
Novel Object Discovery using Case-Based Reasoning and

Convolutional Neural Networks

JT Turner1, Michael W. Floyd1, Kalyan Moy Gupta1, and David W. Aha2

1Knexus Research Corporation; Springfield, VA, USA
2Navy Center for Applied Research in AI;

Naval Research Laboratory (Code 5514); Washington, DC, USA

{first.last}@knexusresearch.com

david.aha@nrl.navy.mil

Abstract. The development of Convolutional Neural Networks (CNNs) has

resulted in significant improvements to object classification and detection in

image data. One of their primary benefits is that they learn image features rather

than relying on hand-crafted features, thereby reducing the amount of knowledge

engineering that must be performed. However, another form of knowledge

engineering bias exists in how objects are labelled in images, thereby limiting

CNNs to classifying the set of object types that have been predefined by a domain

expert. We describe a case-based method for detecting novel object types using

a combination of an image’s raw pixel values and detectable parts. Our approach

works alongside existing CNN architectures, thereby leveraging the state-of-the-

art performance of CNNs, and is able to detect novel classes using limited

training instances. We evaluate our approach using an existing object detection

dataset and provide evidence of our approach's ability to classify images even if

the object in the image has not been previously encountered.

Keywords: Computer Vision, Novel Object Discovery, Deep Learning,

Convolutional Neural Networks

1 Introduction

Computer Vision has seen rapid advancement in recent years as a result of Deep

Learning (DL) techniques, especially for object classification tasks. DL algorithms are

able to leverage large annotated image datasets for training, and achieve significant

classification improvement over traditional vision approaches. Convolutional Neural

Networks (CNNs) [1] have been a driving force behind these improvements as they are

able to use an image’s raw pixel values as inputs and learn higher-level features from

the training data. Thus, they remove the need for manual feature engineering and

extraction, and may learn more discriminative features than those that are hand-crafted

by a domain expert. For example, during training a CNN may learn low-level image

features like lines or curves, and combine those into increasingly complex features like

shapes, wheels, or faces.

mailto:%7bfirst.last%7d@knexusresearch.com
mailto:david.aha@nrl.navy.mil

Although CNNs greatly reduce the knowledge engineering required by removing the

need for hand-crafted features, they do require knowledge about the types of objects

that are present in the training images (i.e., an annotation of the object labels). This adds

significant bias based on the types of objects that are used to annotate images. For

example, an image of an office typically contains dozens of visible objects but may

only have labels for a small subset of those (e.g., humans, computers, desks) and treat

the others as unlabeled background (e.g., books, pencils, papers). Thus, the CNN is

only able to learn to classify objects that the domain expert felt were important enough

to annotate. Similarly, the level of granularity of annotations can impact what a CNN

learns. For example, the CNN will learn differently depending on if an image of a dog

is labelled as “animal”, “dog”, or as the specific dog breed. These issues can become

more significant when you have large datasets containing thousands or millions of

annotated images, since it reduces the likelihood that a consistent annotation

methodology was used on all images (e.g., different annotators, human error, time-

varying methods of annotation). The annotated object types in training images restrict

the potential classifications that a CNN can make when deployed; if an object type is

not annotated in the training data, the CNN will be unable to classify that object type.

For example, if a CNN is trained with images of airplanes, boats, and houses, an image

of a dog would either be classified as one of those three object classes or not classified

at all (i.e., if the confidence was too low).

We propose a case-based approach for novel object detection that uses a combination

of raw pixel values and detectable object part information to identify when input images

differ noticeably from known object types. Our approach is intended to be used in

combination with existing CNN vision approaches and leverage their state-of-the-art

performance while addressing some of their limitations. More specifically, our

approach makes the following contributions: (1) a method to detect novel object types

without prior knowledge of those types; (2) a method to identify variations in images

of objects of the same type; (3) an approach that can be used in combination with

existing CNN architectures; and (4) an approach that can be used even with small

datasets and a single example of each object type. We believe the ability to operate

using a small dataset is important given the large dataset requirements that are typically

required by existing Deep Learning systems.

The remainder of the paper outlines our case-based novel object detection approach.

Section 2 provides background on Convolutional Neural Networks, with Section 3

describing our method for novel object detection and how we leverage CNNs for this

task. Section 4 describes our empirical evaluation using an existing object detection

dataset. In Section 5, we discuss related work in case-based Deep Learning, case-based

Computer Vision, and novel object type detection. Section 6 discusses areas of future

work and concluding remarks.

2 Background: Convolutional Neural Networks

The typical architecture of a Convolutional Neural Network has three primary building

blocks: convolutional layers, pooling layers, and fully-connected layers. Convolutional

layers are composed of filters that encode features that will be detected in the input. For

example, consider a greyscale image of 𝑛 × 𝑛 pixels used as input to a convolutional

layer composed of 𝑘 filters, each of which are 𝑚 × 𝑚 (𝑚 ≤ 𝑛). The filters encode

feature patterns that will be identified in the input image. Each 𝑚 × 𝑚 filter is applied

to each distinct (and possibly overlapping) 𝑚 × 𝑚 subregion of the input image, with

the results stored in new (𝑛 − 𝑚 + 1) × (𝑛 − 𝑚 + 1) matrix1, called a feature map.

This can be thought of as the filter sweeping across the image, starting from the top left,

and applying the filter to each subregion along a row before moving down to the row

below (and ending in the bottom right). Each of the 𝑘 filters are applied in this manner,

resulting in 𝑘 feature maps from the convolutional layer. Thus, the feature map for a

particular filter represents the presence of that feature in the various subregions of the

image. When a CNN is trained, the filters (i.e., the features to look for) are part of what

is learned.

Pooling layers are used to reduce the dimensionality of a convolutional layer’s

output and for abstraction to avoid overfitting. For example, the convolutional layer in

the previous example took an 𝑛 × 𝑛 input and produced a 𝑘 × (𝑛 − 𝑚 + 1) × (𝑛 −
𝑚 + 1) output (i.e., one feature map for each of the 𝑘 filters). Depending on the values

of 𝑘, 𝑛, and 𝑚, this could result in a larger output than the input. Pooling prevents the

outputs from growing progressively larger, since in a typical CNN architecture you will

have multiple convolutional layers in a series. A common form of pooling is max

pooling that partitions the layer’s input into a set of contiguous non-overlapping 𝑝 × 𝑝

subregions and selects the maximum value contained in each subregion. As was the

case with convolutional layers, pooling layers produce 𝑘 output matrices (i.e., one for

each input feature map they receive). For example, if 𝑝 =
𝑛−𝑚+1

2
, then each input

matrix would be downsampled to a 2 × 2 matrix (i.e., containing the maximum value

from the top-left, top-right, bottom-left, and bottom-right regions of the input).

A typical CNN architecture will contain multiple convolutional layers and pooling

layers arranged in a series. The input to the first convolutional layer 𝑐𝑜𝑛𝑣1 will be the

input image, and its output 𝑜𝑢𝑡𝑐𝑜𝑛𝑣1
 (i.e., the feature maps it produces) will be the input

to the first pooling layer 𝑝𝑜𝑜𝑙1. The output of the first pooling layer 𝑜𝑢𝑡𝑝𝑜𝑜𝑙1
is then

used as input to the next convolutional layer 𝑐𝑜𝑛𝑣2, and this sequence of convolutional

and pooling layer continues until the output from the 𝑛th pooling layer 𝑜𝑢𝑡𝑝𝑜𝑜𝑙𝑛
. Such

an architecture results in early convolutional layers detecting relatively simple features

whereas later layers detect increasingly complex features (i.e., patterns of lower-level

features). After the final pooling layer, that layer’s output 𝑜𝑢𝑡𝑝𝑜𝑜𝑙𝑛
is flattened from a

set of matrices into a single one-dimensional feature vector. For example, if 𝑜𝑢𝑡𝑝𝑜𝑜𝑙𝑛

produced six 3 × 3 output matrices, the flattened output would be a feature vector

containing 54 values (6 × 3 × 3).

The final building blocks in a CNN are the fully-connected layers. These layers are

typically multilayer perceptrons (MLPs), and use the flattened feature vector output by

the final pooling layer as input. For a classification task, the fully-connected layer will

1 This example assumes a step size of 1, where the center on the filter is moved by 1 pixel at each

step. However, in practice the step size can be set as a parameter.

output the class label (or probability of each class label) of the input. During training,

the weights used by the MLP to produce the output classification are learned. At a high

level, we can think of the convolutional and pooling layers as performing feature

extraction on the input image, and the fully-connected layers use those extracted

features to perform classification.

3 Case-Based Novel Object Detection

Convolutional Neutral Networks perform supervised machine learning, so their ability

to classify the presence of objects in images is directly related to the labeled training

data they have available; they cannot detect the correct object type if no annotated

training data exists with a label for that object type. If a CNN outputs the confidence in

each known class label (i.e., the output of the fully-connected layers), it could, at best,

label an input image as unknown if none of the possible class labels were above a

confidence threshold. For example, if a CNN was trained to classify airplanes, boats,

and houses, an image of a dog would either be classified as one of the three known

classes (i.e., if the CNN output a high confidence for one of the classes) or as unknown

(i.e., if none of the classes had a high confidence). If several different novel objects are

encountered, they would all be classified together into the generic unknown class, even

if the objects were significantly different from each other. Returning to the example,

images of dogs, books, space stations, and humans would all be classified together as

unknown. One solution would be to retrain the CNN after each novel object type is

detected. However, this is generally impractical as CNNs require both a large number

of labeled training examples (i.e., more than a single training instance) and significant

computational time to retrain the fully-connected layers.

We propose a case-based reasoning approach to detect the presence of novel object

types and quickly learn from limited training data. Unlike CNNs, a CBR approach can

learn using only a single training example and requires no training time. However, our

approach does not propose to remove CNNs from the object classification process.

Instead, our approach leverages the state-of-the-art performance of CNNs while

providing capabilities that alleviate some of their limitations. For the remainder of this

section we will largely present the CBR component in isolation, but will discuss how it

can be integrated with existing CNN architectures at the end of this section.

Our CBR system encodes each image 𝐼𝑖 as a case 𝐶𝑖. Each case is a triple containing

the image’s feature vector 𝐹𝑖, its set of observable parts 𝑃𝑖 , and object label 𝑙𝑖:

𝐶𝑖 = 〈𝐹𝑖 , P𝑖 , 𝑙𝑖〉

This representation assumes the availability of two functions: features and parts. The

features function converts a raw image Ii ∈ I, where 𝐼 is the set of all images, into a

feature vector 𝐹𝑖 = 〈𝑓𝑖
1, … 𝑓𝑖

𝑛〉 ∈ 𝐹, where 𝐹 is the set of all feature vectors (features:

𝐼 → 𝐹), composed of 𝑛 feature values. For the features function, we use the

convolutional and pooling layers from a CNN to perform this conversion, since they

convert a raw image into a flat feature vector. This is essentially a version of the CNN

with the fully-connected layers removed such that the CNN is only used for feature

extraction. The parts function extracts a set of observable parts 𝑃𝑖 = {𝑝𝑖
1, … , 𝑝𝑖

𝑚𝑖} ⊆ 𝑃,

where 𝑃 is the set of all object parts, from image 𝐼𝑖 . The number of observable parts in

an image 𝑚𝑖 is not fixed, so the size and contents of 𝑃𝑖 is image-specific. In this work,

we consider object parts to be low-level components that make up larger objects. For

example, the parts of a dog could include its legs, tail, torso, tail, head, and ears.

Although the object parts provide more detail about an object, they are assumed to be

generic such that the same parts can be part of numerous object types. Returning to the

dog example, many mammals would share some or all of the same parts. However,

even two instances of the same object may have different observable parts depending

on what is visible in the image. In the dog example, the dog’s tail may not be visible

depending on where it is facing or its legs may not be visible if the bottom of its body

is occluded by another object. The parts function requires a separate vision system that

can identify these generic object parts from visible images. However, as we will discuss

later, while our CBR approach can leverage parts information, it is not strictly necessary

for case retrieval. For example, if no parts extraction was possible, each case could

contain an empty set of parts (𝑃𝑖 = ∅) and rely only on the feature vector for retrieval.

We assume each case has a single object label 𝑙𝑖 ∈ 𝐿, where 𝐿 is the set of all object

labels. This assumes that each image will contain only a single object of interest. Such

an assumption is valid for uncluttered images or, more realistically, when used as part

of a Region-Based Convolutional Neural Network (R-CNN) [2]. R-CNNs use a region

proposal stage to propose subregions of the input image and then classify those

subregions individually. Thus, instead of the entire image being used as input to the

CNN, each subregion is used as a distinct input to the CNN (i.e., the CNN is run

multiple times) and each subregion is used to perform a single classification. In our

work, the images stored in cases and used as input to the CBR system could be the

image data from these subregions. Using this case representation, the feature vector and

set of parts represent the problem and the object label is the solution.

When an input image is received, either a complete image or a proposed subregion

from an R-CNN, object classification is performed using Algorithm 1. In addition to

the input image 𝐼𝑖𝑛 , the algorithm uses as input a case base 𝐶𝐵, number of nearest

neighbors 𝑘, feature vector similarity threshold 𝜆𝑓, and parts similarity threshold 𝜆𝑝.

The algorithm starts by extracting the features and parts from the image (Lines 1 and

2). If the case base is empty (i.e., the CBR system has no training instances), a novel

object label is generated using the generateLabel function (Line 5). We do not expect

this function to generate an informative label based on knowledge of the image (e.g.,

dog, cat, airplane, house) but instead a unique label for the object type (e.g., class1,

class2, class3). If the case base is not empty, the top k most similar cases are retrieved

from the case base (Line 7). The similarity only considers the feature vector similarity

(e.g., using a similarity function based on the Euclidean distance between feature

vectors), so no parts information is considered. Cases are only added to the top k if their

similarity is above the feature vector similarity threshold 𝜆𝑓, so it is possible for fewer

than 𝑘 cases to be retrieved. In some situations, no cases will be retrieved if none of the

cases are similar to the input image (Line 8). In such a situation, the input image is

assumed to be of a novel object type so a new class label is created for it (Line 9).

The previous stages of the algorithm only considered the feature vectors when

comparing the input image to cases. The remainder of the algorithm leverages the

detectable parts information. The parts of the input image are compared to the parts of

each of the top k nearest neighbors (Lines 12-15). The similarity function used (Line

13) is assumed to be a similarity function that calculates set similarity (e.g., Jaccard

similarity). Similar to when comparing feature vector similarity, only cases with a parts

similarity above the parts similarity threshold 𝜆𝑝 are retained (Line 14). If there were

no cases above this threshold (Line 16), the input image is considered to be a novel

object type so a novel label is generated (Line 17). Otherwise, the label from the most

similar case (based on parts similarity, with feature vector similarity used as a tie-

breaker) is used to label the input image (Line 19). Finally, a novel case is created and

added to the case base (Line 20) and the object label is returned (Line 21).

An existing label is only returned when there is a case that is similar to both the input

image’s feature vector and its parts set. Thus, there are three situations where a novel

object label, and therefore a new object class, are created: (1) when the case base is

empty; (2) when none of the cases have similar feature similarity; and (3) when there

is at least one case with similar features but none of those cases have similar parts. As

we mentioned earlier, although parts information is used in the algorithm, it is not

strictly necessary. Assuming no parts information is available, the parts set of the input

image and all cases will be empty. If the parts similarity function is designed to return

maximal similarity when comparing two empty sets, all of the top k cases will be above

𝜆𝑝 and have an equal similarity value. Thus, as long as the top k cases are iterated over

in order of descending feature vector similarity (Lines 12-15), the case with the most

similar feature vector similarity will be selected as the nearest neighbor and have its

label returned.

One of the primary benefits of this algorithm is that it is able to learn using only a

single training instance. Once a novel class has been detected (Lines 5, 9, or 17), it is

immediately added to the case base and can be used to classify future input images.

Similarly, this algorithm can be used even when no existing training data exists (i.e., an

initially empty case base). For example, this algorithm could be used from a cold-start

to perform object classification without any labeled data. At such a time when sufficient

data was collected and annotated, and sufficient time was available, a Convolutional

Neural Network could be trained. Once a CNN is trained, the CBR algorithm could run

in parallel to the CNN. Assuming the fully trained CNN has superior performance

classifying known object types, the CBR system could defer classification for known

object types and only interject when a novel class is detected or an input image is most

similar to an object class that the CNN has not been trained on (i.e., a previously

detected novel class). Thus, the CBR system can be used in situations where it has

advantages over the CNN, and defer in other situations.

4 Evaluation

In this section, we evaluate the claim that our case-based reasoning system can be used

to detect and learn from novel object types. Our evaluation tests the following

hypotheses:

H1: Extracting a feature vector representation from images, using a CNN, provides

sufficient information for a CBR algorithm to differentiate between object

types

H2: The addition of observable parts information improves object classification

performance

H3: Our CBR approach is able to detect novel object classes and learn from

detected classes

H4: Our CBR approach discovers finer-grained object classes than those provided

by the dataset’s human annotators

4.1 Data Set

The dataset we use for evaluation is the publicly available PASCAL-Part Dataset [3].

It is based on the dataset used for the Visual Object Classes Challenge 2010, a

Computer Vision competition to recognize objects in realistic scenes. While the Visual

Object Classes Challenge 2010 dataset only contains the annotated object types visible

in each image, the PASCAL-Part Dataset contains additional annotations for the object

parts that are visible in the image. The dataset contains 20 object types: aeroplane,

bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike,

person, pottedplant, sheep, sofa, train, and tvmonitor. Each object can have between 0

(boat, chair, diningtable, sofa) and 24 (person) object parts annotated. However,

images of the same object type may have a different number of annotated parts due to

object occlusion, object positioning, or annotator error. In addition to providing object

part annotations, the PASCAL-Part Dataset has several properties that make it a

suitable dataset for us to use. The images are realistic real-world images, so most

images contain multiple objects (including objects from the 20 annotated object types

as well as other unlabeled object types). The objects have varying locations, rotations,

sizes, and scales. Additionally, images have different backgrounds (e.g., beach, indoors,

forest) and lighting conditions. The annotated objects may be partially occluded,

located partially outside the image, or incorrectly labeled by human annotators.

Our work is focused on detecting a single object type in each image, as we justified

in the previous section, so we preprocessed the PASCAL-Part Dataset to extract only

the images with a single annotated object. However, it should be noted that although

each image only contains a single annotated object, many of them contain multiple

visible objects. The additional object are either objects that are not of the 20 labelled

object types, or objects that have been omitted due to annotator error. After

preprocessing, 4737 images remained (from an initial dataset size of 10,103).

The features function used in Algorithm 1 is a Convolutional Neural Network using

the ResNet [4] architecture (i.e., how the various layers are connected). The CNN was

trained using the ImageNet dataset [5], a dataset containing hundreds of thousands of

annotated images. This was performed to learn the filters (i.e., the image features) used

by the convolutional layers of the CNN, and after training the fully-connected layers

were removed. The output of the CNN is a feature vector of length 2048. Although

ImageNet is a different dataset than the PASCAL-Part Dataset, pretraining a CNN on

ImageNet learns many general-purpose image features (e.g., lines and shapes). Thus, it

allows training a generic features function that can be used regardless of domain, and

with significantly less time and computational effort than retraining the CNN for each

new image dataset. However, it should be noted that due to the size and scope of

ImageNet, there is likely some overlap with the objects contained in the PASCAL-Part

Dataset (but none of the labels from ImageNet are used during our evaluation). The

parts function in Algorithm 1 uses the ground-truth parts annotations provided by the

dataset (i.e., assumes the presence of a perfect parts extractor). Although in real

computer vision tasks the parts would need to be extracted using a separate vision

system, we used the provided parts labels in order to remove error during our initial

evaluations. Future work will examine how our CBR system’s performance is

influenced when parts are extracted using a more realistic parts function. Thus, each

image in the preprocessed PASCAL-Part Dataset can be converted into our case

representation using the features function, parts function, and object type annotation.

4.2 Classification Accuracy

Our initial set of experiments aims to evaluate the ability of our CBR algorithm to

correctly classify the objects contained in images. More specifically, we examine the

classification performance based on what information is used during case retrieval:

feature vector only, parts only, or both feature vector and parts. Essentially, these

experiments look to confirm that CBR can reasonably discriminate between the various

object types and that reasonable data is contained in cases.

In the experiments, we use a variation of Algorithm 1 that does not attempt to

identify novel classes; the label from the nearest neighbor is used even if that neighbor

is dissimilar. This is achieved by using a non-empty case base (avoiding Algorithm 1,

Line 5), and setting 𝜆𝑓 = 𝜆𝑝 = 0.0 (avoiding Algorithm 1, Lines 9 and 17). The

experiments used leave-one-out testing, such that each of the 4737 cases are used as

input with the remaining 4736 cases used as the case base. The accuracy is measured

as the percentage of input cases that have a retrieved object type that is identical to their

true object type (i.e., the solution portion of the case). The three variants we test are:

 Feature Vector Only: We used 𝑘 = 15 and an empty parts set for all images,

thereby only basing similarity on the feature vectors. In practice, this is identical

to using 𝑘 = 1 since the case with the highest feature vector similarity will be

selected given that there is no influence from parts similarity (i.e., all cases have

empty parts sets). We used 𝑘 = 15 to highlight that the various experiments were

using similar parameter values.

 Parts Only: We used 𝑘 = 4736 so that the entire case base was retrieved,

regardless of feature vector similarity. All cases contained parts information.

Thus, the most similar case is the case with the most similar parts.

 Both Feature Vector and Parts: We used 𝑘 = 15 and all cases contained parts

information. Thus, the most similar case is the case with the most similar set of

parts from amongst its 15-nearest neighbors (based on feature vector similarity).

Using only a single component of the case for retrieval resulted in lower

performance, with a classification accuracy of 80.14% when only the feature vector is

used and 88.79% when only the parts are used. The best performance was achieved

when both the feature vector and parts were used for retrieval, with a classification

accuracy of 91.13%. These results demonstrate that using CBR with only the feature

vector provides reasonable classification performance (giving support for H1) but that

performance can be increased by using both the feature vector and parts information

(giving support for H2).

4.3 Novel Class Detection

The results in the previous subsection demonstrate the ability of our approach to be

used to classify known objects in images. However, the primary motivation of our work

is to detect and learn from novel object types in images. In this experiment, we use

Algorithm 1 such that is can detect novel object types (i.e., the case base may be initially

empty, or either 𝜆𝑓 or 𝜆𝑝 are non-zero values). The experiment starts with an empty

case base, and cases are randomly removed from the dataset and used as input to

Algorithm 1. After each input, the algorithm stores a case in its case base using the

object classification it made for the image (i.e., Algorithm 1, Line 20). Thus, 4737

total inputs are provided to the algorithm, and after the 𝑛th input the algorithm will

have a case base of size 𝑛. The evaluation was designed to simulate how the CBR

system would start with no knowledge (i.e., an empty case base) and incrementally

learn based on its novel object detection capabilities. The parameters used are 𝑘 = 15,

𝜆𝑓 = 0.45, 𝜆𝑝 = 0.45. The thresholds were selected to be relatively low such that they

only exclude cases if they are significantly different than the input image. Similarly,

the 𝑘 value was selected such that a neighborhood of similar cases would be retrieved.

We use two metrics to evaluate the algorithm’s performance: Class Purity and Class

Count Divergence. Class Purity measures, after all 4737 input images have been

classified and added to the case base, the percentage of images that are placed in a class

where they share a true object type with the majority of other images in that class. Since

our algorithm starts with no training data, all classes in the case base are novel classes

learned by the algorithm. Thus, we compare whether images with the same algorithm-

generated object type classification have the same ground-truth object type

classification. For example, the algorithm would be performing well if all images of

dogs were given the same novel object classification of class10 (or any other class label,

as long as all dogs were given the same label). This metric calculates values between 0

and 1 (inclusive), with higher values being better.

Class Count Divergence measures how close the number of detected object types is

to the true number of objects types in the dataset. In our dataset, there are 20 true object

labels. The motivation for using the metric is to penalize creating an unnecessarily large

number of classes. For example, creating 4737 unique class labels would result in a

perfect Class Purity score but each object label would be overfit to a single image. We

use a curved function that has the maximal value when the number of predicted classes

𝑐𝑙𝑎𝑠𝑠𝑝𝑟𝑒𝑑 is equal to the true number of classes 𝑐𝑙𝑎𝑠𝑠𝑡𝑟𝑢𝑒 and decreases as those values

diverge:

𝐶𝑙𝑎𝑠𝑠 𝐶𝑜𝑢𝑛𝑡 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =
1

(
𝑐𝑙𝑎𝑠𝑠𝑡𝑟𝑢𝑒−𝑐𝑙𝑎𝑠𝑠𝑝𝑟𝑒𝑑

500
)

2

+1

Similar to Class Purity, Class Count Divergence calculates values between 0 and 1

(inclusive), with higher values being better. The value 500 was selected for use in the

Class Count Divergence based on the size of the dataset, such that the metric would be

below 0.50 if the number of detected classes was larger than approximately 10% of the

dataset size. Additionally, we report the Overall Performance of the algorithm as the

harmonic mean of Class Purity and Class Count Divergence.

We repeated the experiment 25 times, and Table 1 shows a summary of the results.

Based on the Class Purity, our approach does a reasonable job detecting novel object

types and using those to classify images it encounters in the future. As a baseline, when

input images are randomly assigned to 20 object types (i.e., no novel classes are

learned), the Class Purity is 0.168. The majority of the mistakes made by the algorithm

were to provide the same label to objects that are both physically similar and have

similar parts. For example, many of the four-legged animals were given the same label,

especially in situations where they were small or occluded. Overall, occlusion had a

significant impact on performance since it often resulted in very little of the object being

visible (i.e., < 10%) and no parts information being available. Even for humans, it was

difficult to know that these highly obscured objects were the objects of interest. In fact,

it was often the situation that unlabeled objects (i.e., not among the 20 annotated labels)

were the most prevalent objects in images. By examining the learned class labels, we

found that our algorithm was learning based on these unlabeled object types. However,

given that the Class Purity metric only considers the 20 annotated object types, the

metric is unable to quantify how well the algorithm was able to learn object types that

were not annotated in the dataset. Overall, these results provide support for H3.

Table 1. Results of novel object type detection over 25 experimental runs

Metric Mean Minimum Maximum
Standard

Deviation

Class Purity 0.676 0.572 0.738 0.052

Object Types 121.7 111 133 6.2

Class Count Divergence 0.960 0.951 0.968 0.005

Overall Performance 0.792 0.717 0.838 0.036

4.4 Number of Object Types

The results in Table 1 show that our algorithm is learning approximately six times as

many object types as are labelled in the dataset. This is reasonable performance,

considering that it would have created 4737 object types had each image been assigned

its own label, but higher than anticipated. However, our qualitative examination of the

classifications uncovered that the number of object types is not exclusively a result of

algorithm error but primarily a result of learning finer-grained object types. For

example, images annotated as 𝑝𝑜𝑡𝑡𝑒𝑑𝑝𝑙𝑎𝑛𝑡 are largely divided by our algorithm into

two distinct classes: one for images of fully-grown plants and one for seedling plants.

To a human, there are clear and obvious distinctions between these two subsets of

images, providing support that the algorithm learned a meaningful subdivision.

Numerous other similar examples were found where the algorithm learned meaningful

finer-grained object types, a selection of which include: full-sized cars vs. go-karts

(both annotated as car), people in water vs. babies vs. athletes (all annotated as person),

and locomotives vs. subway trains vs. empty train tracks (all annotated as train).

However, although a significant number of the additional object types learned by our

algorithm appear to be meaningful object types, it also learned less meaningful single-

image object types. Although some of those singleton object types are uninteresting or

redundant, it learned several interesting singleton object types based on unusual images

in the dataset: a sheep standing in a bus shelter, a train car with a picture of a dinosaur

painted on it, an alpaca (incorrectly annotated in the PASCAL-Part Dataset as sheep),

and a Ferris wheel. However, there were also situations where our algorithm

erroneously subdivided object types, or performed divisions that a human would not

deem as necessary (i.e., too fine-grained). This qualitative analysis provides partial

support for H4, but a more detailed analysis will be necessary to definitively prove that

our algorithm is identifying meaningful object sub-types.

5 Related Work

Integrations of Deep Learning and CBR have seen increased interest recently, with

many researchers exploring how the two approaches can benefit each other. In the

domain of Human Activity Recognition (HAR), CNNs have been used for feature

extraction [6]. This work differs from our own in that it uses accelerometer data rather

than image data, but similarly finds that reasonable results can be achieved with

instance-based algorithms when features are automatically learned and extracted using

CNNs. Instance-based retrieval in the HAR domain has also been used to find similar

existing data that can be used to train a classifier for a new user [7]. Their system also

uses CNN-extracted features and, like our work, is motivated to allow learning under

limited data availability. However, their work is focused on classifier personalization

rather that novel class identification (e.g., they do not detect new types of activities that

have not been seen before). They have also examined how Siamese Neural Networks

can be used to learn similarity functions [8], and such an approach could potentially be

used in our algorithm to improve retrieval. Deep Learning has been combined with

CBR to generate novel recipes that are both surprising and plausible [9]. However, this

differs from our own work in that their system creates novel items rather than

discovering previously unknown items.

Case-based reasoning has been used for a variety of image processing and computer

vision tasks [10]. One application area that has seen particular interest is medical CBR

(e.g., [11-13]), primarily due to the prevalence of medical imagery in patient files and

the need to retrieve similar images to aid in diagnosis. However, unlike our work, the

majority of CBR approaches rely on hand-crafted features rather than learned features

(e.g., [14-16]). Additionally, while CBR systems are often used for image retrieval and

classification, to the best of our knowledge none are able to detect novel object types

(or, more generally, novel classes in non-image systems). Some systems may be able

to perform outlier detection (e.g., when no similar cases are retrieved) but do not

attempt to learn novel object types from these outliers. For example, rather than attempt

to generate a novel object label, a CBR system may present an input image to a domain

expert for manual labelling. Although having human annotations is valuable, it is not

always practical when a system is operating autonomously for long periods of time.

The most similar work to our own involves classifying webpages based on

multimedia data (e.g., images) rather than only the contained text [17]. Like our

approach, they use CNNs to perform feature extraction from images and use those

features during case retrieval. The primary difference between their work and our own

is that they only classify images into predefined classes, so no novel object discovery

is performed. They do perform outlier detection, but that is to identify mislabeled or

irrelevant images contained in a webpage rather than to detect novel webpage themes;

outliers influence the case structure but do not modify the set of class labels.

As we mentioned previously, existing approaches to Computer Vision tend to focus

on object classification (e.g., CNNs [1]) or detecting regions containing objects (e.g.,

R-CNNs [2]). These approaches rely on a predefined set of object types, with fewer

works examining novel object discovery. Existing approaches for unsupervised object

class discovery are similar to our own work in that they learn from images containing

a single object type per image [18-20]. However, as we mentioned previously, the

images we use in this work often contain multiple objects in each image but with only

one of the objects labelled by human annotators. The primary difference between these

approaches and our work is that they perform offline object detection using the entire

dataset. Our approach is both online and incremental; novel object types are detected at

run-time based on the content of input images. To the best of our knowledge, no other

approaches exist to allow online and incremental unsupervised object discovery. As we

discussed previously, existing computer vision systems can only identify that an input

image is unlikely to be of a known object type. They do not provide online labels for

these unknown objects or learn from them (i.e., how to classify future images of that

object type). However, our approach can perform such labelling and learning, and can

learn after retaining only a single case.

Our algorithm learns in an unsupervised manner when no expert-annotated training

cases are provided to it (e.g., as in our evaluation that started with an empty case base).

As such, it has many similarities to clustering since it is grouping input images by

assigning them generated class labels. Many traditional clustering algorithms, like k-

means [21], divide data into a fixed number of partitions, whereas our approach

dynamically creates new object types as necessary. Hierarchal clustering methods, like

single-linkage [22], are able to dynamically increase the number of clusters created but

do not cluster incrementally; the entire dataset must be provided as a batch. Incremental

clustering algorithms have been developed, such as incremental k-means [23], that

allow data points to be added sequentially rather than as a batch. However, even

incremental clustering algorithms rely on comparing each data point to a set of cluster

centroids. Our approach compares data points (i.e., input images) to any existing case

in the case base. This is important given the two-stage retrieval process we use. Since

retrieval is based on both an image’s feature vector representation and its observable

parts, there can be a high degree of variability amongst cases of the same object type.

For example, since the similarity thresholds used by our algorithm may be relatively

low (e.g., 0.45 in our experiments), cases of the same object type may not have highly

similar feature vector representations (i.e., a medium feature vector similarity but high

parts similarity). Similarly, cases of the same object type may have high feature vector

similarity but only medium parts similarity. If only cases representing class centroids

were retrieved, an input image could appear dissimilar to all of the centroids (i.e.,

treated as a novel object type) but would have been similar to one or more of the non-

centroid cases. Additionally, unlike clustering algorithms, our algorithm can be used

for both classification and novel class discovery. Without any labeled data, it performs

classification based on its generated object type labels. However, if some cases are

provided using labelled training data (i.e., some supervised learning was performed)

the algorithm can either generate novel class labels or perform classification based on

existing object type labels.

6 Conclusions

This paper described a method for detecting novel object types in images using a

combination of case-based reasoning and Convolutional Neural Networks. Our

approach leverages the automated feature learning and extraction provided by CNNs

while taking advantage of CBR’s ability to perform incremental learning with relatively

few training instances. A set of nearest neighbors are initially retrieved based solely on

similarity between extracted image features, with subsequent retrieval based on the

similarity between observable object parts. Although our approach leverages

observable object parts during case retrieval, it can be used even if such information is

unavailable. Additionally, since CBR is an instance-based learner, it does not abstract

the object parts contained in images, thereby allowing them to be directly used during

similarity calculation. If a CNN was to include object part information it would likely

learn an abstraction of what parts exist in a class. For example, it would learn what parts

are generally observable in images of dogs, possibly losing valuable information

necessary to detect uncommon images, like a dog with most of its observable parts

obscured by a costume it is wearing.

Our evaluation was performed using realistic images from the publicly available

PASCAL-Part Dataset. The initial results demonstrated the ability of a CBR system to

classify images using CNN-extracted feature vectors, and the performance

improvement provided by including object parts information during retrieval. We also

provided evidence of our algorithm’s ability to be used to detect novel object types.

Even when the algorithm had an empty initial case base and no background knowledge

about object types, it was able to detect novel object types and use them to classify

subsequent images. One important finding of these experiments was that the algorithm

appeared to learn finer-grained object types than those provided by the human dataset

annotators, based on an initial qualitative analysis.

Several areas of future work remain. First, while we briefly discussed how our

approach could be used in parallel with a full CNN (i.e., including fully-connected

layers), we have not provided a full methodology to integrate them. In this paper, we

focused on learning without an existing dataset, so it would not be possible to train a

CNN in such a situation. However, if a subset of existing object types are known and

have sufficient data, a full CNN could be used to classify those known types while our

approach could handle novel object type detection. Second, our approach learns a flat

object type hierarchy. Future work will examine how novel object types can be

compared to existing types to determine relationships (e.g., a fully-grown plant is

similar to a seedling plant) or to provide explanations (e.g., “I think this is different than

a fully-grown plant because it doesn’t have any leaves”). Third, we used ground truth

parts information, but future work will detect both parts and object types. Finally, we

plan to integrate our work with existing R-CNN architectures to allow learning with

images containing multiple annotated objects.

Acknowledgements

Thanks to the Office of Naval Research for supporting this work.

References

1. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with deep

convolutional neural networks. In Proceedings of the 26th Annual Conference on Neural

Information Processing Systems (pp. 1106-1114). Lake Tahoe, USA.

2. Girshick, R.B., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (pp. 580-587). Columbus, USA:

IEEE Computer Society.

3. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., and Yuille, A. (2014). Detect what

you can: Detecting and representing objects using holistic models and body parts. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.

1979-1986). Columbus, USA: IEEE Computer Society.

4. He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.

770-778). Las Vegas, USA: IEEE Computer Society.

5. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M.S., Berg, A.C., and Li, F.-F. (2015). ImageNet large scale visual

recognition challenge. International Journal of Computer Vision, 115(3), 211-252.

6. Sani, S., Wiratunga, N., and Massie, S. (2017). Learning deep features for kNN-based

Human Activity Recognition. In Proceedings of the International Conference on Case-

Based Reasoning Workshops (pp. 95-103). Trondheim, Norway: CEUR Workshop

Proceedings.

7. Sani, S., Wiratunga, N., Massie, S., and Cooper, K. (2017). kNN sampling for personalised

Human Activity Recognition. In Proceedings of the 25th International Conference on Case-

Based Reasoning (pp. 330-344). Trondheim, Norway: Springer.

8. Martin, K., Wiratunga, N., Sani, S., Massie, S., and Clos, J. (2017). A Convolutional

Siamese Network for developing similarity knowledge in the SelfBACK dataset. In

Proceedings of the International Conference on Case-Based Reasoning Workshops (pp. 85-

94). Trondheim, Norway: CEUR Workshop Proceedings.

9. Grace, K., Maher, M.L., Wilson, D.C., and Najjar, N.A. (2016). Combining CBR and Deep

Learning to generate surprising recipe designs. In Proceedings of the 24th International

Conference on Case-Based Reasoning (pp. 154-169). Atlanta, USA. Springer.

10. Perner, P., Holt, A., and Richter, M. (2005). Image processing in case-based reasoning.

Knowledge Engineering Review, 20(3), 311-314.

11. Macura, R.T., and Macura, K.J. (1995). MacRad: Radiology image resource with a case-

based retrieval system. In Proceedings of the 1st International Conference on Case-Based

Reasoning (pp. 43-54). Sesimbra, Portugal: Springer.

12. Haddad, M., Adlassnig, K.-P., and Porenta, G. (1997). Feasibility analysis of a case-based

reasoning system for automated detection of coronary heart disease from myocardial

scintigrams. Artificial Intelligence in Medicine, 9(1), 61-78.

13. Allampalli-Nagaraj, G., and Bichindaritz, I. (2009). Automatic semantic indexing of medical

images using a web ontology language for case-based image retrieval. Engineering

Applications of Artificial Intelligence, 22(1), 18-25.

14. Perner, P., and Bühring, A. (2004). Case-based object recognition. In Proceedings of the 7th

European Conference on Case-Based Reasoning (pp. 375-388). Madrid, Spain: Springer.

15. Micarelli, A., Neri, A., and Sansonetti, G. (2000). A case-based approach to image

recognition. In Proceedings of the 5th European Workshop on Case-Based Reasoning (pp.

443-454). Trento, Italy: Springer.

16. López-Sánchez, D., Corchado, J.M., and González Arrieta, A. (2017). A CBR system for

efficient face recognition under partial occlusion. In Proceedings of the 25th International

Conference on Case-Based Reasoning (pp. 170-184). Trondheim, Norway: Springer.

17. López-Sánchez, D., Corchado, J.M., and González Arrieta, A. (2017). A CBR system for

image-based webpage classification: Case representation with Convolutional Neural

Networks. In Proceedings of the Thirtieth International Florida Artificial Intelligence

Research Society Conference (pp. 483-488). Marco Island, USA: AAAI Press.

18. Tuytelaars, T., Lampert, C.H., Blaschko, M.B., and Buntine, W.L. (2010). Unsupervised

object discovery: A comparison. International Journal of Computer Vision, 88(2), 284-302.

19. Zhu, J.-Y., Wu, J., Xu, Y., Chang, E., and Tu, Z. (2015). Unsupervised object class discovery

via saliency-guided multiple class learning. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 37(4), 862-875.

20. Chen, X., Shrivastava, A., and Gupta, A. (2014). Enriching visual knowledge bases via

object discovery and segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (pp. 2035-2042). Columbus, USA: IEEE Computer Society.

21. MacQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and

Probability (pp. 281–297).

22. Hartigan, J.A. (1975). Clustering Algorithms. New York, USA: John Wiley & Sons.

23. Aaron, B., Tamir, D.E., Rishe, N.D., and Kandel, A. (2014). Dynamic incremental k-means

clustering. In Proceedings of the International Conference on Computational Science and

Computational Intelligence (pp. 308-313). Las Vegas, USA: IEEE Press.

