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Abstract. We present a comparison of two methods for selecting the
features employed in the representation of cases for a case-based reason-
ing approach to imitation of agents in the RoboCup simulation platform.
Feature Selection methods are compared empirically in terms of the im-
itation performance, the size of the resulting feature set, and execution
time. Differences and their implications are discussed.

1 Introduction

One central issue for every artificial intelligence problem is that of knowledge
representation. Decisions regarding what to represent and how to do it often
facilitate, and likewise constrain, the problem solving process and its success.

The most sensible way to deal with such sensitive decisions involves getting
expert advice. However, when there is no expert knowledge available, feature
selection methods can help to identify the pieces of information that are more
relevant in solving the task [1].

Another aspect in which expert knowledge eases the solution of an artifi-
cial intelligence problem regards the processes underlying the task itself. When
dealing with a new domain, or when the mechanisms leading to the problem’s
solution are not well known, case-based reasoning (CBR) provides a powerful
learning methodology [2].

Imitation is one such task in which there is no formal model of the behaviour
following a sequence of inputs. The RoboCup Simulation Imitation Agent Project
(RCIAP)[3] employs both case-based reasoning and feature selection for learning
to reproduce the behaviour of soccer playing agents based on the agent inputs.

We compare two feature selection methodologies in order to evaluate which
methodology would better help to overcome some of the limitations of the current
case recognition framework of the RCIAP.

2 Feature Selection

Feature (subset) selection is a machine learning sub-field that deals with select-
ing a set of relevant variables (features) from a large set of available features. The
aim of feature selection is to reduce the number of features considered by the
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learning task without deterioration to the learning performance. The employ-
ment of feature selection has a number of desirable advantages as a consequence
of the reduction in dimensionality of the learning problem, such as faster learning
and relatively smaller training sets.

Feature selection methods can be classified according to two parameters: the
feature selection model (a.k.a. feedback [4]), and search strategies [1].

Three feature selection models can be identified. When feature selection is
performed before the learning task in a pre-processing step, the method is called
a filter. A wrapper model is one in which the search for a feature set is guided
by a performance measure of the learned model. Embedded feature selection
occurs when the construction of the set of features is integrated in the learning
model (e.g. decision tree algorithms).

Different search strategies can be employed. The most common are forward

search (starts with a small feature set and larger sets are explored), and back-

ward search (starts with a large feature set and explores smaller ones). A
simplification of these strategies consists of sequential search, in which one
feature is included (or removed) at a time without backtracking. Other search
methods include random and float search.

3 The RoboCup Simulation Imitation Agent Project

The purpose of the RCIAP is to build Robo Cup agents that imitate other
(target) agents playing in the Robo Cup Simulation League, with as few domain-
specific assumptions as possible.

3.1 The RoboCup Simulation League

The Robo Cup Simulation League is a platform for testing software agents play-
ing on a soccer team. Each agent is a soccer player client that connects to a
soccer simulation server. The simulation server keeps track of the game, sends
messages to the clients and receives commands from them.

The server provides the agents with different kinds of information. There are
two types of messages sent by the server: sensory information ( the see, the
hear, and the sense body messages), and game state information such as play
modes (e.g. offside, goal kick, play on) and the match score. The see messages
describe an incomplete view of the soccer field in terms of objects such as other
players, the ball, field lines and flags. These objects also have properties such as
distance and direction.

In response, agents send back one or more commands to the server, such as
dash, kick, turn, or say. These commands also have properties such as power
and angle of a kick.
The Case-Based Reasoning Approach: In RCIAP, imitation of agents is
achieved using case-based reasoning. Observations are obtained from log files of
the communication between an agent and the server. The captured data is trans-
formed into a spatial representation (called a scene) that includes information
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from the see messages (other types of inputs are ignored for now) together with
the corresponding commands sent by the agent at each simulation cycle.

The obtained scenes constitute the knowledge of an imitative agent, which
is employed in a case-based fashion when playing a soccer game. The agent
transforms the current game situation into an scene representation, compares
it to the stored scenes, finds the k-nearest scenes (k = 1), and then selects the
command found on the 1-nearest scene.
Challenges: Since a RoboCup simulation cycle takes 100ms, the imitative agent
has to send a command back to the simulation server in less than 80ms (we
impose a smaller than 100 ms limit to account for lag and message processing.)
Thus the calculation of distance between the current simulation situation and
stored cases has to be performed as fast as possible.

Distance calculation is affected by the number of features used to represent
each case. The larger the number of features, the more complex the calculation
procedure. Also, the number of cases required to discern between game situa-
tions increases factorially with the number of features employed. Therefore, it is
convenient to consider as few features as possible.
Current Implementation: In the current RoboCup case-based agent [3], 160
visual input features and 3 output features were considered. The input features
correspond to the relative coordinates of up to 80 visible objects (7 object types
in bold face): the Ball, flags (up to 53 field landmarks,) players (up to 21, which
are classified as team mates, opponents, and not identifiable,) the visible
goal if any, and field boundaries (up to 4.) The output features correspond to
the agent command, as well as the power, and aimed direction of the action.

Distance calculation (between the current input and a case input) is per-
formed in the following way:

1. Seven lists of objects are generated, each ordered by nearest to farthest, and
from left to right.

2. The objects from each list are matched in order. Non-matching objects are
ignored. If only n objects can be matched, then let i be the set of matched
objects from the current input, and cm the corresponding set of matches in
case m. i.e.

i = {obj
1
, obj

2
, · · · , objn}

cm = {match(obj
1
),match(obj

2
), · · · ,match(objn)}

3. The euclidean distance between matched objects is obtained:
d (objk,match(objk))

4. All these distances are weighted and added up:

d(i, cm) =

n
∑

j=1

wj × d
(

objj ,match(objj)
)

Weights are determined offline in a pre-processing step. The weight calcula-
tion method used in the current implementation is a backward sequential search
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binary wrapper algorithm [5, page 56]. Weights are 0 or 1 depending on the ob-
ject type. The idea is to assign weight 1 only to types of objects that are highly
relevant, and ignore object types with low relevance.

This approach is a feature selection algorithm that considers only 7 features,
one per object type. It starts with the 7 object types (all weights are 1) and
evaluates the CBR performance; this is the current best set of features. Starting
with the current best features set, the algorithm considers all the subsets of
features that obtain by removing only one feature (switching its weight to 0),
and evaluates the CBR performance of each of these sets. If one of those subsets
has the best CBR performance, and is at least 0.5% better than the current best,
then it becomes the new current best set of features and the process is started
again. Otherwise the algorithm returns the current best features set.

Limitations: One important limitation of this approach is that by bundling
together all the objects of the same type into a single feature we are imposing
an overgeneralizing and strong constraint to distance weights, which also affects
the inductive bias of the k-nearest case search. By doing so, we end up using
many features that may not be very relevant, and ignoring others that may be
relevant.

For example, it may well be the case that the most relevant object is the
player that is closer to the ball, and that the output command depends on
whether that player is a team mate or an opponent.

If we performed feature selection over the original 160 features we would have
better chances of capturing such distinctions. However, this feature selection
algorithm is extremely slow, so it cannot scale to many more than 7 features.
Time is of the essence because one of our future goals involves being able to
build the case base and compute weights on line.

Improving Feature Selection: It would be useful to find a feature selection
algorithm that is faster and can be scaled to at least 160 input features. We must,
however, be systematic and attack each of these desiderata at a time. First we
need to find a feature selection method that is faster and obtains similar CBR
performance when we apply it to the same 7 features. Once we achieve that goal,
we can try to use it with larger feature sets.

Zhong, et al. [6] report a rough set based filter approach for feature selection
that is fast and effective in large databases. In the next section we propose a
similar algorithm. Our hypothesis is that this algorithm will achieve the first goal,
namely to perform feature selection faster without sacrificing CBR performance.
Then, in Section 5 we test our hypothesis by comparing both algorithms in terms
of CBR performance and feature selection performance.

Salamo and Golobardes [7] discuss two other (continuous) weighting methods
for CBR based on rough sets. Other applications of rough set theory for CBR
include case base reduction [8] and case representation [9].
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4 Rough Set Theory Approach to Feature Selection

Rough set theory (RST) [10] deals with the representational properties of sets
of finite discrete valued features.

In RST, a decision system is a tuple (U,C,D) where U is the universe of
considered objects, and C and D are two disjoint collections of features. Both
C and D induce equivalence classes in U , let us call their sets of equivalence
classes C and D respectively. The idea in a decision system is to approximate
classes in D in terms of the classes in C. In other words, we try to characterize
the different classes in D using only the feature set C.

This is relevant to machine learning if we think of C as the features used to
describe observations, and of D as the features of those objects that we want to
learn. Hence, we call them condition features and decision features respectively.

The positive region POSC(D) of D in terms of C is the set of objects in U

that can be correctly classified as belonging to one class in D using only the
information about features C.

4.1 Rough Set Theory methods for Feature Selection

Given a decision system S = (U,C,D), the feature subset selection problem
consists of finding a minimal family of features C ′ ⊆ C such that POSC′(D) =
POSC(D).

A solution C ′ to the feature subset selection problem is a D-reduct of C.
If f is a feature in C such that POSC−f (D) ( POSC(D), then f is D-

indispensable in C.
The union of all D-indispensable features in C is the D-core of C, CORED(C).

Some interesting properties of reducts are worth noticing:

multiplicity of solutions: There may be more than one D-reduct of C, i.e. the
feature selection problem may have more than one solution.

core and reducts: Every D-reduct of C contains the CORED(C).

These observations suggest a basic method for feature selection: we can start
by finding the core, and then add features to the core until we find a subset
of features with a positive region that matches that of the full set of condition
features (see Algorithm 3). Finding the core is as simple as testing every feature
in C for the indispensability property (see Algorithm 2). Each of these procedures
depend on calculating the positive region of D (as the feature set evaluation
metric) in terms of different subsets of condition features (see Algorithm 1).

Algorithm 3 returns the first solution it finds, thus, the order (rank() pro-
cedure) in which dispensable features are added to the core is one source of
inductive bias. The other source of inductive bias comes from the feature set
evaluation measure |POSG⊆C(D)| (PR() procedure.)

Algorithm 3 does not guarantee finding a D-reduct of C. Nevertheless, it
finds a feature set A such that A contains a D-reduct of C, and A ⊆ C,i.e. no
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Algorithm 1 Positive Region

Inputs: observations, conditionFeatures, decisionFeatures
Outputs: positiveRegion: number of discernible observations

PR(observations, conditionFeatures, decisionFeatures)

conditionClasses = { }

positiveRegion = 0

for(each observation Obs in observations)

cClass = determineConditionClass(Obs[Input],conditionFeatures)

dClass = determineDecisionClass(Obs[Output],decisionFeatures)

if(cClass does not exist in conditionClasses)

elementCounter = 1

outputClasses = set{dClass}

else

elementCounter = conditionClasses[cClass][0] + 1

outputClasses = conditionClasses[cClass][1]

outputClasses.set_add(dClass)

conditionClasses[cClass]= {elementCounter,outputClasses}

for(each condition class condClass in conditionClasses)

elements = conditionClasses[condClass][0]

outputs = conditionClasses[condClass][1]

if(number of different outputs == 1)

positiveRegion += elements

return positiveRegion

information is lost by using this algorithm. In most cases Algorithm 3 will return
a smaller set than C. Running the basic algorithm again on the first run solution
may help to further reduce the set of condition features.

If n is the number of training cases, c = |C|, and m is the maximum number
of values that a feature in C can take, then Algorithm 3 is of order O(nmc2).

4.2 Advantages of Rough Set Theory Methods

One consequence of RST is that the cardinality of the positive region |POSC(D)|
is the maximum number of objects in U that can be correctly categorized with
the information provided by any subset of the set of condition features. Thus, the
positive region is an upper bound for the learning performance of any machine
learning approach.

4.3 Proposed Feature Selection Method

Despite the fact that Algorithm 3 does not always find a reduct, we propose to
compare it with the current weight calculation employed in RCIAP.
Hypothesis: Algorithm 3 implies a filter feature selection model, which has the
potential for a faster execution time than the current wrapper approach. Thus,
we expect an important reduction in execution time.
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Algorithm 2 Core

Inputs: observations, conditionFeatures, decisionFeatures, maxPR
Outputs: coreFeatures

CORE(observations, conditionFeatures, decisionFeatures, maxPR)

coreFeatures = { }

for(each feature Feature in conditionFeatures)

complement = conditionFeatures

complement.remove(Feature)

complementPR=PR(observations, complement, decisionFeatures)

if(complementPR < maxPR)

coreFeatures.add(feature)

return coreFeatures

As for CBR performance, we do not expect statistically significant differences,
or important differences otherwise. The same hypothesis holds for the number
of selected features.

5 Feature Selection Methods Comparison

This section describes the comparisons performed between the current back-
ward sequential search binary wrapper algorithm and a rough set based forward
sequential search filter algorithm (Algorithm 3 with no ranking of dispensable
features).

5.1 Materials

Target Agents: Data from 3 RoboCup agents was used. In order of complexity:
Krislet a simple team that chases the ball and kicks it toward the opponents goal,
A1 based on Krislet (this agent will not follow the ball if it sees a team mate
closer to it,) and CMUnited 2000 RoboCup World Champions developed by
Carnegie Mellon University.
Case Base: The case base consisted of 15, 000 cases per agent. Each case en-
coded the 160 input features, as well as the 3 output features described in Section
3. For feature selection, only 7 seven features (the object types) were used.
Independent variables: The experiment consisted of 6 experimental condi-
tions with 2 independent variables: target agent (3 conditions), and feature se-
lection algorithm (2 conditions).
Performance metrics:

Feature set size: The number of features in the solution set.
Execution time: This is the execution time of the feature selection procedure.
Accuracy: The rate of CBR outputs that matched the output in the testing

case. This only takes into account the type of action.
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Algorithm 3 Forward Sequential Feature Selection

Inputs: observations, conditionFs, decisionFs
Outputs: reduct

RSFS(observations, conditionFs, decisionFs)

maxPR = PR(observations, conditionFs, decisionFs)

coreFeatures = CORE(observations,conditionFs,decisionFs,maxPR)

dispensableFeatures = conditionFs - coreFeatures

despensableRanked = rank(dispensableFeatures)

currentBest = coreFeatures

bestPR = PR(observations, currentBest, decisionFs)

for(each feature Disp in dispensableRanked)

testSet = currentBest

testSet.add(Disp)

testPR = PR(observations, testSet, decisionFs)

if(testPR > bestPR)

currentBest = testSet

bestPR = testPR

if(bestPR == maxPR)

return currentBest

return currentBest

Recall per action type: For each action type, this is the rate of testing cases for
which CBR selected the correct action.

Precision per action type: For each action type, this is the rate of CBR outputs
that correctly selected this action type.

f -measure per action type: The f -measure combine recall and precision into a
single metric

faction =
2×Recallaction × Precisionaction
Recallaction + Precisionaction

Global f : The global f -measure is the average of the collected f -measures.

The first two metrics regard to the feature selection performance, and the
remaining metrics regard to CBR performance with the resulting set of features.
The experiment, and CBR, were performed with the tools described in [5, section
9.5.].

5.2 Methodology

30 trials per condition were performed. On each trial, 1, 500 random cases were
used during feature selection, and 6, 000 random cases were used during CBR
performance evaluation.
Statistical analysis: In order to determine significance of the observed dif-
ferences between the two feature selection approaches, we performed a 1-factor
repeated measures analysis of variance per metric collected for each agent con-
dition.
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5.3 Results

The next two tables show the averaged metrics for CBR performance and Feature
Selection performance, as well as the result of the ANOVA performed for the
effect of the feature selection algorithm on the collected metrics.

CBR Performance:

Krislet A1 CMU

Algorithm Global f Accuracy Global f Accuracy Global f Accuracy
BS wrapper 0.84 0.98 0.81 0.89 0.70 0.74
RS filter 0.66 0.86 0.77 0.88 0.64 0.73

F (1, 29) F = 88.77 F = 77.67 F = 39.00 F = 5.36 F = 62.67 F = 0.56
p < 0.01 p < 0.01 p < 0.01 p < 0.05 p < 0.01 p = 0.46
η2 = 0.75 η2 = 0.73 η2 = 0.57 η2 = 0.16 η2 = 0.68 η2 = 0.02

Feature Selection Performance: Execution times are in minutes.
Krislet A1 CMU

Algorithm time set size time set size time set size
BS wrapper 66.29 1.13 77.59 2.90 56.57 3.93
RS filter 1.89 1.90 2.70 2.57 1.61 3.43

F (1, 29) F = 1030 F = 69.41 F = 759 F = 4.26 F = 572 F = 4.58
p < 0.01 p < 0.01 p < 0.01 p < 0.05 p < 0.01 p < 0.05
η2 = 0.97 η2 = 0.71 η2 = 0.96 η2 = 0.13 η2 = 0.95 η2 = 0.14

6 Discussion

All the metrics, except CBR accuracy for the CMU agent, had statistically sig-
nificant differences at the indicated significance levels (p value). As it was to
expect, CBR performance degraded with an increase of complexity of the target
agents, regardless of the feature selection method.

Although the current Backward Sequential Search binary wrapper algorithm
produces superior CBR performance than the proposed Rough Set based For-
ward Sequential Search filter algorithm, the gap in CBR performance diminishes
as the target agent complexity increases. The difference in CBR performance is
likely due to the feature selection model: the wrapper approach finds a solution
that best works with the particular learning algorithm.

The most impressive difference between the two feature selection approaches
is observed in the execution time of feature selection, being the proposed algo-
rithm almost 30 times faster than the current one. This difference is due to the
cost of the feature set evaluation employed; whereas the current approach evalu-
ates by observing the CBR performance that the feature set yields, the proposed
algorithm computes the positive region of the feature set. Notice that any other
wrapper approach (including most evolutionary approaches) would suffer from
the same problem.
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7 Conclusion

Although the proposed algorithm produced slightly, but significant, worse CBR
performance than the current algorithm, it impressively improved the feature se-
lection time. This makes the proposed algorithm a good candidate for performing
feature selection over more than the current 7 features.

Further work should focus on trying to use this algorithm with more features,
ideally the 160 employed in case distance calculation. Such improvement is likely
to lead to better imitation performance. Also, the proposed algorithm can be
improved both in speed, and in better approximating a D-reduct of the condition
features.
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