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Abstract. The development of Convolutional Neural Networks (CNNs) has 

resulted in significant improvements to object classification and detection in 

image data. One of their primary benefits is that they learn image features rather 

than relying on hand-crafted features, thereby reducing the amount of knowledge 

engineering that must be performed. However, another form of knowledge 

engineering bias exists in how objects are labelled in images, thereby limiting 

CNNs to classifying the set of object types that have been predefined by a domain 

expert. We describe a case-based method for detecting novel object types using 

a combination of an image’s raw pixel values and detectable parts. Our approach 

works alongside existing CNN architectures, thereby leveraging the state-of-the-

art performance of CNNs, and is able to detect novel classes using limited 

training instances. We evaluate our approach using an existing object detection 

dataset and provide evidence of our approach's ability to classify images even if 

the object in the image has not been previously encountered. 

Keywords: Computer Vision, Novel Object Discovery, Deep Learning, 

Convolutional Neural Networks 

1 Introduction 

Computer Vision has seen rapid advancement in recent years as a result of Deep 

Learning (DL) techniques, especially for object classification tasks. DL algorithms are 

able to leverage large annotated image datasets for training, and achieve significant 

classification improvement over traditional vision approaches. Convolutional Neural 

Networks (CNNs) [1] have been a driving force behind these improvements as they are 

able to use an image’s raw pixel values as inputs and learn higher-level features from 

the training data. Thus, they remove the need for manual feature engineering and 

extraction, and may learn more discriminative features than those that are hand-crafted 

by a domain expert. For example, during training a CNN may learn low-level image 

features like lines or curves, and combine those into increasingly complex features like 

shapes, wheels, or faces. 
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Although CNNs greatly reduce the knowledge engineering required by removing the 

need for hand-crafted features, they do require knowledge about the types of objects 

that are present in the training images (i.e., an annotation of the object labels). This adds 

significant bias based on the types of objects that are used to annotate images. For 

example, an image of an office typically contains dozens of visible objects but may 

only have labels for a small subset of those (e.g., humans, computers, desks) and treat 

the others as unlabeled background (e.g., books, pencils, papers). Thus, the CNN is 

only able to learn to classify objects that the domain expert felt were important enough 

to annotate. Similarly, the level of granularity of annotations can impact what a CNN 

learns. For example, the CNN will learn differently depending on if an image of a dog 

is labelled as “animal”, “dog”, or as the specific dog breed. These issues can become 

more significant when you have large datasets containing thousands or millions of 

annotated images, since it reduces the likelihood that a consistent annotation 

methodology was used on all images (e.g., different annotators, human error, time-

varying methods of annotation). The annotated object types in training images restrict 

the potential classifications that a CNN can make when deployed; if an object type is 

not annotated in the training data, the CNN will be unable to classify that object type. 

For example, if a CNN is trained with images of airplanes, boats, and houses, an image 

of a dog would either be classified as one of those three object classes or not classified 

at all (i.e., if the confidence was too low).  

We propose a case-based approach for novel object detection that uses a combination 

of raw pixel values and detectable object part information to identify when input images 

differ noticeably from known object types. Our approach is intended to be used in 

combination with existing CNN vision approaches and leverage their state-of-the-art 

performance while addressing some of their limitations. More specifically, our 

approach makes the following contributions: (1) a method to detect novel object types 

without prior knowledge of those types; (2) a method to identify variations in images 

of objects of the same type; (3) an approach that can be used in combination with 

existing CNN architectures; and (4) an approach that can be used even with small 

datasets and a single example of each object type. We believe the ability to operate 

using a small dataset is important given the large dataset requirements that are typically 

required by existing Deep Learning systems. 

The remainder of the paper outlines our case-based novel object detection approach. 

Section 2 provides background on Convolutional Neural Networks, with Section 3 

describing our method for novel object detection and how we leverage CNNs for this 

task. Section 4 describes our empirical evaluation using an existing object detection 

dataset. In Section 5, we discuss related work in case-based Deep Learning, case-based 

Computer Vision, and novel object type detection. Section 6 discusses areas of future 

work and concluding remarks. 

2 Background: Convolutional Neural Networks 

The typical architecture of a Convolutional Neural Network has three primary building 

blocks: convolutional layers, pooling layers, and fully-connected layers. Convolutional 



layers are composed of filters that encode features that will be detected in the input. For 

example, consider a greyscale image of 𝑛 × 𝑛 pixels used as input to a convolutional 

layer composed of 𝑘 filters, each of which are 𝑚 × 𝑚 (𝑚 ≤ 𝑛).  The filters encode 

feature patterns that will be identified in the input image. Each 𝑚 × 𝑚 filter is applied 

to each distinct (and possibly overlapping) 𝑚 × 𝑚 subregion of the input image, with 

the results stored in new (𝑛 − 𝑚 + 1) × (𝑛 − 𝑚 + 1) matrix1, called a feature map. 

This can be thought of as the filter sweeping across the image, starting from the top left, 

and applying the filter to each subregion along a row before moving down to the row 

below (and ending in the bottom right). Each of the 𝑘 filters are applied in this manner, 

resulting in 𝑘 feature maps from the convolutional layer. Thus, the feature map for a 

particular filter represents the presence of that feature in the various subregions of the 

image. When a CNN is trained, the filters (i.e., the features to look for) are part of what 

is learned. 

Pooling layers are used to reduce the dimensionality of a convolutional layer’s 

output and for abstraction to avoid overfitting. For example, the convolutional layer in 

the previous example took an 𝑛 × 𝑛 input and produced a 𝑘 × (𝑛 − 𝑚 + 1) × (𝑛 −
𝑚 + 1) output (i.e., one feature map for each of the 𝑘 filters). Depending on the values 

of 𝑘, 𝑛, and 𝑚, this could result in a larger output than the input. Pooling prevents the 

outputs from growing progressively larger, since in a typical CNN architecture you will 

have multiple convolutional layers in a series. A common form of pooling is max 

pooling that partitions the layer’s input into a set of contiguous non-overlapping 𝑝 × 𝑝 

subregions and selects the maximum value contained in each subregion. As was the 

case with convolutional layers, pooling layers produce 𝑘 output matrices (i.e., one for 

each input feature map they receive). For example, if 𝑝 =
𝑛−𝑚+1

2
, then each input 

matrix would be downsampled to a 2 × 2 matrix (i.e., containing the maximum value 

from the top-left, top-right, bottom-left, and bottom-right regions of the input). 

A typical CNN architecture will contain multiple convolutional layers and pooling 

layers arranged in a series. The input to the first convolutional layer 𝑐𝑜𝑛𝑣1 will be the 

input image, and its output 𝑜𝑢𝑡𝑐𝑜𝑛𝑣1
 (i.e., the feature maps it produces) will be the input 

to the first pooling layer 𝑝𝑜𝑜𝑙1. The output of the first pooling layer 𝑜𝑢𝑡𝑝𝑜𝑜𝑙1
is then 

used as input to the next convolutional layer 𝑐𝑜𝑛𝑣2, and this sequence of convolutional 

and pooling layer continues until the output from the 𝑛th pooling layer 𝑜𝑢𝑡𝑝𝑜𝑜𝑙𝑛
. Such 

an architecture results in early convolutional layers detecting relatively simple features 

whereas later layers detect increasingly complex features (i.e., patterns of lower-level 

features). After the final pooling layer, that layer’s output 𝑜𝑢𝑡𝑝𝑜𝑜𝑙𝑛
is flattened from a 

set of matrices into a single one-dimensional feature vector. For example, if 𝑜𝑢𝑡𝑝𝑜𝑜𝑙𝑛
 

produced six 3 × 3 output matrices, the flattened output would be a feature vector 

containing 54 values (6 × 3 × 3).  

The final building blocks in a CNN are the fully-connected layers. These layers are 

typically multilayer perceptrons (MLPs), and use the flattened feature vector output by 

the final pooling layer as input. For a classification task, the fully-connected layer will 

                                                           
1 This example assumes a step size of 1, where the center on the filter is moved by 1 pixel at each 

step. However, in practice the step size can be set as a parameter. 



output the class label (or probability of each class label) of the input. During training, 

the weights used by the MLP to produce the output classification are learned. At a high 

level, we can think of the convolutional and pooling layers as performing feature 

extraction on the input image, and the fully-connected layers use those extracted 

features to perform classification. 

3 Case-Based Novel Object Detection 

Convolutional Neutral Networks perform supervised machine learning, so their ability 

to classify the presence of objects in images is directly related to the labeled training 

data they have available; they cannot detect the correct object type if no annotated 

training data exists with a label for that object type. If a CNN outputs the confidence in 

each known class label (i.e., the output of the fully-connected layers), it could, at best, 

label an input image as unknown if none of the possible class labels were above a 

confidence threshold. For example, if a CNN was trained to classify airplanes, boats, 

and houses, an image of a dog would either be classified as one of the three known 

classes (i.e., if the CNN output a high confidence for one of the classes) or as unknown 

(i.e., if none of the classes had a high confidence). If several different novel objects are 

encountered, they would all be classified together into the generic unknown class, even 

if the objects were significantly different from each other. Returning to the example, 

images of dogs, books, space stations, and humans would all be classified together as 

unknown. One solution would be to retrain the CNN after each novel object type is 

detected. However, this is generally impractical as CNNs require both a large number 

of labeled training examples (i.e., more than a single training instance) and significant 

computational time to retrain the fully-connected layers.  

We propose a case-based reasoning approach to detect the presence of novel object 

types and quickly learn from limited training data. Unlike CNNs, a CBR approach can 

learn using only a single training example and requires no training time. However, our 

approach does not propose to remove CNNs from the object classification process. 

Instead, our approach leverages the state-of-the-art performance of CNNs while 

providing capabilities that alleviate some of their limitations. For the remainder of this 

section we will largely present the CBR component in isolation, but will discuss how it 

can be integrated with existing CNN architectures at the end of this section. 

Our CBR system encodes each image 𝐼𝑖  as a case 𝐶𝑖. Each case is a triple containing 

the image’s feature vector 𝐹𝑖, its set of observable parts 𝑃𝑖 , and object label 𝑙𝑖: 

𝐶𝑖 = 〈𝐹𝑖 , P𝑖 , 𝑙𝑖〉 

This representation assumes the availability of two functions: features and parts. The 

features function converts a raw image Ii ∈ I, where 𝐼 is the set of all images, into a 

feature vector 𝐹𝑖 = 〈𝑓𝑖
1, … 𝑓𝑖

𝑛〉 ∈ 𝐹, where 𝐹 is the set of all feature vectors (features: 

𝐼 → 𝐹 ), composed of 𝑛  feature values. For the features function, we use the 

convolutional and pooling layers from a CNN to perform this conversion, since they 

convert a raw image into a flat feature vector. This is essentially a version of the CNN 

with the fully-connected layers removed such that the CNN is only used for feature 



extraction. The parts function extracts a set of observable parts 𝑃𝑖 =  {𝑝𝑖
1, … , 𝑝𝑖

𝑚𝑖} ⊆ 𝑃, 

where 𝑃 is the set of all object parts, from image 𝐼𝑖 . The number of observable parts in 

an image 𝑚𝑖 is not fixed, so the size and contents of 𝑃𝑖  is image-specific. In this work, 

we consider object parts to be low-level components that make up larger objects. For 

example, the parts of a dog could include its legs, tail, torso, tail, head, and ears. 

Although the object parts provide more detail about an object, they are assumed to be 

generic such that the same parts can be part of numerous object types. Returning to the 

dog example, many mammals would share some or all of the same parts. However, 

even two instances of the same object may have different observable parts depending 

on what is visible in the image. In the dog example, the dog’s tail may not be visible 

depending on where it is facing or its legs may not be visible if the bottom of its body 

is occluded by another object. The parts function requires a separate vision system that 

can identify these generic object parts from visible images. However, as we will discuss 

later, while our CBR approach can leverage parts information, it is not strictly necessary 

for case retrieval. For example, if no parts extraction was possible, each case could 

contain an empty set of parts (𝑃𝑖 = ∅) and rely only on the feature vector for retrieval. 

We assume each case has a single object label 𝑙𝑖 ∈ 𝐿, where 𝐿 is the set of all object 

labels. This assumes that each image will contain only a single object of interest. Such 

an assumption is valid for uncluttered images or, more realistically, when used as part 

of a Region-Based Convolutional Neural Network (R-CNN) [2]. R-CNNs use a region 

proposal stage to propose subregions of the input image and then classify those 

subregions individually. Thus, instead of the entire image being used as input to the 

CNN, each subregion is used as a distinct input to the CNN (i.e., the CNN is run 

multiple times) and each subregion is used to perform a single classification. In our 

work, the images stored in cases and used as input to the CBR system could be the 

image data from these subregions. Using this case representation, the feature vector and 

set of parts represent the problem and the object label is the solution. 

When an input image is received, either a complete image or a proposed subregion 

from an R-CNN, object classification is performed using Algorithm 1. In addition to 

the input image 𝐼𝑖𝑛 , the algorithm uses as input a case base 𝐶𝐵, number of nearest 

neighbors 𝑘, feature vector similarity threshold 𝜆𝑓, and parts similarity threshold 𝜆𝑝. 

The algorithm starts by extracting the features and parts from the image (Lines 1 and 

2). If the case base is empty (i.e., the CBR system has no training instances), a novel 

object label is generated using the generateLabel function (Line 5). We do not expect 

this function to generate an informative label based on knowledge of the image (e.g., 

dog, cat, airplane, house) but instead a unique label for the object type (e.g., class1, 

class2, class3). If the case base is not empty, the top k most similar cases are retrieved 

from the case base (Line 7). The similarity only considers the feature vector similarity 

(e.g., using a similarity function based on the Euclidean distance between feature 

vectors), so no parts information is considered. Cases are only added to the top k if their 

similarity is above the feature vector similarity threshold 𝜆𝑓, so it is possible for fewer 

than 𝑘 cases to be retrieved. In some situations, no cases will be retrieved if none of the 

cases are similar to the input image (Line 8). In such a situation, the input image is 

assumed to be of a novel object type so a new class label is created for it (Line 9).  



The previous stages of the algorithm only considered the feature vectors when 

comparing the input image to cases. The remainder of the algorithm leverages the 

detectable parts information. The parts of the input image are compared to the parts of 

each of the top k nearest neighbors (Lines 12-15). The similarity function used (Line 

13) is assumed to be a similarity function that calculates set similarity (e.g., Jaccard 

similarity). Similar to when comparing feature vector similarity, only cases with a parts 

similarity above the parts similarity threshold 𝜆𝑝 are retained (Line 14). If there were 

no cases above this threshold (Line 16), the input image is considered to be a novel 

object type so a novel label is generated (Line 17). Otherwise, the label from the most 

similar case (based on parts similarity, with feature vector similarity used as a tie-

breaker) is used to label the input image (Line 19). Finally, a novel case is created and 

added to the case base (Line 20) and the object label is returned (Line 21). 

 

 
An existing label is only returned when there is a case that is similar to both the input 

image’s feature vector and its parts set. Thus, there are three situations where a novel 

object label, and therefore a new object class, are created: (1) when the case base is 

empty; (2) when none of the cases have similar feature similarity; and (3) when there 

is at least one case with similar features but none of those cases have similar parts. As 

we mentioned earlier, although parts information is used in the algorithm, it is not 

strictly necessary. Assuming no parts information is available, the parts set of the input 



image and all cases will be empty. If the parts similarity function is designed to return 

maximal similarity when comparing two empty sets, all of the top k cases will be above 

𝜆𝑝 and have an equal similarity value. Thus, as long as the top k cases are iterated over 

in order of descending feature vector similarity (Lines 12-15), the case with the most 

similar feature vector similarity will be selected as the nearest neighbor and have its 

label returned.  

One of the primary benefits of this algorithm is that it is able to learn using only a 

single training instance. Once a novel class has been detected (Lines 5, 9, or 17), it is 

immediately added to the case base and can be used to classify future input images. 

Similarly, this algorithm can be used even when no existing training data exists (i.e., an 

initially empty case base). For example, this algorithm could be used from a cold-start 

to perform object classification without any labeled data. At such a time when sufficient 

data was collected and annotated, and sufficient time was available, a Convolutional 

Neural Network could be trained. Once a CNN is trained, the CBR algorithm could run 

in parallel to the CNN. Assuming the fully trained CNN has superior performance 

classifying known object types, the CBR system could defer classification for known 

object types and only interject when a novel class is detected or an input image is most 

similar to an object class that the CNN has not been trained on (i.e., a previously 

detected novel class). Thus, the CBR system can be used in situations where it has 

advantages over the CNN, and defer in other situations. 

4 Evaluation 

In this section, we evaluate the claim that our case-based reasoning system can be used 

to detect and learn from novel object types. Our evaluation tests the following 

hypotheses:  

H1: Extracting a feature vector representation from images, using a CNN, provides 

sufficient information for a CBR algorithm to differentiate between object 

types 

H2: The addition of observable parts information improves object classification 

performance 

H3: Our CBR approach is able to detect novel object classes and learn from 

detected classes 

H4: Our CBR approach discovers finer-grained object classes than those provided 

by the dataset’s human annotators 

4.1 Data Set 

The dataset we use for evaluation is the publicly available PASCAL-Part Dataset [3]. 

It is based on the dataset used for the Visual Object Classes Challenge 2010, a 

Computer Vision competition to recognize objects in realistic scenes. While the Visual 

Object Classes Challenge 2010 dataset only contains the annotated object types visible 

in each image, the PASCAL-Part Dataset contains additional annotations for the object 



parts that are visible in the image. The dataset contains 20 object types: aeroplane, 

bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, 

person, pottedplant, sheep, sofa, train, and tvmonitor. Each object can have between 0 

(boat, chair, diningtable, sofa) and 24 (person) object parts annotated.  However, 

images of the same object type may have a different number of annotated parts due to 

object occlusion, object positioning, or annotator error. In addition to providing object 

part annotations, the PASCAL-Part Dataset has several properties that make it a 

suitable dataset for us to use. The images are realistic real-world images, so most 

images contain multiple objects (including objects from the 20 annotated object types 

as well as other unlabeled object types). The objects have varying locations, rotations, 

sizes, and scales. Additionally, images have different backgrounds (e.g., beach, indoors, 

forest) and lighting conditions. The annotated objects may be partially occluded, 

located partially outside the image, or incorrectly labeled by human annotators.  

Our work is focused on detecting a single object type in each image, as we justified 

in the previous section, so we preprocessed the PASCAL-Part Dataset to extract only 

the images with a single annotated object. However, it should be noted that although 

each image only contains a single annotated object, many of them contain multiple 

visible objects. The additional object are either objects that are not of the 20 labelled 

object types, or objects that have been omitted due to annotator error. After 

preprocessing, 4737 images remained (from an initial dataset size of 10,103). 

The features function used in Algorithm 1 is a Convolutional Neural Network using 

the ResNet [4] architecture (i.e., how the various layers are connected). The CNN was 

trained using the ImageNet dataset [5], a dataset containing hundreds of thousands of 

annotated images. This was performed to learn the filters (i.e., the image features) used 

by the convolutional layers of the CNN, and after training the fully-connected layers 

were removed. The output of the CNN is a feature vector of length 2048. Although 

ImageNet is a different dataset than the PASCAL-Part Dataset, pretraining a CNN on 

ImageNet learns many general-purpose image features (e.g., lines and shapes). Thus, it 

allows training a generic features function that can be used regardless of domain, and 

with significantly less time and computational effort than retraining the CNN for each 

new image dataset. However, it should be noted that due to the size and scope of 

ImageNet, there is likely some overlap with the objects contained in the PASCAL-Part 

Dataset (but none of the labels from ImageNet are used during our evaluation). The 

parts function in Algorithm 1 uses the ground-truth parts annotations provided by the 

dataset (i.e., assumes the presence of a perfect parts extractor). Although in real 

computer vision tasks the parts would need to be extracted using a separate vision 

system, we used the provided parts labels in order to remove error during our initial 

evaluations. Future work will examine how our CBR system’s performance is 

influenced when parts are extracted using a more realistic parts function. Thus, each 

image in the preprocessed PASCAL-Part Dataset can be converted into our case 

representation using the features function, parts function, and object type annotation.  



4.2 Classification Accuracy 

Our initial set of experiments aims to evaluate the ability of our CBR algorithm to 

correctly classify the objects contained in images. More specifically, we examine the 

classification performance based on what information is used during case retrieval: 

feature vector only, parts only, or both feature vector and parts. Essentially, these 

experiments look to confirm that CBR can reasonably discriminate between the various 

object types and that reasonable data is contained in cases. 

In the experiments, we use a variation of Algorithm 1 that does not attempt to 

identify novel classes; the label from the nearest neighbor is used even if that neighbor 

is dissimilar. This is achieved by using a non-empty case base (avoiding Algorithm 1, 

Line 5), and setting 𝜆𝑓 = 𝜆𝑝 = 0.0  (avoiding Algorithm 1, Lines 9 and 17). The 

experiments used leave-one-out testing, such that each of the 4737 cases are used as 

input with the remaining 4736 cases used as the case base. The accuracy is measured 

as the percentage of input cases that have a retrieved object type that is identical to their 

true object type (i.e., the solution portion of the case). The three variants we test are: 

 Feature Vector Only: We used 𝑘 = 15 and an empty parts set for all images, 

thereby only basing similarity on the feature vectors. In practice, this is identical 

to using 𝑘 = 1 since the case with the highest feature vector similarity will be 

selected given that there is no influence from parts similarity (i.e., all cases have 

empty parts sets). We used 𝑘 = 15 to highlight that the various experiments were 

using similar parameter values. 

 Parts Only: We used 𝑘 = 4736  so that the entire case base was retrieved, 

regardless of feature vector similarity. All cases contained parts information. 

Thus, the most similar case is the case with the most similar parts. 

 Both Feature Vector and Parts: We used 𝑘 = 15 and all cases contained parts 

information. Thus, the most similar case is the case with the most similar set of 

parts from amongst its 15-nearest neighbors (based on feature vector similarity). 

Using only a single component of the case for retrieval resulted in lower 

performance, with a classification accuracy of 80.14% when only the feature vector is 

used and 88.79% when only the parts are used. The best performance was achieved 

when both the feature vector and parts were used for retrieval, with a classification 

accuracy of 91.13%. These results demonstrate that using CBR with only the feature 

vector provides reasonable classification performance (giving support for H1) but that 

performance can be increased by using both the feature vector and parts information 

(giving support for H2). 

4.3 Novel Class Detection 

The results in the previous subsection demonstrate the ability of our approach to be 

used to classify known objects in images. However, the primary motivation of our work 

is to detect and learn from novel object types in images. In this experiment, we use 

Algorithm 1 such that is can detect novel object types (i.e., the case base may be initially 

empty, or either 𝜆𝑓 or 𝜆𝑝 are non-zero values). The experiment starts with an empty 



case base, and cases are randomly removed from the dataset and used as input to 

Algorithm 1. After each input, the algorithm stores a case in its case base using the 

object classification it made for the image (i.e., Algorithm 1, Line 20).  Thus, 4737 

total inputs are provided to the algorithm, and after the 𝑛th input the algorithm will 

have a case base of size 𝑛. The evaluation was designed to simulate how the CBR 

system would start with no knowledge (i.e., an empty case base) and incrementally 

learn based on its novel object detection capabilities. The parameters used are 𝑘 = 15, 

𝜆𝑓 = 0.45, 𝜆𝑝 = 0.45. The thresholds were selected to be relatively low such that they 

only exclude cases if they are significantly different than the input image. Similarly, 

the 𝑘 value was selected such that a neighborhood of similar cases would be retrieved. 

We use two metrics to evaluate the algorithm’s performance: Class Purity and Class 

Count Divergence. Class Purity measures, after all 4737  input images have been 

classified and added to the case base, the percentage of images that are placed in a class 

where they share a true object type with the majority of other images in that class. Since 

our algorithm starts with no training data, all classes in the case base are novel classes 

learned by the algorithm. Thus, we compare whether images with the same algorithm-

generated object type classification have the same ground-truth object type 

classification. For example, the algorithm would be performing well if all images of 

dogs were given the same novel object classification of class10 (or any other class label, 

as long as all dogs were given the same label). This metric calculates values between 0 

and 1 (inclusive), with higher values being better. 

Class Count Divergence measures how close the number of detected object types is 

to the true number of objects types in the dataset. In our dataset, there are 20 true object 

labels. The motivation for using the metric is to penalize creating an unnecessarily large 

number of classes. For example, creating 4737 unique class labels would result in a 

perfect Class Purity score but each object label would be overfit to a single image. We 

use a curved function that has the maximal value when the number of predicted classes 

𝑐𝑙𝑎𝑠𝑠𝑝𝑟𝑒𝑑  is equal to the true number of classes 𝑐𝑙𝑎𝑠𝑠𝑡𝑟𝑢𝑒 and decreases as those values 

diverge: 

𝐶𝑙𝑎𝑠𝑠 𝐶𝑜𝑢𝑛𝑡 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =
1

(
𝑐𝑙𝑎𝑠𝑠𝑡𝑟𝑢𝑒−𝑐𝑙𝑎𝑠𝑠𝑝𝑟𝑒𝑑

500
)

2

+1

 

Similar to Class Purity, Class Count Divergence calculates values between 0 and 1 

(inclusive), with higher values being better. The value 500 was selected for use in the 

Class Count Divergence based on the size of the dataset, such that the metric would be 

below 0.50 if the number of detected classes was larger than approximately 10% of the 

dataset size. Additionally, we report the Overall Performance of the algorithm as the 

harmonic mean of Class Purity and Class Count Divergence. 

We repeated the experiment 25 times, and Table 1 shows a summary of the results. 

Based on the Class Purity, our approach does a reasonable job detecting novel object 

types and using those to classify images it encounters in the future. As a baseline, when 

input images are randomly assigned to 20  object types (i.e., no novel classes are 

learned), the Class Purity is 0.168. The majority of the mistakes made by the algorithm 

were to provide the same label to objects that are both physically similar and have 



similar parts. For example, many of the four-legged animals were given the same label, 

especially in situations where they were small or occluded. Overall, occlusion had a 

significant impact on performance since it often resulted in very little of the object being 

visible (i.e., < 10%) and no parts information being available. Even for humans, it was 

difficult to know that these highly obscured objects were the objects of interest. In fact, 

it was often the situation that unlabeled objects (i.e., not among the 20 annotated labels) 

were the most prevalent objects in images. By examining the learned class labels, we 

found that our algorithm was learning based on these unlabeled object types. However, 

given that the Class Purity metric only considers the 20 annotated object types, the 

metric is unable to quantify how well the algorithm was able to learn object types that 

were not annotated in the dataset. Overall, these results provide support for H3.  

Table 1. Results of novel object type detection over 25 experimental runs 

Metric Mean Minimum Maximum 
Standard 

Deviation 

Class Purity 0.676 0.572 0.738 0.052 

Object Types 121.7 111 133 6.2 

Class Count Divergence 0.960 0.951 0.968 0.005 

Overall Performance 0.792 0.717 0.838 0.036 

4.4 Number of Object Types 

The results in Table 1 show that our algorithm is learning approximately six times as 

many object types as are labelled in the dataset. This is reasonable performance, 

considering that it would have created 4737 object types had each image been assigned 

its own label, but higher than anticipated. However, our qualitative examination of the 

classifications uncovered that the number of object types is not exclusively a result of 

algorithm error but primarily a result of learning finer-grained object types. For 

example, images annotated as 𝑝𝑜𝑡𝑡𝑒𝑑𝑝𝑙𝑎𝑛𝑡 are largely divided by our algorithm into 

two distinct classes: one for images of fully-grown plants and one for seedling plants. 

To a human, there are clear and obvious distinctions between these two subsets of 

images, providing support that the algorithm learned a meaningful subdivision. 

Numerous other similar examples were found where the algorithm learned meaningful 

finer-grained object types, a selection of which include: full-sized cars vs. go-karts 

(both annotated as car), people in water vs. babies vs. athletes (all annotated as person), 

and locomotives vs. subway trains vs. empty train tracks (all annotated as train). 

However, although a significant number of the additional object types learned by our 

algorithm appear to be meaningful object types, it also learned less meaningful single-

image object types. Although some of those singleton object types are uninteresting or 

redundant, it learned several interesting singleton object types based on unusual images 

in the dataset: a sheep standing in a bus shelter, a train car with a picture of a dinosaur 

painted on it, an alpaca (incorrectly annotated in the PASCAL-Part Dataset as sheep), 

and a Ferris wheel. However, there were also situations where our algorithm 



erroneously subdivided object types, or performed divisions that a human would not 

deem as necessary (i.e., too fine-grained). This qualitative analysis provides partial 

support for H4, but a more detailed analysis will be necessary to definitively prove that 

our algorithm is identifying meaningful object sub-types. 

5 Related Work 

Integrations of Deep Learning and CBR have seen increased interest recently, with 

many researchers exploring how the two approaches can benefit each other. In the 

domain of Human Activity Recognition (HAR), CNNs have been used for feature 

extraction [6]. This work differs from our own in that it uses accelerometer data rather 

than image data, but similarly finds that reasonable results can be achieved with 

instance-based algorithms when features are automatically learned and extracted using 

CNNs. Instance-based retrieval in the HAR domain has also been used to find similar 

existing data that can be used to train a classifier for a new user [7]. Their system also 

uses CNN-extracted features and, like our work, is motivated to allow learning under 

limited data availability. However, their work is focused on classifier personalization 

rather that novel class identification (e.g., they do not detect new types of activities that 

have not been seen before). They have also examined how Siamese Neural Networks 

can be used to learn similarity functions [8], and such an approach could potentially be 

used in our algorithm to improve retrieval. Deep Learning has been combined with 

CBR to generate novel recipes that are both surprising and plausible [9]. However, this 

differs from our own work in that their system creates novel items rather than 

discovering previously unknown items.  

Case-based reasoning has been used for a variety of image processing and computer 

vision tasks [10]. One application area that has seen particular interest is medical CBR 

(e.g., [11-13]), primarily due to the prevalence of medical imagery in patient files and 

the need to retrieve similar images to aid in diagnosis. However, unlike our work, the 

majority of CBR approaches rely on hand-crafted features rather than learned features 

(e.g., [14-16]). Additionally, while CBR systems are often used for image retrieval and 

classification, to the best of our knowledge none are able to detect novel object types 

(or, more generally, novel classes in non-image systems). Some systems may be able 

to perform outlier detection (e.g., when no similar cases are retrieved) but do not 

attempt to learn novel object types from these outliers. For example, rather than attempt 

to generate a novel object label, a CBR system may present an input image to a domain 

expert for manual labelling. Although having human annotations is valuable, it is not 

always practical when a system is operating autonomously for long periods of time.   

The most similar work to our own involves classifying webpages based on 

multimedia data (e.g., images) rather than only the contained text [17]. Like our 

approach, they use CNNs to perform feature extraction from images and use those 

features during case retrieval. The primary difference between their work and our own 

is that they only classify images into predefined classes, so no novel object discovery 

is performed. They do perform outlier detection, but that is to identify mislabeled or 



irrelevant images contained in a webpage rather than to detect novel webpage themes; 

outliers influence the case structure but do not modify the set of class labels. 

As we mentioned previously, existing approaches to Computer Vision tend to focus 

on object classification (e.g., CNNs [1]) or detecting regions containing objects (e.g., 

R-CNNs [2]). These approaches rely on a predefined set of object types, with fewer 

works examining novel object discovery. Existing approaches for unsupervised object 

class discovery are similar to our own work in that they learn from images containing 

a single object type per image [18-20]. However, as we mentioned previously, the 

images we use in this work often contain multiple objects in each image but with only 

one of the objects labelled by human annotators. The primary difference between these 

approaches and our work is that they perform offline object detection using the entire 

dataset. Our approach is both online and incremental; novel object types are detected at 

run-time based on the content of input images. To the best of our knowledge, no other 

approaches exist to allow online and incremental unsupervised object discovery. As we 

discussed previously, existing computer vision systems can only identify that an input 

image is unlikely to be of a known object type. They do not provide online labels for 

these unknown objects or learn from them (i.e., how to classify future images of that 

object type). However, our approach can perform such labelling and learning, and can 

learn after retaining only a single case. 

Our algorithm learns in an unsupervised manner when no expert-annotated training 

cases are provided to it (e.g., as in our evaluation that started with an empty case base). 

As such, it has many similarities to clustering since it is grouping input images by 

assigning them generated class labels. Many traditional clustering algorithms, like k-

means [21], divide data into a fixed number of partitions, whereas our approach 

dynamically creates new object types as necessary. Hierarchal clustering methods, like 

single-linkage [22], are able to dynamically increase the number of clusters created but 

do not cluster incrementally; the entire dataset must be provided as a batch. Incremental 

clustering algorithms have been developed, such as incremental k-means [23], that 

allow data points to be added sequentially rather than as a batch. However, even 

incremental clustering algorithms rely on comparing each data point to a set of cluster 

centroids. Our approach compares data points (i.e., input images) to any existing case 

in the case base. This is important given the two-stage retrieval process we use. Since 

retrieval is based on both an image’s feature vector representation and its observable 

parts, there can be a high degree of variability amongst cases of the same object type. 

For example, since the similarity thresholds used by our algorithm may be relatively 

low (e.g., 0.45 in our experiments), cases of the same object type may not have highly 

similar feature vector representations (i.e., a medium feature vector similarity but high 

parts similarity). Similarly, cases of the same object type may have high feature vector 

similarity but only medium parts similarity. If only cases representing class centroids 

were retrieved, an input image could appear dissimilar to all of the centroids (i.e., 

treated as a novel object type) but would have been similar to one or more of the non-

centroid cases. Additionally, unlike clustering algorithms, our algorithm can be used 

for both classification and novel class discovery. Without any labeled data, it performs 

classification based on its generated object type labels. However, if some cases are 

provided using labelled training data (i.e., some supervised learning was performed) 



the algorithm can either generate novel class labels or perform classification based on 

existing object type labels. 

6 Conclusions 

This paper described a method for detecting novel object types in images using a 

combination of case-based reasoning and Convolutional Neural Networks. Our 

approach leverages the automated feature learning and extraction provided by CNNs 

while taking advantage of CBR’s ability to perform incremental learning with relatively 

few training instances. A set of nearest neighbors are initially retrieved based solely on 

similarity between extracted image features, with subsequent retrieval based on the 

similarity between observable object parts. Although our approach leverages 

observable object parts during case retrieval, it can be used even if such information is 

unavailable. Additionally, since CBR is an instance-based learner, it does not abstract 

the object parts contained in images, thereby allowing them to be directly used during 

similarity calculation. If a CNN was to include object part information it would likely 

learn an abstraction of what parts exist in a class. For example, it would learn what parts 

are generally observable in images of dogs, possibly losing valuable information 

necessary to detect uncommon images, like a dog with most of its observable parts 

obscured by a costume it is wearing. 

Our evaluation was performed using realistic images from the publicly available 

PASCAL-Part Dataset. The initial results demonstrated the ability of a CBR system to 

classify images using CNN-extracted feature vectors, and the performance 

improvement provided by including object parts information during retrieval. We also 

provided evidence of our algorithm’s ability to be used to detect novel object types. 

Even when the algorithm had an empty initial case base and no background knowledge 

about object types, it was able to detect novel object types and use them to classify 

subsequent images. One important finding of these experiments was that the algorithm 

appeared to learn finer-grained object types than those provided by the human dataset 

annotators, based on an initial qualitative analysis. 

Several areas of future work remain. First, while we briefly discussed how our 

approach could be used in parallel with a full CNN (i.e., including fully-connected 

layers), we have not provided a full methodology to integrate them. In this paper, we 

focused on learning without an existing dataset, so it would not be possible to train a 

CNN in such a situation. However, if a subset of existing object types are known and 

have sufficient data, a full CNN could be used to classify those known types while our 

approach could handle novel object type detection. Second, our approach learns a flat 

object type hierarchy. Future work will examine how novel object types can be 

compared to existing types to determine relationships (e.g., a fully-grown plant is 

similar to a seedling plant) or to provide explanations (e.g., “I think this is different than 

a fully-grown plant because it doesn’t have any leaves”). Third, we used ground truth 

parts information, but future work will detect both parts and object types. Finally, we 

plan to integrate our work with existing R-CNN architectures to allow learning with 

images containing multiple annotated objects. 
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