

goal g¢ is chosen by retrieving it from GFCB(g,d), thus closing the loop. 

Figure 2: Snapshot of a Wargus Game 
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5     Experimental Evaluation 

We used the task of winning Wargus games to investigate the hypothesis: LGDA can 

significantly outperform ablated agents that use only RL or only CBR, respectively. 

Table 1: List of goals and their associated policies  

Goals Description of Policies 

HIMAXHPTEAM 
All units attack opponent units with the highest hit points first 

(ballistae for our experiment), then attack opponent units with 

second highest hit points (knights), etc. 

HIRANGETEAM 

All units on our team attack opponent units with the highest 

range of attack first (ballistae in our experiment), and then 

attack opponent units with the second highest range of attack 

(archers and mages), etc. 

GOOFYTEAM 

Different unit types on our team attack different kinds of 

enemy units as indicated in the following list: 

Type of 

units 
Attacking list 

footman knight®footman®archer®ballista®mage 
ballista footman®knight®archer®mage®ballista 
knight archer®mage®ballista®knight®footman 
archer knight®mage®archer®footman®ballista 
mage knight®footman®archer®ballista®mage 

 

KAMIKAZETEAM 

Different unit types on our team attack different kinds of 

enemy units as indicated in the following list: 

Type of 

units 
Attacking list 

footman ballista®mage®archer®footman®knight 
ballista knight®ballista®mage®archer®footman 
knight footman® mage®archer®ballista®knight 
archer mage®knight®footman®ballista®archer 
mage archer®footman®knight®ballista®mage 

 

TYPEDESCENDTEAM 
All units on our team attack opponent enemy units in the same 

order: mages®archers®knights®ballistae®footmen. 
 

5.1 Experimental Setup 

Game configuration. We ran Wargus on two maps: a medium-sized map (64 x 64 

cells) with 8 units per team and a large map (128×128 cells) with 32 units per team.  

In the medium map, each team had 4 footmen, 1 archer, 1 knight, 1 mage, and 1 

ballista. For the large map, each team had 16 footmen, 4 archers, 4 knights, 4 mages, 

and 4 ballistae. The set of goals used by LGDA and their associated policies are 

described in Table 1. A game is won by the first team to reach a predetermined score 
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limit. Scores are computed by Wargus by adding the number of enemy units killed 

(weighted according to the type of unit) and subtracting the number of own units 

killed (with the same weights). We set the score limit of the medium map to 200 

points and 1000 points for the large map. 
We compared LGDA versus the following agents: Retaliate (Smith et al., 2007), 

which performs Q-learning, and the ablation Random GDA (RGDA), which replaces 
LGDA’s e-greedy goal selection procedure with a random selection procedure.   

All agents (LGDA, Retaliate, and RGDA) use the same model for S and A. The 
learning agents use the same utility function U. The definitions for S, A, and U are 
given in Section 4.  Scores were averaged over 10 games.  

This study addresses our hypothesis: it directly compares LGDA versus the other 
agents. We trained each learning agent versus the five policies described in Table 1. 
LGDA received as input these policies. We recorded results before and after each 
training repetition of LGDA versus each of the two other agents, continuing until their 
relative performance stabilized. Knowledge learned during testing was flushed 
between games. Our performance metric is state utility, as defined in Section 4. For 
the e-greedy goal selection procedure, we set e=0.1 for the large map for LGDA 
agents: it will choose the next best goal 90% of the time and randomly select a goal 
10% of the time. For the medium map, we set e=0.3 because games on that map end 
quickly and we want to encourage LGDA to explore other goals. For this same reason 
we ran 40 iterations for the medium map to obtain a better estimate of asymptotic 
performance. In contrast, 20 rounds were sufficient to observe this for the large map. 

5.2 Experimental Results 

Figures 3 and 4 show the results for the medium and large maps. The ordinate plots 
the utility and the abscissa plots the number of training iterations that have been 
completed with the 5 policies shown in Table 1. 

 

Figure 3: Results for 8 versus 8 units on a medium-sized map 
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Figure 4: Results for 32 versus 32 units on a large map 
 
The results validate our hypothesis for LGDA versus Retaliate but not for LGDA 
versus RGDA. For the former, the mean of the underlying distribution of their 
difference in utility values in the results for the medium map was 14.3 ± 10.1 and in 
the large map this was 183.8 ± 49.9, both at the 95% confidence level. Thus, this 
supports our hypothesis that LGDA outperforms its RL-only ablation on these maps. 
However, the results versus RGDA are 17.2 ± 19.1 and 88.1 ± 110.1, respectively; 
LGDA is not guaranteed to have a positive utility value vs. RGDA with high 
confidence. The reason for this is that the given policies are competent and hence, 
randomly selecting a goal will always select a competent policy. We do observe that, 
as the number of training iterations increases, LGDA’s performance improves 
compared to RGDA; LGDA won the last 9 medium map games and the last 7 large 
map games. This indicates that LGDA is fine-tuning its goal selection behavior 
asymptotically. 

6   Related Work 

The LGDA algorithm used in this paper is identical to the one described in (Jaidee et 

al., 2011). However, in this paper we instead apply LGDA to combat tasks in real-

time strategy games, which is a more complex task than we previously investigated. 

Weber et al. (2010) also use GDA for real-time strategy games, but their algorithm 

does not learn expectations. Their cases map discrepancies (between the current state 

and the goal the agent is trying to achieve) to new goals, which are represented as 

states, and they use 1-nearest neighbor to compare the current state with recorded 

cases to perform goal selection. LGDA instead learns expectations, discrepancies, and 

goals to achieve. Furthermore, goals can be state abstractions (e.g., win the game) and 

LGDA could map a discrepancy to multiple goals.  

Other approaches investigating reasoning techniques for RTS games include 

reinforcement learning methods (Balla & Fern, 2009) and case-based reasoning 

(Szczepanski & Aamodt, 2009). LGDA combines both of these methods. 

There have been several recent contributions on goal reasoning, including 

research on goal management in cognitive architectures (Choi, 2010), goal generation 

(Hanheide et al., 2010), and meta-reasoning (Cox, 2007). Applications have included 

simulated robots (Meneguzzi & Luck, 2007), first-person shooters (Muñoz-Avila et 
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al., 2010), and Navy training simulators (Molineaux et al., 2010). We are instead 

focusing on combat tasks for RTS games.  

In contrast to the original model of goal-driven autonomy (Molineaux et al., 

2010), LGDA does not perform discrepancy explanation, and we have ignored the 

topic of goal management. We leave these topics for future research. 

GDA is also related to systems that interleave planning and execution (Ambros-

Ingerson & Steel, 1988). Those systems detect discrepancies when the state reached 

after executing the next action doesn’t match the action’s state. In contrast, LGDA 

doesn’t have knowledge about the action’s expectations. Also, those systems replan 

by pursuing the same goals. In GDA, the goals themselves change as a result of 

resolving observed discrepancies. 

7   Conclusions and Future Work 

Our study demonstrates the use of case-based techniques to learn knowledge that 
permits LGDA agents to perform effectively on combat tasks for real-time strategy 
games. Our algorithm, LGDA, integrates a case-based reasoning method with a 
reinforcement learning algorithm. Our empirical study demonstrates significant 
performance gains for LGDA compared to its RL-only ablation, and encouraging but 
not significant gains versus its CBR-only ablation, on two Wargus scenarios. 

In our future work we want to explore more robust representations for the 

discrepancies. Currently they are simple binary vectors indicating whether the current 

and expected states match on each feature. Potential extensions could include a degree 

of dissimilarity. Also, in our current framework the set of goals is fixed. We plan to 

explore learning new goals when the opportunity arises. 
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