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Abstract—There has been a significant increase in the quantity,
quality, and availability of unstructured clinical notes, motivating
numerous machine learning approaches that leverage such data
to improve predictive capabilities in medical settings. However,
the question of whether patient group properties under ob-
servation influence the effectiveness of including unstructured
data sources remains unanswered. The inclusion of unstructured
clinical notes adds both an acquisition cost such as recording the
notes by a clinician and converting records to an appropriate
digital format, and a computational cost such as more complex
and computationally expensive machine learning algorithms.
Thus, it is important to understand the potential benefits offered
by these unstructured data sources before attempting to use them.
We empirically evaluate the performance impact of including
unstructured clinical notes when performing mortality prediction
by reproducing 29 previously published studies in this area.
We use two common feature extraction methods, Word2Vec
and Bag-Of-Words, with two existing machine learning models,
XGBoost and Logistic Regression. Our results show that our
approaches have significantly different performances depending
on the properties of the patient group under study. Additionally,
we identify several key findings that can be used to predict
whether the inclusion of data from unstructured clinical notes
will be beneficial based on properties of the patient groups.

Index Terms—Natural Language Processing; Feature evalu-
ation and selection; Machine Learning; Modeling structured,
textual and multimedia data

I. INTRODUCTION

Electronic health records have increased the volume, avail-
ability, and quality of clinical patient notes [1]. These clinical
patient notes contain important details about the patient from
the clinicians’ (i.e., physicians’, practitioners’, or medical
staff’s) perspective and may include details such as issue
assessments, treatment management, and administrative infor-
mation. They may contain valuable information that cannot be
found in numeric and qualitative laboratory observations. As
such, computational tools may require information stored in
these clinical patient notes to provide the most complete and
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accurate diagnosis or treatment. Recent work (e.g., [2], [3]) has
begun to examine how this information can be extracted and
utilized by machine learning (ML) algorithms. For example,
many of these efforts (e.g., [4], [5]) leverage temporal data and
use recurrent neural networks to incorporate this longitudinal
information.

However, to our knowledge, the impact of patient group
properties, like patient inclusion criteria, notes available per
patient, or experiment duration on ML performance using
clinical patient notes has not been rigorously investigated.
Using clinical patient note data adds two types of complexity:
data collection cost (i.e., the difficulty in recording, collecting,
or obtaining useful patient notes from clinicians) and algorithm
complexity (i.e., the additional complexity of extracting and
using unstructured data compared to structured laboratory
results). Thus, it is crucial to understand how different patient
groups, and their individual properties, effect ML performance.
Having such information will allow clinicians and researchers
to better understand if their patient group will potentially
benefit from clinical patient note data, and that the benefits
outweigh the costs.

Specifically, we empirically evaluated the effects of patient
group properties on the task of patient mortality prediction
when clinical notes are used for model training and prediction.
Our investigation reproduces the results of a previous patient
mortality prediction reproducibility study [6] of 38 distinct
published experiments with the MIMIC III dataset [7]. Using
the software and data from these original experiments, we
conducted additional experiments that use both structured
laboratory data (i.e., as was done in the original studies) and
unstructured clinical patient notes.

The contributions of our work are as follows:

• An extension of a previous reproducibility study on
published patient mortality prediction experiments [6]
that includes results from using clinical patient notes to
train ML algorithms.



• An extensive comparison of several existing algorithms
for textual feature extraction, all of which have been
commonly used in previous medical research, on the
described experiments.

• Several key findings related to patient group properties
and how they impact ML performance and the benefit
of including features from unstructured clinical notes.
Although some of our findings seem intuitive, to the
best of our knowledge, no previous work has empirically
confirmed them.

• Insight for clinicians as to the predictive performance
they may obtain based on their patient group and whether
there is a potential benefit to using quantitative numeric
data such as laboratory results together with text data
such as clinical patient notes. For example, if certain
patient groups have shown no positive benefits from using
clinical patient notes for mortality prediction, a clinician
would know that there is limited benefit to offset the cost
of collecting additional clinical notes concerning their
patients.

In the remainder of this paper, we describe our experimental
approach and our key findings. In Section II, we describe the
patient groups, taken from existing studies, that we use for
our experiments. Section III describes both the structured (i.e.,
laboratory data) and unstructured (i.e., clinical notes) features
we use, and Section IV presents the ML algorithms we use.
Our results and analyses are presented in Section V, followed
by a description of related work in Section VI and concluding
remarks in Section VII.

II. STUDY PATIENT GROUPS

The patient groups we selected were based on the meta-
study described by [6]. This meta-study used the pub-
licly available Medical Information Mart for Intensive Care
(MIMIC III) dataset [7], which includes approximately 60,000
ICU admissions with longitudinal records spanning over a
decade. In this meta-study, the MIMIC III dataset was used
to reproduce 38 distinct studies which vary in terms of data
inclusion, observation time windows, outcome definitions,
and inclusion criteria. Although the inclusion criteria differed
between each individual study, four exclusion criteria were
common to all. All studies removed records (1) for patients
under 15 years old, (2) with incomplete data for admission
and discharge dates, (3) for organ donors, and (4) for stays of
less than 4 hours. It should be noted that we did not select
these exclusion criteria ourselves, but instead used the criteria
used by the existing studies.

In addition to these exclusions, we also applied one other
universal exclusion: removal of any record in which the patient
was discharged or died during or within 12 hours of the
observed window. Since both of these situations provide nearly
trivial predictions (e.g., someone who died during observation
does not need a predictive system to determine their mortality),
they were removed to make the prediction task realistic. This
allowed us to emulate several studies discussed in [6] (e.g., [8],
[9], and [10]) that did not include patients that died during

their observed ICU admission. On this basis, we took this
observation one step further and removed patients who were
discharged during the observed window, since discharge is a
strong negative indicator of mortality. Finally, the buffer of an
additional 12 hours was added to account for unstructured fea-
tures from clinical notes that tend to provide similar obvious
indicators of mortality or survival. For example, in an initial
pilot study we discovered certain words in clinical notes had a
substantial influence on mortality prediction. From a prediction
standpoint, having clinical notes that list a patient as being
dead or having an autopsy are useful for identifying obvious
(i.e., already deceased) cases but improbable in real-world
continuous prediction tasks. Similarly, discharge provides a
nearly trivial indication that the patient will be discharged.
Having explored various window lengths, we settled on re-
moving patients that die or are discharged within 12 hours of
the observed window (i.e., they are already very near death
or release during observation). This removes the majority
of the unrealistic highly-predictive words (i.e., words that
describe the events of death or discharge) and ensures that
the quantitative features are not unfairly biased with predictive
feature values as compared to the textual features. We believe
this is a fair comparison as it focuses on longer-term mortality
prediction rather than just predicting when mortality occurred.

III. PATIENT FEATURES

We used the same set of quantitative data features (i.e.,
laboratory data) reported by [6] in their reproducibility study.
Depending on the individual laboratory data item, the feature
values consist of the first, last, minimum, maximum, and
summation for the data values during the observation window
(although not all data items may report all feature values).
The time window used for these values was 24 or 48 hours,
or all available (depending on the individual study) and may
include values collected outside the ICU if the patient was not
in the ICU for the full duration of observation. In summary,
the quantitative data contains 93 total features, which we will
refer to as the structured features. The original paper provides
full details of the features used (omitted here for brevity).

In addition to the structured features, we extracted informa-
tion from the clinical notes for each ICU stay. Our data ex-
traction method used two common methods to extract numeric
feature representations from natural language text: Bag-Of-
Words (BOW) and Word2Vec. For both approaches, the clinical
notes were preprocessed1 to remove tags, punctuation, multiple
characters of white space, numerics, stopwords, words less
than 3 characters long, and performed stemming.

Bag-Of-Words: For the BOW approach, the entire pre-
processed text corpus is analysed to create a dictionary.
The dictionary contains the frequency of each word and the
percentage of documents each word occurs in. Any words
that appeared less than 5 times in the corpus were labelled
as rare words and removed from the dictionary. Similarly,
any word that appeared in 50% or more of the documents

1Using the Python library Gensim [11].



were labelled as non-informative common words and removed
from the dictionary. Thus, the remaining words occur in a
sufficient subset of documents (i.e., at least 5), but are not
so common that they provide little discriminatory power. Of
the remaining words in the dictionary, the 3000 most frequent
words were kept2. For each patient record, the frequency of
the 3000 dictionary words was computed, resulting in a BOW
feature vector containing 3000 numeric values. Since each
patient record may contain multiple clinical documents, the
values are summed across all documents.

Word2Vec: Word2Vec is an alternative feature represen-
tation approach for textual data and can improve prediction
task performance compared to BOW. Word2Vec analyzes text
to leverage context by estimating and using the semantic
similarity among words. The specific Word2Vec model we
use is Continuous Bag-Of-Words, which learns a model to
predict a target word based on the contextual words that
surround it in text. For data extraction, we use the five words
surrounding the target word on both sides (i.e., 10 total words,
possibly with padding used if the word is at the start or end
of a document) as input and the target word as output. The
underlying autoencoder used to train the Word2Vec model
contains 300 nodes in the hidden layers3. After training, the
Word2Vec model was extracted by maintaining the input layer
and the 300 hidden nodes representing the dense encoding
which we used as the features for our models. For patient
records containing multiple clinical documents, the Word2Vec
representation is a vector which is a mean of all the Word2Vec
document representations.

Combined Feature Vectors: The structured and unstruc-
tured features were concatenated together to create combined
feature vectors. When BOW is used, there are 3093 total
features (93 structured features + 3000 unstructured features).
When Word2Vec is used, there are 393 total features (93
structured features + 300 unstructured features).

IV. MACHINE LEARNING METHODS

The motivation and primary contribution of this work is not
to develop a novel ML algorithm but instead to (1) examine
the performance of ML algorithms on mortality prediction
when using both quantitative laboratory data and text data in
clinical notes, and (2) determine the effect of patient group
selection on mortality prediction performance. We use existing
ML algorithms for this task. To more accurately compare our
findings to the baseline results presented by [6], we used
the ML models used in prior studies: XGBoost [12] and
Logistic Regression (from Scikit-learn [13]). XGBoost is a
gradient boost algorithm that produces an ensemble of weak
prediction models, in our case trees. The gradient boosting
model attempts to fit its model by minimizing a loss function,
using techniques like gradient decent. Logistic Regression

2If n words remained in the dictionary and n < 3000, then n words would
be retained. However, in practice, there were always far more than 3000 words
remaining in the dictionary

3We performed experiments varying the number of nodes from 100 to 3000
but found minimal improvement with more than 300 nodes.

is a linear model that assumes all features are independent
predictors of the target variable.

These ML models are trained to perform a binary classi-
fication based on patient mortality (i.e., the patient will die
or will not die within a fixed time interval). The inputs to
the algorithms are the extracted feature vectors, as described
previously, representing the structured and unstructured clini-
cal data. A subset of training instances that contain both the
input features and mortality labels are used to train the ML
models. Given a feature vector representing a patient with
an unknown (or hidden) mortality, the ML models predict
whether the patient will die within a specified time interval.

V. RESULTS

In this section, we describe our study’s design, evaluation
approach, the empirical results, and key takeaways.

A. Evaluation Approach/Study Design

Our evaluation is based on 29 of the 38 reproduced
studies reported in [6]. We could not reproduce some of
the studies. One study, Che2016recurrent a, uses a 48 hour
window and a death indicator of 48 hours post-admittance (i.e.,
predicting if death occurs during hospitalization). Another,
Luo2016predicting, uses a unique start window of 12 hours
after ICU admittance. In addition, 7 other studies used non-
standard observation windows. For these reasons, we did not
include these studies in our experiments. A summary of the
key properties of the 29 studies we did use in our experiments
is shown in Table III. Although we do not provide full details
on each, some of the key differences include the length
of observation (W of 24 hours, 48 hours, or all available
time), the number of patients in the patient group (patients),
the number of patient records (records), the mean number
of patient records per patient (#notes), and the mortality
prediction window (flag). The types of mortality prediction
windows include: death in hospital (hospital expire), death
30 days after ICU discharge (30dy post icu disch), death 30
days after hospital discharge (30dy post hos disch), death 6
months after hospital discharge (6mo post hos disch), death 1
year after hospital discharge (1yr post hos disch), and death
2 years after hospital discharge (2yr post hos disch). For
each of the 29 studies, we conducted experiments using a 5-
fold cross validation procedure and calculated the AURUC
(Area Under the Receiver Operating Characteristics) curve to
measure performance.

For the two ML algorithms, XGBoost and Logistic Re-
gression, we performed experiments using the following five
feature vector representations:

• Original Only (O): The only features used were the
original quantitative/numeric features (93 features).

• Bag-Of-Words Only (BOW): The only features used
were the ones generated by the Bag-Of-Words method
from textual data sources (3000 features).

• Word2Vec Only (W2V): The only features used were
the ones generated by the Word2Vec models from textual
data sources (300 features).



• Original and Bag-Of-Words (O+BOW): The original
features and the BOW features appended together (3093
features).

• Original and Word2Vec (O+W2V): The original fea-
tures and the Word2Vec features appended together (393
features).

B. Experiment Results

The average Area Under the Receiver Operating Charac-
teristic (AUROC) performances of the two ML algorithms,
averaged over all 29 experimental studies, are shown in
Table I. The key conclusion from these results is that, when
examining the results of all studies, using the textual features
on their own results in a performance decrease compared
to numeric features, and using a combination of structured
and unstructured features generally yields a small but often
statistically significant improvement compared to using only
numeric features.

TABLE I
AUROC RESULTS FOR EACH ML ALGORITHM

ML Algorithm 0 BOW W2V O+BOW O+W2V
XGBoost 0.86 0.79 0.74 0.87 0.86

Linear Regression 0.84 0.69 0.76 0.74 0.84

These results appear to indicate that there is only a small
benefit to using unstructured data sources for mortality pre-
diction using our data extraction methods. However, as we
discussed previously, each of these studies used different
patient groups and/or varied the prediction task (e.g., obser-
vation window and predicted time of death). We hypothesize
that these differences between studies also effect the relative
performance as a result of including unstructured features.

Table II displays the performance of the algorithms based on
observation period duration (24 hours, 48 hours, or all data for
the entire hospitalization time). These results are the increase
(positive values) or decrease (negative values) in AUROC
versus using the original features only as well as the reduc-
tion (positive values) or increase (negative values) in error
percentage. Statistically significant (using a paired t-test with
p < 0.05) improvements are displayed in bold. The mixture of
Bag-of-Words features derived from text data and the original
numeric features yield statistically significant improvements
across all categories when using XGBoost, and decreases
across all categories when using Logistic Regression. The
results using a mixture of Word2Vec and original features
were less conclusive, and did not yield statistically significant
differences. These Word2Vec findings are similar to those
reported in [2], who also found limited improvement using
Word2Vec for extracting features from text data. One notable
finding is that, when textual features do increase an ML
algorithm’s performance, as the observation window increases
in length, the inclusion of unstructured data decreases error
(i.e., significantly increases prediction accuracy).

Table III displays a performance summary and the de-
tails for all 29 studies using the XGBoost algorithm with

TABLE II
EMPIRICAL RESULTS PARTITIONED BY OBSERVATION TIME LENGTH

BOW + Original Word2Vec + Original
Experiment AUROC % Error AUROC % Error
Type Increase Reduction Increase Reduction
24-XGB 0.011 6.930 0.003 1.905
24-LogReg -0.091 -50.648 0.005 2.809
48-XGB 0.011 6.988 -0.000 -0.130
48-LogReg -0.122 -73.057 -0.002 -1.034
All-XGB 0.010 10.348 0.004 4.506
All-LogReg -0.082 -78.791 0.006 5.550

a combination of the Bag-Of-Words and original features.
The rows are sorted by the % error reduction that resulted
when using those features compared to using only the original
numeric features. Additionally, we performed experiments
examining the performance of both XGBoost and Logistic
Regression using all five feature combinations (Original, Bag-
Of-Words, Word2Vec, Original+Bag-Of-Words, and Origi-
nal+Word2Vec). Figures 1 to 3 show more detailed results
from these experiments using the XGBoost classifier (the
Logistic Regression results were omitted for space). In these
figures, the experiment number corresponds to the experiment
number (exp #) shown in Table III.

A noteworthy conclusion is that the patient group selection
can significantly impact the ML algorithms’ AUROC perfor-
mance when using clinical notes. The inclusion of clinical note
features resulted in performance changes from approximately -
3% to +18%, with only one study increasing the error. Looking
at the ordering, we see that the 9 studies with the largest
error reduction percentage were all for longer-term mortality
prediction (i.e., predicting the patient will expire between 30
days and 2 years after leaving the hospital). This may imply
that clinical notes provide valuable information that is useful
in predicting longer-term health outcomes, although additional
research is necessary to validate this hypothesis.

When we examine the results in terms of the net change in
AUROC performance, we see a range of -0.005 to +0.020.
Like our error reduction results, only one study showed a
decrease in AUROC when using the combination of Bag-Of-
Words and original features. The best performing study, ghas-
semi2015multivarite b, used a patient selection method that
is well suited for our approach. During patient selection, the
study excludes patients who have fewer than 6 clinical notes,
fewer than 100 non-stop words in the notes, were in the hospi-
tal for less than 24 hours, or did not have a SAPS value. On the
other side of the performance spectrum, joshi2012prognostic
and hug2009icu show the worst performance. Both of these
studies use the same patient group and differ in the mortality
prediction task being performed (death in hospital vs. death
30 days post-ICU discharge). Thus, we conclude that the
patient group has a greater effect on performance than the
prediction task. Similarly, hug2009icu performs significantly
worse than the other longer-term predictive studies, providing
further evidence to support the importance of patient group
selection.

Based on the high-performance on the ghas-



Fig. 1. The average AUROC performance of the XGBoost algorithm across experimental studies with a 24 hour observation window. The results show how the
performance changed depending on the features used: original (structured) features only, Word2Vec (unstructured) features only, Bag-Of-Words (unstructured)
features only, Original and Word2Vec (structured and unstructured) features, and Original and Bag-Of-Words (structured and unstructured) features.

Fig. 2. The average AUROC performance of the XGBoost algorithm across experimental studies with a 48 hour observation window. The results show how the
performance changed depending on the features used: original (structured) features only, Word2Vec (unstructured) features only, Bag-Of-Words (unstructured)
features only, Original and Word2Vec (structured and unstructured) features, and Original and Bag-Of-Words (structured and unstructured) features.

Fig. 3. The average AUROC performance of the XGBoost algorithm across experimental studies with an observation window of all available data. The results
how the performance changed depending on the features used: original (structured) features only, Word2Vec (unstructured) features only, Bag-Of-Words
(unstructured) features only, Original and Word2Vec (structured and unstructured) features, and Original and Bag-Of-Words (structured and unstructured)
features.

semi2015multivarite b study, we examined in greater
detail the impact of clinical note availability on prediction
performance. When comparing error reduction percentage to
the number of patients in the group, we found a moderate
positive correlation between them (a Pearson correlation
coefficient of 0.45). Similarly, comparing the error reduction
percentage to the number of clinical records in the patient
group shows a moderate positive correlation (a Pearson
correlation coefficient of 0.44). Finally, comparing the
increase in AUROC to the mean number of records per
patient, we also found a moderate positive correlation (a
Pearson correlation coefficient of 0.49). All of these results,

considered together, provide evidence that the inclusion of
unstructured features is more beneficial for larger patient
groups with a higher number of patient records per patient.
These findings support our conjecture that text data features
are more beneficial when more text data is available.

C. Summary of Key Findings

The following are our key findings for the mortality predic-
tion task using the MIMIC III dataset:

• Using only structured numeric or quantitative laboratory
data outperformed using only unstructured text data.



• Using a combination of structured and unstructured data
outperformed using only structured data across most test
conditions.

• The benefit from a Bag-Of-Words representation for
unstructured features is strongly related to the specific
ML algorithm used.

• There was no noticeable benefit of using a Word2Vec
representation for unstructured features, regardless of ML
algorithm.

• Patient group selection had a substantial effect on in-
creased AUROC and decrease in percentage prediction
error.

• When including text features, error reduction significantly
increased with observation window duration.

• Inclusion of text features appeared to provide more ben-
efit for longer-term mortality prediction tasks.

• The highest-performing experiment used explicit exclu-
sion criteria that removed patients with few or less-dense
clinical notes.

• Error reduction was positively correlated to the number
of patients in the patient group and the total number of
records contained in the patient group.

• AUROC improvement was positively correlated to the
mean number of records per patient in the patient group.

VI. DISCUSSION AND RELATED WORK

Recently, several papers have examined the use of textual
clinical data for ML tasks. Similar to our work, [2] evaluated
how the clinical note representations impact various classi-
fication and prediction tasks. Their work compares Bag-Of-
Words, Word2Vec, and Recurrent Neural Network encodings
on MIMIC III data. Their findings showed that the Bag-Of-
Words representations tended to outperform Word2Vec and
Recurrent Neural Network representations, which is similar
to our results. [14] took a similar approach for a baseline
mortality prediction task from the MIMIC III dataset. They
use the feature extraction/construction pipeline from [15] to
obtain 17 structured baseline features, and then use clinical
notes to generate several representations including Doc2Vec,
applying medical text tokenization with Doc2Vec, and using
a neural network for named entity extraction/negation [5].
These features were then evaluated using a Long-Short Term
Memory (LSTM) and Multimodal approach, resulting in a
small improvement in AUROC (approximately 2%, similar
to our findings). [4] made use of an LSTM for in-hospital
mortality estimates using a Word2Vec embedding combined
with a Convolutional Neural Network for feature extraction
with clinical notes. They also found that exclusively using
features extracted from unstructured sources were inferior to
exclusively structured features. They reported improvements
only when the data were examined as a time series.

Our results are consistent with those reported by other
researchers on the overall, global applicability of features
extracted from unstructured clinical notes. Although they often
examined different individual patient groups, different feature
extraction methods, and different ML algorithms, their results

are generally in agreement with our findings and show that
there is benefit to using unstructured features. However, the
primary difference between what we present in this paper and
these prior reports is that we focused more locally on how
patient group selection impacts ML performance. Thus, the
combined results that we’ve summarized (i.e., ours and those
reported in related work) provide more compelling evidence
on the value of using features from both structured and text
data sources. Additionally, our work also provides preliminary
evidence on how properties of a patient group may impact how
valuable features from unstructured sources may be toward
ML performance.

Our work has shown results exclusively on English language
datasets for evaluating textual features. Dashtipour et al. [16]
provides a summary of a number of language representation
techniques used for multilingual sentiment analysis. The tex-
tual features we make use of fall under their corpus-based
approaches and are compiled from the actual subject matter.
As such, we believe the results shown in this paper are likely
to be similar when data from other languages are used once
a Bag-Of-Words dictionary or Word2Vec model is built. A
limiting factor for evaluating the use of clinical notes in
other languages is that they are not as readily available. If
we identify a medical dataset in another language we plan
to evaluate the effectiveness of this approach versus other
methods such as normalizing the data via translation.

VII. CONCLUSION

We explored the effect of patient group selection on the
performance of ML algorithms that use text data from clinical
documents for mortality prediction. Our work builds on [6],
who reproduced a series of mortality prediction studies with
the MIMIC III dataset, by extending their results to include
unstructured features rather than purely structured numeric
features. We found a small but significant improvement in
ML performance when including structured features and, more
importantly, that performance varied significantly depending
on the properties on the patient group. We identified several
key factors that appear to be useful indicators of whether
considering text data features will benefit a specific patient
group, thereby allowing clinicians to better understand the
potential data requirements and expected performance of
ML systems for mortality prediction. However, many of our
findings are preliminary and will require a larger study on
whether these patient group properties are accurate predictors
of ML performance and whether our findings hold beyond
the mortality prediction task. Additionally, we plan to explore
the relative explainability and interpretibility of models, and
whether more interpretable models are more readily usable by
clinicians [17].
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