
L. Lamontagne and E. Plaza (Eds.): ICCBR 2014, LNCS 8765, pp. 495–510, 2014.

© Springer International Publishing Switzerland 2014

Case-Based Plan Recognition

Using Action Sequence Graphs

Swaroop S. Vattam
1
, David W. Aha

2
, and Michael Floyd

3

1 NRC Postdoctoral Fellow, Naval Research Laboratory (Code 5514), Washington, DC
2 Navy Center for Applied Research in Artificial Intelligence,

Naval Research Laboratory (Code 5514), Washington, DC, USA
3 Knexus Research Corporation, Springfield, VA, USA

{swaroop.vattam.ctr.in,david.aha}@nrl.navy.mil,

michael.floyd@knexusresearch.com

Abstract. We present SET-PR, a novel case-based plan recognition algorithm

that is tolerant to missing and misclassified actions in its input action sequences.

SET-PR uses a novel representation called action sequence graphs to represent

stored plans in its plan library and a similarity metric that uses a combination of

graph degree sequences and object similarity to retrieve relevant plans from its

library. We evaluated SET-PR by measuring plan recognition convergence and

precision with increasing levels of missing and misclassified actions in its input.

In our experiments, SET-PR tolerated 20%-30% of input errors without

compromising plan recognition performance.

Keywords: Case-based reasoning, plan recognition, error tolerance, graph

representation of plans, approximate graph matching.

1 Introduction

Plan recognition is considered the inverse problem of plan synthesis. It involves an

observed and an observing agent. Given an input sequence of actions executed by the

observed agent, the observing agent attempts to map this observed sequence to a plan

such that the observed sequence is a subsequence of actions in the recognized plan.

One of the fundamental assumptions of classical plan recognition is that observed

actions are reliable. This assumption is unrealistic for agents acting in the real world

who may frequently fail to notice the actions of others (because they have to attend to

several actors and events in their environment) or misclassify the observed actions

(due to uncertainty in the real world and incomplete or inaccurate agent models). We

relax this assumption, and present a single-agent keyhole plan recognition algorithm

that is tolerant to two kinds of input errors: missing and misclassified actions.

Our plan recognition algorithm, called Single-agent Error-Tolerant Plan

Recognizer (SET-PR), assumes the existence of a plan library consisting of a set of

cases. Each case includes a specification of a planning problem and a fully-grounded

plan that is a solution to this problem. Inputs to SET-PR are subsequences of plans,

which are matched to plans in the plan library to retrieve candidate plans. Currently,

496 S.S. Vattam, D.W. Aha, and M. Floyd

the top-ranked plan is selected as the solution (the recognized plan). For online or

dynamic plan recognition, SET-PR is executed each time a new set of observations

arrive, obtaining an any-time hypothesized plan in each observation cycle.

Although case-based plan recognition (CBPR) is not novel, we explore a new

representation for stored plans that impacts the similarity function we propose for

case retrieval. More specifically, we use action sequence graphs to represent plans in

a plan library (case base); they encode a detailed topology of a plan trace (a sequence

of action-state pairs). Our similarity function uses a combination of graph degree

sequences and object similarity for computing the similarity between input action

sequences and stored plans.

Our paper is organized as follows. Section 2 describes related work on plan

recognition. Section 3 then introduces essential notation that formalizes the CBPR

problem. Section 4 introduces action sequence graphs and their use in SET-PR.

Section 5 details our similarity function. Finally, Section 6 presents an initial

empirical study that evaluates the robustness of SET-PR’s plan recognition algorithm

in the presence of input errors. We found that SET-PR is highly tolerant to increasing

levels of input error until a yield point is reached, after which its performance

degrades sharply.

2 Related Work

The ability to recognize the plans and goals of other agents is a fundamental aspect of

intelligence that allows one to reason about what other agents are doing, why they are

doing it, and what they will do next. Many AI researchers have focused on plan

recognition approaches which can be broadly classified into keyhole or intended plan

recognition. In keyhole recognition, the observing agent monitors the actions of an

ambivalent observed agent. In contrast, in intended recognition, the observed and

observing agents cooperate to convey the intentions of the observed agent. Another

dimension of classification relates to the presence of single or multiple observed

agents. We restrict ourselves to the single-agent keyhole plan recognition problem.

Several approaches has been proposed to address the problem of plan recognition

(Sukthankar et al., 2014), including consistency-based approaches (e.g., Hong, 2001;

Kautz & Allen, 1986; Lesh & Etzioni, 1996; Lau et al., 2004; Kumaran, 2007), and

probabilistic approaches (e.g., Bui, 2003; Charniak & Goldman, 1991, 1993; Geib &

Goldman, 2009; Goldman, Geib & Miller, 1999; Pynadath & Wellman, 2000). The

former include hypothesize and revise algorithms, version space techniques, and other

closed-world reasoning algorithms, while probabilistic algorithms include those that

use stochastic grammars and probabilistic relational models. Both these approaches

are sensitive to (1) an incomplete plan library and (2) missing or misclassified actions

in the input observations. There have been few attempts to address this issues within

these frameworks (e.g., using background goals (Lesh, 1996) or focus stacks (Rich et

al., 2001)), but current solutions are usually problem-specific and lack generalizable

qualities.

 Case-Based Plan Recognition Using Action Sequence Graphs 497

A lesser known approach to the single-agent keyhole plan recognition problem is

the case-based approach as exemplified by Cox & Kerkez (2006) and Tecuci & Porter

(2009). These investigations focus on the issues of incomplete plan library,

incrementally learning the plan library, and responding to novel inputs. But they do

not address the issue of error-prone input action sequences. Cox & Kerkez (2006)

proposed a novel representation for storing and organizing plans in the plan library

based on action-state pairs and abstract states, which counts the number of instances

of each type of generalized state predicate. In our work, we start with a similar action-

state representation, but process it using a graph representation and store our cases as

graphs. As a result, our similarity metrics also operate on graphs.

Most other research on single-agent keyhole CBPR has an application focus. For

instance Fagan and Cunningham (2003) acquire cases (state-action sequences) to

predict a human’s next action while playing SPACE INVADERS. Cheng and

Thawonmas (2004) propose a CBPR system for assisting players with low-level

management tasks in WARGUS. Lee et al. (2008) integrate Kerkez and Cox’s

technique with a reinforcement learner to predict opponent actions on a simplified

WARGUS task. Similarly, Molineaux et al. (2009) integrate a plan recognition system

with a case-based reinforcement learner for an adversarial action selection task

involving an American football simulator. In contrast to an application thrust, the

focus of our work is to produce a more general single-agent keyhole CBPR approach

that is tolerant to uncertainty in observed actions.

In other related work, user traces have been used in a variety of case-based

reasoning systems. In CBR systems that learn by observation, user traces are used to

automatically extract knowledge and cases so that the system can learn the expert's

behavior. These cases typically store state-action pairs (Rubin & Watson, 2010) or

state-plan pairs (Ontañón et al., 2007), and retrieval is based on a single state rather
than, like our approach, an entire trace. Temporal Backtracking (Floyd & Esfandiari,
2011) has been used in learning by observation to include additional states and actions
from a trace during retrieval such that traces are dynamically resized as necessary.
Similarly, trace-based reasoning (Zarka et al., 2013) and episode-based reasoning
(Sánchez-Marré, 2005) store fixed-length traces in cases and compare the entire trace
during retrieval. The primary difference between these approaches and our own is that
they represent traces as linear sequences whereas we represent them as graphs.

3 Case-Based Plan Recognition

We now introduce notation that formalizes the general problem of CBPR. A planning

problem is a 3-tuple , where is a set of planning operators, is the
initial state, and is the goal specification (Ghallab, Nau & Traverso, 2004).

An action-state sequence is a sequence where
an action all ground instances of operators in , and is the state
resulting from executing action in state . A plan is a special action-state
sequence where is the initial state of and

 satisfies is a goal state of , where satisfies has the same semantics as

498 S.S. Vattam, D.W. Aha, and M. Floyd

originally laid out in Ghallab, Nau & Traverso (2004). Action is because the

action preceding the initial state does not need to be specified. While most plan

recognition systems represent plans as a sequence of actions, this kind of

representation (augmenting action information with the following state information)

was proposed originally by Cox and Kerkez (2006). Our rationale for choosing this

representation is to offset the inaccuracies of missing or misclassified actions by

including information about states.

A case is a tuple , where is a planning problem and is a

corresponding plan for solving it. A plan library (or case base) is a set of cases

.

Definition: A CBPR problem is represented by a tuple , where is a plan

library and is a target action-state sequence,

a subsequence of a plan, that has to be recognized. A solution to this problem is a

plan that is predicted using the following CBR process:

• Plan retrieval: Retrieve cases from the plan library such that is

similar to according to some similarity metric

• Plan evaluation: Evaluate the retrieved cases according to some evaluation

criteria to select a source case

• Plan adaptation: Adapt to increase its similarity with by

resolving the differences between the two, resulting in (and corresponding

)

• Plan repair: Test and revise to remove inconsistencies

For the sake of simplicity, we assume that the steps of plan adaptation and repair

are not required, i.e., is equal to . Table 1 captures the

differences between the case-based plan synthesis and recognition problems

expressed in this notation.

Table 1. Contrasting the general case-based plan synthesis and case-based plan recognition

problems

 Case-Based Plan Synthesis Case-Based Plan Recognition

Case Base

Input

Output

Retrieval Match with s from

cases in to get (and

its)

Match with s from cases

in to get

Adaptation Adapt to resolve

differences between

and to get

Adapt to resolve

differences between and

 to get

In online or dynamic CBPR, the above CBR process is employed in recognizing

an ongoing plan, before it has ended, by executing the process each time a new set of

 Case-Based Plan Recognition Using Action Sequence Graphs 499

observations arrive, obtaining an any-time hypothesized plan in each observation

cycle.

4 Case Representation

We define a graph data structure called action sequence graphs to represent action-

state sequences in our cases. Graphs provide a rich means for modelling structured

objects and they are widely used in real-life applications to model many objects and

processes, from molecules and images to buildings and entire ecosystems. Graphs

have also been widely used in planning to represent task networks, goal networks, and

plan graphs. The planning encoding graph (Serina, 2010) representation, used to

encode planning problems, has been particularly influential in the design of our

representation. Although there are syntactic similarities between planning encoding

graphs and action sequence graphs, important semantic differences exist because the

former encodes a problem while the latter encodes a solution (plan).

There are at least two advantages of using a graph representation for cases. First,

graphs are well understood. We can rely on a solid theoretical foundation of graph

theory to analyze and manipulate our representation. We can also leverage a huge

body of work to identify reliable metrics and efficient algorithms. Second, our

representation is domain-general; it can be applied to plan recognition problems for a

wide range of domains.

4.1 Preliminaries

A labeled directed graph is a 3-tuple where is the set of vertices,

 is the set of directed edges or arcs, and assigns labels to

vertices and edges. Here, is a finite set of symbolic labels and is a set of all the

multisets on ; this labeling scheme permits multiple non-unique labels for a node or

an arc.

An arc is considered to be directed from to , where is called

the source node and is called the target node of the arc. Also, is a direct successor

of , is a direct predecessor of , and is adjacent to vertex and vice versa.

The union of two graphs and , denoted by

, is the graph where , , and

500 S.S. Vattam, D.W. Aha, and M. Floyd

4.2 Action Sequence Graphs

An action sequence graph is an order-preserving encoding of an action-state sequence

. Two action-state sequences can be matched by matching

their corresponding action sequence graphs. Figure 1 shows an example of and its

corresponding action sequence graph.

An action-state sequence is defined over a planning language consisting of , a

set of finitely many predicate symbols, and , a finite set of typed constants

representing distinct objects in the planning domain. An action in is

represented as a ground atom , where and represents an

action, , and is an instance of . Similarly a state in is

represented as a set of ground atoms .

Definition: Given a ground atom representing either an

action or a single fact of state in the action-state pair , a predicate

encoding graph is a labeled directed graph such that:

•

•

• for

•

Fig. 1. An example action-state sequence and its corresponding action sequence graph

 Case-

Here is an interpretatio

. Depend

first node of the predicate e

. Let us assume tha

second node of this graph

 (labeled).

through the edge (l

through the edge (

connected to through

Example: Suppose predic

fifth () action-state p

predicate are ,

, with respective labe

encoding graph for is sho

Fig. 2. An example predica

Definition: An action seq

directed graph

graphs of all the action and

complete action sequence g

Recall that a case is a t

state sequence where is t

can be represented by an

already contains the initia

explicitly in . Given this,

5 Similarity and R

The first step in the CBR

plan library and is

plan), retrieval involves ide

to . This requires a si

-Based Plan Recognition Using Action Sequence Graphs

on of this definition. Suppose we have a predicate

ding on whether represents an action or a state fact,

encoding graph is either or (labeled

at it is an action predicate. is then connected to

h, the object node (labeled , through the e

 Next, is connected to the third node (labeled

labeled), then to the fourth node (labeled

(labeled), and so on. Next, the third node

, to through , with appropriate labels, and so

cate appears in

air of an observed sequence of actions. The nodes of

, , and . The edges are

ls , , , and . The predic

own in Figure 2.

ate encoding graph corresponding to

quence graph of an action-state sequence is a labe

, a union of the predicate encod

d state predicates in . (See Figure 1 for an example o

graph.)

tuple , where is an instance of the acti

the initial state and is the goal state of . Therefore,

action sequence graph , is implicit in (i.e.,

al and goal states of), and it need not be captu

 can serve as a representation of case .

Retrieval

process is case retrieval. Given , where i

s a target action-state sequence (also a subsequence o

entifying those cases from the plan library that are sim

imilarity metric.

501

the

or

the

edge

 is

on.

the

this

and

cate

eled

ding

of a

ion-

,

ured

is a

of a

milar

502 S.S. Vattam, D.W. Aha, and M. Floyd

Cases in the plan library are represented as action sequence graphs, as is .

Thus, we compute their structural similarity using graph matching. One reliable way
to match two graphs is to find their maximum common subgraph (MCS) (Raymond &
Willett, 2002), where similarity is an increasing function of the size of the MCS

between and . Given an action sequence graph for , the retrieval step

would then compute the MCS between and each in the case base, selecting the

top s based on the size of their MCS.

Unfortunately, computing the MCS between two or more graphs is an NP-
Complete problem (Raymond & Willett, 2002). The worst-case time requirement of

this retrieval step increases exponentially with the size of , restricting its

applicability to small plan recognition problems only. Thus, we seek an efficient
approximation of the MCS similarity metric.

5.1 Degree Sequences Similarity Metric

We hypothesize that Johnson’s (1985) similarity coefficient, based on graph degree

sequences, can be used to derive an efficient approximation of the MCS similarity

metric. The degree sequence of a graph is the non-increasing sequence of its vertex

degrees. The degree sequence is a graph invariant, so isomorphic graphs have the

same degree sequences. However, the degree sequence does not uniquely identify a

graph. This similarity coefficient has been used for rapid graph matching in several

applications, including in case-based planning with planning encoding graphs as a

quick filter to reject unpromising cases during retrieval (Serina, 2010). In our

approach, we will also use this similarity coefficient, but for the opposite purpose -

we propose to use it to select promising cases.

Johnson’s similarity coefficient for two graphs is calculated as follows. First, the

set of vertices in each graph is divided into partitions by label type, and then sorted

in a non-increasing total order by degree
1
. Let and denote the sorted degree

sequences of a partition in the action sequence graphs and , respectively. An

upper bound on the number of vertices and edges of the MCS of

these two graphs, , can then be computed as:

where denotes the
th

 vertex of the sorted degree sequence, and denotes

the set of edges connected to vertex . Then the structural similarity coefficient can

be computed as follows:

1 The degree (or valence) of a vertex of a graph is the number of edges that touch .

 Case-Based Plan Recognition Using Action Sequence Graphs 503

This computation can be performed in time, where

 (Raymond & Willett, 2002).

5.2 Example

Consider the two graphs and in Figure 3. The degree sequences of the partitions

of and (partitioned by label type) are also tabulated in Figure 3. We can

compute their (graph) similarity as follows:

5.3 Combined Similarity Metric

We use a combination of structural and object similarity to compute the overall

similarity of an input subsequence to a plan in the plan library:

,

where is the action sequence graph of , is the action sequence graph of

, is the degree sequences similarity function described above, and

where is the set of (grounded) objects in and are objects in .

6 Evaluation

In this section we evaluate our claim that plan recognition in SET-PR is robust to two

kinds of input errors: misclassified actions and missing actions.

6.1 Empirical Method

We conducted our experiments in the blocks world domain, which we chose because of

its simplicity and affordance to quick automatic generation of the plan library with

desired characteristics. We used a hierarchal task network (HTN) planner to generate

plans for our plan library. Planning problems were created by randomly selecting an

initial state and goal state (under the constraint that it is possible to reach the goal state

from the initial state), and given as input to the HTN planner. The generated plan

(actions and corresponding states) was converted into an action sequence graph and

stored, along with the planning problem, as a case. In total, we used this method to

generate 100 (error-free) cases for our plan library. We created 4 separate plan libraries

that vary in their average plan length (8.94, 12.48, 16.36, and 19.46 actions

respectively).

504 S.S. Vattam, D.W. Aha, and M. Floyd

We varied the following variables in our evaluation of SET-PR: (1) length of the

plans in the plan library; (2) percentage of absent action, state pairs; and (3)

percentage of misclassified action, state pairs. Our metrics were convergence,

convergence point, and precision. Convergence is defined as a boolean value that, for

Fig. 3. Two graphs and and the degree sequences of their partitions

 Case-Based Plan Recognition Using Action Sequence Graphs 505

a given query with action, state pairs, is true if the plan retrieved on the last

action, state pair matches . Convergence point is defined only for those queries that

converge; if they converge after action , it is defined as . Precision is the total

number of plans associated with the query's action, state pairs that are correct,

divided by .

We evaluated SET-PR’s performance for each plan library using the following

method. For each randomly selected case in , we copied plan randomly

distorted its action sequence (to introduce a fixed

amount of error), and used it as an incremental query to SET-PR (i.e., initially with

only its first action, state pair, and then repeatedly adding the next such pair in its

sequence). The error levels tested, separately for both error types (missing and

misclassified actions), were {10%, 20%, 30%, 40%, 50%}. For each case , we also

recorded the convergence, convergence point, and precision. Finally, we averaged

these metrics across .

Fig. 4. Convergence rate vs. % error results

Fig. 5. Average convergence point vs. % error results

506 S.S. Vattam, D.W. Aha, and M. Floyd

Fig. 6. Average precision vs. % error results

6.2 Trends and Discussion

Figures 4-6 summarize our results. The primary trends, for a given plan length, are as

follows. As % error increases (for both error types):

• Convergence rate remains high and near constant until some (yield) point is

reached and then sharply decreases

• Average convergence point increases until the yield point is reached, beyond

which its value becomes unpredictable

• Average precision decreases steadily and approaches zero

The existence of yield point was surprising; we expected a gradual decrease in

convergence rate with a gradual increase in % error. For the blocks world domain, the

yield point was around 20% for misclassified and 30% for missing actions. The

convergence rate was more than 90% until this yield point.

No clear trends emerged that distinguished the results by average plan length

(across the four libraries), although for longer plan lengths, misclassified actions

degraded performance of the algorithm more severely than did missing actions. More

fine grained analysis is required to explain this.

After the yield point is reached, average convergence point is unreliable; the

number of data points in the converged set were too few to indicate any clear trend.

Based on this analysis we conclude that SET-PR is robust to the presence input

error until the yield point is reached, which in our experiments was 20%-30% of the

input error (depending on the error type). To what extent the yield point is domain

dependent and how we can push the yield point further to the right remain open

research questions.

We used a variant of SET-PR for our baseline comparison. SET-PRbaseline differs

from SET-PR only with respect to the representation of action sequences in plan

library and queries. While SET-PR uses action, state sequences, SET-PRbaseline uses

action sequences. SET-PRbaseline better models the representations of classical plan

recognition techniques which do not use explicit information about states to infer

plans. Recall that the rationale for choosing to include state information in SET-PR

 Case-Based Plan Recognition Using Action Sequence Graphs 507

was to offset the inaccuracies introduced by missing or misclassified actions.

Therefore, we expected the performance of SET-PRbaseline to deteriorate more than

SET-PR in the presence of input errors.

Table 2. Sample results for SET-PRbaseline for one plan library for one type of error

(misclassified)

 0% 10% 20% 30% 40% 50%

Conv. Rate (%) 76 14 9 7 1 1

Avg. conv. point 0.21 0.24 0.23 0.43 0.37 0.16

Avg. precision 0.72 0.13 0.11 0.08 0.04 0.02

Table 2 captures the convergence rate, average convergence point, and average

precision for different % error levels for one of the plan libraries (average plan length

= 12.4) and one type of error (misclassified actions). The results for other plan

libraries were similar and we see the following trends in the case of SET-PRbaseline.

First, when the input error was 0%, we noted that the rate of convergence, average

convergence point, and average precision were comparable to SET-PR (rate of

convergence and average precision were better in SET-PR, but the convergence point

was better in SET-PRbaseline).

Second, we noted the existence of yield point in SET-PRbaseline as well, but it was

reached even before the 10% input error level. This suggests that error increments

smaller than 10% are required to find out exactly how much error SET-PRbaseline can

tolerate.

Third, after the yield point is reached, the rate of convergence and average

precision in SET-PRbaseline dropped sharply to levels seen for 50% error in SET-PR.

This suggests that SET-PRbaseline is extremely sensitive to input errors.

Fourth, the average convergence point in SET-PRbaseline was higher compared to

SET-PR, but this is not a meaningful statistic because the data points in the converged

set were too few beyond the 0% error level.

Finally, we conclude that SET-PR compares favorably to SET-PRbaseline for error

tolerance.

7 Summary

We developed a case-based approach to the problem of plan recognition that can

tolerate missing and misclassified actions in the input action sequences. We

introduced a novel graph representation, called action sequence graphs, to represent

plans in the plan library. We described a similarity function that uses a combination of

graph degree sequences and object similarity for matching action sequence graphs,

and used it to retrieve relevant stored plans from the plan library. We also presented

an initial empirical investigation of our approach using the blocks world domain. We

measured the extent to which our approach is tolerant to missing and misclassified

actions, and found that its performance was robust to the presence of up to 20%-30%

of error in the input actions (depending on error type). We also found that, in the

508 S.S. Vattam, D.W. Aha, and M. Floyd

presence of input errors, our approach compared favorably to the baseline which used

more traditional plan recognition representations.

Our study had several limitations. For example, we used a simple paradigmatic

domain, the plan library was relatively small, errors were introduced in a systematic

manner rather than reflecting a naturally occurring distribution, and while we

introduced errors in the query we did not also introduce them in the plan library. As

part of our future work, we will address these issues and test SET-PR in different

domains, some of which will be real world application domains. One such domain we

plan to target is human-robot teams. This will require extending SET-PR to work in

domains involving multiple agents and multiple types of plan recognition tasks.

We also plan to compare and test SET-PR’s performance using different degree

sequence similarity metrics previously reported in literature (e.g., Wallis et al., 2001;

Bunke and Shearer, 1998).

Acknowledgements. Thanks to OSD ASD (R&E) for sponsoring this research.

Swaroop Vattam performed this work while an NRC post-doctoral research associate

located at the Naval Research Laboratory. The views and opinions contained in this

paper are those of the authors and should not be interpreted as representing the

official views or policies, either expressed or implied, of NRL or OSD.

References

Bui, H.: A general model for online probabilistic plan recognition. In: Proceedings of the

Eighteenth International Joint Conference on Artificial Intelligence, pp. 1309–1315. Morgan

Kaufmann, Acapulco (2003)

Bunke, H., Shearer, K.: A graph distance metric based on the maximum common subgraph.

Pattern Recognition 19(3), 255–259 (1998)

Charniak, E., Goldman, R.: A probabilistic model of plan recognition. In: Proceedings of the

Ninth National Conference on Artificial Intelligence, pp. 160–165. AAAI Press, Anaheim

(1991)

Charniak, E., Goldman, R.: A Bayesian model of plan recognition. Artificial Intelligence 64,

53–79 (1993)

Cheng, D.C., Thawonmas, R.: Case-based plan recognition for real-time strategy games. In:

Proceedings of the Fifth Game-On International Conference, pp. 36–40. University of

Wolverhampton Press, Reading (2004)

Cox, M.T., Kerkez, B.: Case-based plan recognition with novel input. Control and

Intelligent Systems 34(2), 96–104 (2006)

Fagan, M., Cunningham, P.: Case-based plan recognition in computer games. In: Ashley,

K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 161–170. Springer, Heidelberg

(2003)

Floyd, M.W., Esfandiari, B.: Learning state-based behaviour using temporally related cases.

In: Petridis, M. (ed.) Proceedings of the Sixteenth UK Workshop on Case-Based Reasoning.

Springer, Cambridge (2011)

 Case-Based Plan Recognition Using Action Sequence Graphs 509

Geib, C.W., Goldman, R.P.: A probabilistic plan recognition algorithm based on plan tree

grammars. Artificial Intelligence 173(11), 1101–1132 (2009)

Ghallab, M., Nau, D., Traverso, P.: Automated planning: Theory and practice. Morgan

Kaufmann, San Mateo (2004)

Goldman, R.P., Geib, C.W., Miller, C.A.: A new model of plan recognition. In: Proceedings

of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 245–254. Morgan

Kaufmann, Bled (1999)

Hong, J.: Goal recognition through goal graph analysis. Journal of Artificial Intelligence

Research 15, 1–30 (2001)

Johnson, M.: Relating metrics, lines and variables defined on graphs to problems in

medicinal chemistry. John Wiley & Sons, New York (1985)

Kautz, H., Allen, J.: Generalized plan recognition. In: Proceedings of the Fifth National

Conference on Artificial Intelligence, pp. 32–37. Morgan Kaufmann, Philadelphia (1986)

Kumaran, V.: Plan recognition as candidate space search (Master’s Thesis). North Carolina

State University, Department of Computer Science, Raleigh, NC (2007)

Lau, T., Wolfman, S.A., Domingos, P., Weld, D.S.: Programming by demonstration using

version space algebra. Machine Learning 53(1-2), 111–156 (2003)

Lee, J., Koo, B., Oh, K.: State space optimization using plan recognition and reinforcement

learning on RTS game. In: Proceedings of the International Conference on Artificial

Intelligence, Knowledge Engineering, and Data Bases. WSEAS Press, Cambridge (2008)

Lesh, N.: Fast, adaptive, and empirically-tested goal recognition. In: Proceedings of the

Fifth International Conference on User Modeling, pp. 231–233 (1996)

Lesh, N., Etzioni, O.: Scaling up goal recognition. In: Proceedings of the Fifth International

Conference on Knowledge Representation and Reasoning, pp. 178–189 (1996)

Molineaux, M., Aha, D.W., Sukthankar, G.: Beating the defense: Using plan recognition to

inform learning agents. In: Proceedings of the Twenty-Second International FLAIRS

Conference, pp. 337–343. AAAI Press, Sanibel Island (2009)

Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execution for real-
time strategy games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI),
vol. 4626, pp. 164–178. Springer, Heidelberg (2007)

Pynadath, D.V., Wellman, M.P.: Probabilistic state-dependent grammars for plan
recognition. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp.
507–514. Morgan Kaufmann, San Francisco (2000)

Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the
matching of chemical structures. Journal of Computer-Aided Molecular Design 16, 521–533
(2002)

Rich, C., Sidner, C.L., Lesh, N.: Collagen: Applying collaborative discourse theory to
human-computer interaction. AI Magazine 22(4), 15–26 (2001)

Rubin, J., Watson, I.: Similarity-based retrieval and solution re-use policies in the game of
Texas Hold’em. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp.
465–479. Springer, Heidelberg (2010)

Sánchez-Marré, M., Cortés, U., Martínez, M., Comas, J., Rodríguez-Roda, I.: An approach
for temporal case-based reasoning: Episode-based reasoning. In: Muñoz-Ávila, H., Ricci, F.
(eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 465–476. Springer, Heidelberg (2005)

510 S.S. Vattam, D.W. Aha, and M. Floyd

Serina, I.: Kernel functions for case-based planning. Artificial Intelligence 174(16), 1369–

1406 (2010)

Sukthankar, G., Goldman, R., Geib, C., Pynadath, D., Bui, H.: An introduction to plan,

activity, and intent recognition. In: Sukthankar, G., Goldman, R., Geib, C., Pynadath, D., Bui,

H. (eds.) Plan, Activity, and Intent Recognition. Elsevier, Philadelphia (2014)

Tecuci, D., Porter, B.W.: Memory based goal schema recognition. In: Proceedings of the

Twenty-Second International Florida Artificial Intelligence Research Society Conference.

AAAI Press, Sanibel Island (2009)

Wallis, W.D., Shoubridge, P., Kraetz, M., Ray, D.: Graph distances using graph union.

Pattern Recognition Letters 22, 701–704 (2001)

Zarka, R., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., Mille, A.: Similarity measures

to compare episodes in modeled traces. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013.
LNCS, vol. 7969, pp. 358–372. Springer, Heidelberg (2013)

