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Abstract. Deep Learning methods have shown a rapid increase in pop-
ularity due to their state-of-the-art performance on many machine learn-
ing tasks. However, these methods often rely on extremely large datasets
to accurately train the underlying machine learning models. For super-
vised learning techniques, the human effort required to acquire, encode,
and label a sufficiently large dataset may add such a high cost that de-
ploying the algorithms is infeasible. Even if a sufficient workforce exists
to create such a dataset, the human annotators may differ in the quality,
consistency, and level of granularity of their labels. Any impact this has
on the overall dataset quality will ultimately impact the potential perfor-
mance of an algorithm trained on it. This paper partially addresses this
issue by providing an approach, called NOD-CC, for discovering novel
object types in images using a combination of Convolutional Neural Net-
works (CNNs) and Case-Based Reasoning (CBR). The CNN component
labels instances of known object types while deferring to the CBR com-
ponent to identify and label novel, or poorly understood, object types.
Thus, our approach leverages the state-of-the-art performance of CNNs
in situations where sufficient high-quality training data exists, while min-
imizing its limitations in data-poor situations. We empirically evaluate
our approach on a popular computer vision dataset and show significant
improvements to object classification performance when full knowledge
of potential class labels is not known in advance.

Keywords: Deep Learning · Novel Object Discovery · Computer Vision
· Convolutional Neural Networks.

1 Introduction

Deep Learning has seen rapid advancement in recent years, setting benchmarks
for many machine learning tasks in the areas of computer vision, natural lan-
guage processing, and game AI. While these deep neural networks are fundamen-
tally the same as the perceptrons [14] of the late 1960s, they leverage dramatic
improvements in the availability of computational resources and training data
to significantly outperform their predecessors. In particular, the field of com-
puter vision has benefited from the application of Convolutional Neural Net-
works (CNNs) [6] that are able to use massive image datasets to learn relevant



image features rather than relying on hand-engineered feature sets. Additionally,
this field has been able to utilize a seemingly endless streams of crowdsourced
labeled images from sources like Facebook, Instagram, Twitter, and Reddit.

However, the ability of these deep learning architectures to learn is directly
tied to the availability of high-quality, human-labeled data to use during training
[16]. If training data is either rare or low-quality, deep learning systems will have
difficulty accurately learning from the data. In the case of rare data, it may be
possible to gather more data over time as more images become available (e.g.,
as a new model of mobile phone is released, when a new species is discovered
and documented). The more difficult long-term problem is the quality of data, as
demonstrated by the age-old idiom “garbage in, garbage out”. In some situations,
this can be erroneous labels being given to training instances. For example, if an
annotator labels an image of a car as a tree, the learning system will attempt
to learn based on that erroneous data. Similarly, an annotator may only label a
subset of objects in complex scenes. In a bedroom scene, the annotator may label
bedclothes, pillows, and nighstands, but treat other objects as background, like
alarm clocks or lamps. Furthermore, the system’s learning will be constrained by
the level of granularity used during labeling and the annotator’s term preference.
For example, the choice of whether to use a high-level label such as animal or pet,
limit the classification granularity of a vision system compared to using lower-
level labels such as cat, European cat, or Russian Blue cat. These issues are
compounded by the fact that, given the scale of datasets used by Deep Learning
systems, it is impractical for a single annotator to label an entire dataset. Instead,
the annotation work is generally crowdsourced from hundreds or thousands of
human annotators. It is unlikely that all of these annotators will be consistent,
error-free, and complete in the labels they provide. Thus, the overall quality
of the labeled datasets, and ultimately the potential performance of a machine
learning system trained on the datasets, is bound by the quality of the human
annotators.

We propose a method, called Novel Object Discovery Using Convolutional
Neural Networks and Case-Based Reasoning (NOD-CC), for object discovery and
classification in images that leverages the high-end performance of CNNs while
reducing their reliance on large sources of pre-labeled training data. Instead,
NOD-CC attempts to classify an input image using a trained CNN, but can
dynamically switch to using a case-based classification approach if the CNN is
not confident in its prediction. The primary motivation of this approach is that
while CNNs require a large collection of training images of each object type to
learn successfully, a CBR system can be used to learn using as few as one training
instance. Thus, the CBR component can be used to discover novel object types
and provide classification of those types until such time as there are sufficient
training examples to retrain the CNN.

In our previous work [23], we demonstrated how CBR can leverage the au-
tomated feature extraction capabilities of CNNs, and perform novel object dis-
covery and classification. In that work, which we will refer to as Novel Object
Discovery using Case-Based Reasoning (NOD-CBR), the convolutional layers of



a CNN (i.e., the CNN architecture excluding the fully-connected neural network
layers) are used to convert input images into a feature vector representation.
That feature vector representation, and optionally any detectable object parts
that are visible, is used to retrieve similar cases and determine if an object of
that type has been encountered previously. NOD-CC significantly extends NOD-
CBR and provides the following key contributions:

– A hybrid architecture that includes both the NOD-CBR system as well as a
fully functional CNN (i.e., a CNN that performs object classification rather
than purely feature extraction).

– An architecture that provides both the high-end performance of CNNs as
well as the lazy, data-poor learning capabilities of CBR.

– A series of decision algorithms that can dynamically select whether to use the
CNN or CBR components of our architecture to perform object classification.

– An online method for object classification, novel object discovery, novel ob-
ject labeling, and learning.

– An empirical evaluation that demonstrates the utility of NOD-CC when the
full set of object types is not known in advance.

The remainder of this paper describes how NOD-CC combines Convolutional
Neural Networks and Case-Based Reasoning to classify images while also per-
forming novel object discovery. Section 2 provides an overview of similar research
in both Deep Learning and CBR. Section 3 describes our hybrid architecture that
combines CNNs and CBR for object classification and discovery. Our empirical
evaluation is presented in Section 4, and provides evidence to support our claims
of the utility of NOD-CC. Finally, in Section 5 we summarize our findings and
identify important future research directions.

2 Related Work

The intersection of CBR and CNNs has been previously examined in the domains
of Human Activity Recognition (HAR) and medicine. In many HAR settings,
usage of high-fidelity wearable sensors for movement are used for feature extrac-
tion [20], and to further train classifiers for new users [19]. Using multi-channel
medical device EEG signals, researchers have also conducted analysis on pat-
terns of electrical signals from the brain to set a baseline for seizure detection
[24], and then using a case base of seizure-like data to classify unseen patients
[15]. The usage of actigraphy sensors provided large amounts of medical data
that can be used to predict sleep patterns, sleep quality, and sleep activity using
Deep Learning techniques such as Multilayer Perceptrons, Convolutional Neural
Networks, and many variants of Recurrent Neural Networks [21]. By leveraging
this high-quality sensor data, it is possible to preserve existing patient privacy
in medical information while training an initial model, or fine tuning a model
for new or changed data [18].

CBR has also seen a wide array of uses for image processing in medical
domains [17]. Despite the wide usage and success of CBR in a variety of medical



domains (e.g., [12] [10] [7]), most applications require hand-crafted features (e.g,
[1] [13] [11]) generated by Subject Matter Experts (SMEs), a practice which does
not scale to the Exascale-level computation and learning that Deep Learning
making possible [8].

A similar application of CBR to our novel object detection system is a website
classifier on sites by using image data from the websites instead of the textual
data [11]. Although this work also uses the feature vector from later stages of
a Convolutional Neural Network, this was used to classify the images from the
website into existing categories without leaving the possibility for novelty. Also
different from other previous works is that our system’s novel object detection
system performs unsupervised learning in an online, incremental manner, not
doing offline dataset analysis to search for out of distribution classes.

3 Hybrid CNN-CBR Architecture

Our approach, Novel Object Discovery Using Convolutional Neural Networks
and Case-Based Reasoning (NOD-CC), is a hybrid of two learning and classifi-
cation methods (Figure 1). The Convolutional Neural Network component (la-
beled as CNN) is intended to classify images of object types for which sufficient
training instances are available. Additionally, it converts raw images into feature
vectors for use by the Case-Based Reasoning component (labeled as CBR). The
CBR component is intended to learn from and classify object types that are not
classifiable by the CNN. A meta-algorithm, labeled as Controller, determines
whether the classification from the CNN or CBR component is used to provide
final image classification. In the following sub-sections, we will provide details
about each of the three primary components: CNN, CBR, and Controller.

Input Image

ClassificationCBR

Classification

Parts Detector
(optional)

Controller
Classification

CNN

Extracted
Features

Parts

Fig. 1. Architecture of the NOD-CC image classification system. The classifications
are shown in green and are produced by the three decision algorithms shown in blue.
The inputs to the decision algorithms are shown in yellow, the input image in orange,
and the optional parts detector in red.



3.1 Convolutional Neural Network Component

When used for object classification, a Convolutional Neural Network takes as
input an image and outputs a classification for what type of object is visible in the
input. CNNs contain two primary stages: convolutional and pooling layers, and
fully-connected layers. The convolutional and pooling layers take the raw image
input and extract a feature vector containing the relevant features that were
learned during training. For example, these features may include the presence
(or absence) of certain edges, shapes, or complex geometric objects (composed of
many shapes). This feature vector is used as input to the fully-connected layers,
which then use the feature vector to determine a classification for the image. In
NOD-CC, the feature vector computed by the convolutional and pooling layers
is also provided to the CBR component. This is done to leverage the ability of
CNNs to automatically learn and perform feature extraction, and avoids any
manual feature engineering for the CBR component.

NOD-CC is agnostic to the particular CNN architecture used; since all CNNs
can produce an intermediate feature vector (which can be provided to the CBR
component) and a classification, any architecture can be used. In our work, we
use the Inception-v3 architecture [22]. We selected this architecture based on
it having been shown to achieve similar classification performance compared to
more computationally expensive architectures such as ResNet [5] and ResNeXt
[25]. An additional benefit of using the Inception-v3 architecture is that it allows
the possibility of future extensions of NOD-CC, as part of future work, to use a
hierarchical image grammar. This would allow not only novel object discovery
but also hierarchical class relationships between classes (e.g., that a novel object
type is a subclass of an existing object type). Inception-v3 facilitates this by
using a set of auxiliary classifiers, used to combat the vanishing gradient problem
during training, that could be used to facilitate predictions at multiple levels of
granularity.

3.2 Case-Based Reasoning Component

Although CNNs can achieve high accuracy when classifying objects in images,
their performance is dependent on the set of class labels (i.e., object types)
contained in the training data. If the training data contains images labeled with
the set of labels L = {l1, . . . , ln}, a CNN (and most other learning algorithms)
will only be able to classify those n object types. Any images of objects with
a label lm (where lm /∈ L) will either be misclassified as one of the labels in
L or unclassified (i.e., the CNN will output a low confidence for all labels such
that an unknown output is produced). This issue is particularly problematic
for CNNs since they require a large set of example images labeled as lm before
they be accurately trained to predict that object type. CBR, on the other hand,
likely does not have the same peak classification performance on massive image
datasets but is capable of one-shot learning. Once a single image with label lm
is encountered, it can be stored as a case and reused to classify other instances
of that object type.



For the CBR component of NOD-CC, we use our previous case-based novel
object discovery approach, NOD-CBR [23]. NOD-CBR stores each training im-
age Ii ∈ I (where I is the set of all images) as a case Ci in the case base CB
(Ci ∈ CB). Cases are encoded as triplets containing the feature vector represen-
tation of the image Fi, a set of detectable image parts Pi, and the ground truth
object label li: Ci = 〈Fi, Pi, li〉. Using case-based reasoning nomenclature, the
feature vector and parts set of the image are the problem, and the class label is
the solution.

Recall from the previous subsection that the convolutional and pooling layers
of the CNN component convert a raw input image into a feature vector Fi =
〈f1, . . . , fv〉 ∈ F (where v is an integer value defined by the CNN architecture
and F is the set of all feature vectors). Thus, both the CBR component and
the fully-connected layers of the CNN component use an identical feature vector
representation as produced by the convolutional and pooling layers mapping
from images to features: features : I → F .

Each case also contains the set of parts Pi ⊂ P that are detectable in the
input image, where P is the set of all parts that may be detected. These parts
are generic lower-level structures of an image, like hands, feet, wheels, or wings.
Since parts are generic, different objects types can share parts (e.g., both dogs
and cats have legs, heads, ears, tails). However, even images of the same object
type may have different detectable parts based on variations in pose, occlusion, or
photographic style. For example, in Figure 2, the cats do not have an identical set
of detectable parts due to different poses and image framing. Our work assumes
the presence of a parts extractor that returns the set of detected parts in an
image: parts : I → P. However, as we will discuss shortly, while our approach
can leverage parts information it is not necessary for classification (i.e., it can
classify using only the feature vector).

The NOD-CBR object discovery and classification algorithm is shown in Al-
gorithm 1. While full details of the algorithm are described in our previous work
[23], we will provide a brief overview of its reasoning process. The algorithm
takes as input an image Iin, a case base of training images CB, the k value
to use when retrieving similar cases from the case base, the threshold λf used
to determine if two images have similar features, and the threshold λp used to
determine if two images have similar parts. The output is the class label for the
image. Given an input image, the algorithm will extract the feature vector rep-
resentation (i.e., from the CNN component) and the set of detectable parts (i.e.,
from the parts extractor). If the either the case base is empty (Lines 4-5), no
cases are sufficiently similar to the input image’s feature vector representation
(Lines 7-9, based on a threshold λf ), or there are cases with similar feature vec-
tors but their detectable parts are not similar (Lines 11-17, based on a threshold
λp), then NOD-CBR generates a new label for the input image. In that situa-
tion, it believes the image to be of a newly discovered object type. Otherwise
(Line 19), it uses the class label from the the most similar retrieved case. In all
situations, a new case is retained and added to the case base (Line 20).



Fig. 2. The variation in pose of the two cats, as well as the framing of the picture
can drastically effect the observable parts. The cat on the left in the so-called catloaf
position is hiding his legs under his torso, and the way the picture is framed does not
show its tail, while the cat on the right has all major parts visible.

An advantage of this approach is that it can start from a variety of initial case
base configurations: an empty initial case base if no prior knowledge exists, a case
base containing cases for all images used to train the CNN, or a sampling of cases
of each object type if the full training set is too large. It should also be noted
that while the generateLabel() function in Algorithm 1 will generate a unique
label for a newly discovered object type, it will likely not be a meaningful class
label (e.g., returning the label object5849 rather than lion). However, images
with newly generated labels (i.e., the newly discovered object types) could be
presented to a human expert, either online or offline, to receive more meaningful
object labels.

3.3 Controller Component

The CNN component and CBR component both output a classification for the
input image. However, there is no guarantee that they will predict the same
object type. The role of the controller is to receive as input the predictions from
both components and output a final predicted class label.

In our work, we use three different Controller strategies:

– Always CNN: The classification output by the CNN component is used
regardless of the the CBR component’s classification. This is equivalent to
the CNN component operating in isolation.

– Always CBR: The classification output by the CBR component is used
regardless of the the CNN component’s classification. This is equivalent to
the CBR component operating in isolation.



Algorithm 1: NOD-CBR algorithm for image classification and novel
object discovery

Function: classify(Iin, CB, k, λf , λp) returns lin

1 Fin ← features(Iin);
2 Pin ← parts(Iin);
3 lin = ∅;
4 if CB = ∅ then
5 lin ← generateLabel();

6 else
7 topK ← retrieveTopK(Fin, CB, k, λf );
8 if topK = ∅ then
9 lin ← generateLabel();

10 else
11 nn = ∅;nnSim = −1;
12 foreach Ci ∈ topK do
13 sim← partSim(Pin, Ci.Pi);
14 if sim > nnSim and sim > λp then
15 nn = Ci;nnSim = sim;

16 if nn = ∅ then
17 lin ← generateLabel();

18 else
19 lin ← nn.li;

20 CB ← CB ∪ 〈Fin, Pin, lin〉 ;
21 return lin;

– Conditional CBR: The classification of the CNN component is used unless
the CNN has low confidence in its prediction. This occurs when none of the
class labels are above an abstention threshold λa. In situations where the
CNN does not output a class label, the prediction of the CBR component is
used.

4 Evaluation

Our empirical evaluation demonstrates the object discovery and classification
performance of NOD-CC when the complete set of object types that will be
encountered at run-time is not known in advance. More specifically, the following
hypotheses are evaluated:

H1: The CNN component will be unable to correctly classify any object
types not present in the training set.
H2: The CBR component, NOD-CBR, will outperform the CNN component
when the training images do not contain instances of all object types that
may be encountered at run-time.



H3: NOD-CC will achieve higher classification performance than the CNN
component alone when the training images do not contain instances of all
object types that may be encountered at run-time.
H4: NOD-CC will achieve higher classification performance than NOD-CBR
alone when the training images do not contain instances of all object types
that may be encountered at run-time.

4.1 Dataset

The image dataset used during our evaluation is the publicly available PASCAL-
Part dataset [2], a subset of the images from the Visual Object Classes Challenge
2010 dataset [3]. The dataset contains images with 20 coarse-grained ground
truth object types: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow,
dining table, dog, horse, motor bike, person, potted plant, sheep, sofa, train, and
tv monitor. Additionally, each image has between 0 and 24 annotated detected
parts. However, as discussed previously, images may differ on the number of
annotated parts based on the quality and properties of each image.

Other properties of the PASCAL-Part dataset that make it appropriate for
this evaluation include the variation between scale, orientation, pose, lighting,
and ambient setting of the objects. The images include many complex, real-
world environments so there is a high-degree of image clutter, object occlusion,
and background scenes. For example, one image of a person is in a forested
environment where less than 10% of the visible pixels are of the person, while in
another a person takes up 90% of the visible pixels but is partially occluded by
the water they are swimming in.

Our current work is focused on classifying a single object type in each im-
age. To facilitate this, we filtered the PASCAL-Part dataset to only the images
that contain a single class label, thereby reducing the dataset from 10, 103 im-
ages to 4, 737. While this may seem like a limitation of our approach, many
computer vision applications first propose sub-regions of a cluttered image to
classify (e.g., the region proposal stage of a Region-Based Convolutional Neural
Network [4]), and then provide at most a single object label for each sub-region
(i.e., a traditional CNN classification). Additionally, even though each image
only contains a single labeled object, nearly all of the images contain a variety
of unlabeled background objects. Since the size of the filtered PASCAL-Part
dataset is quite small by Deep Learning standards, the CNN component used
in our work, the Inception-v3 architecture, was pretrained on the much larger
Open Images v4 dataset [9] and then fine-tuned using the filtered PASCAL-Part
dataset. It should be noted that there is no overlap between the images con-
tained in the two datasets (i.e., pretraining on Open Images v4 will not provide
any images from the testing sets we use).

For our experiments, we used the filtered PASCAL-Part dataset to create 20
experimental datasets. The original dataset comes pre-partitioned into training
and testing sets. For each of the 20 experimental datasets, 5 of the 20 object types
were selected at random (such that no two experimental datasets used the same
set of 5 object types). All images of the 5 selected object types were removed



from the training set but left in the testing set. Thus, all testing sets contain
images of all 20 object types, but the training sets only contained images of
15 object types. These experimental datasets were partitioned in advance, such
that all experimental variations would work on an identical set of datasets.

4.2 Scoring Metrics

Our previous work [23] demonstrated the ability of NOD-CBR, when starting
from an empty case base, to discover and classify novel object classes. More
specifically, we evaluated its ability to maximize class purity (i.e., provide the
same generated label to images of the same object type) while minimizing the di-
vergence in the number of discovered classes from the true number of classes (i.e.,
not over-partitioning the data). Given that we have previously demonstrated
the efficacy of NOD-CBR on these tasks, our evaluation will measure the per-
formance of our hybrid NOD-CC architecture’s classification performance when
class labels from the testing set are not present in the training set (i.e., novel
object types are encountered at run-time).

For each testing image provided to NOD-CC, there are four possible ways in
which the classification prediction of NOD-CC can align with the image’s ground
truth label, ordered from best to worst:

1. Correct: The class label predicted by NOD-CC matches the ground truth
class label. This is the ideal situation and is considered to be a 100% match.
C represents the percentage of testing instances labeled correctly.

2. Known Novel: NOD-CC correctly predicts that the class label was not
one of the class labels in its training set. Since a random guess would cor-
rectly predict a novel class 25% of the time (since 5 of 20 classes are not in
the training set), we consider this to be a 25% match. KN represents the
percentage of testing instances labeled as known novel.

3. Abstention: NOD-CC does not have enough confidence in any of its po-
tential predications, so it abstains from making a prediction. Since guessing
a class label randomly would provide the correct prediction approximately
5% of the time (since there are 20 classes), we consider an abstention to be a
5% match. Essentially, this prevents NOD-CC from being forced to provide
a random guess to boost its accuracy and allows it to abstain when it is
unsure. A represents the percentage of testing instances that were abstained
from labeling.

4. Incorrect: NOD-CC predicts a known class label (i.e., a class label present
in the training set) but it does not match the ground truth class label. This
is incorrect and considered to be a 0% match. I represents the percentage
of testing instances labeled incorrectly.

During each evaluation, each image in the testing dataset is used as input to
NOD-CC and a comparison between the predicted class and ground truth class
label is used to calculate our scoring metrics: accuracy (ρA), precision (ρP ),
recall (ρR), and F1 score (F1). Although the F1 score calculation uses the well-
established equation, we use modified accuracy, precision, and recall functions



based on the previous discussions of the four ways NOD-CC’s classification can
align with the ground truth classification. These metrics have a new term W
introduced that provides weighted credit based on the correctness of the predic-
tion (i.e., Correct, Known Novel, Abstention, or Incorrect). Thus, more correct
prediction types are preferred using these metrics.

W = 1.00× C + 0.25×KN + 0.05×A+ 0.00× I

ρA =
W × (TP + TN)

TP + TN + FP + FN
F1 = 2

ρP × ρR
ρP + ρR

ρP =
W × TP
TP + FP

ρR =
W × TP
TP + FN

For every class label in the dataset (all training classes unseen at training time
are considered to be of a single class labeled as Novel Class), we compute the ac-
curacy (ρA), precision (ρP ), recall (ρR), and f-score (F1). For each experimental
run (i.e., providing the testing instances from a single experimental dataset to
Algorithm 1) the mean of each of the class-level metrics is computed. We further
vary our experiments by randomizing the order in which testing instances are
provided to Algorithm 1. This is important since it is a learning algorithm (i.e.,
new cases are stored) so the order of testing instances may impact performance.
For each of the 20 experimental datasets, 20 random orderings were used. This
resulted in 400 total experimental runs (20 datasets × 20 orderings) and the
reported results are the averages of the metrics over all 400 runs.

4.3 Always CNN Variant

As a baseline, we evaluated the Always CNN variant of NOD-CC (i.e., when
the CBR component is ignored). The abstention parameter λa was determined
through cross-validation on the entire dataset, such that the F1 was maximized.
Recall that the Always CNN variant is unable to learn online; it is only able
to abstain from providing a label. Assuming a perfectly balanced set of classes,
since the CNN is only trained on 15 classes with the remainder only appearing
in the testing set, its maximum accuracy is bounded as: max(ρA) = ( 15

20 ×
100%) + ( 5

20 × 5%) = 76.3%. In reality, due to the imbalance of the datasets
the true maximum accuracy was lower - 63.9% in our experiments. We report an
additional metric, Relative Mean Accuracy (RMA), that measures the fraction of
max(ρA) that was achieved. We also report the minimum (Min. ρA), maximum
(Max. ρA), median (Med. ρA) and standard deviation (σ ρA) of the accuracy
(i.e., when examining each experimental run individually). The performance of
Always CNN is shown in Table 1.

One item of note in these baseline results is that the precision is significantly
higher than the recall. This is intuitive in a system that uses a threshold to
determine confidence in classifications (i.e., λa); the system only provides clas-
sifications when it is confident in its predictions and thereby lowers the number



Table 1. Performance of the various NOD-CC configurations

Variant ρA ρP ρR F1 RMA Min. ρA Max. ρA Med. ρA σ ρA

Always CNN 42.99 61.31 37.98 44.32 67.27 25.98 61.27 41.80 9.15

Always CBR
w/ Parts

58.45 54.30 59.66 56.18 81.70 43.49 68.93 61.33 6.57

Always CBR
w/o Parts

49.82 49.77 49.41 48.21 69.67 37.49 63.44 59.78 7.27

Conditional CBR
w/ Parts

59.90 56.52 60.98 58.17 83.77 54.00 64.12 60.35 2.66

Conditional CBR
w/o Parts

53.73 51.39 53.75 52.44 75.15 49.84 61.91 55.23 2.67

of false positives. In these results, as expected, the Always CNN approach is
never able to correctly label unknown classes, providing evidence to support H1.

4.4 Always CBR Variant

As an additional control, we use the Always CBR variant of NOD-CC (i.e.,
the CNN always abstains, so only CBR is used). This variant was evaluated
both with observable parts information (i.e., a parts detector component was
available) and without. When parts are not available, Algorithm 1 only uses the
image features during retrieval. For these experiments, the CBR component was
initially given a case base containing all training instances.

Always CBR has a higher theoretical maximum accuracy than Always
CNN because it has the ability to label an image as a novel class rather than
abstaining: max(ρA) = ( 15

20 × 100%) + ( 5
20 × 25%) = 81.3%. Based on the class

imbalance of the datasets, the true maximum accuracy was determined to be
71.5%. Similar to with Always CNN, this was used to calculate the RMA. The
results are shown in Table 1.

Although the availability of detectable object part information is beneficial,
Always CBR is able to outperform Always CNN even without parts. The
only metric Always CNN performs better on is precision. As we mentioned
previously, this is a result of the CNN algorithm being able to abstain, thereby
lowering its false positive rate. Overall, the results demonstrate the benefits
CBR can provide when the full set of object classes is not known in advance.
Even considering the performance of these approaches relative to their maximum
accuracy (i.e., RMA), Always CBR still outperforms Always CNN. These
results provide evidence to support H2.

4.5 Conditional CBR Variant

In this variant, we use both the CBR and CNN components (i.e., our full archi-
tecture). As described previously, the classification from the CNN is used unless
the CNN abstains. If the CNN does abstain, the CBR component is used for clas-
sification. We use the same configurations (i.e., λa threshold and initial case base)



for the CNN and CBR components as described in the previous experiments.
Similar to the Always CBR variant, we evaluate the Conditional CBR both
with and without parts information. The results are shown in Table 1. Across all
metrics, except precision, both variants of Conditional CBR outperform Al-
ways CNN. This demonstrates that the ability of CBR to dynamically detect
and learn from previously unseen class types provides significant benefit to the
CNN component. In situations where the CNN abstains, the CBR component is
able to provide assistance. This provides support for H3.

When comparing Always CBR to Conditional CBR, the Conditional
CBR variants outperform across all five core metrics (accuracy, precision, recall,
f-score, and RMA). This includes both the variants that use parts information
as well as those that do not. The results show that the Conditional CBR
performance has fewer extreme results (i.e., minimums and maximums closer
to the mean) and significantly lower standard deviation. This is beneficial be-
cause it provides both improved performance as well as less uncertainty about
the potential performance on an unknown dataset. Additionally, these results
demonstrate the combination of both the CNN and CBR components are nec-
essary for maximum performance; neither module is sufficient for novel object
discovery on their own. These results provide support for H4.

5 Conclusions and Future Work

In this work we described NOD-CC, a hybrid architecture that uses Case-Based
Reasoning and Convolutional Neural Networks to discover novel object types
during the image classification process. NOD-CC leverages the automated fea-
ture extraction and image classification performance of CNNs while minimiz-
ing their requirement for large, pre-labeled training datasets by using CBR’s
instance-based learning capabilities. NOD-CC can be used with any CNN imple-
mentation so it is not tied to a specific CNN architecture, training methodology,
or parameter selection. This is particularly important given the rapid advance-
ment in the field of CNNs.

Additionally, NOD-CC can use detected object parts to further improve its
performance, although it performs well even if such additional information is
unavailable. We evaluated our approach on a publicly available image dataset
and showed NOD-CC had improved performance over a CNN or CBR module
alone. Our results demonstrated that NOD-CC was able to discover previously
unknown classes of objects (i.e., not represented in training data), learn from a
single instance of the novel object type, and classify future instances of those
objects. Additionally, NOD-CC performed these tasks without compromising
the discriminatory power of the CNN.

Future work will involve using the WordNet hierarchy in conjunction with
the hierarchical multi-class capabilities afforded by Inception-style architectures
in order to perform hierarchical clustering of classes. Thus, a novel class could
be placed in a hierarchy relative to known classes, possibly revealing a parent-
child relationship. For example, if an image dataset contained labeled images



of balloons and baskets, it could be learned that they are related to a newly
discovered object type, an image of a hot air balloon. Similarly, textual relations
between the known class labels could be used to generate a more semantically
meaningful label for the novel object type (e.g., balloon basket). We also wish
to investigate additional methods for using CBR for classification. Even in our
dynamic approach described in this paper, we set an abstaining threshold λa for
detection to be used unilaterally across all classes. There is an intuitive reason
to believe that a CBR system (i.e., a meta-algorithm) for determining when to
deploy a second CBR system (i.e., an image classifier) may be useful in this
effort.
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11. López-Sánchez, D., Corchado, J.M., Arrieta, A.G.: A CBR system for efficient face
recognition under partial occlusion. In: Proceedings of the International Conference
on Case-Based Reasoning. pp. 170–184. Springer (2017)

12. Macura, R.T., Macura, K.J.: MacRad: Radiology image resource with a case-based
retrieval system. In: Proceedings of the International Conference on Case-Based
Reasoning. pp. 43–54. Springer (1995)

13. Micarelli, A., Neri, A., Sansonetti, G.: A case-based approach to image recognition.
In: Proceedings of the European Workshop on Case-Based Reasoning. pp. 443–454.
Springer (2000)

14. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry.
MIT Press (1969)

15. Page, A., Turner, J., Mohsenin, T., Oates, T.: Comparing raw data and feature
extraction for seizure detection with deep learning methods. In: Proceedings of
the International Florida Artificial Intelligence Research Society Conference. pp.
284–287 (2014)

16. Patrini, G., Rozza, A., Menon, A., Nock, R., Qu, L.: Making deep neural networks
robust to label noise: A loss correction approach. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 2233–2241 (2017)

17. Perner, P., Holt, A., Richter, M.: Image processing in case-based reasoning. Knowl-
edge Eng. Review 20(3), 311–314 (2005)

18. Ravi, D., Wong, C., Lo, B., Yang, G.Z.: A deep learning approach to on-node
sensor data analytics for mobile or wearable devices. IEEE Journal of Biomedical
and Health Informatics 21(1), 56–64 (2017)

19. Sani, S., Massie, S., Wiratunga, N., Cooper, K.: Learning deep and shallow features
for human activity recognition. In: Proceedings of the International Conference on
Knowledge Science, Engineering and Management. pp. 469–482. Springer (2017)

20. Sani, S., Wiratunga, N., Massie, S.: Learning deep features for kNN-based hu-
man activity recognition. In: Proceedings of the ICCBR Workshops: Case-Based
Reasoning and Deep Learning Workshop. pp. 95–103 (2017)

21. Sathyanarayana, A., Joty, S., Fernandez-Luque, L., Ofli, F., Srivastava, J., Elma-
garmid, A., Arora, T., Taheri, S.: Sleep quality prediction from wearable data using
deep learning. JMIR Mhealth and Uhealth 4(4), e125 (2016)

22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 2818–2826 (2016)

23. Turner, J.T., Floyd, M.W., Gupta, K.M., Aha, D.W.: Novel object discovery us-
ing case-based reasoning and convolutional neural networks. In: Proceedings of the
Internation Conference on Case-Based Reasoning. pp. 399–414. Springer Interna-
tional Publishing (2018)

24. Turner, J., Page, A., Mohsenin, T., Oates, T.: Deep belief networks used on high
resolution multichannel electroencephalography data for seizure detection. In: Pro-
ceedings of the AAAI Spring Symposium Series: Big Data Becomes Personal:
Knowledge into Meaning (2014)

25. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transfor-
mations for deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 5987–5995 (2016)


