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Abstract

Robots are added to human teams to increase the team’s
skills or capabilities but in order to get the full benefit
the teams must trust the robots. We present an approach
that allows a robot to estimate its trustworthiness and
adapt its behavior accordingly. Additionally, the robot
uses case-based reasoning to store previous behavior
adaptations and uses this information to perform future
adaptations. In a simulated robotics domain, we com-
pare case-based behavior adaption to behavior adapta-
tion that does not learn and show it significantly reduces
the number of behaviors that need to be evaluated before
a trustworthy behavior is found.

1 Introduction

Robots can be important members of human teams if they
provide capabilities that humans do not have. These could
include improved sensory capabilities, communication ca-
pabilities, or an ability to operate in environments humans
can not (e.g., rough terrain or dangerous situations). Adding
these robots might be necessary for the team to meet its ob-
jectives and reduce human risk. However, to make full use
of the robots the teammates will need to trust them.

This is especially important for robots that operate au-
tonomously or semi-autonomously. In these situations, the
human teammates would likely issue commands or dele-
gate tasks to the robot to reduce their workload or more
efficiently achieve team goals. A lack of trust in the robot
could result in the humans under-utilizing the it, unneces-
sarily monitoring the robot’s actions, or possibly not using it
at all.

A robot could be designed so that it operates in a suffi-
ciently trustworthy manner. However, this may be imprac-
tical because the measure of trust might be task-dependent,
user-dependent, or change over time (Desai et al. 2013). For
example, if a robot receives a command from an operator to
navigate between two locations in a city, one operator might
prefer the task be performed as quickly as possible whereas
another might prefer the task be performed as safely as pos-
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sible (e.g., avoiding bumping into any obstacles). Each op-
erator has distinct preferences that influence how they will
trust the robot’s behavior, and these preferences may con-
flict. Even if these user preferences were known in advance,
a change in context could also influence what behaviors are
trustworthy. An operator who generally prefers a task to
be performed quickly would likely change that preference if
the robot was transporting hazardous material, whereas an
operator who prefers safety would likely change their pref-
erences in an emergency situation.

The ability of a robot to behave in a trustworthy manner
regardless of the operator, task, or context requires that it
can evaluate its trustworthiness and adapt its behavior ac-
cordingly. The robot may not get explicit feedback about
its trustworthiness but will instead need to estimate its trust-
worthiness based on its interactions with its operator. Such
an estimate, which we refer to as an inverse trust estimate,
differs from traditional computational trust metrics in that
it measures how much trust another agent has in the robot
rather than how much trust the robot has in another agent. In
this paper we examine how a robot can estimate the trust an
operator has in it, adapt its behavior to become more trust-
worthy, and learn from previous adaptations so it can per-
form trustworthy behaviors more quickly.

In the remainder of this paper we will describe our be-
havior adaptation approach and evaluate it in a simulated
robotics domain. Section 2 presents the inverse trust met-
ric and Section 3 describes how it can be used to guide the
robot’s behavior. In Section 4, we evaluate our case-based
behavior adaptation strategy in a simulated robotics domain
and report evidence that it can efficiently adapt the robot’s
behavior to the operator’s preferences. Related work is ex-
amined in Section 5 followed by a discussion of future work
and concluding remarks in Section 6.

2 Inverse Trust Estimation

Traditional trust metrics are used to estimate the trust an
agent should have in other agents (Sabater and Sierra 2005).
The agent can use past interactions with those agents or
feedback from others to determine their trustworthiness.
The information this agent uses is likely internal to it and
not directly observable by a third party. In a robotics con-
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text, the robot will not be able to observe the information a
human operator uses to assess their trust in it. Instead, the
robot will need to obtain this internal information to estimate
operator trust.

One option would be to directly ask the operator, either as
it is interacting with the robot (Kaniarasu et al. 2013) or after
the task has been completed (Jian, Bisantz, and Drury 2000;
Muir 1987), about how trustworthy the robot was behaving.
However, this might not be practical in situations that are
time-sensitive or where there would be a significant delay
between when the robot wishes to evaluate its trustworthi-
ness and the next opportunity to ask the operator (e.g., dur-
ing a multi-day search and rescue mission). An alternative
that does not require direct operator feedback is for the robot
to infer the trust the operator has in it.

Factors that influence human-robot trust can be grouped
into three main categories (Oleson et al. 2011): robot-
related factors (e.g., performance, physical attributes),
human-related factors (e.g., engagement, workload, self-
confidence), and environmental factors (e.g., group compo-
sition, culture, task type). Although these factors have all
been shown to influence human-robot trust, the strongest in-
dicator of trust is robot performance (Hancock et al. 2011;
Carlson et al. 2014). Kaniarasu et al. (2012) have used an
inverse trust metric that estimates robot performance based
on the number of times the operator warns the robot about its
behavior and the number of times the operator takes manual
control of the robot. They found this metric aligns closely
with the results of trust surveys performed by the operators.
However, this metric does not take into account factors of
the robot’s behavior that increase trust.

The inverse trust metric we use is based on the number of
times the robot completes an assigned task, fails to complete
a task, or is interrupted while performing a task. An inter-
ruption occurs when the operator tells the robot to stop its
current autonomous behavior. Our robot infers that any in-
terruptions are a result of the operator being unsatisfied with
the robot’s performance. Similarly, our robot assumes the
operator will be unsatisfied with any failures and satisfied
with any completed tasks. Interrupts could also be a result
of a change in the operator’s goals, or failures could be a
result of unachievable tasks, but the robot works under the
assumption that those situations occur rarely.

Our control strategy estimates whether trust is increasing,
decreasing, or remaining constant over periods of time re-
lated to how long the robot has been performing its current
behavior. For example, if the robot modifies its behavior at
time tA in an attempt to perform more trustworthy behavior,
the trust value will be estimated using information from tA
onward. We evaluate the trust value between times tA and
tB as follows:

TrustA−B =
n∑

i=1

wi × cmdi,

where there were n commands issued to the robot between
tA and tB . If the ith command (1 ≤ i ≤ n) was in-
terrupted or failed it will decrease the trust value and if it
was completed successfully it will increase the trust value

(cmdi ∈ {−1, 1}). The ith command will also receive a
weight (wi = [0, 1]) related to the robot’s behavior (e.g., a
command that was interrupted because the robot performed
a behavior slowly would likely be weighted less than an in-
terruption because the robot injured a human).

3 Trust-Guided Behavior Adaptation Using

Case-Based Reasoning

The robot uses the inverse trust estimate to infer if its current
behavior is trustworthy, is not trustworthy, or it does not yet
know. Two threshold values are used to identify trustworthy
and untrustworthy behavior: the trustworthy threshold (τT )
and the untrustworthy threshold (τUT ). Our robot uses the
following tests:

• If the trust value reaches the trustworthy threshold
(TrustA−B ≥ τT ), the robot will conclude it has found a
sufficiently trustworthy behavior.

• If the trust value falls below the untrustworthy threshold
(TrustA−B ≤ τUT ), the robot will modify its behavior
in an attempt to use a more trustworthy behavior.

• If the trust value is between the two thresholds (τUT <
TrustA−B < τT ), the robot will continue to evaluate the
operator’s trust.

In the situations where the trustworthy threshold has been
reached or neither threshold has been reached, the robot will
continue to use its current behavior. However, when the un-
trustworthy threshold has been reached the robot will mod-
ify its behavior in an attempt to behave in a more trustwor-
thy manner. The ability of the robot to modify its own be-
havior is guided by the number of behavioral components
that it can modify. These modifiable components could in-
clude changing an algorithm used (e.g., switching between
two path planning algorithms), changing parameter values it
uses, or changing data that is being used (e.g., using a differ-
ent map of the environment). Each modifiable component i
will have a set Ci of possible values that the component can
be selected from.

If the robot has m components of its behavior that can be
modified, its current behavior B will be a tuple containing
the currently selected value ci for each modifiable compo-
nent (ci ∈ Ci):

B = 〈c1, c2, . . . , cm〉

When a behavior B was found by the robot to be untrustwor-
thy it is stored as an evaluated pair E that also contains the
time t it took the behavior to be labeled as untrustworthy:

E = 〈B, t〉

The time it took for a behavior to reach the untrustworthy
threshold is used to compare behaviors that have been found

to be untrustworthy. A behavior B
′

that reaches the untrust-

worthy threshold sooner than another behavior B
′′

(t
′

< t
′′

)
is assumed to be less trustworthy than the other. This is
based on the assumption that if a behavior took longer to
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reach the untrustworthy threshold then it was likely perform-
ing some trustworthy behaviors or was not performing un-
trustworthy behaviors as quickly.

As the robot evaluates behaviors, it stores a set
Epast of previously evaluated behaviors (Epast =
{E1, E2, . . . , En}). It continues to add to this set until it
locates a trustworthy behavior Bfinal (when the trustworthy
threshold is reached). The set of evaluated behaviors can be
thought of as the search path that resulted in the final solu-
tion (the trustworthy behavior). The search path information
is potentially useful because if the robot can determine it is
on a similar search path that it has previously encountered
(similar behaviors being labeled untrustworthy in a similar
amount of time) then the robot can identify what final be-
havior it should attempt. To allow for the reuse of past be-
havior adaptation information we use case-based reasoning
(Richter and Weber 2013).

Each case C is composed of a problem and a solution. In
our context, the problem is the previously evaluated behav-
iors and the solution is the final trustworthy behavior:

C = 〈Epast, Bfinal〉

These cases are stored in a case base and represent the
robot’s knowledge about previous behavior adaptation.

When the robot modifies its behavior it selects new values
for one or more of the modifiable components. The new
behavior Bnew is selected as a function of all behaviors that
have been previously evaluated for this operator and its case
base CB:

Bnew = selectBehavior(Epast, CB)

The selectBehavior function (Algorithm 1) attempts
to use previous adaptation experience to guide the current
adaptation. The algorithm iterates through each case in the
case base and checks to see if that case’s final behavior has
already been evaluated by the robot. If the behavior has
been evaluated, that means the robot has already found the
behavior to be untrustworthy so the robot does not try to
use it again. The remaining cases have their set of eval-
uated behaviors (Ci.Epast) compared to the robot’s current
set of evaluated behaviors (Epast). The most similar case’s
final behavior is returned and will be used by the robot.
If no such behaviors are found (the final behaviors of all
cases have been examined or the case base is empty), the
modifyBehavior function is used to select the next be-
havior to perform. It selects an evaluated behavior Emax

that took the longest to reach the untrustworthy threshold
(∀Ei ∈ Epast(Emax.t ≥ Ei.t)) and performs a random walk
(without repetition) to find a behavior Bnew that required the
minimum number of changes from Emax.B and has not al-
ready been evaluated (∀Ei ∈ Epast(Bnew 6= Ei.B)). If all
possible behaviors have been evaluated and found to be un-
trustworthy the robot will stop adapting its behavior and use
the behavior from Emax.

The similarity between two sets of evaluated behaviors
(Algorithm 2) is complicated by the fact that the sets may
vary in size. The size of the sets depend on the number
of previous behaviors that were evaluated by the robot in

Algorithm 1: Selecting a New Behavior

Function: selectBehavior(Epast, CB) returns Bnew;

bestSim← 0; Bbest ← ∅;
foreach Ci ∈ CB do

if Ci.Bfinal /∈ Epast then
simi ← sim(Epast, Ci.Epast);
if simi > bestSim then

bestSim← simi;
Bbest ← Ci.Bfinal;

if Bbest = ∅ then
Bbest ← modifyBehavior(Epast);

return Bbest;

each set and there is no guarantee that the sets contain iden-
tical behaviors. To account for this, the similarity function
looks at the overlap between the two sets and ignores be-
haviors that have been examined in only one of the sets.
Each evaluated behavior in the first set has its behavior
matched to an evaluated behavior Emax in the second set
that contains the most similar behavior (sim(BA, BB) =
1

m

∑m
i=1

sim(BA.ci, BB .ci), where the similarity function
will depend on the specific type of behavior component). If
those behaviors are similar enough, based on a threshold λ,
then the similarity of the time components of these evaluated
behaviors are included in the similarity calculation. This en-
sures that only matches between evaluated behaviors that are
highly similar (i.e., similar behaviors exist in both sets) are
included in the similarity calculation.

Algorithm 2: Similarity between sets of evaluated be-
haviors

Function: sim(EA, EB) returns sim;

totalSim← 0; num← 0;
foreach Ei ∈ EA do

Emax ← argmax
Ej∈EB

(sim(Ei.B,Ej .B));

if sim(Ei.B,Emax.B) > λ then
totalSim← totalSim+sim(Ei.t, Emax.t);
num← num+ 1;

if num = 0 then
return 0;

return totalSim
num

;

4 Evaluation

In this section, we describe an evaluation for our claim that
the case-based reasoning approach is able to adapt to and
perform trustworthy behaviors more quickly that a random
walk approach. We conducted this study in a simulated en-
vironment with a simulated robot and operator.
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4.1 eBotWorks Simulator

Our evaluation uses the eBotworks simulation environment
(Knexus Research Corporation 2013). eBotworks is a multi-
agent simulation engine and testbed that allows for multi-
modal command and control of unmanned systems. It al-
lows for autonomous agents to control simulated robotic ve-
hicles while interacting with human operators, and for the
autonomous behavior to be observed and evaluated.

We use a simulated urban environment (Figure 1) con-
taining landmarks (e.g., roads) and objects (e.g., houses, hu-
mans, traffic cones, vehicles, road barriers). The robot is a
wheeled unmanned ground vehicle (UGV) and uses eBot-
work’s built-in natural language processing (for interpret-
ing user commands), locomotion, and path-planning mod-
ules. The actions performed by a robot in eBotworks are
non-deterministic (e.g., the robot cannot anticipate its exact
position after moving).

Figure 1: Simulated urban environment in eBotworks

4.2 Simulated Operator

In this study we will use a simulated operator to issue com-
mands to the robot. The simulated operator assesses its trust
in the robot using three factors of the robot’s performance:

• Task duration: The simulated operator has an expecta-
tion about the amount of time that the task will take to
complete (tcomplete). If the robot does not complete the
task within that time, the operator may, with probability
pα, interrupt the robot and issue another command.

• Task completion: If the operator determines that the
robot has failed to complete the task (e.g., the UGV is
stuck), it will interrupt.

• Safety: The operator may interrupt the robot, with proba-
bility pγ , if the robot collides with any obstacles along the
route.

4.3 Movement Scenario

The simple task the robot is required to perform involves
moving between two locations in the environment. At the
start of each run, the robot will be placed in the environment
and the simulated operator will issue a command for the

robot to move to a goal location. Based on the robot’s per-
formance (task duration, task completion, and safety), the
operator will allow the robot to complete the task or inter-
rupt it. When the robot completes a task, fails to complete
it, or is interrupted, the scenario will be reset by placing the
robot back at the start location and the operator will issue
another command.

We us three simulated operators:

• Speed-focused operator: This operator prefers the robot
to move to the destination quickly regardless of whether
it hits any obstacles (tcomplete = 15 seconds, pα = 95%,
pγ = 5%).

• Safety-focused operator: This operator prefers the robot
to avoid obstacles regardless of how long it takes to reach
the destination (tcomplete = 15 seconds, pα = 5%, pγ =
95%).

• Balanced operator: This operator prefers a balanced
mixture of speed and safety (tcomplete = 15 seconds,
pα = 95%, pγ = 95%).

Each of the three simulated operators will control the
robot for 500 experimental trials, with each trial terminating
when the robot determines it has found a trustworthy behav-
ior. For the case-based approach, a case is added to the case
base at the end of any trial where the robot performs at least
one random walk adaptation of its behavior. When no ran-
dom walk adaptations are performed, the robot was able to
find a trustworthy behavior using the cases in its case base
so there is no need to add another case.

The robot has two modifiable behavior components:
speed (meters per second) and obstacle padding (meters).
Speed relates to how fast the robot can move and obstacle
padding relates to the distance the robot will attempt to keep
from obstacles during movement. The set of possible val-
ues for each modifiable component (Cspeed and Cpadding)
are determined from minimum and maximum values with
fixed increments.

Cspeed = {0.5, 1.0, . . . , 10.0}

Cpadding = {0.1, 0.2, 0.3, . . . , 2.0}

We test our robot using a trustworthy threshold of τT = 5.0
and an untrustworthy threshold of τUT = −5.0. When cal-
culating the similarity between sets of evaluated behaviors
the robot uses a similarity threshold of λ = 0.95 (behaviors
must be 95% similar to be matched).

4.4 Results

We found that both the case-based behavior adaptation and
the random walk behavior adaptation strategies resulted in
similar trustworthy behaviors for each simulated operator.
For the speed-focused operator, the trustworthy behaviors
had higher speeds regardless of padding (3.5 ≤ speed ≤
10.0, 0.1 ≤ padding ≤ 1.9). The safety-focused opera-
tor had higher padding regardless of speed (0.5 ≤ speed ≤
10.0, 0.4 ≤ padding ≤ 1.9). Finally, the balanced operator
had higher speed and higher padding (3.5 ≤ speed ≤ 10.0,
0.4 ≤ padding ≤ 1.9). In addition to having similar value
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ranges, there were no statistically significant differences be-
tween the distributions of those values for the two strategies.

The difference between the two behavior adaption ap-
proaches was related to the number of behaviors that needed
to be evaluated before a trustworthy behavior was found. Ta-
ble 1 shows the mean number of evaluated behaviors (and
95% confidence interval) when interacting with each oper-
ator type (over 500 trials for each operator). In addition to
being controlled by only a single operator, we also examined
a condition in which the operator is selected at random with
equal probability. This represents a more realistic scenario
where the robot will be required to interact with a variety of
operators without any knowledge about which operator will
control it.

Table 1: The mean number of behaviors evaluated
Operator Random Walk Case-based

Speed-focused 20.3 (±3.4) 1.6 (±0.2)
Safety-focused 2.8 (±0.3) 1.3 (±0.1)

Balanced 27.0 (±3.8) 1.8 (±0.2)
Random 14.6 (±2.9) 1.6 (±0.1)

The case-based approach required significantly fewer be-
haviors to be evaluated in all four experiments (using a
paired t-test with p < 0.01). This is because the case-based
approach was able to learn from previous adaptations and
use that information to quickly find trustworthy behaviors.
At the beginning, when the robot’s case base is empty, the
case-based approach is required to perform adaptation that
is similar to the random walk approach. As the case base
size grows, the number of times random walk adaptation is
required decreases until the agent generally only performs a
single case-based behavior adaptation before finding a trust-
worthy behavior. Even when the case base contains cases
from all three simulated operators, the case-based approach
can quickly differentiate between the users and select a trust-
worthy behavior. The number of adaptations required for the
safety-focused operator was lower than for the other opera-
tors because a higher percentage of behaviors are considered
trustworthy. The robot, which started the experiments for
each operator with an empty case base, collected 24 cases
when interacting with the speed-focused operator, 18 cases
when interacting with the safety-focused operator, 33 cases
when interacting with the balanced operator, and 33 cases
when interacting with a random operator.

The primary limitation of the case-based approach is that
it relies on the random walk search when it does not have
any suitable cases to use. Although the mean number of
behaviors evaluated by the case-based approach is low, the
situations where random walk is used (and a new case is
created) require an above-average number of behaviors to
be evaluated (closer to the mean number of behaviors eval-
uated when only random walk is used). The case-based ap-
proach uses random walk infrequently, so there is not a large
impact on the mean number of behaviors evaluated over 500
trials, but this would be an important concern as the problem
scales to use more complex behaviors with more modifiable
components. Two primary solutions exist to improve per-
formance in more complex domains: improved search and

seeding of the case base. Random walk search was used be-
cause it requires no explicit knowledge about the domain or
the task. However, a more intelligent search that could iden-
tify relations between interruptions and modifiable compo-
nents (e.g., an interruption when the robot is very close to
objects requires a change to the padding value) would likely
improve adaptation time. Since a higher number of behav-
iors need to be evaluated when new cases are created, if a
set of initial cases were provided to the robot it would be
able to decrease the number of random walk adaptations (or
adaptations requiring a different search technique) it would
need to perform.

5 Related Work

In addition to Kaniarasu et al. (2012), Saleh et al. (2012)
have also proposed a measure of inverse trust and use a set
of expert-authored rules to measure trust. Unlike our own
work, while these approaches measure trust, they do not use
this information to adapt behavior. Shapiro and Shachter
(2002) discuss the need for an agent to act in the best inter-
ests of a user even if that requires sub-optimal performance.
Their work examines identifying factors that influence the
user’s utility function and updating the agent’s reward func-
tion accordingly. This is similar to our own work in that be-
havior is modified to align with a user’s preference, but our
robot is not given an explicit model of the user’s reasoning
process.

Conversational recommender systems (McGinty and
Smyth 2003) iteratively improve recommendations to a user
by tailoring the recommendations to the user’s preferences.
As more information is obtained through dialogs with a user,
these systems refine their model of that user. Similarly,
learning interface agents observe a user performing a task
(e.g., sorting e-mail (Maes and Kozierok 1993) or sched-
ule management (Horvitz 1999)) and learn the user’s prefer-
ences. Both conversational recommender systems and learn-
ing interface agents are designed to learn preferences for a
single task whereas our behavior adaptation requires no prior
knowledge about what tasks will be performed.

Our work also has similarities to other areas of learning
during human-robot interactions. When a robot learns from
a human, it is often beneficial for the robot to understand the
environment from the perspective of the human. Breazeal
et al. (2009) have examined how a robot can learn from a
cooperative human teacher by mapping its sensory inputs to
how it estimates the human is viewing the environment. This
allows the robot to learn from the viewpoint of the teacher
and possibly discover information it would not have noticed
from its own viewpoint. This is similar to preference-based
planning systems that learn a user’s preferences for plan gen-
eration (Li, Kambhampati, and Yoon 2009). Like our own
work, these systems involve inferring information about the
reasoning of a human. However, they differ in that they in-
volve observing a teacher demonstrate a specific task and
learning from those demonstrations.
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6 Conclusions

In this paper we have presented an inverse trust measure to
estimate an operator’s trust in a robot’s behavior and to adapt
its behavior to increase an operator’s trust. The robot also
learns from previous behavior adaptations using case-based
reasoning. Each time it successfully finds a trustworthy be-
havior, it records that behavior as well as the untrustworthy
behaviors that it evaluated.

We evaluated our trust-guided behavior adaptation algo-
rithm in a simulated robotics environment by comparing it to
a behavior adaptation algorithm that does not learn from pre-
vious adaptations. Both approaches converge to trustworthy
behaviors for each type of operator (speed-focused, safety-
focused and balanced) but the case-based algorithm requires
significantly fewer behaviors to be evaluated before a trust-
worthy behavior is found. This is advantageous because the
chances that the operator will stop using the robot increases
the longer the robot is behaving in an untrustworthy manner.

Although we have shown the benefits of trust-guided be-
havior adaptation, several areas of future work exist. We
have only evaluated the behavior in a simple movement sce-
nario but will soon test it on increasingly complex tasks
where the robot has more behavior components that it can
modify (e.g., scouting for hazardous devices in an urban en-
vironment). In longer scenarios it may be important to not
only consider undertrust, as we have done in this work, but
also overtrust. In situations of overtrust, the operator may
trust the robot too much and allow the robot to behave au-
tonomously even when it is performing poorly. We also plan
to include other trust factors in the inverse trust estimate
and add mechanisms that promote transparency between the
robot and operator. More generally, adding an ability for the
robot to reason about its own goals and the goals of the op-
erator would allow the robot to verify it is trying to achieve
the same goals as the operator and identify any unexpected
goal changes (e.g., such as when a threat occurs).
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