
Creating Non-Player Characters in a
First-Person Shooter Game Using Learning by

Observation

Vivian Andreeva, Jordan Beland, Sabrina Gaudreau, Michael W. Floyd, and
Babak Esfandiari

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, Ontario, Canada

Abstract. Video games can require complex behaviours from a player
and often involve performing a variety of different tasks. A key part of
the player’s gaming experience can involve managing how these tasks
are performed and when they are performed. One option for task man-
agement is to train autonomous agents to perform individual tasks and
deploy them as necessary. In this paper we present a case-based learn-
ing by observation approach that allows a player to dynamically create
embodied teammate agents during a game, demonstrate a task, and de-
ploy the agents to perform that task in the future. We provide an initial
proof of concept in a first-person shooter game by training agents to per-
form several item-gathering tasks. The agent was able to learn a simple
item-gathering behaviour from a single demonstration but had difficulty
collecting the items when environment exploration was necessary.

Keywords: learning by observation, autonomous agents, first-person
shooter games

1 Introduction

A video game player may have a variety of related tasks that they are attempting
to complete concurrently. For example, the player might be exploring the virtual
environment while at the same time fighting enemies, managing resources, and
collecting items. From a high-level perspective, the game involves managing how
these tasks are performed (e.g., aggressively attacking an enemy or attacking
from a distance) and when they are performed (e.g., attacking a nearby enemy
or continuing to search for items). These individual tasks can be performed by
the player or, alternatively, they can be delegated to autonomous agents that
can be deployed by the player as necessary.

One option would be to have a variety of preprogrammed agents that the
player is able to use. However, this requires prior knowledge about what tasks
will be assigned to the agents and how the tasks should be performed. Even
if the player does not want to perform a task themselves they may still have a

preference as to how the task should be performed. This paper will examine how a
player can dynamically create and train an agent by demonstrating how the task
should be performed. The agent, which will serve as an embodied teammate of
the player, observes the player performing the task, records those observations as
cases, and uses case-based reasoning to imitate the player’s behaviour. Over time,
the player can create and train a team of agents, each of which is represented by
a unique virtual character and is responsible for one particular task or subtask.

The remainder of this paper will detail our preliminary attempt at allowing a
player to dynamically create and train teammate agents. Section 2 will examine
related work in learning by observation and learning by demonstration. Section
3 will describe how an agent is created, trained and deployed. A preliminary
proof of concept in a first-person shooter game is described in Section 4 followed
by conclusions and areas of future work in Section 5.

2 Related Work

When an agent is created, it uses learning by observation to record and imi-
tate the player’s behavior. Case-based reasoning has been a popular approach to
learning by observation with applications in real-time strategy games [1], poker
[2], Tetris [3], simulated soccer [4], and first-person shooter games [5]. In addi-
tion to the domains, these various approaches differer in the complexity of case
solutions (e.g., plans [1] or atomic actions [3]), the source of the observations
(e.g., a single expert [4] or multiple experts [2]), or the properties of the expert
being observed (e.g., purely reactive [3], non-deterministic [5], or state-based [6,
7].

Outside of case-based reasoning, other learning techniques have been used for
learning by observation. These include using neural networks in a first-person
shooter game [8], a Kalman smoother to learn aerial robotic manoeuvres [9],
and mixed-initiative control in robotic soccer [10]. Lead-through learning [11]
is similar to learning by observation in that robots are trained to perform fixed
sequences of actions by having a human manually control the robot’s movements.

The primary difference between our work and these other learning by ob-
servation systems is that they look to train an agent that will replace a human
whereas we look to create an agent that will join the human as a teammate.
A teammate agent will not need to learn all of the human’s behaviour but can
instead focus on one or more subtasks. This can potentially simplify the learn-
ing process by constraining the problem space that the agent will be responsible
for. Training teammates using learning by observation has been examined previ-
ously [12] but the teammate agents were more complex agents, like a real human
player, rather than the simpler assistive agents we use.

Our work also has similarity to learning interface agents that learn by obser-
vation. In these systems, the agent learns to perform assistive tasks like e-mail
sorting [13], meeting scheduling [14], and note-taking [15]. Like our work, these
agents are constrained to assist the user with fixed tasks but, unlike our work,
the agents are only designed to learn a single, predefined task.

3 Teammate Agent

The learning by observation process used by a teammate agent has three impor-
tant components: how observations are stored in cases, how cases are collected,
and how the agent uses cases to perform the behaviour.

3.1 Case Structure

The learning by observation process is based on the idea that the teammate
agent will behave similarly to the player (i.e., performing similar actions) in
similar situations (i.e., receiving similar sensory inputs). As the player interacts
in the environment, by performing actions in response to sensory inputs, the
teammate agent can record these interactions (Figure 1). A case Ct, observed at
time t, contains the sensory input St that the player received (the problem) and
the action At that was performed (the solution):

Ct = 〈St, At〉

As the agent observes the player, it can automatically record cases (one for each
input-action pair) and store them in its case base.

Player
Environment

Case
BaseAgent CC

A

S

Fig. 1. Agent observing a player interacting with the environment

3.2 Case Acquisition

The observation process, where the teammate agent will observe the player and
record cases, is controlled by the player. When the player is going to begin
performing a specific task, a new teammate agent can be created with an empty
case base (or an existing agent and its case base can be loaded). For example, the
player may press a record button prior to retrieving an item in the environment
so that a teammate agent will be created and observe this behaviour. Similarly,
the player is also able to press a pause button to tell the agent to stop observing.
This would occur if the player needed to perform another task (e.g., battling an
enemy) that was unrelated to what the agent should be learning.

Two methods are used to guide the agent in adding cases to its case base:
store all and store unsolved. In the store all approach, once the player indicates
that the agent should observe (pressing the record button), all observed cases
will be added to the case base. The agent will continue adding cases until a limit
has been reached (e.g., it will only store a fixed number of cases) or the player
indicates it should stop (pressing the pause button). Using this approach, if the
agent observed N state-action pairs it will add N cases to its case base.

The second approach, store unsolved, takes into account that the agent may
have constraints on the case base size or search time. A newly observed case
Ci is only added to the case base CB if the case-based reasoning cycle does not
return the associated action Ai when the case’s sensory input Si is used to query
the case base (Aretrieved = searchCBR(Si, CB) and Aretrieved 6= Ai

1).

3.3 Deployment

The teammate agent can be deployed in the environment once it has observed
the player and added cases to its case base. The player decides when the agent
should be deployed and initiates the deployment by pressing a play button. When
the teammate is deployed, it will become an embodied agent in the environment.
This means in will be visible to other agents, can receive its own sensory inputs,
and perform actions.

As the teammate agent receives its own sensory inputs, it attempts to select
an action that the player would have performed given the same sensory input.
This is achieved by taking the current sensory input Scurrent and searching the
case base for an action Acurrent (Acurrent = searchCBR(Scurrent, CB)). In prac-
tice, this often involves returning the action Amax of the case Cmax with the most
similar sensory input (∀Cj ∈ CB, sim(Scurrent, Sj) ≤ sim(Scurrent, Smax)). The
teammate agent can then perform that action (or possibly perform no action
if no cases were sufficiently similar). By performing this search, the agent is
constantly attempting to perform actions that it thinks the player would have
performed based on observed evidence (the cases in the case base).

The agent will continue operating in the environment until the player termi-
nates it using a stop button. This can occur if the player determines the agent is
no longer necessary (e.g., the task it performs has been completed) or the agent
is performing poorly and must be trained further. If retraining is necessary, the
player can either empty the agent’s case base (completely retraining) or add to
the case base with further observation sessions (additional training).

In our system, agents only learn from observing the player demonstrating
a task. During deployment, an agent will not retain new cases based on its
experience since there is no guarantee that the actions it performed are the
same as the actions the player would have performed. This ensures that an
agent does not inadvertently add erroneous cases to its case base. However, if
there are multiple agents trained to perform the same task, it would be possible
for them to transfer cases between their case bases.
1 Alternatively, a similarity metric can be used to compare actions to see if the search

returns similar action.

4 Proof of Concept

An initial proof of concept was performed in a first-person shooter game called
Scared. This section will describe the game, the initial learning by observation
scenarios we examined, and our results.

4.1 Scared

Scared [16] is a first-person shooter game where a player moves around a 3D en-
vironment composed of rooms and corridors that are connected by doors (Figure
2). The game is simplified by only having a single type of enemy and a single
type of weapon that can be used.

Fig. 2. Screenshot of the Scared first-person shooter game

The player has four primary actions that can be performed: moving the player
(in the x and y directions), turning the player (either left or right), aiming the
player’s weapon (in the x, y and z directions), and firing the weapon. The sensory
inputs the player receives are related to what objects are currently visible in its
field of vision. These objects include walls, doors, enemies, ammunition packs
(used to replenish the weapon’s ammunition), health packs (used to replenish
the player’s health) and keys (used to open locked doors). If there are k objects
currently visible to the player, the player’s currently sensory input St will contain
an entry for each visible object:

St = {o1, o2, . . . , ok}

Each visible object o will contain its object type type, distance from the
player dist, and direction relative to the player dir:

o = 〈type, dist, dir〉

Since the player has partial observability due to a limited field of vision, the
number of objects in the sensory input can vary over time as items move in
and out of view or are removed from the game (e.g., an item is picked up or an
enemy is killed). The similarity metric used to compare these type of sensory
inputs (that have a variable number of visible objects) matches objects based on
their object type so that they are only compared if they are the same type (e.g.,
ammunition packs are only compared with other ammunition packs) [4]. The
sensory inputs are internally partitioned into lists containing objects of the same
type (listtype1∪listtype2∪· · ·∪listtypeN = St, listtype1∩listtype2∩· · ·∩listtypeN =
∅,∀o ∈ listtypeio.type = typei). If there are multiple objects of a given type
(e.g., three visible enemies in one sensory input and two visible enemies in the
second sensory input), they are matched based on a secondary feature. In our
implementation, objects of the same type in a sensory input are ordered based
on their distance relative to the player (listtypei = {oi1 , oi2 , . . . , oiM }, oi1 .dist ≤
oi2 .dist ≤ · · · ≤ oiM .dist) and matched with objects in the other sensory input
that occur at the same position in their respective list (e.g., the closest enemy
in the first sensory input o1enemy1

would be matched to the closest enemy in the
second sensory input o2enemy1

, the second closest in the first o1enemy2
is matched to

the second closest in the other o2enemy2
). This simple object matching approach is

used to quickly match objects while still being computationally efficient enough
to be used in real-time situations. Once objects are matched, they can have their
positional similarity calculated (measuring how similar their position is relative
to the player) and the global similarity computes the average of all matched
object similarities (with weights applied depending on the relative importance
of each type of object). If there were any unmatched objects, which would occur
if there were more objects of a given type in one sensory input than the other,
they are not included in the similarity calculation2.

4.2 Scenarios

We will examine two simple scenarios where the player is training a teammate
agent. The player is able to control the observation process (record, pause, play,
stop) by pressing the associated keys on a keyboard. In the first scenario, which
we will call the collector scenario, the agent observes the player collecting an am-
munition pack that is currently within the player’s field of vision. This involves
the player performing actions that move it through the environment (moving
forwards, backwards, left, right, turning left and turning right). For this sce-
nario, the agent initially had an empty case base when the player started the
observation session and collected 86 cases during observation. The second sce-
nario, called the explorer scenario, the ammunition pack is not currently visible
so the player must move throughout the environment until one is visible and

2 Alternatively, a penalty value can be applied to the similarity when there are any
unmatched objects.

then collect it. In this scenario, after starting with an empty case base 101 cases
were collected during observation. For both of the scenarios, these case bases
represent a single demonstration of the task and took approximately one minute
to demonstrate.

After the case bases were collected, simulated annealing was used to deter-
mine the optimum weights for each type of object. This was performed because
some objects, like ammunition packs, will be more important when attempting
to replicate the observed behaviour. Each of the two agents determined their
own optimum weighting and used those weights during deployment.

4.3 Results

To test the ability of the teammate agents to perform the learnt behaviours, each
of the agents was deployed in the game alongside the player. Figure 3 shows a
teammate agent visible to the player. The agents were placed into scenarios that
were similar to those that they were trained in (either with a visible ammunition
pack or an ammunition pack that needed to be searched for) and were able to
act autonomously. The success of each agent was measured by whether it was
successfully able to achieve its goal of collecting the ammunition pack. This
process was repeated 100 times for each agent and the results are shown in
Table 1.

Fig. 3. Screenshot showing the teammate agent in the environment

The agent trained to perform the simple collection task was generally able to
perform the task successfully. However, the agent trained on the explorer task
was never able to successfully locate the ammunition pack. The explorer agent
was able to successfully move throughout the environment but was not able to
learn what area it had already explored and that it should move to other rooms.

Table 1. Results for the two learning by observation scenarios

Successful F1 value
Ammunition Pickups

Collector 74% 1.00

Explorer 0% 0.70

This is because, although it had observed the player moving between rooms, it
did not store any internal information related to how much of a room it had
already searched.

The agents were also given test inputs from testing case bases to evaluate
their performance. Since each case in the testing case bases has both the sensory
input and action, the sensory input can be provided as input to the teammate
agents and compared to the actions the agents attempt to perform. The results
from the training cases were used to calculate the F1 score3 (2×precision×recall

precision+recall ,

with values ranging from the lowest value of 0.0 to the optimal value of 1.0). The
explorer agent, while unable to successfully retrieve the ammunition packs, did
perform reasonably well on the test cases. However, the errors that it did make
(particularly related to not exploring different areas) resulted in its inability to
achieve its goals. Similarly, we see that the collector agent achieved a perfect F1
score but still did not collect the ammunition packs in all trials. This is because
the various trials were different enough from both the training and testing cases
so the agent was unable to solve some of the novel input problems.

The case bases used by the agents were created by using the store all case
acquisition technique. While the collector agent was adding cases to its case
base, a second case base was also created using the record unsolved acquisition
method. The second case base, which only added cases when the agent could
not select the correct action with the current case base, had 36 cases. When
the previously described evaluations were run using this case base, there was
no noticeable difference in the number of ammunition packs collected or the F1
score compared to when the larger case base was used.

It should be noted that these results are from an agent that was trained with
a single demonstration from the player. Had the agents been able to observe
several demonstrations of the same task they could potentially have been able to
handle a wider range of scenarios. Additionally, if the agents had been performing
poorly during the game the player would have been able to provide additional
information or correct erroneous behaviour.

3 The F1 score was used since the actions in the case bases are highly imbalanced
(some actions are far more rare than others). The F1 score penalizes values that are
often selected incorrectly so simply selecting the most common action (rather than
the correct one) will not result in a high F1 score.

5 Conclusions and Future Work

This paper has presented an approach for creating, training, and deploying team-
mate agents in a gaming environment. Each agent observes the player perform-
ing a simple task and then is responsible for performing that task in the future.
This allows the player to manage tasks by controlling when they are performed
and how they are performed. The agents use learning by observation to learn the
tasks by storing the observations, which contain the actions the player performed
in response to sensory inputs, as cases in a case base.

An initial proof of concept was presented in the first-person shooter game
Scared4. We examined the ability of the agents to observe and learn both simple
item-gathering and more complex exploratory item-gathering behaviour. The
agent was able to successfully locate and collect ammunition packs but was less
successful when it needed to search the environment for the items. This was a
result of the agent repeatedly exploring the same location and not venturing out
into new areas of the environment.

Our initial experiments were limited in scope and future work will look to
perform a more complex evaluation of our system. The player only ever had
a single teammate agent deployed in the environment so we have not explored
using multiple agents simultaneously. We plan to compare the player’s in-game
performance when it performs all tasks itself to when some of the tasks are
delegated to teammate agents. When some tasks are performed by the agents
we would expect the player to have more focus for its tasks and be able to more
efficiently achieve its goals.

We also plan to compare single-agent learning by observation to multi-agent
learning by observation. When a single agent attempts to learn the player’s
entire behaviour, it faces a complex learning task because it needs to be able to
solve all problems the player may face. Instead, if the player’s behaviour can be
broken down into simpler sub-behaviours, each agent will only be responsible for
a simple learning task. Behaviours that were too complex for a single agent might
be learnable by a team of agents. For example, in the Scared game it might be
possible to train three different agents, with each agent learning a single simple
task. One agent could be trained to explore rooms, one to move to different
rooms, and one to collect ammunition packs. These agents could work together
to perform the exploratory ammunition collection task that, as we have shown,
was difficult for a single agent to learn. For example, the agent responsible for
searching the room could deploy the agent that collects ammunition packs if one
was found (or deploy the agent that moves to different rooms if the current room
was completely searched).

References

1. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execu-
tion for real-time strategy games. In: 7th International Conference on Case-Based

4 Our implementation of this is open source and publicly available for download:
https://code.google.com/p/scared-case-based-reasoning/

Reasoning, Springer (2007) 164–178
2. Rubin, J., Watson, I.: On combining decisions from multiple expert imitators for

performance. In: 22nd International Joint Conference on Artificial Intelligence,
AAAI Press (2011) 344–349

3. Romdhane, H., Lamontagne, L.: Forgetting reinforced cases. In: 9th European
Conference on Case-Based Reasoning, Springer (2008) 474–486

4. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitat-
ing RoboCup players. In: 21st International Florida Artificial Intelligence Research
Society Conference, AAAI Press (2008) 251–256

5. Gillespie, K., Karneeb, J., Lee-Urban, S., Muñoz-Avila, H.: Imitating inscrutable
enemies: Learning from stochastic policy observation, retrieval and reuse. In: 18th
International Conference on Case-Based Reasoning, Springer (2010) 126–140

6. Floyd, M.W., Esfandiari, B.: Learning state-based behaviour using temporally
related cases. In: Proceedings of the 16th United Kingdom Workshop on Case-
Based Reasoning. (2011) 34–45

7. Ontañón, S., Floyd, M.W.: A comparison of case acquisition strategies for learning
from observations of state-based experts. In: 26th International Florida Artificial
Intelligence Research Society Conference, AAAI Press (2013) 387–392

8. Thurau, C., Bauckhage, C.: Combining self organizing maps and multilayer percep-
trons to learn bot-behavior for a commercial game. In: 4th International Conference
on Intelligent Games and Simulation, EUROSIS (2003) 119–126

9. Coates, A., Abbeel, P., Ng, A.Y.: Learning for control from multiple demonstra-
tions. In: 25th International Conference on Machine Learning, ACM Press (2008)
144–151

10. Grollman, D.H., Jenkins, O.C.: Dogged learning for robots. In: 24th IEEE Inter-
national Conference on Robotics and Automation, IEEE Press (2007) 2483–2488

11. Deisenroth, M.P., Krishnan, K.K.: On-line programming. In Nof, S.Y., ed.: Hand-
book of Industrial Robotics. John Wiley and Sons (1999) 337–352

12. Silva, M., McCroskey, S., Rubin, J., Youngblood, M., Ram, A.: Learning from
demonstration to be a good team member in a role playing game. In: 26th Inter-
national Florida Artificial Intelligence Research Society Conference, AAAI Press
(2013) 393–398

13. Maes, P., Kozierok, R.: Learning interface agents. In: 11th National Conference
on Artificial Intelligence, AAAI Press (1993) 459–465

14. Horvitz, E.: Principles of mixed-initiative user interfaces. In: 18th Conference on
Human Factors in Computing Systems, ACM Press (1999) 159–166

15. Schlimmer, J.C., Hermens, L.A.: Software agents: Completing patterns and con-
structing user interfaces. Journal of Artificial Intelligence Research 1 (1993) 61–89

16. Brackeen, D.: Scared. http://www.brackeen.com/scared/ (2012) [Online; accessed
July 15, 2014].

