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Abstract. We describe a domain-independent approach to learning by
observation that uses case-based reasoning to allow a software agent to
behave similarly to an expert when presented with a similar set of input
stimuli. Case studies have been performed in two simulated domains,
soccer and space combat, and a physical robotics domain and our exper-
imental results show that successful imitation is possible in each of those
domains.

1 Introduction

Transferring an expert’s knowledge to a software agent can be a difficult task.
This is especially true if the expert has difficulty modelling its knowledge, pos-
sibly if they lack computer programming skills, or they are not fully aware of
all details related to how they perform a task. Learning by observation attempts
to shift the burden of knowledge transfer from the expert to the software agent.
The agent learns by watching the expert perform a task and, when faced with
the same task, aims to behave in a similar manner.

Ideally, such an agent should operate completely autonomously from the
expert and not require the expert to provide any prior knowledge. Existing ap-
proaches to learning by observation, however, require some level of background
knowledge. This background knowledge can include information about the tasks
or goals of the expert [1, 2], which sensory stimuli the expert reasons with [3] or
how specific actions influence the environment [4]. While all of this information
helps when learning a specific task, bias is added which makes it difficult to learn
other unrelated tasks. Ideally we want to be able to imitate unrelated behaviours
without adding extra expert knowledge so that the learning system can be de-
ployed in a variety of domains. The primary contribution of our own work [5–7]
is a learning by observation system that makes minimal prior assumptions about
the expert although we have only experimented in a simulated soccer domain.

The interactions between the expert and its environment can be thought of
as a series of environment states and actions by the expert [8]. Both the possible
environments states, S, and possible actions, A, are finite sets containing all
environment states and actions that may be encountered:
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S = {S′, S′′, . . . } (1)

A = {A′, A′′, . . . } (2)

When an agent is observed for a period of time, a run, R, of environment
states and actions will be observed:

R : S
A0
−→

0
S

A1
−→

1
S

A2
−→

2
. . . S

Au−1

−−−→

u−1
Su (3)

The goal, when learning by observation, is to use one or more runs of an
expert to approximate how the expert selects which actions to perform based on
the state of the environment:

Ai = f(Si, Ai−1, Si−1, Ai−2, . . . ) (4)

The remainder of this paper will detail our domain-independent approach
to learning by observing agents and examine what types of agents it is suitable
for imitating. Section 2 will provide the model of our agent and case structure.
An analysis of several properties of software agents, and their environments,
are described in Section 3. Three case studies in the domains of robotic soccer,
space combat, and physical robotics will be described in Section 4. These case
studies will be used to examine the relation between an agent’s properties and
the ability of our system to imitate that agent. A summary of related work will
be presented in Section 5, followed by conclusions and areas for future work in
Section 6.

2 Agent Model

When looking at the ability of a software agent to reason, we can think of the
current run as the problem that is to be solved and the performed action as the
solution. This leads us to define a case, C, as a pair containing the current run,
R, and the performed action, A.

C = {R,A} (5)

The run is, as shown in Equation 3, a sequence of past environment states and
actions. The state of the environment can be decomposed into the sensory stimuli
that can be observed. If, in a particular environment, an agent can observe m

types of stimuli then the environment state can be written as:

S = {V1, . . . , Vm} (6)

Each type of stimulus, Vi, is represented by a multi-valued attribute that contains
all ni instances, o, of that type of stimulus (Vi = {o1, . . . , oni

}). This implies that
the number of stimuli of a particular type can vary in different cases. The need
to allow for a varying number of instances of each stimulus type is related to the
fact that the agent may only have a partial view of its environment at any given
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time. For example, in a soccer domain the number of teammates an agent can
observe in its field of vision may change depending on where the agent is looking.
At different times the agent might see no teammates, all of the teammates, or any
number in between. Even in domains where an agent has a complete world view
it might still be necessary to treat each stimulus as a multi-valued attribute. This
is particularly true if objects can be added or removed from the environment, or
if the agent is unable to uniquely identify similar objects.

Using such an approach, cases can be generated in an automated manner
through passive observation. Using a passive approach, the expert, as shown
in Figure 1, interacts with the environment and may not be aware it is being
observed. The observer is able to view, and record, both the state of the envi-
ronment and the actions performed by the expert so that they can later be used
to construct cases.

Fig. 1. Passive observation of an expert interacting with the environment

After automatically building a case base by observing an expert, the learn-
ing agent will then be able to use that case base when it interacts with the
environment. When the agent observes a new environment state, it should ide-
ally perform the same action the expert would have performed had the expert
encountered a similar run. This requires using the current run as a query to
the case base. The case base is searched using a standard k-nearest neighbour
search to find a case with a run that is a minimal distance from the current run.
Once the nearest neighbour search has found the case that is most similar to
the current state of the environment, the action associated with the retrieved
case is used. Our approach does not perform any adaptation since the agent is
attempting to behave like the expert and has no idea what goal it is trying to
achieve (a more detailed description of our case description and retrieval can be
found in [5]).

The data flow of our approach can be thought of as a three step process: ac-
quisition, preprocessing and deployment. As we mentioned previously, the cases
are acquired in a completely automated manner by observing the interactions
between the expert and the environment. While this automatic case acquisition
allows for quick and inexpensive case generation it make no guarantees as to
what cases will be acquired or what information is contained in those cases. For
example, if the expert never performs a certain action or encounters a certain
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environment state then those actions and states will not be available in the case
base. Likewise, since no domain knowledge is provided by a domain expert such
knowledge will need to be extracted from the cases. This is addressed through
preprocessing the raw case base by performing automated tasks like feature se-
lection, removal of redundant cases and ensuring the case base can be searched
within real-time limits (a more detailed account of preprocessing can be found
in [6]). Once an acceptable case base has been created it can then be deployed

in order to allow the imitative agent to attempt to imitate the behaviour of the
expert.

3 Agent and Environment Properties

Now that we have described how case-based reasoning can be used to imitate
the behaviour of agents, we will turn our attention to the agents and their
environments. The following lists several properties that will be examined and
used to classify agents:
Goals: Each agent will perform a behaviour that attempts to achieve certain
goals. The imitation system should ideally be able to imitate agents regardless
of the goals they try to achieve and should require no knowledge of what those
goals are.
Observability: The agent can have either a complete or partial view of the
environment. With a complete view the agent is able to observe the entire en-
vironment at once, however this is often not possible due to limitations on the
available sensors. Instead, most realistic agents can only view a portion of the
environment at once. Partial observability can result in a variable number of
objects visible to the agent at any given time which may result in the need
to model sensory inputs as multi-valued attributes (it may also be necessary
in fully observable environments if objects can be added or removed from the
environment).
Noise: The sensory observations received by the agent may be subject to noise.
This noise can be small, resulting in values being different from their true values,
or large making some sensory information completely unknown to the agent. For
example, if an object was located far from an agent the agent might be able to
detect what type of object it is observing but not finer details about the object.
State: The agent may not reason exclusively with its current sensory inputs
but may maintain an internal state. Since this state information is not directly
visible to an observer it makes the imitation task significantly more complicated.
Environment Physicality: The agent could either be in a simulated environ-
ment or a physical environment (like controlling a robot).

4 Case Studies

We look to examine several agents with different goals and behaviours. Two
simulated domains, soccer and space combat, and one physical domain will be
used. A summary of the agents and their properties can be seen in Table 1.
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Domain Agent Noisy Fully Observable State Physical

Soccer Krislet Yes No No No

Soccer Sprinter Yes No No No

Combat Shooter No No No No

Robot Avoid Yes No Yes Yes

Robot Arm Yes No No Yes

Table 1. Summary of agents and their properties

4.1 Simulated Robotic Soccer

The first domain we examine is RoboCup [9] simulated robotic soccer (this
has been the focus of our previous research [5–7]) . The following types of ob-
jects exist in RoboCup: soccer balls, goal nets, boundary lines, boundary flags,
teammates, opponents, unknown players1. At any given time the agent may see
between 0 and 80 total objects, each of which is represented by its continuous-
valued distance and direction (relative to the agent). The state of the environ-
ment in a simulated RoboCup game can be represented as:

SSOCCER = {ball, goal, line, flag, teammate, opponent, unknown} (7)

Each item in SSOCCER represents a multi-valued attribute containing the objects
of that type that are currently visible in the agent’s field of vision. The agent
can kick, move forward (dash) or turn its body. This makes the set of possible
agent actions:

ASOCCER = {kick, dash, turn} (8)

In our experimentation we use two different agents as experts2. The first
agent we use, Krislet, actively attempts to achieve the goals of soccer. Krislet
agents turn until they can see the soccer ball, run toward the ball and then
try to kick the ball toward the opponent’s goal net. The second agent we use,
Sprinter, does not perform typical soccer behaviour. Sprinter agents repeatedly
run from one goal net to the other and make no attempt at scoring goals. These
agents were selected to show that even in the same domain agents can have very
different goals and behaviour, so any background knowledge about the goals of
a particular expert may not be transferable to other experts.

For each expert a case base containing 5000 cases was used (this size of a
case base was selected so that the case base could be searched within the real-
time limits of the agent). A series of 1000 testing cases, or more specifically the

1 Players can be of an unknown type if the agent can not tell what team they are
on due to noise. Although RoboCup is a simulated domain there is a built in noise
model to add realism.

2 While we refer to the agents as experts we do not imply they are complex in nature.
We use expert to refer to an agent with some amount of knowledge we wish to attain.
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environment states of the cases, were used as input to the imitating agent. The
action outputted by the imitating agent, who only considered the most recent
sensory input (a run of length 1), was then compared to the known action from
the case. The overall performance was measured using the f-measure statistic
with values ranging from 0 (low) to 1 (high).

The results are shown in Table 2. In general, the f-measure values are fairly
high for both agents (it should be noted that previous work [6] has shown that
these results can be significantly improved by automatically preprocessing the
case base, although no preprocessing was performed in these experiments). The
exception is the results associated with kick in Krislet and turn in Sprinter,
which lower the overall f-measure values. The reasons these values are lower
is because the data sets are severely imbalanced, with less than 1% of Krislet
cases having the kick action and less than 5% of Sprinter cases having the turn

action (Sprinter never kicks, which is why there is no f-measure value for the
kick action). However, even though the f-measure values are low for those actions
when the case-based reasoning system is deployed in a game of soccer the actions
appear to be performed properly. When watching the CBR agent play soccer, it
is difficult to differentiate between that agent and the original expert agent.

f-measure fdash fturn fkick

Krislet 0.59 (+/- 0.005) 0.71 0.80 0.25

Sprinter 0.69 (+/- 0.005) 0.91 0.48 —

Table 2. Results when learning from RoboCup agents

4.2 Simulated Space Combat

Thus far we have shown the ability of our system to imitate agents, with a
variety of different behaviours, in the RoboCup soccer domain but we now look
to extend our experiments into another simulated domain. The domain we use
is XPilot [10], a simulated space combat game, where an agent controls a space
ship and attempts to destroy enemy ships. In this domain the agent is able to
detect the location of enemy ships (between 0 and approximately 10 other ships)
and can move, turn or shoot:

SXPILOT = {ships} (9)

AXPILOT = {move, turn, shoot} (10)

The agent we imitate, which we will call Shooter, continuously turns until it
can see at least one enemy ship and then shoots at the nearest ship. The results,
when using a case base of 1000 cases and 1500 test cases, are shown in Table
3 (the Shooter agent does not perform the move action so that action is not
listed in the table). These results are similar to what we got in the RoboCup
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experiments and is what we would have expected given the similar properties
of the agents and the environments. Like with the RoboCup experiments the
poorest performance was related to rare actions, in this case the shoot action,
although this could likely be improved by preprocessing the case base to balance
the number of cases related to each action.

f-measure fturn fshoot

Shooter 0.64 0.77 0.50

Table 3. Results when learning from XPilot agent

4.3 Physical Robots

Our experiments up to now have exclusively examined simulated domains, but
now we turn our attention to two agents that control physical robots. The first
agent, which we will call Avoid, controls a small wheeled robot and attempts to
avoid collisions with obstacles. The robot has two sensors, sonar and touch, and
can perform four movement actions:

SAV OID = {sonar, touch} (11)

AAV OID = {forward, backward, left, right} (12)

If an object is detected as being close to the robot, using the sonar sensor, the
robot will turn left or right to avoid a collision. If it collides with an object, as
indicated by the touch sensor, it will move backward and then turn. Otherwise
it will just move forward. While this behaviour is mostly reactive in nature, the
agent does have a simple internal state that determines which direction it should
turn. The internal state ensures that the robot toggles between turning left and
right.

The second agent, called Arm, controls a robotic arm robot. This robot has
three sensors and can perform five actions:

SARM = {sound, touch, colour} (13)

AARM = {armForward, armReverse, armStop, closeClaw, stopClaw} (14)

Upon detecting a significantly loud sound, on the sound sensor, the arm
begins moving forward until the touch sensor signals it has come in contact with
an object. If the colour sensor ever determines a red object is within the claw’s
grasp the claw will be closed around the object and the arm will move in reverse.
However, if it ever determines a blue object is within the claws grasp it will not
close but instead move the arm in reverse.

There are three primary differences, not including that they control physical
robots, between these agents and the ones we have previously examined. First,
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these agents perform sequences of actions in response to each input instead of a
single action. Secondly, since a sequence of actions is performed each action in
that sequence is performed for a set amount of time. This requires each action
to have an associated parameter related to how long it should be performed.
Lastly, the sensory attributes are single-valued, with one attribute per sensor,
rather than multi-valued.

For both agents, our system was able to imitate the behaviour very well. For
each agent a case base was created by giving the agent 500 randomly created
sensory inputs and recording the resulting action sequence. Using a separately
generated set of 1000 testing cases each agent was able to perfectly reproduce,
with 100% accuracy, the expected behaviour of the agent. This includes selecting
the correct action sequence and executing each action for the correct duration3.
However, for the Avoid agent, this perfect accuracy is only achieve by consid-
ering left and right turns identical. This occurs because two cases can have
identical sensory information but different actions since the cases do not contain
the internal state of the agent when it selected which actions to perform. This
demonstrates that the presence of an internal state, even in a domain that can be
imitated with high accuracy, can significantly complicate the imitative process.

5 Related Work

Case-based reasoning has been successfully applied to a variety of games and
simulations including robotic soccer [11–13], American football [14], real-time
strategy [15] and first-person shooters [16]. One promising use of CBR in games
has been to create cases by observing experts. Examples of this include Tetris
[17], real-time strategy [1], poker [4], chess [18] and space invaders [19].

The primary difference between these works and our own is that the processes
for case generation and case retrieval are optimized for the specific domains and
therefore are not suitable for general purpose learning by observation. The work
most similar to our own involves using case-based planning in real-time strat-
egy games [2]. They show their approach to be applicable to several different
games, however domain knowledge is required for each new game. This knowl-
edge involves having an expert define the goals of the game and the state of the
environment associated with each goal.

Learning by observation has also been explored using other machine learn-
ing approaches. In robotics, learning from observation has been used in tasks
such as controlling a robotic arm [20] and teaching a robotic helicopter aerial
manoeuvrers [21]. Both of these approaches use a model for the movements of
the robots, with the model parameters learnt through observation. This requires
prior knowledge of an appropriate model to use and does not take into account
any external stimuli. Grollman and Jenkins [22] have developed a system that
allows a robotic soccer player to be simultaneously controlled by a human and

3 The agent only uses a finite set of discrete action durations. If there was more
variability in these durations then we would likely see error in the durations produced
by the imitating agent.

62



an autonomous system. When the human is actively controlling the robot, the
autonomous system learns from observing the human. This approach has been
successful for learning simple behaviours, like moving or kicking, but has diffi-
culty identifying when transitions between simple behaviours should occur.

Multi-layered perceptrons have been used to control the behaviour of agents
in a first-person shooter game [3]. This approach requires a fixed set of input
features, so it is not suited for situations where the inputs are multi-valued at-
tributes. Similarly, learning by observation has been used to train virtual agents
to move in life-like ways [23]. The movements of the agents are rated based on a
fitness function, so each novel behaviour requires a user to define an appropriate
fitness function.

6 Conclusions and Future Work

The technique for learning by observation using case-based reasoning described
in this paper allows an agent to learn without any knowledge of the goals of
the expert being observed. Three domains with different environments and goals
have been studied. Software agents, with a variety of properties, were able to be
successfully used as experts. The primary contribution of this approach is that
a single case-based reasoning system is used in all domains. The only difference
is the data contained in the cases, with the types of sensory stimuli and actions
varying in the different domains.

While we have shown this approach to be applicable it three different do-
mains, there still exist several limitations that provide areas for future work.
The experts that have been observed have been largely reactive in nature, how-
ever more complex experts will likely have behaviour that is strongly related to
their internal state. Even for the obstacle avoidance robot, which only had a
simple internal state, it was not possible to fully account for the agent’s state.
We will look at how the entire run, instead of just the last environment state,
can be used to better imitate stateful behaviour.
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