
Introduction to RoboCup

Michael Floyd

March 1, 2012

March 1, 2012mfloyd@sce.carleton.ca Slide 2

Outline

• Overview of RoboCup

• How a simulated game is played

• Client-Server communications

March 1, 2012mfloyd@sce.carleton.ca Slide 3

Overview

• “By the year 2050, develop a team of fully autonomous
humanoid robots that can win against the human world
soccer champion team.”

• A standard problem for AI research

• Workshops, conferences and yearly competitions

March 1, 2012mfloyd@sce.carleton.ca Slide 4

Soccer Leagues

four-legged

small size

middle size

simulation

March 1, 2012mfloyd@sce.carleton.ca Slide 5

Soccer Leagues (2)

Humanoid:

Stardard Platform
(Nao):

March 1, 2012mfloyd@sce.carleton.ca Slide 6

Other Competitions

RoboCup Rescue:

RoboCup@Home:

March 1, 2012mfloyd@sce.carleton.ca Slide 7

March 1, 2012mfloyd@sce.carleton.ca Slide 8

Client-Server

ClientClientClientClientClient

Client

ClientClientClientClientClient

Client
Server

Soccer Monitor

Coach Coach

Team #1 Team #2

March 1, 2012mfloyd@sce.carleton.ca Slide 9

Client

• Autonomous agents

• One agent represents one player

• Can be written in any language (C++, Java,
Smalltalk, ...)

• Can be run on same machine or a network

• Clients may talk only to the server... not to each
other!

March 1, 2012mfloyd@sce.carleton.ca Slide 10

Server

• “Referee” of the game and keeps time

• Maintains world model

• Tells agents what they can sense and handles agent
actions

March 1, 2012mfloyd@sce.carleton.ca Slide 11

Starting a Game

• Download the software (http://www.nmai.ca)

1) Start the server

2) Start the monitor and connect it to the server

3) Start the clients and connect them to the server

4) Use the monitor to begin the game

http://www.nmai.ca/

March 1, 2012mfloyd@sce.carleton.ca Slide 12

Communication

Player
Agent

time
play mode
my body

landmarks
other players

speech
coach instructions

dash
turn

turn head
kick
catch
speak

decision-making
strategy

Sensory Input Outputs

March 1, 2012mfloyd@sce.carleton.ca Slide 13

Connecting/Disconnecting

• From client to server

– Connect

– Reconnect

– Quit

• From server to client

– Confirms connection

– Provides uniform number, side of field, state of game

March 1, 2012mfloyd@sce.carleton.ca Slide 14

Connection Example

• Client
– sends connection message to server and asks to

join myTeam
– init MyTeam

• Server
– Tells the player they are connected, have uniform

#1, are on the right side of the field, and the
game is pre-kickoff

– init r 1 before_kick_off

March 1, 2012mfloyd@sce.carleton.ca Slide 15

Sensory Information

• Three main message types:

– Hear – communication from other players

– See – what is in their field of vision

– Sense_Body – information about themselves

• Noise models for each

March 1, 2012mfloyd@sce.carleton.ca Slide 16

Hear Message

• Can hear one message per team per cycle

• Format: hear Time [Direction] Sender “Message”
– Sender = online_coach_left/right, referee, self, or player

– Direction (-180 – 180 degrees): where the sound came
from

• Example:
– hear 408 -31 our 2 "Hello"

– At time 408, player 2 on our team said “Hello”. The player
was approximately -31 degrees from me.

March 1, 2012mfloyd@sce.carleton.ca Slide 17

See Message

• Format: see Time ObjInfo
• ObjInfo:

– Type of object: ball, goal, line, flag, player

– Parameters: distance, direction
• Movable objects: change in distance/direction,

• Players: body/head facing direction, team, uniform number,

• Flags/Lines: location identifiers

• Goal: side of field

• Each message can contain multiple ObjInfo
• Only distance/direction guaranteed, everything else

just a bonus.

March 1, 2012mfloyd@sce.carleton.ca Slide 18

Example See Message
(see 18 ((f r t) 44.7 -22) ((f g r b) 47.9 30) ((f

g r t) 42.5 13) ((f p r c) 30.3 34 -0 0) ((f p r
t) 25.3 -7 0 0) ((f t r 40) 36.2 -37) ((f t r
50) 44.7 -29) ((f r 0) 49.4 20) ((f r t 10) 47
8) ((f r t 20) 46.5 -3) ((f r t 30) 48.4 -15)
((f r b 10) 53.5 30) ((f r b 20) 59.1 38) ((f r
t) 44.7 -22) ((f g r b) 47.9 30) ((g r) 44.7 22)
((f g r t) 42.5 13) ((f p r c) 30.3 34) ((f p r
t) 25.3 -7 0 0) ((f t r 40) 36.2 -37) ((f t r
50) 44.7 -29) ((f r 0) 49.4 20) ((f r t 10) 47
8) ((f r t 20) 46.5 -3) ((f r t 30) 48.4 -15)
((f r b 10) 53.5 30) ((f r b 20) 59.1 38) ((p
“ExampleTeam") 36.6 28) ((l r) 41.7 -89))

• The right goal is at distance 44.7 and angle 22

• A player from ExampleTeam is distance 36.6 and angle 28

March 1, 2012mfloyd@sce.carleton.ca Slide 19

Sense Body Message

• (sense_body Time
– (view_mode {high | low} {narrow | normal | wide})
– (stamina StaminaEffort)
– (speed AmountOfSpeed DirectionOfSpeed)
– (head_angle HeadAngle)
– (kick KickCount)
– (dash DashCount)
– (turn TurnCount)
– (say SayCount)
– (turn_neck TurnNeckCount)
– (catch CatchCount)
– (move MoveCount)
– (change_view ChangeViewCount))

March 1, 2012mfloyd@sce.carleton.ca Slide 20

Sense Body Example

• (sense_body 19 (view_mode high normal) (stamina
4000 1) (speed 0 0) (head_angle 0) (kick 0) (dash 0)
(turn 0) (say 98) (turn_neck 0))

• At time 19:
– the player is using view mode high quality/normal width
– has 4000 stamina left (and is exerting themselves at an

effort of 1)
– has no speed and is not moving in any direction
– has their head facing straight
– has performed no kicks, dashes, turns or turn_necks
– is quite talkative and has said 98 things

March 1, 2012mfloyd@sce.carleton.ca Slide 21

Client Commands
Client Command Once per Cycle
(catch Direction) Yes

(change_view Width Quality) No
(dash Power) Yes

(kick Power Direction) Yes
(move X Y) Yes

(say Message) No
(sense_body) No

(score) No
(turn Moment) Yes

(turn_neck Angle) Yes *
 * can be used in the same cycle as catch, dash, turn, kick or move

March 1, 2012mfloyd@sce.carleton.ca Slide 22

Command Examples

• say “message”
– say "Hello"

• turn_neck angle
– turn_neck -5.97019

• kick power direction
– Kick 100.0 41.0

• dash power
– dash 82.0

• turn direction
– turn 40.0

March 1, 2012mfloyd@sce.carleton.ca Slide 23

The Environment

• accessible vs inaccessible: Only sees what is in
front of it (with noise)

• deterministic vs non-deterministic: Just because
agent wants to kick ball doesn’t mean it will happen

• static vs dynamic : The players and ball will
constantly be moving

• discrete vs continuous: Player can take any
position on the field

March 1, 2012mfloyd@sce.carleton.ca Slide 24

Field of Vision

March 1, 2012mfloyd@sce.carleton.ca Slide 25

Krislet

 - Modify the default Krislet behaviour by changing the
Brain.java code.

 - More specifically, modify the run() method

 - You likely won't need to change much else

March 1, 2012mfloyd@sce.carleton.ca Slide 26

Brain run() method

public void run()
 {
 ...
 while(!m_timeOver){
 object = m_memory.getObject("ball");
 if(object == null){
 // If you don't know where is ball then find it
 m_krislet.turn(40);
 } else if(object.m_distance > 1.0){
 // turn to ball or if we have correct direction then go to ball
 if(object.m_direction != 0)
 m_krislet.turn(object.m_direction);
 else
 m_krislet.dash(10*object.m_distance);
 }
 else {
 ... kick ball to goal ...
 }
 }
}

March 1, 2012mfloyd@sce.carleton.ca Slide 27

Brain run() method

public void run()
 {
 ...
 while(!m_timeOver){
 object = m_memory.getObject("ball");
 if(object == null){
 // If you don't know where is ball then find it
 m_krislet.turn(40);
 } else if(object.m_distance > 1.0){
 // turn to ball or if we have correct direction then go to ball
 if(object.m_direction != 0)
 m_krislet.turn(object.m_direction);
 else
 m_krislet.dash(10*object.m_distance);
 }
 else {
 ... kick ball to goal ...
 }
 }
}

March 1, 2012mfloyd@sce.carleton.ca Slide 28

Brain run() method

public void run()
 {
 ...
 while(!m_timeOver){
 object = m_memory.getObject("ball");
 if(object == null){
 // If you don't know where is ball then find it
 m_krislet.turn(40);
 } else if(object.m_distance > 1.0){
 // turn to ball or if we have correct direction then go to ball
 if(object.m_direction != 0)
 m_krislet.turn(object.m_direction);
 else
 m_krislet.dash(10*object.m_distance);
 }
 else {
 ... kick ball to goal ...
 }
 }
}

March 1, 2012mfloyd@sce.carleton.ca Slide 29

Brain run() method

public void run()
 {
 ...
 while(!m_timeOver){
 object = m_memory.getObject("ball");
 if(object == null){
 // If you don't know where is ball then find it
 m_krislet.turn(40);
 } else if(object.m_distance > 1.0){
 // turn to ball or if we have correct direction then go to ball
 if(object.m_direction != 0)
 m_krislet.turn(object.m_direction);
 else
 m_krislet.dash(10*object.m_distance);
 }
 else {
 ... kick ball to goal ...
 }
 }
}

March 1, 2012mfloyd@sce.carleton.ca Slide 30

Brain run() method

public void run()
 {
 ...
 while(!m_timeOver){
 object = m_memory.getObject("ball");
 if(object == null){
 // If you don't know where is ball then find it
 m_krislet.turn(40);
 } else if(object.m_distance > 1.0){
 // turn to ball or if we have correct direction then go to ball
 if(object.m_direction != 0)
 m_krislet.turn(object.m_direction);
 else
 m_krislet.dash(10*object.m_distance);
 }
 else {
 ... kick ball to goal ...
 }
 }
}

March 1, 2012mfloyd@sce.carleton.ca Slide 31

Brain run() method

public void run()
 {
 ...
 while(!m_timeOver){
 object = m_memory.getObject("ball");
 if(object == null){
 // If you don't know where is ball then find it
 m_krislet.turn(40);
 } else if(object.m_distance > 1.0){
 // turn to ball or if we have correct direction then go to ball
 if(object.m_direction != 0)
 m_krislet.turn(object.m_direction);
 else
 m_krislet.dash(10*object.m_distance);
 }
 else {
 ... kick ball to goal ...
 }
 }
}

March 1, 2012mfloyd@sce.carleton.ca Slide 32

Resources

Software:
– http://www.nmai.ca - under Research Projects → Software

Agent Imitation → Downloads
– RoboCup Soccer Simulation Server and Monitor – follow

the link and download the recommended versions
– Also, the Krislet agent is a good place to start

 - Server/Monitor/Krislet (versions used in demo) are
available from course website.

http://www.nmai.ca/

March 1, 2012mfloyd@sce.carleton.ca Slide 33

Questions

Michael Floyd:

 mfloyd@sce.carleton.ca

mailto:mfloyd@sce.carleton.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

