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Abstract. We present SET-PR, a novel case-based plan recognition algorithm 

that is tolerant to missing and misclassified actions in its input action sequences. 

SET-PR uses a novel representation called action sequence graphs to represent 

stored plans in its plan library and a similarity metric that uses a combination of 

graph degree sequences and object similarity to retrieve relevant plans from its 

library. We evaluated SET-PR by measuring plan recognition convergence and 

precision with increasing levels of missing and misclassified actions in its input. 

In our experiments, SET-PR tolerated 20%-30% of input errors without 

compromising plan recognition performance. 

Keywords: Case-based reasoning, plan recognition, error tolerance, graph 

representation of plans, approximate graph matching. 

1 Introduction 

Plan recognition is considered the inverse problem of plan synthesis. It involves an 

observed and an observing agent. Given an input sequence of actions executed by the 

observed agent, the observing agent attempts to map this observed sequence to a plan 

such that the observed sequence is a subsequence of actions in the recognized plan. 

One of the fundamental assumptions of classical plan recognition is that observed 

actions are reliable. This assumption is unrealistic for agents acting in the real world 

who may frequently fail to notice the actions of others (because they have to attend to 

several actors and events in their environment) or misclassify the observed actions 

(due to uncertainty in the real world and incomplete or inaccurate agent models). We 

relax this assumption, and present a single-agent keyhole plan recognition algorithm 

that is tolerant to two kinds of input errors: missing and misclassified actions. 

Our plan recognition algorithm, called Single-agent Error-Tolerant Plan 

Recognizer (SET-PR), assumes the existence of a plan library consisting of a set of 

cases. Each case includes a specification of a planning problem and a fully-grounded 

plan that is a solution to this problem. Inputs to SET-PR are subsequences of plans, 

which are matched to plans in the plan library to retrieve candidate plans. Currently, 
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the top-ranked plan is selected as the solution (the recognized plan). For online or 

dynamic plan recognition, SET-PR is executed each time a new set of observations 

arrive, obtaining an any-time hypothesized plan in each observation cycle. 

Although case-based plan recognition (CBPR) is not novel, we explore a new 

representation for stored plans that impacts the similarity function we propose for 

case retrieval. More specifically, we use action sequence graphs to represent plans in 

a plan library (case base); they encode a detailed topology of a plan trace (a sequence 

of action-state pairs). Our similarity function uses a combination of graph degree 

sequences and object similarity for computing the similarity between input action 

sequences and stored plans. 

Our paper is organized as follows. Section 2 describes related work on plan 

recognition. Section 3 then introduces essential notation that formalizes the CBPR 

problem. Section 4 introduces action sequence graphs and their use in SET-PR. 

Section 5 details our similarity function. Finally, Section 6 presents an initial 

empirical study that evaluates the robustness of SET-PR’s plan recognition algorithm 

in the presence of input errors. We found that SET-PR is highly tolerant to increasing 

levels of input error until a yield point is reached, after which its performance 

degrades sharply. 

2 Related Work 

The ability to recognize the plans and goals of other agents is a fundamental aspect of 

intelligence that allows one to reason about what other agents are doing, why they are 

doing it, and what they will do next. Many AI researchers have focused on plan 

recognition approaches which can be broadly classified into keyhole or intended plan 

recognition. In keyhole recognition, the observing agent monitors the actions of an 

ambivalent observed agent. In contrast, in intended recognition, the observed and 

observing agents cooperate to convey the intentions of the observed agent. Another 

dimension of classification relates to the presence of single or multiple observed 

agents. We restrict ourselves to the single-agent keyhole plan recognition problem. 

Several approaches has been proposed to address the problem of plan recognition 

(Sukthankar et al., 2014), including consistency-based approaches (e.g., Hong, 2001; 

Kautz & Allen, 1986; Lesh & Etzioni, 1996; Lau et al., 2004; Kumaran, 2007), and 

probabilistic approaches (e.g., Bui, 2003; Charniak & Goldman, 1991, 1993; Geib & 

Goldman, 2009; Goldman, Geib & Miller, 1999; Pynadath & Wellman, 2000). The 

former include hypothesize and revise algorithms, version space techniques, and other 

closed-world reasoning algorithms, while probabilistic algorithms include those that 

use stochastic grammars and probabilistic relational models. Both these approaches 

are sensitive to (1) an incomplete plan library and (2) missing or misclassified actions 

in the input observations. There have been few attempts to address this issues within 

these frameworks (e.g., using background goals (Lesh, 1996) or focus stacks (Rich et 

al., 2001)), but current solutions are usually problem-specific and lack generalizable 

qualities. 
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A lesser known approach to the single-agent keyhole plan recognition problem is 

the case-based approach as exemplified by Cox & Kerkez (2006) and Tecuci & Porter 

(2009). These investigations focus on the issues of incomplete plan library, 

incrementally learning the plan library, and responding to novel inputs. But they do 

not address the issue of error-prone input action sequences. Cox & Kerkez (2006) 

proposed a novel representation for storing and organizing plans in the plan library 

based on action-state pairs and abstract states, which counts the number of instances 

of each type of generalized state predicate. In our work, we start with a similar action-

state representation, but process it using a graph representation and store our cases as 

graphs. As a result, our similarity metrics also operate on graphs. 

Most other research on single-agent keyhole CBPR has an application focus. For 

instance Fagan and Cunningham (2003) acquire cases (state-action sequences) to 

predict a human’s next action while playing SPACE INVADERS. Cheng and 

Thawonmas (2004) propose a CBPR system for assisting players with low-level 

management tasks in WARGUS. Lee et al. (2008) integrate Kerkez and Cox’s 

technique with a reinforcement learner to predict opponent actions on a simplified 

WARGUS task. Similarly, Molineaux et al. (2009) integrate a plan recognition system 

with a case-based reinforcement learner for an adversarial action selection task 

involving an American football simulator. In contrast to an application thrust, the 

focus of our work is to produce a more general single-agent keyhole CBPR approach 

that is tolerant to uncertainty in observed actions. 

In other related work, user traces have been used in a variety of case-based 

reasoning systems. In CBR systems that learn by observation, user traces are used to 

automatically extract knowledge and cases so that the system can learn the expert's 

behavior. These cases typically store state-action pairs (Rubin & Watson, 2010) or 

state-plan pairs (Ontañón et al., 2007), and retrieval is based on a single state rather 
than, like our approach, an entire trace. Temporal Backtracking (Floyd & Esfandiari, 
2011) has been used in learning by observation to include additional states and actions 
from a trace during retrieval such that traces are dynamically resized as necessary. 
Similarly, trace-based reasoning (Zarka et al., 2013) and episode-based reasoning 
(Sánchez-Marré, 2005) store fixed-length traces in cases and compare the entire trace 
during retrieval. The primary difference between these approaches and our own is that 
they represent traces as linear sequences whereas we represent them as graphs. 

3 Case-Based Plan Recognition 

We now introduce notation that formalizes the general problem of CBPR. A planning 

problem is a 3-tuple , where  is a set of planning operators,  is the 
initial state, and  is the goal specification (Ghallab, Nau & Traverso, 2004). 

An action-state sequence is a sequence  where 
an action all ground instances of operators in , and  is the state 
resulting from executing action  in state . A plan is a special action-state 
sequence  where  is the initial state of  and 

 satisfies  is a goal state of , where satisfies has the same semantics as 
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originally laid out in Ghallab, Nau & Traverso (2004). Action  is  because the 

action preceding the initial state does not need to be specified. While most plan 

recognition systems represent plans as a sequence of actions, this kind of 

representation (augmenting action information with the following state information) 

was proposed originally by Cox and Kerkez (2006). Our rationale for choosing this 

representation is to offset the inaccuracies of missing or misclassified actions by 

including information about states.    

A case is a tuple , where  is a planning problem and  is a 

corresponding plan for solving it. A plan library (or case base) is a set of cases 

. 

Definition: A CBPR problem is represented by a tuple , where  is a plan 

library and  is a target action-state sequence, 

a subsequence of a plan,  that has to be recognized. A solution to this problem is a 

plan  that is predicted using the following CBR process: 

• Plan retrieval: Retrieve cases  from the plan library such that  is 

similar to  according to some similarity metric 

• Plan evaluation: Evaluate the retrieved cases according to some evaluation 

criteria to select a source case  

• Plan adaptation: Adapt  to increase its similarity with  by 

resolving the differences between the two, resulting in  (and corresponding 

) 

• Plan repair: Test and revise  to remove inconsistencies 

 

For the sake of simplicity, we assume that the steps of plan adaptation and repair 

are not required, i.e.,  is equal to . Table 1 captures the 

differences between the case-based plan synthesis and recognition problems 

expressed in this notation. 

Table 1. Contrasting the general case-based plan synthesis and case-based plan recognition 

problems 

 Case-Based Plan Synthesis Case-Based Plan Recognition 

Case Base   

Input  

Output   

Retrieval Match  with s from 

cases in  to get  (and 

its ) 

Match  with s from cases 

in  to get  

Adaptation Adapt  to resolve 

differences between  

and  to get  

Adapt  to resolve 

differences between  and 

 to get  

 

In online or dynamic CBPR, the above CBR process is employed in recognizing 

an ongoing plan, before it has ended, by executing the process each time a new set of 
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observations arrive, obtaining an any-time hypothesized plan in each observation 

cycle. 

4 Case Representation 

We define a graph data structure called action sequence graphs to represent action-

state sequences in our cases. Graphs provide a rich means for modelling structured 

objects and they are widely used in real-life applications to model many objects and 

processes, from molecules and images to buildings and entire ecosystems. Graphs 

have also been widely used in planning to represent task networks, goal networks, and 

plan graphs. The planning encoding graph (Serina, 2010) representation, used to 

encode planning problems, has been particularly influential in the design of our 

representation. Although there are syntactic similarities between planning encoding 

graphs and action sequence graphs, important semantic differences exist because the 

former encodes a problem while the latter encodes a solution (plan). 

There are at least two advantages of using a graph representation for cases. First, 

graphs are well understood. We can rely on a solid theoretical foundation of graph 

theory to analyze and manipulate our representation. We can also leverage a huge 

body of work to identify reliable metrics and efficient algorithms. Second, our 

representation is domain-general; it can be applied to plan recognition problems for a 

wide range of domains. 

4.1 Preliminaries 

A labeled directed graph  is a 3-tuple  where  is the set of vertices, 

 is the set of directed edges or arcs, and  assigns labels to 

vertices and edges. Here,  is a finite set of symbolic labels and  is a set of all the 

multisets on ; this labeling scheme permits multiple non-unique labels for a node or 

an arc. 

An arc  is considered to be directed from  to , where  is called 

the source node and  is called the target node of the arc. Also,  is a direct successor 

of ,  is a direct predecessor of , and  is adjacent to vertex  and vice versa. 

The union of two graphs  and , denoted by 

, is the graph  where , , and 
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4.2 Action Sequence Graphs 

An action sequence graph is an order-preserving encoding of an action-state sequence 

. Two action-state sequences can be matched by matching 

their corresponding action sequence graphs. Figure 1 shows an example of  and its 

corresponding action sequence graph.  

An action-state sequence  is defined over a planning language  consisting of , a 

set of finitely many predicate symbols, and , a finite set of typed constants 

representing distinct objects in the planning domain. An action  in  is 

represented as a ground atom , where  and represents an 

action, , and  is an instance of . Similarly a state  in  is 

represented as a set of ground atoms . 

Definition: Given a ground atom  representing either an 

action  or a single fact of state  in the  action-state pair , a predicate 

encoding graph is a labeled directed graph  such that: 

•  

•  

•  for  

•  

 

 

Fig. 1. An example action-state sequence  and its corresponding action sequence graph  
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Cases in the plan library are represented as action sequence graphs, as is . 

Thus, we compute their structural similarity using graph matching. One reliable way 
to match two graphs is to find their maximum common subgraph (MCS) (Raymond & 
Willett, 2002), where similarity is an increasing function of the size of the MCS 

between  and . Given an action sequence graph  for , the retrieval step 

would then compute the MCS between  and each  in the case base, selecting the 

top  s based on the size of their MCS.  

Unfortunately, computing the MCS between two or more graphs is an NP-
Complete problem (Raymond & Willett, 2002). The worst-case time requirement of 

this retrieval step increases exponentially with the size of , restricting its 

applicability to small plan recognition problems only. Thus, we seek an efficient 
approximation of the MCS similarity metric. 

5.1 Degree Sequences Similarity Metric 

We hypothesize that Johnson’s (1985) similarity coefficient, based on graph degree 

sequences, can be used to derive an efficient approximation of the MCS similarity 

metric. The degree sequence of a graph is the non-increasing sequence of its vertex 

degrees. The degree sequence is a graph invariant, so isomorphic graphs have the 

same degree sequences. However, the degree sequence does not uniquely identify a 

graph. This similarity coefficient has been used for rapid graph matching in several 

applications, including in case-based planning with planning encoding graphs as a 

quick filter to reject unpromising cases during retrieval (Serina, 2010). In our 

approach, we will also use this similarity coefficient, but for the opposite purpose - 

we propose to use it to select promising cases. 

Johnson’s similarity coefficient for two graphs is calculated as follows. First, the 

set of vertices in each graph is divided into  partitions by label type, and then sorted 

in a non-increasing total order by degree
1
. Let  and  denote the sorted degree 

sequences of a partition  in the action sequence graphs  and , respectively. An 

upper bound on the number of vertices  and edges  of the MCS of 

these two graphs, , can then be computed as: 

 

 

 

where  denotes the 
th

 vertex of the  sorted degree sequence, and  denotes 

the set of edges connected to vertex . Then the structural similarity coefficient can 

be computed as follows: 

 

                                                           
1 The degree (or valence) of a vertex  of a graph  is the number of edges that touch . 
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This computation can be performed in  time, where 

 (Raymond & Willett, 2002).  

5.2 Example 

Consider the two graphs  and  in Figure 3. The degree sequences of the partitions 

of  and  (partitioned by label type) are also tabulated in Figure 3. We can 

compute their (graph) similarity as follows: 

 

 

 

5.3 Combined Similarity Metric 

We use a combination of structural and object similarity to compute the overall 

similarity of an input subsequence to a plan in the plan library: 

, 

where  is the action sequence graph of ,  is the action sequence graph of 

,  is the degree sequences similarity function described above, and  

 

 

where  is the set of (grounded) objects in  and are objects in . 

6 Evaluation 

In this section we evaluate our claim that plan recognition in SET-PR is robust to two 

kinds of input errors: misclassified actions and missing actions. 

6.1 Empirical Method 

We conducted our experiments in the blocks world domain, which we chose because of 

its simplicity and affordance to quick automatic generation of the plan library with 

desired characteristics. We used a hierarchal task network (HTN) planner to generate 

plans for our plan library. Planning problems were created by randomly selecting an 

initial state and goal state (under the constraint that it is possible to reach the goal state 

from the initial state), and given as input to the HTN planner. The generated plan 

(actions and corresponding states) was converted into an action sequence graph and 

stored, along with the planning problem, as a case. In total, we used this method to 

generate 100 (error-free) cases for our plan library. We created 4 separate plan libraries 

that vary in their average plan length (8.94, 12.48, 16.36, and 19.46 actions 

respectively). 
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We varied the following variables in our evaluation of SET-PR: (1) length of the 

plans in the plan library; (2) percentage of absent action, state  pairs; and (3) 

percentage of misclassified action, state  pairs. Our metrics were convergence, 

convergence point, and precision. Convergence is defined as a boolean value that, for 

Fig. 3. Two graphs  and  and the degree sequences of their partitions 
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a given query  with  action, state  pairs, is true if the plan retrieved on the last 

action, state  pair matches . Convergence point is defined only for those queries that 

converge; if they converge after action , it is defined as . Precision is the total 

number of plans associated with the query's action, state  pairs that are correct, 

divided by . 

We evaluated SET-PR’s performance for each plan library  using the following 

method. For each randomly selected case in , we copied plan randomly 

distorted its action sequence  (to introduce a fixed 

amount of error), and used it as an incremental query to SET-PR (i.e., initially with 

only its first action, state  pair, and then repeatedly adding the next such pair in its 

sequence). The error levels tested, separately for both error types (missing and 

misclassified actions), were {10%, 20%, 30%, 40%, 50%}. For each case , we also 

recorded the convergence, convergence point, and precision. Finally, we averaged 

these metrics across . 

 

Fig. 4. Convergence rate vs. % error results 

 

Fig. 5. Average convergence point vs. % error results 
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Fig. 6. Average precision vs. % error results 

6.2 Trends and Discussion 

Figures 4-6 summarize our results. The primary trends, for a given plan length, are as 

follows. As % error increases (for both error types):  

• Convergence rate remains high and near constant until some (yield) point is 

reached and then sharply decreases 

• Average convergence point increases until the yield point is reached, beyond 

which its value becomes unpredictable 

• Average precision decreases steadily and approaches zero 

 

The existence of yield point was surprising; we expected a gradual decrease in 

convergence rate with a gradual increase in % error. For the blocks world domain, the 

yield point was around 20% for misclassified and 30% for missing actions. The 

convergence rate was more than 90% until this yield point.  

No clear trends emerged that distinguished the results by average plan length 

(across the four libraries), although for longer plan lengths, misclassified actions 

degraded performance of the algorithm more severely than did missing actions. More 

fine grained analysis is required to explain this. 

After the yield point is reached, average convergence point is unreliable; the 

number of data points in the converged set were too few to indicate any clear trend. 

Based on this analysis we conclude that SET-PR is robust to the presence input 

error until the yield point is reached, which in our experiments was 20%-30% of the 

input error (depending on the error type). To what extent the yield point is domain 

dependent and how we can push the yield point further to the right remain open 

research questions. 

We used a variant of SET-PR for our baseline comparison. SET-PRbaseline differs 

from SET-PR only with respect to the representation of action sequences in plan 

library and queries. While SET-PR uses action, state  sequences, SET-PRbaseline uses 

action  sequences. SET-PRbaseline better models the representations of classical plan 

recognition techniques which do not use explicit information about states to infer 

plans. Recall that the rationale for choosing to include state information in SET-PR 
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was to offset the inaccuracies introduced by missing or misclassified actions. 

Therefore, we expected the performance of SET-PRbaseline to deteriorate more than 

SET-PR in the presence of input errors. 

Table 2. Sample results for SET-PRbaseline  for one plan library for one type of error 

(misclassified) 

 0% 10% 20% 30% 40% 50% 

Conv. Rate (%) 76 14 9 7 1 1 

Avg. conv. point 0.21 0.24 0.23 0.43 0.37 0.16 

Avg. precision 0.72 0.13 0.11 0.08 0.04 0.02 

 
Table 2 captures the convergence rate, average convergence point, and average 

precision for different % error levels for one of the plan libraries (average plan length 

= 12.4) and one type of error (misclassified actions). The results for other plan 

libraries were similar and we see the following trends in the case of SET-PRbaseline. 

First, when the input error was 0%, we noted that the rate of convergence, average 

convergence point, and average precision were comparable to SET-PR (rate of 

convergence and average precision were better in SET-PR, but the convergence point 

was better in SET-PRbaseline).  

Second, we noted the existence of yield point in SET-PRbaseline as well, but it was 

reached even before the 10% input error level. This suggests that error increments 

smaller than 10% are required to find out exactly how much error SET-PRbaseline can 

tolerate. 

Third, after the yield point is reached, the rate of convergence and average 

precision in SET-PRbaseline dropped sharply to levels seen for 50% error in SET-PR. 

This suggests that SET-PRbaseline is extremely sensitive to input errors.  

Fourth, the average convergence point in SET-PRbaseline was higher compared to 

SET-PR, but this is not a meaningful statistic because the data points in the converged 

set were too few beyond the 0% error level. 

Finally, we conclude that SET-PR compares favorably to SET-PRbaseline for error 

tolerance. 

7 Summary 

We developed a case-based approach to the problem of plan recognition that can 

tolerate missing and misclassified actions in the input action sequences. We 

introduced a novel graph representation, called action sequence graphs, to represent 

plans in the plan library. We described a similarity function that uses a combination of 

graph degree sequences and object similarity for matching action sequence graphs, 

and used it to retrieve relevant stored plans from the plan library. We also presented 

an initial empirical investigation of our approach using the blocks world domain. We 

measured the extent to which our approach is tolerant to missing and misclassified 

actions, and found that its performance was robust to the presence of up to 20%-30% 

of error in the input actions (depending on error type). We also found that, in the 
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presence of input errors, our approach compared favorably to the baseline which used 

more traditional plan recognition representations. 

Our study had several limitations. For example, we used a simple paradigmatic 

domain, the plan library was relatively small, errors were introduced in a systematic 

manner rather than reflecting a naturally occurring distribution, and while we 

introduced errors in the query we did not also introduce them in the plan library. As 

part of our future work, we will address these issues and test SET-PR in different 

domains, some of which will be real world application domains. One such domain we 

plan to target is human-robot teams. This will require extending SET-PR to work in 

domains involving multiple agents and multiple types of plan recognition tasks.  

We also plan to compare and test SET-PR’s performance using different degree 

sequence similarity metrics previously reported in literature (e.g., Wallis et al., 2001; 

Bunke and Shearer, 1998). 
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