
Use of Fuzzy Histograms to Model the Spatial
Distribution of Objects in Case-Based Reasoning

Alan Davoust, Michael W. Floyd, and Babak Esfandiari

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, Ontario

Abstract. In the context of theRoboCup Simulation League, we describe
a new representation of a software agent’s visual perception (“scene”), well
suited for case-based reasoning.

Most existing representations use either heterogeneous, manually se-
lected features of the scene, or the raw list of visible objects, and use
ad hoc similarity measures for CBR. Our representation is based on
histograms of objects over a partition of the scene space. This method
transforms a list of objects into an image-like representation with cus-
tomizable granularity, and uses fuzzy logic to smoothen boundary effects
of the partition. We also introduce a new similarity metric based on the
Jaccard Coefficient, to compare scenes represented by such histograms.

We present our implementation of this approach in a case-based rea-
soning project, and experimental results showing highly efficient scene
comparison.

Keywords: Case Based Reasoning, Fuzzy Histograms, Knowledge Rep-
resentation, Soccer Simulation.

1 Introduction

The paradigm of case-based reasoning (CBR), where the decision-making process
of an agent is based on a database of past situations, has been applied to a variety
of artificial intelligence applications. A notable application is the problem of
modeling others from observation.

An ongoing project at Carleton University is a CBR project in which an imi-
tative software agent is trained to imitate the behavior of another target agent,
based on the logs of this target agent’s actions ([1], [2]). The agent of interest
in this project is a simulated soccer-playing agent in the RoboCup Simulation
League [3]. In this League, teams of autonomous agents play a simulated soccer
game, interacting only with the game server. The server sends each player his
perception of the playing field (the “scene”), described as a list of all the visible
objects, with their coordinates w.r.t. the player. Objects include the ball, other
players, lines, etc. This raw data could be compared to the result of a feature
extraction in a real robot.

S. Bergler (Ed.): Canadian AI 2008, LNAI 5032, pp. 72–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Use of Fuzzy Histograms to Model the Spatial Distribution of Objects 73

Each agent (player) replies with its action (which may be “dash”, “kick”, or
“turn”, with a parameter), and the server uses all the agents’ actions to simulate
another time step in the game, and so forth.

Emulating such an agent in a CBR approach requires forming a database of
“cases” modeling the scene, and the agent’s response action, which can be seen
as the known solution to the problem. When presented with a new situation, the
imitative agent’s playing algorithm involves searching the case base for one or
several similar scenes, and using these similar “cases” to decide on an action.

Initiatives to use CBR in the RoboCup context include [4], [5], [6] and [7]. In
these other works, the authors selected particular features of the scenes, based
on their intuition of what seemed important or not in a soccer game simulation.
Features included lists of objects, counts of objects present in particular “strate-
gic zones” of the playing field, and other indicators of the game situation, such
as possession of the ball.

In earlier work with our imitative agent, [1] and [2], a scene was represented
using a simple data translation of the server message, listing each object with
its coordinates. This raw representation avoids the bias inherent in manually
selecting domain-specific scene features, but does not support practical similarity
metrics, which is a serious handicap for our real-time CBR problem.

We present here a new approach similar to the idea of occupancy grid maps
[8] used in robotics. We model the scene by means of a 2-dimensional grid map,
onto which we project the objects, using fuzzy logic to smoothly approximate
their location in a discrete representation.

We obtain a fuzzy histogram of objects, which is an image-like representa-
tion of a scene, showing the spatial distribution of objects with a customizable
granularity. We present a similarity metric based on the set-theoretic Jaccard Co-
efficient. We have implemented this scene representation in our imitative agent
framework, and experimental results in this setting show that our approach com-
pares favorably with previously presented approaches in terms of accuracy, while
reducing the computational cost of comparisons by a factor of ten.

The rest of the paper is organized as follows: first, in Section 2, we define
our approach with respect to related work, then in Section 3, we present our
fuzzy histogram scene representation, and some distance and similarity metrics
to compare such data structures. In Section 4, we give some practical details on
our implementation of this approach in our CBR project, and finally we discuss
our experimental results in Section 5, with some directions for future work.

2 Related Work

Our CBR imitation framework for Robocup agents was initially presented in [1],
and a number of optimizations were presented in [2]. In this previous work, the
scene representation was a simple data translation of the server message, i.e., a
list of objects with their position in polar coordinates. Comparing two scenes
involved matching the objects in one scene with the objects in the other. It

74 A. Davoust, M.W. Floyd, and B. Esfandiari

was then possible to compare, for instance, the position of the ball in one scene
with the position of the ball in the second scene, if the ball was present in both
scenes. The cartesian distance between these two positions could be computed,
and then the sum of distances for all pairs of objects across the scenes was used
as a “distance” metric measuring the dissimilarity of the scenes.

The first problem with this representation is that is does not form an ordered
set of features. At a given time the agent sees only a small fraction of the full list
of objects present on the field; furthermore, objects may be interchangeable, e.g.,
two players of the same team, or two lines, cannot necessarily be recognized1.
Matching the objects in this case may not be trivial. Lam et al. [1], as well as
Karol et al. [5], who were also faced with the problem of interchangeable players
in their own work, note that this object-matching problem accounts for the bulk
of the computational cost in comparing two scenes.

As noted in the introduction, most other teams that have used CBR in the
RoboCup context have tackled this problem by selecting particular features
deemed important for soccer, to suit their particular needs. Our main moti-
vation in this work is to propose a practical scene representation (in terms
of comparison cost), while avoiding a biased selection of features by a human
expert.

In a non-biased approach, we can draw a parallel with a robot navigating
an unknown environment, in that the robot attempts to build a map of its
environment. The typical example is a grid occupancy map [8], which is a grid
in which each cell is assigned a probabilistic indication that an obstacle is found
at this location. Such a representation also aims to project all the available
information (e.g, from a sonar) on a feature map that represents the entire
known environment.

Wendler et al. [4] used a representation of the pitch in the spirit of grid
occupancy maps, noting the presence or absence of players in a segmented area
around the ball. Other works have considered partitions of the playing field, e.g.
[6], where the players in the “offensive zone” and “defensive zone” are counted,
and make up two features of the scene representation.

In both cases this is used as only a small part of the representation. Further-
more, as noted in [1], such a segmentation induces boundary issues, artificially
separating objects that may, in fact, be very near, or assigning to the same
segment two relatively distant objects.

Our approach here is to use this general idea to draw a symbolic grid map,
over which we place all the objects in the scene, and avoid the boundary issues
by approximating an object’s position using fuzzy logic.

3 Methodology

In this Section, we detail the method by which we obtain the data representation
of a scene, and compare two scenes thus represented. We describe the method
1 Depending on the context, it may be desirable to recognize them, or else to maintain

a level of abstraction where they are interchangeable.

Use of Fuzzy Histograms to Model the Spatial Distribution of Objects 75

for the context of the RoboCup Simulation League, but it is general enough to
be extended to other domains.

3.1 Position of an Object

The basis of our approach is a segmentation of the scene space (the visible part
of the playing field), using a two-dimensional grid, as shown in Figure 1. We
discuss the specific parameters of the grid in our implementation, in Section 4.1.

Fig. 1. An example scene described as a list of objects in polar coordinates, and seg-
mented using a 3 × 5 grid

The position of an object in a segmented area can be smoothly approximated
using fuzzy logic.

We consider each cell of the grid as a fuzzy set, rather than a conventional
crisp set. This way, an object that is in the center of a cell might fully belong to it,
whereas an object near the edge of the cell might have only a small membership
in the cell. A logical approach is then to make the fuzzy sets corresponding to
neighboring cells overlap, so that an object at the edge of one cell also belongs
to the next cell. This way, as we move in the scene space, we smoothly transfer
from one cell to the next, using this fuzzy membership function. Being able to
smoothly transfer from one cell to the next makes the location of the boundaries
much less important than in the crisp case.

Formally, our “grid” is a fuzzy partition of the universe of discourse of each
coordinate, thus obtaining a two-dimensional fuzzy partition of the scene space.
As defined in [9], a collection of fuzzy sets Ai is a fuzzy partition of a universe
X if the so-called orthogonality condition (1) is satisfied:

∀x ∈ X

n∑

i=1

μAi(x) = 1 (1)

where μAi is the membership function of the fuzzy set Ai.
This condition, which we need to apply when designing the membership func-

tions of each grid cell, is consistent with the crisp approach of assigning each
object to exactly one cell, i.e., making the grid a (crisp) partition of the scene.
It ensures that all the objects are given equal importance, wherever they are

76 A. Davoust, M.W. Floyd, and B. Esfandiari

located. Following this approach, the position of each object in the scene is given
by the membership value of this object in each cell of the grid.

3.2 Definition of a Histogram

Whether using fuzzy or crisp sets, we can represent the scene by listing the
contents of each cell. More specifically, if several objects are interchangeable,
then the “contents of a cell” can be reduced to the number of such objects that
the cell contains.

Following this approach, we represent a collection of interchangeable objects
using a histogram over the grid. In a way, this is an extension of the grid oc-
cupancy map defined by [8] to an environment where we identify a number of
precisely positioned objects in the grid, rather than a boolean notion of “cell
occupancy.”

In order to adapt this representation to our context, in which not all objects
are interchangeable, we can represent a scene by several histograms, one per
object category. Categories include ball, teammate player, line, etc.

Finally, using the fuzzy partition presented in the previous Section, we can
extend the concept of a histogram to a fuzzy histogram, by taking the fuzzy
cardinality of each cell. We define this fuzzy cardinality as the sum of the mem-
bership values of the objects contained in the cell.

According to this definition, if the grid contains a total of n×m cells, and we
have a total of k different object categories, then a scene can be represented by
a histogram, which is a matrix of dimension k × n × m. For practical purposes,
we can also use an isomorphic representation, e.g, k vectors of dimension n×m.
Formally, let Aij be the fuzzy set representing a cell (i, j) in the grid, and μAij

its membership function. We define Xp to be the set of visible objects of type
p. Using a matrix notation our full fuzzy histogram is a matrix H of dimension
k × n × m, with elements hpij such that:

hpij =
∑

x∈Xp

μAij (x) (2)

3.3 Similarity Metrics

In case-based reasoning, the agent, when presented with a new problem, needs
to compare this problem with his database of reference “cases,” and select one
or several of the most similar cases in order to compute its solution regarding
the new problem.

In our case of interest, this means that the key problem for our imitative agent
is to compare two scenes. Our scene representation is isomorphic to a feature
vector, and comparisons can be made using standard distance metrics for vectors
in a space of dimension k × n × m (or n × m).

We propose here a similarity metric based on the set-theoretic Jaccard coef-
ficient (also known as Tanimoto coefficient), which we expose for a histogram
represented simply by a vector of length n, without loss of generality.

Use of Fuzzy Histograms to Model the Spatial Distribution of Objects 77

Swain and Ballard introduced in [10] a similarity metric for comparing his-
tograms, called the histogram intersection, which they defined as follows:
Let H(h1, h2, h3 · · ·hn) and G(g1, g2 · · · gn) be two histograms.

The histogram intersection of H and G is:

inter(H, G) =
n∑

i=1

min(hi, gi) (3)

They also proposed a normalized version, which they called the normalized his-
togram intersection. Here a sample H is compared to a reference G:

internorm(H, G) =
∑n

i=1 min(hi, gi)∑n
i=1 gi

(4)

This similarity comparison was introduced to compare color histograms of im-
ages, and in that context, the normalizing factor is the number of pixels in the
“reference” image. However, it is not symmetrical, which can be a problem.

Adapting this measurement to make it symmetrical has been done in various
ways in the image-processing community.

We propose here to normalize the histogram intersection by a factor that can
be seen as the histogram union. By extending Swain and Ballard’s histogram
intersection notion to a corresponding2 union notion, we obtain a histogram
union defined as follows:

union(H, G) =
n∑

i=1

max(hi, gi) (5)

In the case of sets the Jaccard Coefficient is defined as the norm of the inter-
section of the sets over the norm of their union :

j(A, B) =
|A ∩ B|
|A ∪ B| (6)

Extending this formula to histograms, we can normalize Swain and Ballard’s
histogram intersection by the histogram union. We then obtain the following
similarity metric, which we will refer to here as the Histogram Jaccard Coeffi-
cient3.

jhist(H, G) =
∑n

i=1 min(hi, gi)∑n
i=1 max(hi, gi)

(7)

Note that these definitions have been presented without concern as to whether
the histograms and sets were fuzzy or crisp, but here we assume that the fuzzy
partition we defined in Section 3.1 allows us to extend the rest of the framework,
implicitly defined in a “crisp” context, to the fuzzy case.
2 By analogy with the correspondence between T-norms and S-Norms for intersection

and union of fuzzy sets (see [9] for details).
3 This metric is very similar to various extensions of the Jaccard Coefficient used in

market basket data analysis, and in information retrieval (see, e.g. [11], and [12]).

78 A. Davoust, M.W. Floyd, and B. Esfandiari

In this work, we choose to compare scenes by comparing each of the k pairs
of fuzzy histograms that represent the scenes, and consider the final result to be
a weighted sum of those partial results.

The weights, meant to reflect the importance of each object type in the simi-
larity evaluation, are discussed in Section 4.2.

4 Implementation

The scene representation presented in the previous Section is a general defini-
tion, which can be customized by selecting particular membership functions, and
defining particular categories of objects for a specific application. In this Section
we describe our specific implementation of this approach in the CBR framework
defined in [1].

4.1 Membership Functions

The main parameters for designing our fuzzy partition of the scene space are the
following:

– Dimension of the grid. The dimension of the full scene representation will
be k × n × m, where k is the number of object categories, and n × m is the
grid size. These parameters will fully determine the processing time of the
case comparison, and the memory occupation of the case base.

We present here results with the following grid sizes: 3 × 5, 4 × 6, and
5× 8, and we have k = 7 types of objects. These sizes give a total dimension
of 105, 168, and 280, respectively, for the full feature vector representing the
scene.

– Boundaries of the cells. As noted previously, fuzzifying the boundaries of
the cells makes their exact location less important, as they do not introduce
any “drastic” separation of the data points. The location of objects in the
scene is expressed in polar coordinates, and in our implementation we simply
spaced the cells equally over the central-nearer area of the visible field. Cells
defining the extremities of the visible space (sides and most distant points)
are simply defined by their boundaries nearer to the origin (lower distance
bound, higher bound of the angle for the extreme-left, lower bound of the
angle for the extreme-right).

– Membership functions. The membership functions are constrained by the or-
thogonality condition, and by the boundaries of each cell. In order to avoid
boundary effects, we use continuous membership functions. Simple functions
allowing straightforward orthogonality include triangular membership func-
tions, and functions based on sin2 (sinus squared). In our implementation,
membership functions for the angle coordinate are based on sin2, whereas
membership functions for the radial coordinate are triangular. In both cases,
the membership function for the extremities of the grid are constant, in the
region where they do not overlap with the neighboring cell.

Our 1-dimensional membership functions for a 3 × 5 grid are shown in Fig. 2.

Use of Fuzzy Histograms to Model the Spatial Distribution of Objects 79

Fig. 2. Fuzzy partition of the polar angle (top) and radius (bottom)

4.2 Case-Based Reasoning Algorithm

We have integrated our scene representation in the framework defined in [1],
and in this Section, we briefly describe the CBR algorithms adapted to our
scene representation.

– Setup: We first set the general parameters of the framework: the size of the
grid used to discretize the scene, and the membership functions to be used
for the cells of this grid.

– Preprocessing algorithm: Using a log file, we compute a data structure
that the agent will use as its case base. For each line in the log file, we create
a scene using our fuzzy histograms representation, and attach the response
action (also recorded in the log). The scene and response action compose a
case. The cases are then aggregated as a single case base.

– Real-time CBR algorithm: When presented with a new scene, the agent
creates the fuzzy histogram representation of this scene, and matches it to its
case base. The agent selects the most similar scene, and outputs the action
that was associated with that scene.

5 Evaluation

5.1 Evaluation Criteria

In this paper, we have put forward several characteristics of our scene repre-
sentation, which we consider make it more adequate for real-time case-based
reasoning.

80 A. Davoust, M.W. Floyd, and B. Esfandiari

First of all, our representation is a simplified representation of the original list
of objects, in which we replace exact coordinates by a fuzzy histogram showing
the spatial distribution of the objects, so we need to evaluate the new represen-
tation to ensure that this loss of information is acceptable. In our imitative agent
framework [1], we evaluate this by comparing the imitative performance of the
agent using our scene representation with the results of the original studies ([1]
and [2]) which use the list of objects as a scene representation.

The main benefit of our representation is to provide a feature vector rep-
resentation, which allows for much more computationally efficient scene com-
parisons. Comparisons are a key issue since our agent needs to meet real-time
constraints. We report here the processing time of our agent, showing a signifi-
cant improvement.

Thirdly, keeping in mind the essential assumption of the CBR paradigm,
namely that “similar problems have similar solutions,” we evaluate the effect
of scene segmentation on the distinguishability of scenes, i.e. whether using our
scene representation we can still tell apart two scenes that were originally differ-
ent when originally described as lists of objects. Clearly, if two scenes associated
to different actions become indistinguishable, then we have similar problems
with different solutions, and this will set a theoretical upper bound for our per-
formance in any CBR application.

From a significant number of logs, we counted how many scenes had a repre-
sentation identical to that of another scene, and compared whether the actions
were similar or not. Similar actions meant the same action label and statistically
similar parameters, i.e the two parameter values differ by less than the standard
deviation of the parameter4.

Finally, as the Jaccard coefficient is reputed to be more “robust” in the data-
mining literature, we compared it with the Euclidean distance for our experi-
ments, analyzing how different dimensions for the scene representation impacted
the imitative accuracy of the agent.

5.2 Experimental Results

As the absolute performance of the agent depends on many factors, we have
simply compared our results with those reported by Floyd et al. in [2]. As a
target agent for our imitation experiments, we used an existing RoboCup agent
called Krislet [13], a stateless agent that exhibits a simple decision-tree type
behaviour, looking for the ball, running after it, and kicking it towards the goal.

The imitative performance of an agent was obtained by cross validation, using
three independent sets of logs from the same target agent. We used a first set of
logs as a training set, i.e., we preprocessed those logs and used them as a case
base for the agent, and we used a second set of logs as a validation set. We tested
each pair-wise combination of log files and computed the average results.

Many indicators could describe the accuracy of the imitation. However, as this
aspect is secondary to our discussion, here we only report the overall accuracy

4 Calculated from all the instances of the action throughout the logs.

Use of Fuzzy Histograms to Model the Spatial Distribution of Objects 81

Table 1. Accuracy and processing time of the imitative agent using list of objects
representation, Histograms, Fuzzy Histograms

Representation List of objects Histograms Fuzzy Histograms
dimension N/A 3 × 5 5 × 8 3 × 5 5 × 8
Accuracy 68.4 67.9 82.1 70.7 80.4
Processing time 27 2.5 5.4 2.5 5.4
(ms per scene)

of the imitative agent in discriminating between the three possible actions, i.e
kick, dash, and turn, without considering the parameter value. Hence a positive
match is a test scene for which the imitative agent selects the same action as the
original agent.

Table 1 lists the results of the imitative agent in terms of predictive accuracy
and computation time (average time for each scene comparison). The similar-
ity metric used here is the Histograms Jaccard Coefficient, and the case base
comprises 3000 scenes, as in the experiments of [1] and [2]. It clearly appears
that our histogram-based approach can easily attain the accuracy of the origi-
nal “list of objects approach,” while being computable in significantly less time.
Our interpretation of this result is that the loss of information resulting from the
fuzzy histogram representation is not a problem, and on the contrary we could
conjecture that it actually improves the representation by generalizing the data.
In this particular evaluation, the use of fuzzy logic does not make a clear differ-
ence. Varying the dimension of the representation causes a near-linear increase
in processing time, but the method remains highly efficient.

However, as noted in the previous Section, the scene segmentation causes a
loss of information, which places an impassable upper bound on the potential
accuracy of the non-fuzzy logic approach. Assuming we optimized some para-
meters of our CBR agent, as in [2], we still could not surpass a certain level of
accuracy.

Table 2. Indistinguishability of scenes, with and without fuzzy logic

Number of indistinguishablea scenes (total 9264)
Grid Dimension 3 × 3 3 × 5 4 × 6 5 × 8
Non-fuzzy 5309 4697 4773 3075
Fuzzy 354 328 221 209

Number of indistinguishable scenes with different actions
Non-fuzzy 2320 1660 1712 578
Fuzzy 34 6 4 4

a We refer to a scene as indistinguishable if there exists at least one distinct scene that
has the same representation

82 A. Davoust, M.W. Floyd, and B. Esfandiari

This limitation is shown in Table 2. Here, from our full list of working logs, we
counted every scene which is not unique (in terms of histogram representation),
and for these non-unique scenes, how many were identical to another scene but
associated to a different action, i.e. a “similar problem with a different solution.”
As expected, the use of fuzzy logic clearly removes this overgeneralisation. The
few indistinguishable scenes in the fuzzy case are due to the constant value used
for the membership functions of the extremity grid cells (see Fig. 2).

Finally, in order to evaluate the robustness of the similarity metrics, we varied
the grid size from 3 × 5 to 5 × 8, i.e. the total dimension of the representation
varying from 105 to 280 dimensions. The accuracy of the imitation is plotted
against the total dimension of the representation in Fig. 3. The Histograms
Jaccard Coefficient clearly scales better than the Euclidean distance measure.

Fig. 3. Accuracy obtained using the Jaccard Coefficient Similarity, and Euclidian dis-
tance, for different grid dimensions. (note accuracy range represented 50-100%)

6 Conclusion

We have presented a method to represent the visual perception of an agent, based
on a segmentation of the visible space. The distribution of objects is represented
using a histogram over the segments, for each object category. Fuzzy logic allows
for the smooth spreading of the count of objects over neighbouring segments
according to the actual position of the objects, and thus limits boundary effects.

This representation supports practical similarity metrics, including a robust
metrics based on the set-theoretic Jaccard Coefficient, and the efficient com-
putation of the similarity metrics make this representation highly suitable for
case-based reasoning.

Furthermore, this feature vector representation opens doors for the application
of other machine learning techniques while avoiding the need of a priori manual
feature selection. In our RoboCup imitation framework, we intend to build on
this work by exploring automated feature selection methods.

Use of Fuzzy Histograms to Model the Spatial Distribution of Objects 83

References

1. Lam, K., Esfandiari, B., Tudino, D.: A scene-based imitation framework for
Robocup clients. In: MOO Modeling Others from Observation, AAAI workshop
(2006)

2. Floyd, M., Esfandiari, B., Lam, K.: A Case-based Reasoning Approach to Imi-
tating RoboCup Players. In: Proceedings of FLAIRS-2008, Florida AI Research
Symposium (to appear, 2008)

3. Robocup, http://www.robocup.org
4. Wendler, J., Lenz, M.: CBR for Dynamic Situation Assessment in an Agent-

Oriented Setting. In: Aha, D., Daniels, J.J. (eds.) Proc. AAAI 1998 Workshop
on Case Based Reasoning Integrations, Madison, USA (1998)

5. Karol, A., Nebel, B., Stanton, C., Williams, M.: Case Based Game Play in the
RoboCup Four-Legged League Part I The Theoretical Model. In: Polani, D.,
Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI),
vol. 3020, pp. 739–747. Springer, Heidelberg (2004)

6. Marling, C., Tomko, M., Gillen, M., Alexander, D., Chelberg, D.: Case-based rea-
soning for planning and world modeling in the robocup small size league. In: IJCAI
Workshop on Issues in Designing Physical Agents for Dynamic Real-Time Envi-
ronments (2003)

7. Ros, R., Veloso, M., López de Mántaras, R., Sierra, C., Arcos, J.L.: Retrieving and
Reusing Game Plays for Robot Soccer. In: Roth-Berghofer, T.R., Göker, M.H.,
Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 47–61. Springer,
Heidelberg (2006)

8. Moravec, H.P., Elfes, A.: High resolution maps from wide angle sonar. In: Proc.
IEEE Int. Conf. Robotics and Automation, pp. 116–121 (1985)

9. Dubois, D., Prade, H.: Fuzzy Sets and Systems, theory and applications. Academic
Press, New York (1980)

10. Swain, M., Ballard, D.: Color indexing. International Journal of Computer Vi-
sion 7(1), 11–32 (1991)

11. Strehl, A., Ghosh, J.: Value-based customer grouping from large retail data-sets.
In: Proceedings of the SPIE Conference on Data Mining and Knowledge Discovery,
Orlando, Florida, April 24-25, vol. 4057, pp. 33–42. SPIE (2000)

12. Haveliwala, T., Gionis, A., Klein, D., Indyk, P.: Similarity Search on the Web:
Evaluation and Scalability Considerations, Stanford Technical Report (2000)

13. Langner, K.: The Krislet Java Client (1999),
http://www.ida.liu.se/∼frehe/RoboCup/Libs/libsv5xx.html

http://www.robocup.org
http://www.ida.liu.se/~frehe/RoboCup/Libs/libsv5xx.html

	Use of Fuzzy Histograms to Model the Spatial Distribution of Objects in Case-Based Reasoning
	Introduction
	Related Work
	Methodology
	Position of an Object
	Definition of a Histogram
	Similarity Metrics

	Implementation
	Membership Functions
	Case-Based Reasoning Algorithm

	Evaluation
	Evaluation Criteria
	Experimental Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

