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Abstract. Case-base reasoning in a real-time context requires the sys-
tem to output the solution to a given problem in a predictable and usually
very fast time frame. As the number of cases that can be processed is
limited by the real-time constraint, we explore ways of selecting the most
important cases and ways of speeding up case comparisons by optimizing
the representation of each case. We focus on spatially-aware systems such
as mobile robotic applications and the particular challenges in represent-
ing the systems’ spatial environment. We select and combine techniques
for feature selection, clustering and prototyping that are applicable in
this particular context and report results from a case study with a simu-
lated RoboCup soccer-playing agent. Our results demonstrate that pre-
processing such case bases can significantly improve the imitative ability
of an agent.

1 Introduction

When using a case-based reasoning (CBR) system, the performance of the system
is highly dependant on the quality of the case base that is used [1]. One aspect
of case base quality is how well the cases in the case base represent the set
of possible problems that the CBR system might encounter. If the case base
contains too few cases (or cases that are highly similar to each other) then the
case base might not adequately cover the problem space leading to a decrease
in performance. One reason, which we will focus on in this paper, for a case
base being a less than ideal size is if the CBR system must operate under a
real-time constraint. Since the CBR system must search the case base in order
to determine the solution to a problem, a larger case base will likely lead to a
longer search time.

One specific area where CBR can be applied in a real-time setting is in the
imitation of spatially-aware autonomous agents. These agents are able to identify
objects that are visible to them in their environment and perform actions based
on the configuration of those objects. Unless the agent has a complete world
view, it is generally only able to see a subset of objects at any given time. In
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addition to being able to only view a subset of the objects in the environment
at a given time, the agent may also not know the total number of objects that
exist in the environment.

When an agent is fully aware of each unique object in the environment and is
able to differentiate between similar objects (for example, the agent can differen-
tiate between two humans and does not just classify them both as human) then
there would exist a type for each of the unique objects. However, if the agent
is unable to differentiate between similar objects then multiple objects would
belong to a single type and the objects of a similar type could be considered
interchangeable.

The RoboCup Simulation League [2] is a realistic benchmark for examining
the type of agents we described. RoboCup agents must deal with temporal events
as well as with an environment consisting of a 2-D space (the soccer field) with
objects and other agents within that space. The agent does not know its exact
position on the field but must estimate it using the location of the objects that
are visible to it. During each time period in a game, the server provides clients
with world view and state information (subject to a noise model) using one of
see, hear, or sense body messages. Objects described in see messages may be
players, the ball, goal nets, or the numerous lines and flags located on the field.
Due to noise associated with seeing objects, a RoboCup agent often does not
possess enough information to properly differentiate similar objects (for example,
it may only be able to tell that it can see a player, though not which player it
sees). The RoboCup Simulation league provides a suitable testbed to examine
the methods described in this paper due to the real-time constraints and the
difficulty in differentiating similar objects.

In the remainder of this paper we will examine several techniques (feature
selection, clustering and prototyping) that can be used to increase the number
of cases that can be examined within a real-time limit as well as methods of
improving the diversity of cases contained in a fixed sized case base. It should be
noted that assume that the case bases do not use any method of fast-indexing,
although we feel that our techniques could be used as a complement to fast-
indexing. Initially, in Section 2 we describe the case study we will perform to
demonstrate the techniques presented in later sections of the paper. Section 3
will look at methods for representing a case and selecting the most useful features
in a case to use will be covered in Section 4. The creation of prototype cases will
be covered in Section 5. Related work will be examined in Section 6 followed by
conclusions in Section 7.

2 Case Study: RoboCup Simulation League

Our case study involves a case-based reasoning system that is used to imitate the
behaviour of a RoboCup [2] soccer player. Cases for this system are generated, in
an automated manner, by observing the RoboCup player that will be imitated
and logging the inputs to the player and the player’s outputs [3,4]. Each case
is comprised of the inputs to the player (what objects the player can see) as
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well as the outputs (actions the player performs) of the player in response to
those inputs. The imitative CBR agent then uses those cases in an attempt to
select appropriate actions based on what it can currently see (what objects are
in its field of vision). The goal of such a system is to produce behaviour that is
indistinguishable from the behaviour of the RoboCup player it is imitating.

In the RoboCup Simulation League, the environment contains objects that
belong to a fixed number of object types. Although each individual object on
the field in unique, the agent is often unable to distinguish between objects
of the same type due to noise. For example, the agent would be able to see a
teammate but might not be able to tell what specific teammate it is. For this
reason, objects of the same type are treated as interchangeable. In the RoboCup
Simulation League we define the following object types:

Type = {Ball, Goalnet, F lag, Line, T eammate, Opponent, Unknownplayer}

Each player may only perform an action once per discrete time interval, called
a cycle. If the player does not perform an action each cycle then it will be at a
disadvantage compared to other players who act more often. The entire process
(Figure 1) of identifying what objects are currently visible to the agent, using
CBR to select the appropriate actions to perform and performing those actions
should then be completed within a cycle (of length 100ms). Also, given that the
CBR process is not the only task the agent needs to complete within each cycle,
we will set our time limit for performing CBR to half of the cycle (50ms).

Fig. 1. The activities the agent must perform in one 100ms cycle

2.1 Metrics

The effectiveness of each approach will be measured using a combination of two
criteria: how much time it takes to perform the case-based reasoning process and
how well the agent performs imitation.

The time it takes to perform the CBR process will be measured as the time
it takes from when the CBR system is given a problem (the objects an agent
can currently see) to when it provides a solution (the action to perform). As
was mentioned previously, we want this time to be as close to our imposed time
limit of 50ms as possible. If the time is lower than 50ms we could add more cases
to our case base, or if the time is greater than 50ms we would need to remove
cases from the case base. Either adding or removing cases may have an impact
of how well the imitative agent performs, so we also require a metric of agent
performance.
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If it takes an amount of time, T , to perform CBR using a case base of size N ,
then we can estimate the number of cases, Nmax, that can be used within our
real-time limit, Tmax, as:

Nmax ≈ Tmax ∗ N

T
(1)

A simple measure of agent performance would be to measure the classification
accuracy of the CBR system when performing a validation process. Each case
in a testing set will be used as input to the CBR system and the output of the
CBR system, the predicted action, will be compared to that case’s known action.
This provides a measure of the number of test cases that are classified correctly.
However it can be misleading when the testing data contains a disproportional
number of cases of a certain class. For example, in RoboCup soccer a player
tends to dash considerably more often than it kicks or turns. A CBR system
that simply selected the dominant class (dash) could gain a high classification
accuracy while completely ignoring the other classes.

Instead, we use the f-measure. We define the f-measure, F, for a single action,
i, as:

Fi =
2 ∗ precisioni ∗ recalli
precisioni + recalli

(2)

with
precisioni =

ci

ti
(3)

and
recalli =

ci

ni
(4)

In the above equations, ci is the number of times the action was correctly
chosen, ti is the total number of times the action was chosen and ni is the number
of times the action should have been chosen. The global f-measure, combining
the f-measures for all A actions, is:

Fglobal =
1
A

A∑

i=1

Fi. (5)

3 Case Representation and Comparison

As we focus on spatially-aware agents, an important issue is that of representing
the agent’s environment. Assuming a previous step in the considered system
extracts symbolic information from a robot’s sensor data, the “raw” information
is a list of recognized objects with spatial coordinates, for example in polar
coordinates with respect to the agent, as in the RoboCup context.

The standard inputs of most machine learning systems are feature vectors,
and in most CBR publications (particularly in the RoboCup context) researchers
have manually defined vectors from their input data, selecting features according
to their expertise in the application domain. For soccer simulation, the feature
vectors comprised such heterogeneous features as the distance from the ball to
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the net, the current score, counts of players in particular zones, etc. In previous
work on this project [3,4,5] we have adopted an orthogonal approach, exploring
techniques to manipulate the raw data received from the feature extraction step,
minimizing application-specific bias and human intervention.

3.1 Raw Data Representation

The first representation that we consider here is a simple list representation of
the visible objects with their exact coordinates. The main problem with this rep-
resentation is that is does not form an ordered set of features of a fixed length.
At a given time the agent only has a partial view of the world, and cannot nec-
essarily differentiate objects of a given symbolic category. For example, a mobile
robot navigating a city could label the objects surrounding it as cars, people,
or buildings, but probably not identify each one according to some complete
reference of all possible cars, people, or buildings.

Comparing two cases represented by such “bags of objects” involves compar-
ing the sets of objects present in the scenes, matching as many objects from
one set to objects of the other set, and secondly evaluating the actual physical
distance in between matched objects. As permutations need to be considered,
the cost of object-matching algorithms is very high, as reported by Lam et al.
[4] and Karol et al.[6] in separate work. Objects of one scene which cannot be
matched to an object of the other must also be accounted for, for example by a
penalty added to the distance value.

3.2 Histogram Representation

In [5] we presented an alternative approach that creates a vector using all the
spatial data without the bias of manual feature selection. Our approach takes
inspiration from grid occupancy maps [7] used in mobile robotics, a technique
where sections of the environment are assigned probabilistic indications that
they contain obstacles. Such a representation aims to project all the available
information (e.g. from a sonar) on a feature map that represents the entire
known environment. Our representation is based on histograms of objects over a
partition of the visible space, and transforms a list of objects into an image-like
representation with customizable granularity.

As a feature vector, this representation supports practical similarity metrics
and opens the door for the application of other machine learning techniques
while avoiding the need of a priori manual feature selection. Distance and sim-
ilarity metrics that we have experimented with include Euclidean distance and
a similarity metric based on the Jaccard Coefficient, which has proved to give
better results in our experiments (see [5]).

3.3 Fuzzy Histograms

Discretizing the visible space into intervals, although efficient in our practical
experiments, has some drawbacks. Objects that are near the boundaries can be
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artificially separated into two different sections, whereas two relatively distant
objects, at opposite ends of a section, would be lumped together. In fact, since we
are removing the information of the exact coordinates of the objects, some cases
which were only slightly different can now have the exact same representation. If
these cases were associated to the same solution then it can be a way of removing
redundant cases, but if the cases were associated to different solutions then the
indistinguishability of the two cases becomes a problem.

In order to address these problems we can introduce fuzzy logic to the dis-
cretization. Fuzzy logic allows for the smooth spreading of the count of objects
over neighbouring segments according to the actual position of the objects, and
thus limits boundary effects. For fuzzy histograms, we can use the same distance
or similarity metrics as for crisp (non-fuzzy) histograms.

3.4 Empirical Comparison

The case representation schemes we have described store the case features and
calculate distance between cases in different manners. As such, we can expect
the execution time of a CBR system to be different depending on which repre-
sentation scheme we use. The goal of these experiments is to find out how large
the case base can be for each representation (while still meeting our imposed
50ms time limit) and how well the CBR system performs when using a case base
of that size.

The experiments will use the following parameters:

– The player we will attempt to imitate is Krislet [8]. Krislet uses simple
decision-tree logic to express its behaviour, namely that the agent will always
search for the ball, attempt to run towards it, and then attempt to kick
it toward the goal. Although it may seem that simply inducing decision-
trees from our data would be an obvious solution to imitate this agent, our
preliminary studies found that this required more human intervention and
performed less accurately than a case-based reasoning approach.

– All features will be given an equal weighting.
– The CBR system will use a 1-nearest neighbour algorithm.
– All case representations will work on identical datasets (although they will

represent the data sets differently).
– The histogram approaches will discretize the data into a 5x8 grid.
– The histogram approaches use the Jaccard Coefficient similarity measure.

Case bases of varying sizes were used in order to determine the maximum
number of cases that could be used within a 50ms timeframe. We can see that
the histogram approaches can utilize far more cases, nearly 5 times more, that the
raw data representation (Table 1). Also, the histogram approaches achieve higher
f-measure scores in all categories except for kicking, with the crisp approach
slightly outperforming the fuzzy approach.
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Table 1. Comparison of case representation

Max.
cases

f1global f1kick f1dash f1turn

Raw 3012 0.43 0.17 0.70 0.41
Crisp histogram 14922 0.51 0.12 0.84 0.57
Fuzzy histogram 14922 0.50 0.12 0.82 0.56

4 Feature Selection

The comparison between cases, usually a similarity or dissimilarity measure,
occurs quite often in a single CBR cycle and can represent a majority of the
computational time required by the CBR system. If the comparison between
cases is a function of the features contained in the cases, such that the compu-
tation time of the comparison is proportional to the number of features, then
removing unnecessary or redundant features can reduce the computational time
required.

Wrapper algorithms [9] are a type of feature selection algorithm that search
for an optimal feature weighting by evaluating the weightings when using them
in a target algorithm (in our case, a CBR algorithm). This is in contrast to
a filter algorithm [10] that selects features without using the target algorithm.
Wrapper algorithms are often favoured because they directly use the algorithm
that will use the feature weights, although they do have a higher computational
cost.

The downside of existing wrapper algorithms, when taking into account the
real-time concerns, is that they select the features that will optimize the per-
formance of a given algorithm when using a fixed-sized training sample. One
should note though that performing feature selection on a fixed-sized training
sample will produce an optimum feature weighting for that training sample and
will not take into account that every feature removed will result in more cases
that can be evaluated. For example, the removal of a feature might not improve
the performance of the target algorithm using a fixed-sized training set but the
performance might be increased if that feature was removed so that more cases
could be added to the training set (potentially improving the diversity of the
training set).

Given the total time to solve a problem case using a CBR system, ttot, when
the CBR system uses a case base of size N, then the average execution time cost
per case, tcase, is:

tcase =
ttot

N
(6)

And if the each case is composed of i types of features, then the average execution
time cost per feature type, tfeat, is:

tfeat =
tcase

i
(7)
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It should be noted that this assumes that each type of feature has an equal
execution cost. If this is not the situation, each feature type can have a different
cost value. We can then apply the following algorithm to complement the use of
any existing wrapper feature selection algorithm:

Algorithm 1. Dynamic Training Set Feature Selection

Inputs: WrapperAlgorithm, allCases, timeLimit, CBRAlgorithm
Outputs: optimum weights

DTSFS(WrapperAlgorithm, allCases, timeLimit, CBRAlgorithm)
while(!WrapperAlgorithm.optimumWeightsFound()):

weights = WrapperAlgorithm.nextWeightsToTest()
caseCost = 0
for(each non-zero weight in weights)

caseCost += execution time cost of the feature being weighed
end loop
estimatedSize = timeLimit/caseCost
trainingCaseBase = randomly select ’estimatedSize’cases from allCases
CBRAlgorithm.setWeights(weights)
CBRAlgorithm.setTrainingData(trainingCaseBase)
performance = CBRAlgorithm.evaluatePerformance()
WrapperAlgorithm.returnEvaluation(performance)

end loop
return WrapperAlgorithm.optimumWeights()

end

This algorithm dynamically changes the size of the training data used by a
wrapper feature selection algorithm based on the estimated computational cost
of the feature set that is currently being evaluated by the CBR system.

4.1 Experimental Results

This round of experiments looks to demonstrate the benefit of using the feature
selection algorithm discussed in the previous section (Algorithm 1). For these ex-
periments we will use a simple wrapper feature selection algorithm, a backward
sequential selection (BSS) algorithm [11], as an input to Algorithm 1. We make
a slight variation to this algorithm in that it does not directly evaluate weights
using the CBR algorithm. Instead, it makes the current weights it wants to test
available (as in the nextWeightsToTest() method in Algorithm 1) and waits to re-
ceive the performance of those weights (as in the returnEvaluation(performance)
method in Algorithm 1). This wrapper algorithm requires two parameters. The
first parameter is the minimum percentage a feature set must improve over the
current best feature set in order to become the new best feature set. The second
parameter is the number of feature sets we examine, without finding a new best
feature set, before the algorithm terminates. For our experiments we will use a
0.01% minimum increase and up to 5 non-improving feature sets.
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When the BSS wrapper algorithm is used to perform feature selection, with
all three case representation schemes that were used in Section 3 (using the same
parameters as those experiments), we find that all three schemes find the same set
of features (ball and teammate) produce the largest performance improvement
(Table 2). For all case representations we see noticeable increases in f-measure
values by using this subset of object types instead of using all object types. Case
base sizes were selected based on the experiments in Section 3 so that when using
all of the features the CBR process would take approximately 50ms. We see that
the feature selection algorithm found a set of features that did not contain all of
the features. By removing the features that the feature selection algorithm did
not select (and removing their computational cost) the CBR system will then be
able to process more cases within the 50ms time limit. Does it then make sense
to perform feature selection using a training case base of a fixed size if that fixed
size is chosen in order to ensure the real-time constraint when using all of the
features?

In fact, each feature set will allow for a different maximum case base size
depending on the number of features that are included. If we use the same
BSS wrapper algorithm as an input to Algorithm 1 we can see that it may be
more beneficial to remove a feature, and as a byproduct allow for a larger case
base size, then to keep the feature (Table 3). Using a fixed sized training case
base, we found ball and teammate to be the features that should be included.
However, using a dynamic sized training case base we find that only the ball
should be included. The performance using a larger case base size, by removing
the teammate feature, was larger than the performance of using a smaller case
base size and including the teammate feature. It should be noted that the same
can not be said about removing the ball feature and only keeping the teammate
feature, as that actually caused a performance decrease.

5 Case Selection through Case-Base Clustering and
Prototyping

The next method for improving case base diversity that we examine, in this
section, is prototyping. Prototyping involves replacing a set of cases with a single
case (a prototype case) that is representative of the entire set. In order for any
type of prototyping to occur, the case base can first be divided into a number
of smaller groups. Each of these clusters must contain similar cases so that the
prototyping process can successfully produce a case that represents the entire
cluster. Ideally, the cases within a specific cluster will be nearly identical to
each other, so that the prototypical case would be highly similar to all cases in
the grouping. However, if the cases in a grouping are highly dissimilar then the
prototypical case will be a less precise representation of the cluster.

Many clustering algorithms work on the assumption that the distance metric,
used to calculate the distance between two data points, follows the triangle
inequality [12]. While we can make this assumption for the histogram distance
calculation and data representation in Section 3.2, the same can not be said for



204 M.W. Floyd, A. Davoust, and B. Esfandiari

Table 2. Feature Selection Using Fixed Training Case Base

Num.
cases

Features f1global f1kick f1dash f1turn

Raw 3012 {ball,teammate} 0.52 0.30 0.79 0.47
Crisp histogram 14922 {ball,teammate} 0.57 0.25 0.87 0.60
Fuzzy histogram 14922 {ball,teammate} 0.55 0.26 0.82 0.58

Table 3. Feature Selection With Dynamic-sized Training Case Base

Max.
cases

Features f1global f1kick f1dash f1turn

Raw 21084 {ball} 0.60 0.42 0.84 0.55
Crisp histogram 104454 {ball} 0.61 0.30 0.90 0.64
Fuzzy histogram 104454 {ball} 0.60 0.30 0.88 0.62

the raw data representation and associated distance calculation (Section 3.1).
This is due to the fact that each case can contain a different number of known
values for features and features can be indistinguishable from each other. The
way in which indistinguishable features are “matched” between cases [3] can lead
to such a situation. For example, consider three cases A, B and C which contain
features a, b and c respectively. We might find a situation where a and b are
matched when comparing A and B, a and c are matched when comparing A and
C but b and c are not matched when comparing B and C. This situation can
lead to the triangle inequality not holding true. One type of clustering algorithm
that could work on such data would be non-parametric clustering algorithms
[13,14].

For the histogram representations we use a k-means clustering algorithm [15]
to cluster the data. However, due to the distance calculation used by the raw
data representation the k-means algorithm (along with a substantial number of
other clustering algorithms) can not directly be applied due to the fact that each
case contains a different number of known values for features. The data must first
be transformed by converting it to a distance vector [13]. The distance vector for
a case contains the distance between that case and each case in the case base.
So if the case base contains N cases, then each case will be represented by a
distance vector of size N. After this transformation is performed we can then
apply the k-means algorithm to the distance vectors.

Assuming we can adequately cluster our case data, we will now examine two
possible methods to create prototypical cases from the clustered data.

5.1 Using a Cluster Member

The simplest method for creating a prototypical case from a cluster of cases is to
simply use a single case from the cluster, a cluster member, as the prototypical
case and discard the remaining members of the cluster. This method is useful
because it does not require creating a new case, but instead it reuses an existing
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case. By avoiding the creation of a new case the case base is guaranteed to be
composed entirely of acquired cases.

For a cluster with n cases in it and containing the cases {Ci, . . . , Cn}, we
locate the prototypical case as:

Cprot = arg
Cn

min
Ci=C1

n∑

j=1

d(Ci, Cj) (8)

This will find the case that is the minimum distance (where the distance between
two cases is d(Ci, Cj)) from all other cases in the cluster. Likewise, we could
modify the equation to find the maximum value when calculation a similarity
between the cases.

5.2 Creating an Average Case

The second method of creating a prototypical case from a cluster of cases is
to create an “average case”. This entails determining an average position that
spatial objects will be located when examining all cases in the cluster. Compared
to the first method, this method constructs a novel case and does not reuse
an existing case. The process of creating an average case when all cases have
a fixed number of features is quite simple (the average case will contain the
average value of each feature). The averaging process becomes more difficult in
situations where cases can have different numbers of features. For example, with
the raw data representation (Section 3.1) the issue of matching features between
a pair of cases becomes substantially more difficult when matching between a
set (cluster) of cases. To deal with the differing numbers of features we propose
Algorithm 2.

This algorithm uses a case in the cluster that is central to the other cases
(using Equation 8) and performs a pair-wise matching between that case and
each of the other cases in the cluster. The resulting prototype will have the
same number of features as the cental case and the feature values will be highly
dependant on how the other cases matched to the central case. This means
changing the case used as the cental case can result in different prototype cases
being produced.

5.3 Experimental Results

In this section of experiments we demonstrate the results of applying the proto-
typing methods that we have described previously. For these experiments we will
use the same parameters that we used in Section 3 and we will use the results
from that section (the maximum-sized case base that can be searched in 50ms)
as the benchmark.

Initially, each of the case bases (one for each case representation scheme)
must be clustered. As was mention previously in this section, we will use the
k-means clustering algorithm. The k-means algorithm requires a parameter, the
k-value, to specify how many clusters the data will be partitioned into. For
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Algorithm 2. Spatial Cluster-Average Prototype
Inputs: cluster of cases
Outputs: prototypical case

SCAP(cluster)
remove the case, C, that is closest to all other cases
for(each feature f in C):

create an empty list and add the feature to that list
end loop
while(more cases exist in cluster):

remove the next case in the cluster, N
for(each feature in C):

match the feature with a feature in N
add the feature value from N to the list for this feature

end loop
end loop
create a prototypical case, P, that contains no objects
for(each feature in C):

compute the average location of all features in the feature list
add a feature with the average location to P

end loop
return P

end

each representation this value was found experimentally by finding the smallest
k-value such that the resulting clusters were still homogeneous. A cluster is
homogeneous if each case in the cluster has the same solution (the same action
in the RoboCup domain).

With the resulting clusters we then applied the prototyping methods described
in Section 5.1 and Section 5.2. Both prototyping methods resulted in the same
decrease in number of cases and decreased execution time, since they used the
same data partitioned into the same number of clusters. The difference between
prototyping using a cluster member and prototyping using an average case (Table
4) can be seen in their influence on performance. While both methods result in
a slight decrease in the f-measure, a tradeoff for the decrease in execution time,
we see that the f-measure decreases less when prototyping using an average
cluster.

Although we have focused exclusively on prototyping a case base that can
already be searched within our real-time limit of 50ms, in order to compare with
benchmarks set in previous experiments, the real benefit of such an approach is
to compress a larger case base to fit within the time limit. Given that k-means
allows the number of clusters produced to be specified, the case base can be
partitioned into a number of clusters equal to the maximum allowable case base
size. Each cluster can then be used to create a prototype case and the resulting
case base will be exactly the maximum allowable size. The only limiting factor
is that the more a case base is compressed the larger the potential performance
decrease that will occur.
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Table 4. Prototyping using cluster member and average case

Initial
cases

Final
cases

Initial
execution
time

Final ex-
ecution
time

Initial
f1global

Member
Final
f1global

Ave.
Final
f1global

Raw 3012 2642 50ms 44ms 0.43 0.41 0.42
Crisp 14922 12335 50ms 41ms 0.51 0.47 0.49
Fuzzy 14922 11642 50ms 39ms 0.50 0.47 0.49

6 Related Work

In our previous work [4,3,5] we have exclusively looked at the application of
CBR to the topic of agent imitation and the various algorithms and data rep-
resentations used to facilitate that process. In that work we made no attempt
at preprocessing the case base in order to improve search time and case base
diversity.

Using CBR in the domain of RoboCup has been explored numerous times be-
fore, including the simulation [16,17,18], small-sized robot [19] and four-legged
robot [20,6] leagues. These CBR systems are often given a complete world-
view [17,18,19,6] or an artificially increased world-view (from opponents that
communicate their location [20]) which may not be attainable in many real-
world domains. The features contained in a case are selected by a human expert
[16,17,18,19,20,6] and the cases are often authored [19,20] or filtered [16] by a hu-
man expert. The main difference between our approach and these works is that
we use automatically generated cases, by observing another agent, that contain
all objects the agent can see, thus reducing bias by avoiding feature selection by
a human expert.

The topic of feature selection and feature weighting has been covered exten-
sively in case based reasoning research. This work ranges from comparisons of
various feature weighting methods [21] to applications of feature weighting [22].
While substantial work exists in the field of CBR, to our knowledge ours is the
first to address the feature selection needs of a real-time agent. Similarly, pro-
totyping and generalization have previously been examined and applied in CBR
[23] but the way in which a spatial-aware agent represents a case complicates the
prototyping processes and requires special consideration. Lastly, while it may ap-
pear that we ignored topics related to case base structure [24] and fast-indexing
techniques, we feel that our techniques compliment such work and should be
used in combination with, rather than as an alternative to them.

7 Conclusions

Throughout our case study we have experimented using three different methods
of case representation. Our results have generally shown the histogram represen-
tations to significantly outperform the raw representation (using a t-test with
p=0.01) and the crisp histogram outperformed the fuzzy version (p=0.05). There
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are two notable exceptions. Throughout we have found that the raw representa-
tion achieves higher f-measure values related to the action of kicking (p=0.01).
This is likely because the artificial cell boundaries created by the histogram
approach. Secondly, we find that the fuzzy histogram representation achieves
better reduction in size while having no significant difference in f-measure score
compared to the crisp histogram. This is because the fuzzy histogram approach
produces fewer cases that have the same representation but different actions,
since the fuzziness better encodes the exact position of features.

We have demonstrated throughout this paper that applying preprocessing
techniques to a case base can increase the performance of a CBR system by
allowing it to consider more cases within a real-time limit or increasing the
diversity of the case base. We examined modifying the distance calculation used
(as a byproduct of changing the case representation), selecting a feature set that
optimize performance and clustering similar cases so that they may be used
to generate a prototypical case. While we have shown these techniques to be
successful in the domain of RoboCup soccer, and more specifically the imitation
of soccer playing agents, they are applicable to any situation where a CBR
system uses spatial data with real-time concerns.

Although the f-measure values attained may seem low (0.5 - 0.6 range), suc-
cessful agent imitation can be observed when watching the imitative agent play
a game of soccer. This study focused on data from a single agent (due to space
limitations) but further analysis for agents of different complexity, data sets,
source code and game videos can be found at http://rcscene.sf.net.
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