
Implicit Opponent Modelling via Dynamic

Case-Base Selection

Jonathan Rubin and Ian Watson

Department of Computer Science
University of Auckland Game AI Group, New Zealand
jrub001@aucklanduni.ac.nz, ian@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/research/gameai

Abstract. In this paper we introduce and evaluate an approach for per-
forming implicit opponent modelling by constructing multiple, distinct
case-bases via expert imitation and dynamically selecting the best case-
base to use against a particular opponent at runtime. In our experimen-
tal results, we address whether a strategy based on dynamic case-base
selection can improve overall performance against a range of competi-
tors, compared to the use of a single case-base strategy. We apply this
approach to the stochastic, imperfect information domain of both limit
and no limit two-player Texas Hold’em poker.

1 Introduction

In adversarial environments, any agent that considers information about an op-
ponent and uses this to adapt its own strategy is said to perform opponent
modelling. Successful opponent modelling has the ability to dramatically im-
prove a system’s performance [1]. Opponent modelling can be either explicit
or implicit. Explicit opponent modelling attempts to learn a set of parame-
ters associated with an opponent’s strategy via a series of observations. Once
the parameters are known, the agent adjusts their own strategy, in order to
take advantage of the opponent. On the other hand, implicit opponent modelling

does not directly attempt to decipher the details of an opponent’s strategy, but
instead selects an appropriate response from a set of strategies, based on the per-
formance of those strategies against the opponent. In this paper, we introduce
and evaluate an implicit opponent modelling approach, based on the dynamic
selection of separate case-bases constructed via expert imitation.

Our research takes place in the domain of two-player Texas Hold’em poker –
a game defined by simple rules, which however, provides a rich, dynamic envi-
ronment for applying sophisticated strategies. Performance in the game of poker
is known to have an intransitive relationship, i.e. while player A beats player
B and player B beats player C, it does not necessarily follow that A beats C.
Given the intransitive nature of poker strategies, the successful combination of
different styles of play has the potential to largely improve overall performance,
against a range of different opponents.

63



By training on experts with different styles of play, we create multiple case-
bases in the domains of limit and no limit Texas Hold’em. We evaluate what im-
pact implicit opponent modelling via dynamic case-base selection has on overall
performance. Specifically, we address whether dynamic case-base selection can
improve performance, compared to use of a single case-base strategy.

2 Related Work

The lazy learning [2] of case-based reasoning is particularly well suited to expert
imitation where expert observations can be recorded and stored for later use at
decision time. In the games domain, [3] demonstrated successful imitation in the
domain of simulated robot soccer to control a multi-agent soccer team. Ontañón
et al. [4] observes human experts playing a real time strategy game and uses
case-based planning to generate unique strategies. Our own case-based poker
playing system, Sartre [5], has demonstrated strong performance at international
computer poker competitions by training on hand history data from the strongest
agent in the previous year’s competition.

The works discussed so far use expert imitation to construct a single case-
base. Here, we use expert imitation to construct multiple case-bases. Each case-
base is constructed by processing a subset of data that contains the playing
decisions of a single expert. Using this approach we are easily able to derive a
set of different playing styles. Given a set of distinct case-bases, we then attempt
to dynamically select the case-base that achieves the greatest profit against a
particular opponent in order to maximise overall profit against a range of players.

A similar approach was originally applied to the game of limit Texas Holdem
in [6, 7] where the UCB1 [8] allocation strategy was applied to dynamically
select experts during play. Our procedure for dynamic selection from multiple
case-bases, is an adapted version of that described in [7]. Our own research
extends this idea to the more complicated domain of no limit Texas Holdem.
Furthermore, our work focuses specifically on implicit opponent modelling via
dynamic case-base selection, where individual case-bases have been constructed
via expert imitation. A major benefit of using this approach is that producing
new strategies simply requires updating the data that is used to train the system.
Using this approach a diverse set of strategies with various playing styles can be
produced with negligible computational effort.

3 Dynamic Case-Base Selection

A case-base is made up of a collection of cases, Cj = {cj,1, cj,2, . . . , cj,n}, where
j refers to an individual case-base and ∀c ∈ Cj , c = (x, a), where x is a feature
vector that captures game state information and a is an action vector that spec-
ifies the probability of taking a certain action, given game state x. The following
features describe the current state of the game: 1) Hand strength, 2) Previous
betting history, 3) Public card information and 4) Stack commitment (no limit
only). A more detailed discussion of the case representation can be found in [5].

64



Given a game state described by ct, a decision is made by processing the
collection of stored cases and maximising a global similarity metric to retrieve
the most similar case to ct.

cmax = argmax
ck

sim(ck, ct), ∀ck ∈ Cj (1)

where, sim(c1, c2) is some global similarity metric that determines the simi-
larity between the feature vectors of the two cases c1, c2.

3.1 Action Vectors

The action vectors used to make a playing decision differ depending on the
domain.

Limit Hold’em In the domain of limit Hold’em the action vector used by the
expert imitator has the following format:

a = (f, c, r)

where each entry within the vector is a number between 0.0 and 1.0 that
indicates the probability of taking a particular betting action. All entries within
the vector must sum to exactly 1.0. The actions that are possible in limit Hold’em
are either fold (f ), check/call (c) or bet/raise (r).

No Limit Hold’em In limit Hold’em, if a player wishes to raise, the amount
they are allowed to raise is set at a certain predefined level. On the other hand, in
the no limit variation, players are allowed to bet or raise any amount, including
all of the money or chips they possess (this is called going all-in). While this
appears to be a simple rule change, the consequences it has on game play are
quite dramatic. In order to construct an action vector for no limit Hold’em, a
mapping is required to assign quantitative bet amounts into discrete categories.
The no limit action vector used by the expert imitators in this paper is given by
the following:

a = (f, c, q, h, i, p, d, v, t, a)

where each entry refers to different discrete betting categories as follows: fold
(f ), call (c), raise quarter pot (q), raise half pot (h), raise three quarter pot (i),
raise pot (p), raise double pot (d), raise five times pot (v), raise ten times pot
(t), all-in (a). Once again each entry corresponds to the probability of taking
that particular action and all entries in the vector sum to 1.0.

65



3.2 UCB1

Given a collection of case-bases, {Cj : j = 1 . . . N}, we perform implicit oppo-
nent modelling by dynamically selecting an appropriate case-base to use against
a particular opponent. An individual case-base is dynamically selected at the be-
ginning of every hand. In order to dynamically select an appropriate case-base
at runtime, the UCB1 [8] algorithm is used. The UCB1 algorithm offers a sim-
ple, computationally efficient solution to the exploration/exploitation trade
off. Successfully handling the trade off between exploration and exploitation is
a problem that is consistently faced in statistics and artificial intelligence. Deci-
sions need to be made as to whether to select a strategy that has so far offered
the greatest reward (exploitation), versus selecting an alternative strategy that
may offer yet a greater reward than that witnessed so far (exploration).

The UCB1 algorithm defines a policy for strategy selection based on the
concept of regret. Regret refers to the difference between the reward that would
have been received, had the optimal strategy always been selected, compared to
the actual reward received. The UCB1 algorithm offers a logarithmic bound on
regret. The following application of UCB1 is used to dynamically select from a
collection of case-bases:

1. Select each case-base once
2. Select case-base, Cj , that maximises the following equation:

argmax
j

x̄j +

√

2 lnn

nj

(2)

where,
x̄j is the average amount won by case-base Cj , when challenging the current
opponent,
n is the total number of hands played so far, and
nj is the total number of times case-base Cj has been selected.

The UCB1 algorithm above determines the order in which to select differ-
ent case-bases, given their performance against a particular opponent. In the
computer poker domain, x̄j in equation (2) refers to the average utility (profit
or loss) achieved by case-base, Cj , while playing against the current opponent.
Similarly, nj refers to the total number of times Cj has been chosen to play
against the current opponent. However, due to the inherent variance present in
the game of Texas Hold’em, strategy selection based on profit alone can severely
bias the results of the UCB1 allocation policy. Hence, efforts to reduce this in-
herent variance are required in order to stabilise the results.

3.3 Variance Reduction

As in [7], we employ the use of DIVAT analysis [9] in order to improve the average
utility values, x̄j , used by the UCB1 allocation strategy. DIVAT (ignorant value
assessment tool) is a perfect information variance reduction tool developed by

66



the University of Alberta Computer Poker Research Group1. The basic idea
behind DIVAT is to evaluate a poker hand based on the expected value (EV) of
a player’s decisions, not the actual outcome of those decisions. DIVAT achieves
this by comparing the EV of the player’s decisions against the EV of some
baseline strategy, see Equation 3.

DivatOutcome = EV (ActualActions)− EV (BaselineActions) (3)

Equation 3 attempts to factor out the effects of luck as both the actual
strategy and the baseline strategy experience the same lucky or unlucky sequence
of events. For example, a strategy that benefits by a statistically unlikely event
no longer makes a difference as the baseline strategy also benefits by the same
improbable event. What actually matters is any difference in EV the strategy
is able to achieve by varying the actions that it takes. When the strategy is
able to achieve a greater EV than the baseline, it is rewarded. Alternatively, if
the strategy’s actions result in a lower EV, then it is punished with a negative
outcome. If the EV of both strategies is the same the outcome is 0.

Any type of strategy can be used as a baseline. Typically, in limit Hold’em
a bet-for-value baseline strategy is adopted. A bet-for-value strategy makes no
attempt to disguise the strength of its hand. By establishing game-theoretic
equilibrium-based thresholds, a sequence of baseline betting decisions can be
constructed, based on hand strength alone. Strong hands will be bet and/or
raised, whereas weak hands will be checked or folded.

Finally, DIVAT requires perfect information about both players’ hidden cards.
When either player folds this information is not available. Therefore, to calcu-
late the utility values used by the UCB1 allocation strategy, DIVAT analysis
is employed only when a showdown occurs, i.e. when both players reveal their
hidden cards. If a fold occurs the actual monetary outcome of the hand is used
instead.

4 Experimental Results

4.1 Methodology

We provide experimental results in the domains of both limit and no limit two-
player Texas Hold’em. In each domain 3 separate case-bases were constructed
via expert imitation. Each case-base was constructed by processing a separate
subset of hand history data from the Annual Computer Poker Competition [10]
as follows:

1. The first case-base was constructed by processing the decisions made by the
agent that won the total bankroll division of the 2010 AAAI computer poker
competition.

1 http://webdocs.cs.ualberta.ca/~games/poker/index.html

67



2. The second case-base was constructed by processing the decisions made by
the agent that won the instant run-off division of the 2010 AAAI computer
poker competition.

3. The final case-base was that used by our own entry into the 2010 AAAI
computer poker competition.

A Dynamic strategy was constructed that dynamically selects case-bases at
runtime to use against the current opponent. Dynamic case-base selection was
based on the UCB1 allocation strategy together with showdown DIVAT analy-
sis. In the limit variation, a bet-for-value baseline strategy was adopted during
DIVAT analysis. In no limit a more simplistic always-call strategy was used as
the baseline.

The Dynamic strategy, along with all three single case-base strategies, were
then challenged against two different types of computerised players. All matches
played were duplicate matches. A duplicate match involves playing the same
3000 hands twice. In the first run, 3000 unique hands are played, after which the
players’ memories are wiped and the 3000 hands are played again, but in the
reverse direction, i.e. the cards that were initially given to player A are instead
given to player B. This way both players get to play both sets of cards and this
reduces the variance that is involved in simply playing a set of hands in one
direction only. All case-based strategies played 5 duplicate matches against each
of the two computerised opponents. In total, 420,000 hands of poker were played.

4.2 Limit Results

Table 1. Results against Fell Omen 2 and AlistairBot

Strategy Fell Omen 2 Strategy AlistairBot

Dynamic 0.0134 ±0.006 Dynamic 0.6885 ±0.009
Sartre -0.0050 ±0.008 Rockhopper 0.6669± 0.015
PULPO -0.0056 ±0.009 PULPO 0.6472± 0.021
Rockhopper -0.0219 ±0.010 Sartre 0.6422± 0.017

Strategy Average

1. Dynamic 0.3510± 0.008
2. Rockhopper 0.3225± 0.013
3. PULPO 0.3208± 0.015
4. Sartre 0.3186± 0.014

In the limit domain each strategy challenged the following competitors:

1. Fell Omen 2 – A solid Nash equilibrium-based agent commonly used as a
benchmark for testing limit Hold’em agents.

2. AlistairBot – An exploitive agent that uses Monte-Carlo simulation to
determine the decision with the best EV against the current opponent.

68



Table 1 presents the results of the four strategies against the above two
competitors. The results are presented in small bets per hand (sb/h), where
the total number of small bets won or lost are divided by the number of hands
played. The single case-base strategies are identified by the name of the original
expert used to train the system. Rockhopper and PULPO were the first place
finishers within the total bankroll and instant run-off divisions of the 2010 two-
player, limit competition, respectively. The Sartre agent was our entry into the
2010 computer poker competition.

4.3 No Limit Results

In the no limit domain, each strategy challenged the following opponents:

1. MCTSBot – an exploitive agent that uses Monte-Carlo Tree Search [11].
2. SimpleBot – a no limit rule-based agent.

The opentestbed2 project was used to gather results as the above no limit
agents were made publicly available within this framework. Table 2 presents the
no limit results. Hyperborean was the winner of the instant run-off division and
Tartanian was the winner of the total bankroll division of the 2010 two-player, no
limit competition. Sartre was our own (no limit) entry into the 2010 computer
poker competition. The results are in big blinds per hand.

Table 2. Results (No Limit) against MCTSBot and SimpleBot

Strategy MCTSBot Strategy SimpleBot

Hyperborean 1.4409± 0.179 Hyperborean 0.6505± 0.089
Dynamic 1.3332 ±0.146 Dynamic 0.5928± 0.058
Sartre 0.6919 ±0.112 Sartre 0.4591 ±0.053
Tartanian 0.0258 ±0.289 Tartanian 0.3836± 0.060

Strategy Average

1. Hyperborean 1.0457± 0.134
2. Dynamic 0.9630± 0.102
3. Sartre 0.5755± 0.083
4. Tartanian 0.2047± 0.175

4.4 Discussion

The results presented in Table 1 support the idea that implicit opponent mod-
elling via dynamic case-base selection can improve performance, compared to
the use of a single case-base.

2 http://code.google.com/p/opentestbed/

69



Given the non-transitive performance relationship that exists in the poker
domain, a single unchanging strategy can typically not be expected to perform
the best against every opponent it faces. Intuitively, it makes sense that, given
a set of case-bases to choose from, if we are able to identify the unique best
case-base to use against each individual opponent, overall performance should
improve. We expect this result as long as there is enough diversity in our set of
case-bases such that there is no single case-base that performs best against all
opponents. The results from Table 1 suggest that, in the limit Hold’em exper-
imental domain, there is enough diversity provided by the three case-bases to
achieve a beneficial result.

On the other hand, in the more complicated no limit Hold’em environment,
a similar improvement in overall performance is not observed. Table 2 shows
that while Dynamic provides an improvement over two of the single case-bases,
it is not able to achieve a greater performance compared to the Hyperborean
case-base. In the no limit domain, it appears that there is not enough diversity
in the three case-bases provided to positively affect overall performance. Notice
that, in Table 2, the relative ordering of the single case-base strategies does
not change in response to challenging different opponents, i.e. the Hyperborean
case-base always achieves the best result, followed by Sartre and then Tartantian.
Compare this to the results in Table 1, where the relative ordering does change.
This suggests that in order to improve overall performance, either a larger, more
diverse set of case-bases is required or a further set of opponents (with different
playing styles) needs to be challenged, in order to receive any beneficial results.

5 Conclusion

In conclusion, we have presented an approach for performing implicit opponent
modelling by constructing multiple, distinct case-bases via expert imitation and
dynamically selecting the best case-base to use against a particular opponent
at runtime. We applied the approach to the stochastic, imperfect information
domain of limit and no limit Texas Hold’em poker. While the results obtained
were somewhat mixed, the approach does appear to have promise. It is the
opinion of the authors that the outcome of the experiments performed in the
no limit Hold’em environment suggest that a more diverse set of case-bases are
required before further benefits can be obtained over the use of a single case-
base. Furthermore, while dynamic case-base selection was not able to achieve the
greatest overall profit (in this domain), it still managed to outperform two of the
single case-base strategies. On the other hand, results from the limit Hold’em
domain support the intuition that, given a set of case-bases to choose from,
identifying the best case-base to use against each individual opponent, has the
ability to improve overall performance compared to use of a single case-base
alone.

70



References

1. Kennard Laviers, Gita Sukthankar, David W. Aha, and Matthew Molineaux. Im-
proving Offensive Performance Through Opponent Modeling. In Proceedings of

the Fifth Artificial Intelligence and Interactive Digital Entertainment Conference,

AIIDE 2009, 2009.
2. David W. Aha. Editorial. Artificial Intelligence Review, 11(1-5):7–10, 1997.
3. Michael W. Floyd and Babak Esfandiari. An Active Approach to Automatic Case

Generation. In Case-Based Reasoning Research and Development, 8th Interna-

tional Conference on Case-Based Reasoning, ICCBR 2009, pages 150–164, 2009.
4. Santiago Ontañón, Kane Bonnette, Prafulla Mahindrakar, Marco A. Gómez-

Mart́ın, Katie Long, Jainarayan Radhakrishnan, Rushabh Shah, and Ashwin Ram.
Learning from Human Demonstrations for Real-Time Case-Based Planning. In
IJCAI-09 Workshop on Learning Structural Knowledge From Observations, 2009.

5. Jonathan Rubin and Ian Watson. Similarity-Based Retrieval and Solution Re-use
Policies in the Game of Texas Hold’em. In Case-Based Reasoning. Research and

Development, 18th International Conference on Case-Based Reasoning, ICCBR

2010, pages 465–479, 2010.
6. Michael Johanson, Martin Zinkevich, and Michael H. Bowling. Computing Robust

Counter-Strategies. In Advances in Neural Information Processing Systems 20,

Proceedings of the Twenty-First Annual Conference on Neural Information Pro-

cessing Systems, 2007.
7. Michael Bradley Johanson. Robust Strategies and Counter-Strategies: Building a

Champion Level Computer Poker Player. Master’s thesis, University of Alberta,
2007.

8. Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the
Multiarmed Bandit Problem. Machine Learning, 47(2-3):235–256, 2002.

9. Darse Billings and Morgan Kan. A Tool for the Direct Assessment of Poker Deci-
sions. The International Association of Computer Games Journal, 2006.

10. University of Alberta CPRG. The Annual Computer Poker Competition, 2010.
http://www.computerpokercompetition.org/.

11. Guy Van den Broeck, Kurt Driessens, and Jan Ramon. Monte-Carlo Tree Search
in Poker Using Expected Reward Distributions. In Advances in Machine Learning,

First Asian Conference on Machine Learning, ACML 2009, pages 367–381, 2009.

71




