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Abstract. Matchmaking is a technique that allows players to be matched
with others for the purpose of playing an online multiplayer game. These
players want to have a fun and balanced gameplay experience, either co-
operatively or competitively, and often even in teams. Our current work
studies what is the role of gameplay experience and CBR in this pro-
cess of matchmaking in multiplayer games. In this paper we discuss two
different approaches: skill-based and role-based matchmaking. The for-
mer generates recommendations using player skill ratings while the latter
employs cases about role configurations to propose what match is more
interesting for the players.

1 Introduction

With the widespread availability of broadband connections and the emergence of
unified online gaming services, more and more games provide online multiplayer
modes in which players can play together, either cooperatively or competitively,
and often even in teams. Playing with or against other human players can be
much more interesting and fun than playing with a typical game AI.

An online multiplayer match can be arranged in several ways. For example
a group of friends could gather into a server and configure their own match to
play together; also a player can join a match from a list of matches currently in
progress in the server.

There is an increasing interest on helping players to find matches where
they have an enjoyable gameplay experience. Up to now, matchmaking using
player experience levels has shown a strong effect on making a multiplayer game
balanced and fun. The key idea behind skill-based ranking and matchmaking is
that a game is fun for the participating players if each of the them has a fair
chance of winning [3]. Current matchmaking techniques can also add additional
preferences based on basic social and technical features (such as players’ language
and country, age, server bandwidth, the game type or the game map).

In this paper we discuss matchmaking approaches from a CBR perspective
taking into account previous gameplay experiences. We consider matchmaking
as a process that either finds players with similar skills or finds matches that are
similar to a set of enjoyable configurations of matches. These configurations are
structured cases with information about the behaviour of every player during the
match. The analysis of the player behaviour in matches, the reuse of past match
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experiences and the inclusion of additional player preferences in matchmaking
techniques for recommending a match should enhance the player satisfaction
during the recommendation process.

The paper runs as follows. Section 2 describes the matchmaking process
as case-based recommendation. In order to perform the recommendation, we
describe two basic similarity approaches: based on skills and based on roles.
Section 3 details a recommendation process based on player similarity using
skill ratings and Section 4 describes a new recommendation approach as a case-
based process as looking for player similarities using roles. Section 5 concludes
the paper and presents the ongoing lines of future work.

2 Matchmaking as a Case-based Recommendation

Process

Matchmaking consists on recommending a match to a new player. We define two
different scenarios of matchmaking in a multiplayer game:

1. Recommend an existing match. This match has not started yet because it is
waiting for new players. It is characterized by the players who are currently
involved in the match.

2. Recommend a set of players to organize a match. Several players are in the
lobby, looking for a match, but none of them are still involved in a match.

In both scenarios matchmaking is based on measuring the similarity among
players involved in the match. This similarity compares the gameplay experiences
of each player in previous games. This can be measured using two approaches.
The first is the skill-based approach (SBA), detailed in Section 3, which is re-
sponsible for generating recommendations based on player skill ratings in order
to recommended balanced matches. The second, detailed in Section 4, is the role-
based approach (RBA), which uses the roles that the players have performed in
previous experiences for recommending matches that satisfy the player expecta-
tions about enjoyment.

No matter the employed approach, the similarity or compatibility among
players is based on the behaviour of each player in previously played games.
Player behaviour is defined using playing features extracted during the different
matches that the player took part in. The information employed to characterize
a player i in a match m –Pmi– is a set of metrics < si1, .., sin > extracted during
a match. These metrics depends on the type of game because the information
needed to characterize a player is not the same in a first-person shooter or in a
race game. For example, in the former it is important the number of kills of a
player or the number of times that he was killed. However, in the latter it has
more significance the average speed, or the number times that the player crashed
his car.

Additionally, matchmaking process should take into account the player be-
haviour over time. The player profile Pi compiles all player experiences Pmi.
This profile includes additional synthetic features computed using the metrics
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extracted during the matches. These new features will be different according to
the method employed when performing the matchmaking – SBA or RBA.

Case-based recommendation is employed in product recommendation do-
mains where individual products are described in terms of a structured set of
features [9]. In matchmaking, we consider the matches as the recommended prod-
ucts. Every match m is characterized as the union of the descriptions of every
participant {P1, ...Pk}, and a set of additional features, like the type of match
or the total match time. So, we have a structured description of each player and
case-based recommendation techniques can be employed for our purpose. The
recommendation is then reduced to find the most similar players to the one who
is looking for a match to play.

The case base of items to recommend contains player profiles, more pre-
cisely, the player skill rating (SBA) and the player roles observed during previous
matches (RBA). However, not all the case-base is employed during recommenda-
tions. On the one hand, when we recommend a set of players to generate a new
match we employ the players who are currently online and who are not playing
in a formed match. On the other hand, only the stand-by matches and, more
precisely, the players who conform these matches are used when recommending
an existing match. Additionally, the last scenario needs to aggregate the infor-
mation concerning to each player in the match in order to find the match where
the players are similar to the one that requests the recommendation. Here, ag-
gregation techniques employed in group recommenders could be applied [7].

Additionally to using a case base of players, we have a case base populated
with matches, past experiences of gameplay. Every match in the case base will be
a representation of an enjoyable experience. A match is selected as a case expe-
rience because an expert –for example, a game designer– describes which player
configurations will be enjoyable when playing the game, or because players are
requested to assess the gameplay experience after finishig the game. Once these
enjoyable matches are defined, the recommendation lies in selecting a match that
is currently waiting for players or configuring a match with the players in the
lobby, which is similar to the retrieved enjoyable ones.

3 Skill-Based Approach

In this section we describe an approach to provide individual recommendation in
multiplayer games. The goal is to recommended to a player the matches whose
“level” is in keeping with the player’s “level”. The recommendation approach
described in this section follows the first alternative described in Section 2: the
similarity between a player and a match is measured in terms of the similarity
between the skill rating of the concerned player and the skill ratings of the other
players in the match. In this case, matchmaking lies in joining online players
with similar skill ratings to the concerned player.

SBA takes into account player expectations over time recommending matches
that will maintain the ratio of won/lost games as balanced as possible. We exem-
plify this approach employing one of the rating systems that we will describe in
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Section 3.1. These systems calculate the player skill rating using scoring values,
and then use these skill ratings to generate recommendations. Player scoring
is computed using the statistics that represent their ability in the game. Skill
ratings will be updated after the match has finished.

The recommendation process is divided into two different tasks: the rating
update and the recommendation itself. First, we describe several rating systems
that can be employed during the skill rating update. Section 3.2 describes the
ideas behind the skill rating update process itself, while Section 3.3 concerns to
the use of these ratings in order to perform the recommendations.

3.1 Rating systems

A rating system is a method to calculate the relative skill ratings of players in
two-player games where the result is a win, a loose or a draw. However, these
systems can be adapted to n-player games by transforming the global result into
a set of partial results of two-player confrontations.

The Elo rating system [1] is a well-known method for calculating the relative
skill ratings of players in two-player games. The Elo system was invented as an
improved chess rating system, but today it is also used as a rating system for
multiplayer competition in a number of computer games and it has been adapted
to team sports

Glicko1 is a rating system that extends the Elo’s by incorporating a measure
of uncertainty of a player’s rating. The Glicko rating system [2] is a method for
assessing a player’s strength in games of skill. The main idea is the introduction
of a measurement for the ratings reliability called RD (for ratings deviation).
The RD measures the accuracy of a player’s rating. Twice the RD is added and
subtracted from their rating to calculate this range.

Glicko is the base of the well known system called TrueSkill [5], a Bayesian
ranking algorithm and matchmaking system developed by Microsoft Research
and established in the Xbox 360 live services. With TrueSkill a new player join-
ing million-player leagues can be ranked correctly in fewer than 20 games. In
TrueSkill a player’s rank is represented as a normal distribution ℵ characterized
by a mean value of µ (representing perceived skill) and a variance of σ (repre-
senting how “confident” is the system on the player’s µ value). It can predict the
probability of each game outcome, which enhances competitive matchmaking,
making it possible to assemble skill-balanced teams from a group of players with
different abilities.

3.2 Skill rating update

The player skill rating value summarizes all the experience of matches stored
for the player. The skill rating updating process depends on the player scoring
in a match. Player scoring in a certain game depends on the type of game.

1 A comprehensive description of Glicko can be found at http://math.bu.edu/

people/mg/glicko/glicko.doc/glicko.html
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Player scoring should depend on the player behaviour during the match, the
events occurred and the achieved goals. All these variables are extracted from
the player’s actions in the match and the effects produced by these and other
players’ actions. The most significant metrics < si1, .., sin > will be collected for
each player i and stored.

The final result of a match in a multiplayer game is represented by an ordered
list of the players. This ranking is commonly created based on player scorings in
the match: the higher scoring, the higher position in the match rank. However,
the player skill rating characterization can not be extracted using only this global
result. The one-on-one partial results of every pair of players and their current
skill ratings should be taken into account. We update the player rating skill every
time a game has finished. This way, the player rating will be ready when it will
be employed during a recommendation process.

As an example we propose the use of the following general formula of the Elo
rating system for updating the skill rating of players after every match:

RpostA = RprevA + k · (S − E) (1)

The R-values represent the player skill ratings. RpostA represents the up-
graded rating for a player A after the individual confrontation with an opponent
and RprevA is the rating that the player A had before starting the game. S is the
actual result obtained by player A after the match. E represents the expected
result of the game for the player A. Finally, k represents an attenuation value
that can be interpreted as the weight given to the new match in order to update
the previous rating. This formula is calculated for each player as many times as
different opponents in the game.

Score values for every player are computed using the most significant features
of the player during the match Pmi. S is later calculated using these score values,
which represents the score obtained by player A after the match between two
players. Having two players (A,B) with a scoring of (scoreA, scoreB), and A is
the player to which we update its rating :

1. If scoreA > scoreB → S = 1
2. If scoreB < scoreA → S = 0
3. If scoreA = scoreB → S = 0.5

These results are discretized to these values due to its simplicity and because
E takes values in the same range. To calculate the value of E, which represents
the expected result of the game for the player A in the range of [0 .. 1], also used
the formula provided by Elo rating system:

E =
1

1 + 10
RB−RA
Range

(2)

RA is the rating of player A (the one we want to update). RB represents
the opponent’s rating value. Range represents the number of points between
two distinguishable levels. The process computes all the RpostA values (using
Equation 1) resulting of player A matches with every other opponent. Finally,
we update player A rating using the average value.
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3.3 Recommendation process

Once we have updated the rating for each player it is time to find the most
“balanced” matches in order to generate the recommendation. As we described
in Section 2, when using the skill ratings we can find the similarity between a
match and the player computing the skill rating of the match as an aggregation
of the information for every player who is going to play the match.

The aggregation process is inspired by the works in recommendation to
groups [7]. The main approaches to generate a preference aggregation based
on the individual user preferences are (a) merging the recommendations made
for individuals, (b) aggregation of ratings for individuals and (c) constructing a
group preference model. In this paper, we use the aggregation of the individuals
due to its simplicity. We can test different alternatives of the aggregation and
similarity functions. A match m is characterized by the union of the profiles of
every player {P1, ...Pk}, which contain every player skill rating. |m| is the num-
ber of players in the match. Below we propose two methods for recommending
matches using similar skill ratings:

– Average skill rating of the game. This simple function considers that the skill
rating of a match m is the average of the skill ratings from the players that
conform the match. The similarity function returns the difference between
the query player skill rating (Rp) and the match average skill rating.

Sim(p,m) = 1−

∣

∣

∣

∣

∣

Rp −

∑|m|
i=1

Ri

|m|

∣

∣

∣

∣

∣

(3)

– (R2) Weighting category differences. Skill ratings are discretized into ranges
or skill categories. We can consider that a match is more similar to a player
as long as more players participating in the match belongs to the same skill
category of the concerning player. If we have N skill categories and a player
P belongs to the category Cat(P ):

Sim(p,m) =

∑N

i=0
DistW (i, Cat(p)) · numPlayers(m, i)

|m|
(4)

numPlayers(m, i) counts the number of players in the match that belongs to
the category i. DistW (i, j) is a weight that depends on the distance between
the categories i and j. The longer distance between categories, the smaller
the weight.

Once the similarity is computed, the matches are ordered by similarity. The
matches at the top of the recommendation will be the ones more similar accord-
ing to the skill rating of the player searching for a match.

4 Role-Based Approach

This second approach represents a novel idea in matchmaking. Using only skill
ratings to generate recommendations can get balanced matches, but the matches
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can be monotonous and boring. Using the player roles, the matchmaking ap-
proach can form matches with a wide variety of behaviours so that the game can
be entertaining and diverse. Moreover, this new approach can take into account
additional user’s preferences that can change over time. The matchmaking is not
limited to balanced games and RBA adds new features to the game experience,
such as the type of game that the player wants to play –for example, a short
match with heavy players or a more strategical match– or additional goals that
the player wants to achieve –for example, matches for training concrete abilities.

To achieve that satisfaction in the game, the idea is to create prototypical role
configurations (that may represent matches, teams, or even both), which will be
then used in the recommendation process. These configurations are structured in
cases that contain information about the roles adopted by each player in a pro-
totypical match. Following this approach, the recommendation process focuses
on finding matches made of a set of players whose observable behaviour fits one
of these prototypical configurations.

To carry out this idea there are three key steps that are defined below: the
definition and update of the player models, the creation of the case base with
prototypical game configurations and the recommending process itself.

4.1 Roles and player modeling

The generation of player models, more specifically for this case, the role extrac-
tion, three tasks to perform:

– Define the roles set.
– Infer player roles from the metrics extracted during the matches.
– Update global player roles based on the obtained roles in each match.

The first task is to determine how many and what type of roles will be used
to characterize player behaviour. This decision will depend on each type of game.
The roles are not the same in a FPS game than one of sports but for many games
within the same type may coincide. These roles can be defined by an expert in
the game. For example, in a FPS game a player can be characterized with the
role of a sniper –small number of shots, high kill rates and no movement after
achieving a concealed position– or a suicide –high number of shots, high number
of kills and own deaths and fast movements along all the scenario.

The second task describes how the roles should be inferred from the player
behaviour in a game. Player modeling techniques can be used in this task [6].
For each role defined in the set we should create a method that estimates the
membership of a player to that role using the metrics generated by the player
during a match. Each method can take into account different metrics, according
to the ones that are most important to characterize this role. A player may be
characterized by various roles in different degrees, not only has to be associated
with a particular role. The role extraction process must be performed after every
finished match and for all the participants.

The third task must reflect the overall behaviour of the player throughout his
career in the game. This requires an update method to get the player’s overall
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performance after each match played by the player and once the observed roles
are extracted. Using the role values obtained in the second task, the process
must update the global player roles by some method that reflects adequately the
exact roles of the player (e.g. average). This is necessary because these roles will
be used then in the recommendation process.

4.2 Creation of the case base

Besides the modeling process, our approach also requires the creation of a mem-
ory with cases containing the acceptable configurations. A configuration can be
characterized by the roles that each player plays during the match. The contents
of the cases depends on the type of game –individual or team. Configurations of
individual matches can contain information about the individual roles of each
player, while team game configurations can indicate which team each player be-
longs to and the roles that they adopt. Another key point when creating the
cases is the importance of the number of players within each configuration be-
cause then will have to take account into the recommendation process.

The creation of these cases is not a trivial matter, and there are several
methods for doing it. As stated before, an alternative is the generation of pro-
totypical configurations using the knowledge of an expert in the game. Other
alternatives are the generation of these configurations using information about
what the players themselves consider fun, like in the work described in [4], or
observing and analysing characteristics of gameplay as [8].

4.3 Recommendation process

At this stage the recommendations are generated based on the existing resources
in the system and the cases stored in memory. The recommendation consist on
computing the similarity between attempting matches within the target player
and selected cases from the case base. The best matches –according to the sim-
ilarity with the selected case– are proposed to the player.

To determine the similarity between a prototypical configuration in the case
base and a match we have to determine the similarity between each role in the
proposed case and every player in the match. Therefore, two similarity measures
are essential to carry out this recommendation process:

– Similarity between players and roles. Since the player profile contains infor-
mation about the degree of membership of the player to each predefined role,
we need to measure how similar is a player with every role in the case. Al-
though the similarity measure can be easily defined using the highest degree
of membership of the player as her dominant role, we can establish addi-
tional similarity measures between roles. This way, we can adapt a match to
a configuration by replacing some roles in the configuration with the players
characterized by similar roles, although they do not match exactly with their
dominant roles.
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– Similarity between a case and a match. The similarity between a case and
an attempting match is measured in terms of the similarities between the
players in the match and the roles of the case. For each real player in the
hypothetical match,we compute the similarity with each of the roles stored in
the case (using the similarity method of the previous point). Then, we have
to combine this individual similarities to compound a global one. Finally, the
similarity between the case and a match will be the the maximum similarity
value among all the possible combinations. As we can see, the problem here
is that the number of different configurations grows extremely fast as long
as the number of players in the prototypical case increases.

According to the possible scenarios that were described in Section 2, the
following may occur:

1. In the case that a player will join to one of the matches that are still waiting
for new players, the matchmaking should try to include the player in each
of the existing matches and, using similarity functions, comparing with the
prototypical configurations in the case base to determine which is best match
based on player expectations. Not all stored cases are used in the comparison,
but only those with similar characteristics to the evaluated match (e. g. the
number of players). Once evaluated and obtained a similarity value for all
matches, the ones with the higher similarity values will be recommended.

2. The scenario where a set of players are arranged for playing a match should
be similarly resolved as described above, except that to make matches with
players will have to create all possible combinations for the selected players.
This is a combinatorial problem that should have a high cost in time. An
alternative is to prune the number of players using only the players with
similar characteristics, such as the skill rating seen in Section 3.

5 Conclusions

In this paper we propose the application of case-based recommendation ap-
proaches to matchmaking tasks in videogames. First, we have detailed how the
matchmaking can be performed as a case-based recommendation approach. The
analysis of the player behaviour in matches, the reuse of past match experiences
and the inclusion of additional player preferences in matchmaking techniques for
recommending a match will enhance the player satisfaction during the recom-
mendation process. We have discussed two different ways to find the matches
that best fit the player expectations: skill-based approach and role-based ap-
proach. For skill-based approach we have described some general methods that
can be used to carry out such recommendation, giving some examples of use.
In the role-based approach we have sketched the steps and tasks to be followed
to develop it. In our opinion, the latter is a more interesting approach because
it could fit additional player preferences that the skill-based approach cannot
satisfy, producing more enjoyable gameplay experiences. However, the cost of
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the similarity metrics due to the combinatorial aspects of this approach should
need a deeper analysis.

As a future work we want to focus on the role-based approach and analyse
its performance. More concretely, we want to carry out a case study about the
application of these two approaches to Unreal Tournament 2004, a First Person
Shooter game. Finally we need to develop evaluation measures that will help us
to study how satisfactory have been the recommendations for both approaches,
in order to compare them.
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