
Analysis and Cleaning of User Traces
Through Comparison of Multiple Traces

Michael W. Floyd and Babak Esfandiari
Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, Canada

Abstract

Traces of user behaviour can be a valuable source of
knowledge that can be used during case-based reason-
ing. This paper presents an approach for analyzing and
cleaning user traces. The analysis looks to identify three
properties in traces: reasoning with an internal state,
non-deterministic behaviour and error. The existence
of any of these properties may influence how a sys-
tem should reason or store knowledge in cases. Ini-
tially, each trace is examined to see areas that might
contain one of the three properties. Multiple versions
of the trace are then generated in order to determine
which specific property is present. The analysis is ap-
plied to traces generated by observing both a computer
and human controller for an obstacle avoidance robot.
The results demonstrate that the analysis is able to suc-
cessfully identify which properties are present and clean
many of the errors that exist in the traces.

1 Introduction
Learning by observation allows a software agent to learn a
behaviour, or information about the behaviour, by watching
an expert perform the behaviour. As the agent watches the
expert, it is able to observe and record the inputs received
by the expert and the outputs produced by the expert. The
record of the expert’s behaviour, called a trace, can contain
valuable information that allows the agent to gain insight
into the task the expert is performing or to perform the task
itself.

User traces are used as knowledge sources in a variety
of learning by observation systems (Coates, Abbeel, and
Ng 2008; Gillespie et al. 2010; Ontañón and Ram 2011;
Romdhane and Lamontagne 2008; Rubin and Watson 2010).
However, most existing work assumes that the recorded
traces accurately capture the behaviour of the expert. The
traces could be incorrectly recorded if the learning agent
made an observation error or if the expert performed an er-
ror of manipulation or reasoning and produced an erroneous
output. Analyzing the generated traces in order to verify
and validate their quality becomes an important considera-
tion since it can directly influence the agent’s ability to learn.
In addition to analyzing the traces for errors, they can also

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be examined to get insight into the behaviour the expert has
demonstrated. This can include information about how the
expert reasons or how much information from the trace is
used during reasoning.

This paper will examine how the run of an expert can be
analyzed in order to gain information about the expert and
the quality of the observations. In Section 2, we define the
format of an expert’s trace and how they can be stored as
cases. A technique for analyzing and cleaning the traces
will be presented in Section 3 and evaluated in Section 4.
Related work regarding learning by observation and expert
traces will be discussed in Section 5 followed by concluding
remarks in Section 6.

2 Expert Traces
As an agent observes an expert performing a behaviour, it is
able to see the input the expert receives and the output the
expert produces. For an expert that is situated in an environ-
ment, the input would correspond to the sensory information
that is received and the output would be the actions that are
performed. Each time the expert interacts with the environ-
ment, by performing an action At in response to a sensory
input St, the observing agent can record this interaction It
as a pair (It = 〈St, At〉).

Over time, the expert will receive many sensory inputs
and perform many actions. The entire sequence of sen-
sory inputs and actions is represented by the expert’s run
R (Wooldridge 2002):

R : S
A0−→

0 S
A1−→

1 S
A2−→

2 . . . S
Au−→

u Su+1

As the agent observes and records the expert’s run, it will
generate a trace T of the expert’s run that contains a tempo-
rally linked series of observed interactions:

T : I0 → I1 → I2 → · · · → Iu

When storing the expert’s trace in cases, it would be pos-
sible for each observed interaction to be a case. However,
this would result in the current sensory input being the prob-
lem portion of the case and the action as the solution portion.
This would be acceptable if the expert selected an action to
perform based solely on its current sensory input, but if the
expert uses information from past sensory inputs or actions
it performed then that case definition would not model the

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

375

problem correctly. In order to allow past sensory inputs and
actions to also be contained in the problem portion of a case,
the entire run of the expert is contained in the case:

Ct = 〈Rt, At〉
Looking at the definition of a run at time t, we can see it is

composed of the run from the previous point in time, Rt−1,
along with the action performed in response to Rt−1, At−1,
and the current environment state St:

Rt : R
At−1
−−−→

t−1 St

Each case, which is composed of a run and the associ-
ated action can be rewritten as a tuple containing the cur-
rent environment state, the action associated with the cur-
rent run, the previous run and the action of the previous run
(Ct = 〈Rt−1, At−1, St, At〉). This can be further simplified
as:

Ct = 〈Ct−1, St, At〉
This simplification is beneficial because each case no longer
needs to store the entire run but can instead store the most
recent environment state and a link to the previous case.

3 Trace Analysis
We wish to detect and analyze situations in a trace T where
the same sensory input (S1) results in different actions (A1

and A2) at different times (∃A1, A2 ∈ A ∧ ∃S1 ∈ S such
that 〈S1, A1〉 ∈ T ∧ 〈S1, A2〉 ∈ T and A1 6= A2). The
likely causes for these situations are:

• Reasoning with an Internal State: If the expert reasons
with an internal state, that state will also influence the ac-
tion it performs. Since the internal state is not directly
observable by the learning agent, it can make two interac-
tions seem the same when really they are not. This is be-
cause the observable features, the sensory inputs, may be
the same but the unobservable features, the internal states,
may be different and result in a different action being per-
formed.

• Non-deterministic Behaviour: In some situations, the
expert might not use any external information or its in-
ternal state to select an action to perform but instead just
randomly perform an action. The randomness of the ex-
pert during reasoning will result in similar sensory inputs
resulting in different actions. In this situation, it is neces-
sary to identify that the behaviour is random and not due
to an undetectable external input or internal state.

• Error: Error can come in two forms: expert error and
observation error. The expert might occasionally make
errors during reasoning and perform an incorrect action.
We say that an action was incorrect if, given the oppor-
tunity, the expert would immediately change the action it
performed (without getting any feedback about the suc-
cess or failure of the action). This type of error might oc-
cur when observing human experts due to fatigue, lapses
in concentration, or other factors. Observation errors can
occur if the observations, either of the expert’s inputs or

outputs, are noisy or contain errors. This could occur if
the observer senses the environment differently than the
expert (if they had a different quality of sensors) or made
an error recording the correct observations.
For an expert that does not use an internal state, a purely

reactive expert, each sensory input will result in a single ac-
tion being performed:

Expertreactive : S → A
However, an expert that is state-based or performs non-
deterministic behaviour will not always perform the same
action for a sensory input but will instead perform one ac-
tion from a set of possible actions based on the probability
distributions for the actions (where each member of 2A is a
set of probabilities, one for each action, that sum to 1.0):

Expertstate : S → 2A

Expertnon−deterministic : S → 2A

An expert that uses an internal state will need its entire past
run, not just the most recent sensory input, in order to con-
sistently select a single action to perform from the set of
possible actions:

Expertstate : R → A
For an expert that displays non-deterministic behaviour,

even when presented with its entire run it will not always
select a single action to perform:

Expertnon−deterministic : R → 2A

The traces of experts with state-based or non-deterministic
behaviour will likely contain interactions that have the same
sensory input but different actions. Even if the expert is reac-
tive, errors can cause interactions with similar sensory inputs
to have different actions.

Differentiating between the three properties might not be
obvious when only examining a single trace of the expert’s
behaviour. For example, it would not be possible to tell with
any degree of certainty that the expert performed an erro-
neous action. What was an expert error could also appear to
be evidence of state-based or non-deterministic behaviour.
In order to help differentiate between the three properties,
we will examine multiple traces that were derived from the
original.

Two levels of analysis are performed: single trace anal-
ysis and multi trace analysis. Initially, we perform single
trace analysis in order to determine if a trace is a candidate
for multi trace analysis. Ideally, we would like to perform
multi trace analysis on every user trace that is generated.
That may not be possible since, as we will see later, multi
trace analysis requires the expert to solve additional prob-
lems. If the amount of time the expert is available is lim-
ited, we would only want to make use of the expert when
it is clearly necessary. Additionally, it may be impossible
to recreate the exact conditions of the original trace so, in
some circumstances, multi trace analysis might not be fea-
sible. In such a case, we can only get a general idea about
if any of the three properties exist in the trace but no precise
information about which specific properties exist.

376

Single Trace Analysis
Single trace analysis is used to identify traces that might
have any of the three properties. Since, as we described
earlier, each of the properties presents itself through inter-
actions where similar sensory inputs results in different ac-
tions, we will look to measure how many of these differences
occur in the trace. When looking for differences, each inter-
action in the trace is compared to all other interactions in the
trace as well as all interactions that occur in cases that are al-
ready in the case base. Cases that are already in the case base
are also used during single trace analysis because they con-
tain knowledge collected during past observation sessions.
These cases were likely collected as part of a previous user
trace and then converted into cases and stored in the case
base. When comparing two interactions, Ii and Ij , they are
marked as noteworthy if they have sensory inputs that are
sufficiently similar (sim(Si, Sj) > τ , where τ is a thresh-
old used to determine if two sensory inputs are sufficiently
similar) and they have different actions (Ai 6= Aj). If there
are N interactions in the trace and n of those interactions
are noteworthy, we calculate the ratio of noteworthy interac-
tions (n

N). If this ratio is greater than zero, it indicates that at
least one of the three properties seems to exist in the trace.
However, even if the ratio is zero there could still be oc-
currences of the properties but there were not enough other
interactions (in both the trace and the case base) to identify
them.

Multi Trace Analysis
In multi trace analysis, new traces are generated by having
the expert replay the sensory inputs it received during the
initial trace. If the initial trace contained N interactions be-
tween the expert and the environment, the N sensory inputs
will be given to the expert, in their original order of occur-
rence, for the expert to reason with again. Each time the ex-
pert replays the initial trace, the entire run of the expert will
be recorded as a new trace. Traces can be different because,
while they have the same sensory inputs, the expert may per-
form different actions in each trace. The use of multi trace
analysis makes the assumptions that the expert will be avail-
able to generate the new traces and that the agent can present
the problems to the expert in a similar manner to how the
expert receives inputs from the environment. These would
be reasonable assumptions if the expert is willing to help the
agent learn (and assumes the role of a tutor or teacher) or can
be presented with problems to solve without being aware it
is helping the agent (Floyd and Esfandiari 2009). However,
if the expert was not willing to complete the replay of a trace
and ended the process early, then only part of the traces can
be compared (the parts that were complete in all traces).

The primary objective of multi trace analysis is to iden-
tify the differences, if any, that exist between the initial trace
and all replay traces. If the initial trace was used to gen-
erate M − 1 additional traces, there will be M total traces
each containing N interactions. Each of the n noteworthy
interactions from the original trace will be grouped together
with the corresponding interactions from the other generated
traces, resulting in n groups of interactions each containing

M interactions. For example, if the 3rd interaction from the
original trace was deemed noteworthy, it will be grouped to-
gether with the 3rd interactions from each of the otherM−1
traces.

For each grouping of noteworthy interactions, we calcu-
late the agreement ratio ARi:

ARi =
si
M

where si is the number of interactions in the ith grouping
that had the same action as the interaction from the initial
trace. The agreement ratio can then be used to label each of
the groupings:

labeli =

{
state− based , if ARi ≥ α
non− deterministic , if β < ARi < α
error , if ARi ≤ β

Interactions of a state-based expert are identified as notewor-
thy since a single sensory input can lead to multiple actions.
However, during replay of those traces the expert will gener-
ally perform a single action since it is reasoning with its en-
tire run. This will result in an agreement ratio that is greater
than α for noteworthy interactions that are a result of internal
state. If there was an interaction that only occasionally (less
than a threshold β) resulted in one type of action being per-
formed then it is labelled as being an error. This assumes that
the expert generally performs the correct action in the traces
and only rarely performs the erroneous action. A noteworthy
interaction will be labelled as non-deterministic if it results
in several different frequently occurring actions during re-
play (an agreement ratio between α and β). This assumes
that since there was no clear correct action that the expert
selected the action in a non-deterministic manner. One lim-
itation of this labelling approach is when the expert selects
an action in a non-deterministic way but the probability of
selecting the action is low (less than β) or high (greater than
α). In these situations, the interactions will incorrectly be
labelled as error or state-based instead of non-deterministic.
This problem can be minimized by selecting an appropriate
value of α and β but can not be completely eliminated.

For any interactions that are labelled as having an error
in the original trace, those interactions can be cleaned by
replacing them with the correct versions of the interactions
from one of the other traces. The correct version of an inter-
action is selected by finding the most common action from
the interactions in a grouping and using one of the interac-
tions with that action (all interactions with the same action
will be identical since they will always have the same sen-
sory input). If the analysis was performed a second time, the
number of noteworthy interactions due to error should ide-
ally decrease while the number of noteworthy interactions
due to state-based or non-deterministic behaviour should re-
main (although some may be removed if they were only la-
belled as noteworthy due to the erroneous interactions).

An example of trace analysis is given in Figure 1. Initially,
only the original trace, which contains five interactions, is
available to the learning agent (the top row in the figure).
Single trace analysis is then performed and four noteworthy

377

interactions are found (indicated with arrows). The first and
fifth interactions are noteworthy because they have the same
sensory input (Sa) but different actions (Aa and Ac). Sim-
ilarly, the second and fourth interactions had the same sen-
sory input (Sb) but different actions (Ab andAa). In order to
perform multi trace analysis, the expert is made to encounter
the same sequence of sensory inputs, contained in the origi-
nal trace, to generate additional traces. In this example, two
additional traces are generated (the second and third rows in
the figure).

Four groupings, one for each noteworthy interaction, are
then compiled. Each grouping contains one interaction from
each trace and all interactions in a group occur at the same
position in their original trace (and therefore have identical
sensory inputs). Using the threshold approach we described
previously, each grouping can be labelled. Since the group-
ings that contain the first, second and fourth interactions all
have the same actions (Aa, Ab and Aa respectively) they
are labelled as being a result of internal state. However, the
grouping of the fifth interactions do not all have the same
actions. The interaction in the original trace has one ac-
tion (Ac) whereas the others have a different action (Aa)
so this grouping is labelled as an error. A cleaned version
of the original trace can now be generated (the final row in
the figure). Since there was only one noteworthy interaction
labelled as erroneous, the fifth interaction, only one interac-
tion is cleaned in the final trace. The most common action,
from the entire grouping, is used as the correct action for that
interaction (Aa). It should be noted that the first interaction
in the original trace, which was labelled as internal state,
was labelled that way because of the erroneous interaction
(the fifth interaction). If single trace analysis was performed
again, on the cleaned trace, it would no longer appear to be
noteworthy since the error would be fixed.

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��

����� ����� ����� �		
	

�� �� �� �� �� �� �� �� �� ��

Figure 1: An example of multi trace analysis

After the trace analysis has been completed and any errors
have been eliminated, the trace can be converted to cases
(as described previously in Section 2) and added to the case
base. These cases will now be of a sufficiently high qual-
ity that they can be used by the learning agent when it at-
tempts to perform the behaviour it learnt from the expert
or they can be used to identify noteworthy interactions in

newly recorded traces. If a trace was determined to contain
non-deterministic behaviour, the stored cases can be modi-
fied to contain probabilities for performing each type of ac-
tion. Similarly, if the trace analysis showed the expert uses
an internal state then a case retrieval algorithm that can infer
internal state (Floyd and Esfandiari 2011) can be used.

4 Evaluation
In order to evaluate the trace analysis technique described
previously, we will examine traces that have been gen-
erated by observing the control program for an obstacle
avoidance robot. The control program senses the environ-
ment using values from a touch sensor and a sonar sen-
sor (Srobot = 〈ftouch, fsonar〉). The control program
can then control the robot using one of five possible ac-
tions: move forward, move backward, turn left, turn right
and reverse direction by turning 180 degrees (Arobot =
{Forward,Backward, Left, Right,Reverse}).

If the control program’s touch sensor indicates it has come
in contact with an obstacle (a ftouch value of 1), the robot
will be moved backward. Otherwise, it will base its action
selection on the value of the sonar sensor (fsonar). If the
sonar value is less than 2 the robot will reverse direction, if
the value is between 2 and 3 the robot will turn, and if the
value is greater than 3 it will move forward. The direction
the robot turns, when the sonar value is between 2 and 3,
will toggle. For example, if it previously turned left it will
always turn right next. This requires the control program
to have an internal state that represents its previous action.
Additionally, the control program artificially adds errors by
performing 2% of its actions incorrectly. This behaviour was
selected for evaluation because, even though it has a small
problem space (approximately 200 states if the sonar values
are discretized), trace errors, non-deterministic behaviour or
experts with internal states can make it difficult to learn from
the control program (Floyd and Esfandiari 2011).

The control program was observed performing its obsta-
cle avoidance behaviour so that a trace of 10, 000 interac-
tions was generated. Additionally, an error free version of
the trace was stored in order to evaluate the trace cleaning
performance. For the analysis, the threshold for sensory in-
puts to be considered highly similar is τ = 0.9999 (99.99%
similarity) and labelling thresholds of α = 0.90 and β = 0.10
were used. These thresholds were selected so that an erro-
neous interaction can have at most one other interaction in
its grouping with the same action and a state-based interac-
tion can have at most one interaction with a different action.
In both situations, these thresholds allow for the possibility
that replay traces will also contain some errors. During multi
trace analysis, the initial trace had nine additional traces gen-
erated. The number of noteworthy interactions (coulmn NW
in Table 1) that were identified along with the percentage of
noteworthy interactions that were labelled as errors (column
Error), non-deterministic behaviour (column ND) and inter-
nal state (column State) were measured. Additionally, the
number of errors that existed in the original trace (column
Initial Errors) and final trace after cleaning (column Final
Errors) were also measured.

378

The results (Row Error+State-1 in Table 1) show an
85.6% decrease in the number of errors in the trace. We can
see that some interactions are correctly labelled as resulting
from error and state, but some are labelled as resulting from
non-deterministic behaviour. This is because during the gen-
eration of aditional traces those traces have errors as well.
Some erroneous interactions have other interactions in their
grouping that were also erroneous so the agreement ratio in-
dicates that the interaction was a result of non-determinism.

Another area of note is that there appears to be more note-
worthy interactions that result from internal state than are
actually present in the trace. This is because the erroneous
interactions result in a number of correct interactions being
identified as noteworthy. The correct interactions seem to be
a result of an internal state because the agent continues to re-
spond the same way to them in each of the generated traces.
However, if these errors are removed, the correct interac-
tions are no longer identified as noteworthy. This is demon-
strated when two additional rounds of trace analysis are per-
formed (Row Error+State-3 in Table 1). There are still some
erroneous interactions in this trace, even after cleaning, but
they can not be identified by the analysis because there were
no similar interactions in the trace. It should be noted that we
have only shown the results from further rounds of analysis
for illustrative purposes, in practice the benefit of subsequent
analysis is unlikely to outweigh the cost.

Human Expert
The previous evaluation of the trace analysis technique used
a computer program as the expert and errors were artificially
inserted. We look to extend our evaluation by observing a
human expert. The human will likely perform errors by ac-
cident due to reasoning errors, fatigue, or pressing an incor-
rect button. The expert will attempt to control the robot in
the same way as the control program and will be observed
for 250 interactions. While a trace of the human expert is
being generated, the control program will also select actions
to perform in order to generate a correct trace of what the
human should have done in each interaction.

Upon initial examination of the human trace, it is clear
that the human expert made substantially more errors than
the control program. The trace had an error rate of 16.8%
(42 erroneous interactions out of 250) compared to the 2%
error rate that was artificially added to other traces. The two
primary sources of error were maintaining the internal state
and switching to different actions. The human expert often
forgot its internal state (which direction it had previously
turned) so numerous errors were a result of turning the incor-
rect direction. The second source of error occured when the
expert had been repeatedly performing one type of action,
like moving forward, and continued doing that action even
after it should have switched to another action, like turn-
ing. This is likely because the expert was quickly clicking
one button to repeatedly perform the first action and was not
able to react in time to the change in sensory inputs.

In the previous experiment, when identifying noteworthy
interactions each interaction was only compared to other in-
teractions in the trace. For this round of analysis, cases from
an existing case base were also used to identify noteworthy

interactions. This is done to show the value of the previ-
ously observed cases during trace analysis, especially when
the newly generated trace is relatively short (only 250 inter-
actions). The case base was built from the cleaned trace of
the control program (Error+State-1 trace in Table 1). Other
than using the case base during analysis, all other parame-
ters remained the same (9 additional traces generated, τ =
0.9999, α = 0.90 and β = 0.10).

The results show that if only the human expert trace is
used to detect noteworthy interactions (row Human) then
very few noteworthy interactions are detected. The cleaned
trace removes only one error (a 2.4% decrease). This is what
we might expect since the trace only contains 250 interac-
tions so it is unlikely an erroneous interaction will be highly
similar to another interaction in the trace. However, those
results are improved when an existing case base is also used
to detect noteworthy interactions (row Human+Casebase).
The number of detected noteworthy interactions increases
and, more importantly, the number of errors in the trace de-
creases (a decrease of 35.7%). While the decrease in er-
rors is not as large as it was in the previous experiments,
the results show that cleaning can reduce the number of er-
rors even when the error rate is high (much higher than the
artificially added 2% error rate and even higher than the β
parameter). Even through the generated replay traces also
had high levels of noise, since they too were generated by
observing the human expert, the analysis was able to detect
that the noteworthy intereactions were largely due to errors
and internal state.

5 Related Work
Traces of expert behaviour are routinely used in learning
by observation systems (Coates, Abbeel, and Ng 2008;
Gillespie et al. 2010; Ontañón and Ram 2011; Romdhane
and Lamontagne 2008; Rubin and Watson 2010). However,
the majority of existing systems are design to learn from
reactive experts so any error reduction does not take into
account that what appears to be errors could also be non-
determinism or reasoning with an internal state. Previous
work has looked to minimize the impact of trace error by
collecting multiple traces from a user (Coates, Abbeel, and
Ng 2008). However, that work does not look to identify or
remove the errors but instead relies on errors being relatively
rare so their impact is minimized. Learning by observation
has been used to learn non-deterministic behaviour (Gille-
spie et al. 2010) by using stochastic policies to select actions.
This system does not take into account that the expert might
have an internal state so stateful behaviour would be learnt
incorrectly. An analysis technique, like the one presented
in this paper, would be useful for determining when such a
system could successfully be used.

The trace cleaning performed by our approach is a form
of case-base maintenance that can be classified as a noise
reduction algorithm (Cummins and Bridge 2011). Other
noise reduction algorithms (Delany and Cunningham 2004;
Tomek 1976) are not directly suitable for analyzing traces
since they only examine an existing set of cases and would
therefore be unable to differentiate error from the other prop-
erties. These algorithms would incorrectly classify reason-

379

NW Error ND State Initial Errors Final Errors
Error+State-1 1238 14.0% 0.6% 85.4% 202 29
Error+State-3 493 0% 0.2% 99.8% 24 24

Human 2 50% 0% 50% 42 41
Human+Casebase 27 55.6% 3.7% 40.7% 42 27

Table 1: The analysis results and quality of each trace after trace analysis

ing with an internal state or non-deterministic behaviour as
error and, when cleaning the noise, actually introduce more
error into the case base. Additionally, noise reduction is only
one aspect of our analysis approach and reducing error is not
the only goal of the analysis.

6 Conclusions
This paper has described an approach to analyze and clean
traces of an expert’s behaviour. The analysis identifies when
a single sensory input can, at different times, result in differ-
ent actions being performed. The expert is made to replay
the original trace in order to generate several new versions of
the trace and those traces are used to determine if the expert
reasoned with an internal state, performed non-deterministic
behaviour or performed any errors. The trace can then be
cleaned in order to remove any detected errors.

The major assumptions of this approach are that the ex-
pert is available to generate new traces and that the agent is
able to present the inputs in a realistic manner. If the ex-
pert is not available, this approach can not be used since it
relies on the generated traces. If the agent does not present
inputs to the expert in a way that is similar to how the en-
vironment presents them, the expert may behave differently
which can compromise the quality of the generated traces.
Both of these issues result in a significant limitation of our
approach.

Our experiments demonstrated the applicability of the
analysis in an obstacle avoidance domain. The results
showed that the analysis was able to correctly detect which
of the three properties were present in the trace and cleaning
was able to remove many of the errors. All of the thresh-
old values used during analysis (τ , α and β) were selected
intuitively so future work will look to examine the effects
of changing these values. Also, future work will examine
alternative approaches for trace analysis that do not require
the generation of new traces but are still able to differentiate
between errors, non-determinism and stateful behaviour.

References
Coates, A.; Abbeel, P.; and Ng, A. Y. 2008. Learning for
control from multiple demonstrations. In 25th International
Conference on Machine Learning, 144–151.
Cummins, L., and Bridge, D. G. 2011. On dataset complex-
ity for case base maintenance. In 19th International Confer-
ence on Case-Based Reasoning, 47–61.
Delany, S. J., and Cunningham, P. 2004. An analysis of
case-base editing in a spam filtering system. In 7th European
Conference on Case-Based Reasoning, 128–141.

Floyd, M. W., and Esfandiari, B. 2009. An active approach
to automatic case generation. In 8th International Confer-
ence on Case-Based Reasoning, 150–164.
Floyd, M. W., and Esfandiari, B. 2011. Learning state-based
behaviour using temporally related cases. In 16th United
Kingdom Workshop on Case-Based Reasoning, 34–45.
Gillespie, K.; Karneeb, J.; Lee-Urban, S.; and Muñoz-Avila,
H. 2010. Imitating inscrutable enemies: Learning from
stochastic policy observation, retrieval and reuse. In 18th
International Conference on Case-Based Reasoning, 126–
140.
Ontañón, S., and Ram, A. 2011. Case-based reasoning and
user-generated AI for real-time strategy games. In Artificial
Intelligence for Computer Games. Springer-Verlag. 103–
124.
Romdhane, H., and Lamontagne, L. 2008. Forgetting rein-
forced cases. In 9th European Conference on Case-Based
Reasoning, 474–486.
Rubin, J., and Watson, I. 2010. Similarity-based retrieval
and solution re-use policies in the game of Texas Hold’em.
In 18th International Conference on Case-Based Reasoning,
465–479.
Tomek, I. 1976. An experiment with the edited nearest-
neighbor rule. IEEE Transactions on Systems, Man, and
Cybernetics 6(6):448–452.
Wooldridge, M. 2002. An introduction to multiagent sys-
tems. John Wiley and Sons.

380

