
A General-Purpose Framework for Learning by

Observation

by

Michael W. Floyd, B.Eng., M.A.Sc.

A thesis submitted to the

Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Ottawa-Carleton Institute of Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada

May 2013

Copyright c©Michael W. Floyd, 2013

The undersigned recommend to

the Faculty of Graduate and Postdoctoral Affairs

acceptance of the thesis

A General-Purpose Framework for Learning by Observation

Submitted by Michael W. Floyd, B.Eng., M.A.Sc.

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Chair
Howard Schwartz, Department of Systems and Computer Engineering

Carleton University

Thesis Supervisor
Babak Esfandiari, Department of Systems and Computer Engineering

Carleton University

External Examiner
Luc Lamontagne, Department of Computer Science and Software Engineering

Laval University

Carleton University

2013

ii

Abstract

Learning by observation allows domain experts with no programming skills to train

a software agent or robot by moving the burden of knowledge transfer from the ex-

pert to the agent itself. Instead of being explicitly programmed, the agent learns a

behaviour by watching the expert perform it. This thesis examines the areas that

are specific to learning by observation in order to come up with a general-purpose

framework for learning by observation. The framework is represented as a cyclical

workflow containing the four major tasks of learning by observation: modelling, ob-

servation, preprocessing and deployment. Each of these tasks are examined in order

to identify how the task should be performed in a general-purpose learning system

so that an agent can learn a variety of behaviours from a variety of experts in a va-

riety of environments. In effect, the same agent can be retrained for each new task.

Techniques to perform each of these tasks are provided.

A general-purpose modelling framework is proposed, along with an agent design

that uses the framework, in order to minimize the number of changes necessary when

an agent changes environments. The agent design is further enhanced to allow hard-

ware to be added or removed from a robot without any reprogramming of the agent.

For the observation task, two observation acquisition strategies are provided that

take advantage of the availability of the expert and they allow the agent to make

observations it would not have been able to normally. The preprocessing task is en-

hanced by allowing the agent to analyze the expert’s behaviour in order to remove

iii

errors and characterize how the expert reasons. Finally, an approach is presented,

in the deployment task, that allows an agent to learn from experts who reason with

internal information. A variety of domains are used for case studies and evaluations.

Each technique is used on a selection of the following domains: a physical obstacle

avoidance robot, a robotic arm, simulated soccer, Tetris and a simulated obstacle

avoidance robot.

iv

Acknowledgments

I would like to thank my family for their support and patience throughout this pro-

cess. I would also like to thank Professor Babak Esfandiari for his valuable guidance,

feedback and encouragement.

v

Table of Contents

Abstract iii

Acknowledgments v

Table of Contents vi

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Contributions . 5

1.4 Organization . 9

2 State of the Art 10

2.1 Learning from Agents . 10

2.1.1 Definition of Agents . 10

2.1.2 Machine Learning . 12

2.1.3 Lessons Learnt . 15

2.2 Learning by Observation . 16

2.2.1 General-purpose Learning by Observation 16

vi

2.2.2 Lead-through Programming 18

2.2.3 Learning Interface Agents . 19

2.2.4 Learning by Observation using Case-based Reasoning 20

2.2.5 Other Learning by Observation Approaches 25

2.2.6 Lessons Learnt . 27

2.3 Discussion . 29

3 Learning by Observation Cycle 30

3.1 Terminology . 31

3.2 Learning Cycle . 32

3.2.1 Tasks of the Cycle . 32

3.2.2 Case-based Reasoning Cycle within the Learning by Observa-

tion Cycle . 38

3.3 Discussion . 40

4 Case-based Learning by Observation 41

4.1 Modelling: General-purpose Modelling 41

4.1.1 Input and Output Modelling 42

4.1.2 Agent Design . 44

4.1.3 Dynamic Case Representation 46

4.1.4 Case Studies . 48

4.1.5 Sensor Registration . 61

4.1.6 jLOAF Framework . 62

4.1.7 Discussion . 63

4.2 Observation: Alternate Approaches 66

4.2.1 Passive Case Acquisition . 67

4.2.2 Mixed-initiative Case Acquisition 68

4.2.3 Active Case Acquisition . 71

vii

4.2.4 Automatic Case Acquisition in CBR 74

4.2.5 Evaluation . 76

4.2.6 Discussion . 84

4.3 Preprocessing: Trace Cleaning and Analysis 85

4.3.1 Expert Traces . 86

4.3.2 Types of Learning . 87

4.3.3 Expert Trace Analysis . 93

4.3.4 Evaluation . 98

4.3.5 Discussion . 108

4.4 Deployment: Learning from State-based Experts 109

4.4.1 Temporal Case Definition . 109

4.4.2 Temporal Backtracking . 113

4.4.3 Evaluation . 114

4.4.4 Discussion . 122

4.5 Combining Subtasks . 124

4.5.1 Mixed-initiative Case Acquisition from a State-based Expert . 124

4.5.2 Using Trace Analysis to Guide Algorithm Selection 126

4.5.3 Discussion . 128

4.6 Complete Cycle . 128

4.6.1 Simulated Soccer . 128

4.6.2 Physical Robot . 134

4.6.3 Discussion . 138

4.7 Discussion . 140

5 Conclusions and Future Work 142

5.1 Summary of Contributions and Results 142

5.2 Derived Publications . 146

viii

5.3 Limitations and Future Work . 148

List of References 151

ix

List of Tables

1.1 The domains each technique were tested in 8

4.1 Accuracy of the agent when learning to control the robotic arm . . . 53

4.2 Accuracy of the agent when learning to control the obstacle avoidance

robot . 54

4.3 Accuracy of the agent when learning the RoboCup simulated soccer

behaviour . 57

4.4 Percentage of acquired cases with a maximum similarity, when com-

pared to a larger passive case base, in various ranges 78

4.5 Mean pieces played using each type of case base 79

4.6 The analysis results and quality of each single-property trace after one

round of analysis . 103

4.7 The analysis results and quality of each single-property trace after three

rounds of analysis . 104

4.8 The analysis results and quality of each multi-property trace after one

round of analysis . 105

4.9 The analysis results and quality of each multi-property trace after three

rounds of analysis . 105

4.10 The analysis results and quality of a human expert trace 108

4.11 Mean similarity of nearest like neighbour and nearest unlike neighbour 120

x

4.12 Retrieval accuracy of standard reactive retrieval and temporal back-

tracking . 122

4.13 Retrieval accuracy when using a passive and mixed-initiative case base 126

4.14 The accuracy of the learning agent when learning from Krislet 129

4.15 The accuracy of the learning agent when learning from CMUnited . . 130

4.16 The analysis results on traces of Krislet and CMUnited 130

xi

List of Figures

2.1 The case-based reasoning cycle . 21

3.1 An expert receiving inputs and producing outputs 30

3.2 An expert interacting with the environment 31

3.3 The learning by observation cycle . 33

4.1 Each input has an associated similarity metric that will be used when

its similarity method is called . 43

4.2 Learning by observation agent design 45

4.3 Sensors registering with the learning by observation agent 48

4.4 Obstacle avoidance robot . 50

4.5 Robotic arm . 52

4.6 RoboCup Simulation League . 55

4.7 Tetris . 58

4.8 The iRobot Create robot . 61

4.9 Observing an expert using passive case acquisition 67

4.10 Flowchart of how initiative is seized and ceded by the expert and the

CBR system . 71

4.11 The source of cases in each type of case base 77

4.12 The performance of a learning agent using 90,000 seed cases and a

variety of threshold values . 82

xii

4.13 The performance of a learning agent using a threshold of 0.87 and a

variety of seed case base sizes . 83

4.14 Flow chart of multi trace analysis . 96

4.15 Example of trace analysis . 99

4.16 State machine of expert that has an action-based state change 117

4.17 State machine of expert that has an input-based state change 117

4.18 State machine of expert that has an input and action-based state change118

4.19 The state changes of the three experts in response to sensory inputs . 118

xiii

Chapter 1

Introduction

A search and rescue robot is designed to go into hazardous disaster zones and assist in

saving human lives. However, there is no way to know in advance where a disaster will

occur or the specific properties of that disaster. Different disaster zones may require

different hardware or behaviours, so programming the robot to handle all possible

situations may not be possible. This would require regularly reprogramming the robot

as the environment changes or behaviours are modified. The human members of a

search and rescue team may have the expertise to deal with the changing requirements

but not the technical skills necessary to reprogram the robot. Instead, it may be

desirable for them to just demonstrate how the robot should behave and have the

robot learn from those demonstrations.

Similarly, a robot that assists elderly patients would need to be flexible enough

to handle multiple patients and tasks. Each patient would have different needs and

preferences, so a single task might need to be performed in several ways. A health

care professional would have the expertise to identify how a patient should be assisted

but, like the search and rescue expert, might not have the technical skills necessary

to train the robot. If the robot could just observe the health care worker assisting

patients, it could learn from these observations and continue helping the patients even

when the worker is gone.

1

2

The expert could train a learning by observation agent to control the robot by

taking control of the robot, possibly with a remote control or other user interface,

and instructing the agent it should begin observing (for example, pressing a record

button). The learning agent would observe how the expert controls the robot and

learn from those observations until the expert indicates it has finished demonstrating

(pressing a stop button). Finally, the learning agent could be instructed to perform

the behaviour itself (pressing a play button).

This type of learning, called learning by observation, only requires the expert to

be able to perform the task and makes no assumptions about the technical skills

of the expert, the goals of the expert or the task being performed. Additionally, it

requires no extra time from the expert (other than the time to actually demonstrate

the behaviour). The burden of knowledge transfer is moved from the expert to the

software agent or robot. Even for an expert that has significant technical skills and

agent training experience, learning by observation should ideally allow an agent to be

trained much faster than traditional methods.

1.1 Motivation

As the name implies, a learning by observation agent learns to perform a task by

observing that task being performed by an expert. Since the agent learns by observing

the expert, it is only able to use what is visible to an outside observer: the inputs

received by the expert and the outputs the expert produces. The goal of learning by

observation is to use the observations so that, when presented with similar inputs,

the learning agent will produce similar outputs. This is in contrast to many methods

that learn from passive and static sources of data.

In order to learn a variety of tasks from a variety of experts and in a variety

3

of situations, a learning by observation agent should be general-purpose and task-

independent in nature. This prevents the agent from being biased toward a specific

expert, domain or behaviour. Perhaps more importantly, it allows for an agent that

can be quickly repurposed if its task or environment changes. Furthermore, existing

learning by observation systems are developed in an ad hoc manner and require

significant human intervention if the domain or behaviour being learnt are changed.

Ideally, an agent should not need to be reprogrammed by a human every time it is

required to learn a new task.

There are several key opportunities and difficulties in creating such a system:

• Means of Observation: The agent learns by observing an expert rather than

learning from a properly labelled training file. This requires the agent to be

able to observe and record the expert’s behaviour, and learn from those obser-

vations. This also means the expert can be part of a learning interaction and

be actively involved in the learning task. However, situations may occur where

the agent makes many similar observations of a certain aspect of the expert’s

behaviour while not making any observations related to other aspects. It would

be beneficial if the agent was aware of what information it had learnt well and,

more importantly, what it had not learnt.

• Quality of Observations: There are no guarantees of the quality of the ob-

servations. The learning agent is only able to observe the expert’s inputs and

outputs, so the agent may not be successfully attributing an output to the in-

put (or inputs) that caused it. Similarly, the agent is unable to observe if any

non-visible information, like the expert’s beliefs or intentions, factored into the

reasoning process. Expert error, when performing an output, or observer error,

when recording inputs and outputs, can also degrade the quality of the observed

traces.

4

• Domain Knowledge: The learning agent does not have an explicit represen-

tation of the task it is learning since it can be trained on a variety of tasks.

This means the learning agent will not be aware of the goals of the task or have

a utility function to maximize. Without this knowledge, it is more difficult for

the learning agent to know if it is learning the behaviour properly or to verify

the quality of the observations it collects.

1.2 Objectives

The goal of this research is to formalize the processes performed by learning by

observation systems and develop a framework that allows learning by observation

agents to be developed in a modular and task-independent manner. This leads to the

following research question:

Research Question: What are the issues specific to learning by observation? Is

it possible to come up with a general-purpose and task-independent framework

for learning by observation and, if so, what are the components of such a frame-

work?

In order to address the primary research question, the following additional ques-

tions will also be asked (how each question was answered will be discussed in the

following section):

1. Versatility: Can a single learning by observation system be used to learn in

a variety of domains without making any major modifications to the learning

agent?

2. Observation: Are there certain input problems that the learning agent may

encounter when deployed but never encounter by passively observing the expert?

5

If so, can alternate observation approaches be developed that allow those input

problems to be solved by the expert?

3. Analysis: Can traces of an expert’s behaviour be analyzed to determine if

errors were observed or if the expert’s behaviour is not purely reactive?

4. Learning: Can learning by observation be improved so that experts that main-

tain internal states (beliefs, goals and/or intentions), which can not be observed

by a learning agent, can be successfully learnt from?

1.3 Contributions

The key contributions of this work are:

• A definition of the major steps that are performed in learning by observation

and how these steps can be represented as a cyclical process (Chapter 3). These

steps are modelling, observation, preprocessing and deployment.

• An approach to designing learning by observation agents that allows the same

agent, with no changes, to learn a variety of behaviours from a variety of experts

and, with minimal changes, to be deployed in new domains (Section 4.1).

• An extension of our agent design that allows sensors and effectors to be dy-

namically added to a robot (Section 4.1.3). Instead of requiring the agent to

be modified every time hardware is changed, the agent can dynamically change

the input and output model it uses.

• Two novel methods to acquire cases by observation (Section 4.2). One approach,

mixed-initiative case acquisition, allows the agent to request help from the ex-

pert to solve difficult problems as the problems occur. The other approach,

6

active case acquisition, logs difficult problems and presents the logged problems

to the expert in bulk at a later time.

• An approach to analyzing an expert’s behaviour that allows detection of state-

based or non-deterministic behaviour by the expert and that can be used to

identify and remove observation errors (Section 4.3).

• An algorithm for case retrieval that allows a learning by observation agent to

learn from state-based experts (Section 4.4).

• Conclusions that, in the domains tested, the following results were observed

(Chapter 4):

– Modelling : Using the learning by observation design framework, a single

agent was able to learn behaviours in a variety of domains with no changes

to how it reasons and minimal changes to how it interacts with the envi-

ronment. This was demonstrated in case studies involving physical robots,

simulated soccer and Tetris. Using our extension that allows hardware to

dynamically register with the agent, the agent did not need to be modified

at all when the hardware of the robot it controlled was changed.

– Observation: Cases that would rarely, or in some situations never, be

observed using passive observation can be observed using mixed-initiative

or active case acquisition. This was empirically evaluated in the domain

of Tetris.

– Preprocessing : The analysis method was able to correctly identify if state-

based or non-deterministic behaviour was exhibited by the expert. Addi-

tionally, a majority of errors were able to be detected and removed. This

resulted in higher-quality cases and guided the selection of retrieval algo-

rithms for the agent to use, which lead to improved learning performance.

7

This was empirically evaluated in a simulated obstacle avoidance domain.

– Deployment : Using a retrieval algorithm that takes into account an ex-

pert’s previous sensory inputs and actions, not just the current sensory

input, allows an agent to learn from state-based experts. Like with pre-

processing, this was empirically evaluated in a simulated obstacle avoid-

ance domain (Section 4.4). An empirical evaluation was also performed

to examine the use of mixed-initiative case acquisition and preprocessing

when learning from a state-based expert (Section 4.5).

– Combination of Subtasks : The contributed techniques can benefit the

learning agent when used alone or in combination. This was demonstrated

by examining the influence of combining techniques on the performance

of a learning agent. An empirical evaluation was performed in a simu-

lated soccer domain and a case study was performed in a physical robotics

domain (Section 4.6).

• For each developed technique, a discussion of any encountered limitations and

a characterization of when the approach should be utilized.

The techniques described for modelling, observation, preprocessing and deploy-

ment have been shown, experimentally, to simplify the process of developing learning

by observation agents, increase their learning performance and allow them to learn

more complex behaviours. These techniques have been examined in a physical obsta-

cle avoidance robot, a robotic arm, simulated soccer, Tetris and a simulated obstacle

avoidance domain (Table 1.1).

While these contributions advance the state of the art in learning by observation

they do not completely solve the problem. Each contribution has certain limitations

that were identified and overcoming those limitations will need to be the focus of

future work (outside the scope of this thesis). Several of the key limitations include:

8

Physical Robots RoboCup Tetris Simulated Robots

Modelling X X X X

Observation X X X X

Preprocessing X X X

Deployment X X X

Table 1.1: The domains each technique were tested in

• Modelling: The modelling approach removes much of the need for domain

experts but does not completely remove the need. There are still some things,

like initially programming the sensors and effectors with their information, that

can not be performed by the agent itself.

• Observation: The observation techniques allow the learning agent to improve

learning performance but requires the expert to be available at a later time to

solve additional problems. If the expert will not be available or is unwilling to

assist the agent then the case acquisition approaches can not be used.

• Preprocessing: The preprocessing technique requires the expert to be present

and solve additional problems. It would be preferable if this was not necessary

and the agent could analyze an expert’s behaviour with a single trace.

• Deployment: An algorithm was presented for learning state-based behaviours

but it requires inferring the expert’s state each time case retrieval is performed.

A more efficient approach would involve storing the current state in order to

guide subsequent retrievals.

9

1.4 Organization

Following the introduction, Chapter 2 provides an overview of the current state of

research in learning by observation and discusses the issues that are specific to learning

from a software agent or human. In Chapter 3, learning by observation is formalized.

Additionally, the chapter presents the major steps involved in learning by observation

and how those steps are connected.

The major contributions of this thesis are presented in Chapter 4. These contri-

butions cover all four steps in learning by observation and include a general-purpose

framework for modelling the inputs and outputs of learning by observation agents,

alternate approaches for case acquisition, techniques for cleaning and analyzing user

traces and a method for learning from state-based experts. An evaluation for each

of these contributions is also presented in Chapter 4. The modelling technique is

examined in two physical robotics domains, a simulated soccer domain and Tetris.

The case acquisition techniques are compared to passive observation in the domain

of Tetris. Both trace analysis and state-based learning are evaluated in the simulated

obstacle avoidance domain. Simulated soccer and an obstacle avoidance robot are

used to demonstrate the benefit of combining the various subtasks and show the per-

formance benefit of each subtask. A summary of the work performed and concluding

remarks are discussed in Chapter 5.

Chapter 2

State of the Art

This chapter will examine existing research related to learning by observation. Ini-

tially, we will look at how agents are defined in existing research and how learning

from agents differs from traditional machine learning. We will then turn our atten-

tion to existing learning by observation systems. Specific attention will be placed on

how those systems learn and what they are able to learn. While common learning by

observation tasks are often performed in other machine learning and artificial intelli-

gence fields, we will defer these discussions to subsequent chapters in order to place

them in the proper context.

2.1 Learning from Agents

In this section, we will explore how a learning by observation system can learn from

agents. We will discuss how agents are defined and then examine how machine learn-

ing can be used to learn from agents.

2.1.1 Definition of Agents

A learning by observation system will learn from either a human agent or a software

agent. We can think of an agent, either human or software, an an entity that is

10

11

situated in an environment and autonomously acts in order to achieve its objectives

[58]. The environment, which may change over time, can be modelled as a finite set

E of instantaneous states:

E = {e, e′, . . . }

The agent senses the environment, using its sensors, as a single sensory input from

the set of possible sensory inputs S:

S = {S, S ′, . . . }

However, the way the agent senses the environment may be imperfect, due to the

complexity of the environment or errors, so the set of sensory inputs will likely be

different than the set of environment states. This requires the agent to map each

environment state to a corresponding sensory input:

sense : E → S

In response, the agent performs actions from a set of possible actions A:

A = {A,A′, . . . }

These actions, which are performed so the agent can work toward achieving its

objectives, can be influenced by two primary factors: the current sensory input and

the agent’s internal state. The sensory input, as we have seen, is external and obtained

from the environment. The state, however, is internal to the agent and will likely not

be directly accessible to an outside entity. This internal information could include

things like the agent’s beliefs, desires or intentions [58]. The beliefs are knowledge that

the agent has of the environment. These can be updated with each new perception of

the environment but may also include beliefs related to parts of the environment that

12

are no longer visible to the agent. For example, if the agent moves to a different room

in a house it may still have beliefs related to the contents of the previous room. The

desires are a set of beliefs that the agent wants to achieve. This can be thought of as

the goals the agent wants to achieve or the tasks it wants to complete. The intentions

are a subset of the agent’s desires that it has currently committed to achieving. While

some of the desires of the agent may be long-term, the intentions can be thought of

as the short-term goals and tasks.

2.1.2 Machine Learning

We have examined the agents that a learning by observation system will learn from

and will now turn our attention to what is required of the system in order to learn.

Mitchell [37] has formally defined machine learning as:

“A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E.”

This definition of traditional machine learning presents several issues when learn-

ing from an agent. The primary issue is related to the task, or class of tasks, that will

be learnt. Recall from the definition of an agent that the task and goals of the agent

are represented by its desires and intentions. If a learning by observation system is

task-independent and general-purpose, it will not have any prior knowledge about the

agent’s desires or intentions nor will it be able to directly observe them since they are

internal to the agent. Similarly, without knowledge about the class of tasks it will

not be possible to measure the performance on those tasks. Instead, any evaluation

will need to be general and not related to performing any particular behaviour.

Another issue is related to the experiences that a learning by observation system

will use to learn. The learning system can use what it can observe, the agent’s sensory

13

inputs and actions, as experiences but that may not provide the same information

that the agent uses to reason. This is because an agent uses its beliefs, representing

what it knows about the environment, and its intentions, related to its current goals

or tasks, to reason. The beliefs can, to some extent, be directly observed by examining

the sensory inputs the agent receives. However, the agent’s beliefs can also contain

information related to aspects of the environment it can no longer directly observe so

in order to have complete knowledge about the agent’s beliefs it would be necessary

to know how it internally models the world and how that model is updated over time.

We have discussed the ways in which traditional machine learning is different from

learning by observation but that does not mean that machine learning algorithms can

not be used by general-purpose learning by observation systems. We can think of a

machine learning tool like WEKA [25] as an attempt at general-purpose learning. In

WEKA, a variety of machine learning algorithms are available that can, for the most

part, be used interchangeably on datasets (as long as the data is stored in a known

format). This allows different algorithms to be tested and compared to each other.

While these algorithms do not perform all necessary functions of a general-purpose

learning system, they could be used by a system to perform some of the learning tasks

like preprocessing, classification or evaluation.

MOSCA [9] is a general abstract learning framework devised specifically for learn-

ing from agents, and involves interactions between five agents: Apprentice, Oracle,

Client, Probe and Master. In this model, the Apprentice is the learner and the others

assist or evaluate the learning. The Oracle provides the Apprentice, upon request,

with the correct solution to a problem. For testing purposes, the Probe can request

the solution to a problem from the Apprentice, based on what it has learnt, and the

Master can provide feedback to the Apprentice about its performance. The Client

also requests solutions from the Apprentice but does so to actually get the solution,

not to test the Apprentice.

14

It is possible to see how each role of MOSCA would be occupied in learning by

observation. The learning agent would take the Apprentice role, since it is doing the

learning, and the Probe role, since it is responsible for evaluating its own performance.

The environment would take the Client role since it is providing the learning agent

with novel problems to solve. The final two roles, Master and Oracle, would be the

responsibility of the expert. However, this makes the assumptions that the expert

provides correct solutions during observation and is able to provide direct feedback

to the learning agent. In practice, these assumptions might not hold true.

An area of artificial intelligence that has similar goals to learning by observation is

general game playing [20]. The goal of general game playing is to design an agent that

is able to play any type of game. This requires the agent to use algorithms that are

not biased to any particular game or genre of games. At runtime, the agent receives

a formal description of the game it will play and uses that description to attempt

to learn a strategy. These descriptions can include information about possible game

states, the goals of the game, start and end conditions, rules, and supporting concepts.

These formal game descriptions are authored by domain experts and can often be

quite complex. Also, the ability of the agent to learn is dependant on the quality of

these descriptions. If they are incomplete or contain errors then the agent might not

be able to learn the correct strategies.

Plan recognition involves observing an agent and attempting to identify what

behaviour the agent is performing. This is similar to learning by observation but

the key difference is that the behaviour is identified rather than learnt. Also, plan

recognition systems typically have knowledge about what goals the agent may attempt

to achieve and a library of plans that the agent may use to achieve those goals

[5]. Neither the goals nor a plan library are available to a learning by observation

agent. The lack of knowledge about goals also differentiates learning by observation

from reinforcement learning. Reinforcement learning [30] requires knowledge about

15

the goals in order to reward behaviour that helps achieve those goals and penalize

behaviour that does not.

Hidden Markov models (HMMs) can be used to represent systems where there are

hidden, unobservable states. This is related to learning by observation since learning

by observation systems can only learn using data that is directly observable from the

expert and environment. However, HMMs require prior knowledge of the states, the

number of states and how those states relate to each other [53]. For a general-purpose

learning system, this knowledge would not be available in advance.

2.1.3 Lessons Learnt

The exploration of issues related to learning from agents has identified the following

key ideas:

• In addition to information related to the state of the environment, an agent

may reason with internal information like its beliefs, desires and intentions.

This information will not be directly visible to an observer.

• A system that can learn from a variety of agents regardless of their behaviour

or environment will not be able to explicitly encode information related to the

agent, task or environment since those can change.

• Traditional machine learning is defined as having a task, or class of tasks, to

learn. In general-purpose learning by observation those tasks will not be known

in advance. This can restrict how the learner evaluates its performance since it

does not have an explicit representation of what it is learning.

• Traditional machine learning algorithms can still be used in general-purpose

learning by observation systems. However, they may need to be supplemented

16

in some way in order to handle the conditions that are specific to learning from

an agent.

• The MOSCA learning framework is designed for learning from agents in a tutor-

ing environment. However, it is possible to map the various entities in MOSCA

to the entities in learning by observation. The main difference is that there is

not a Master who can provide critiques or feedback on performed behaviour.

The closest the expert can come to providing feedback is to provide additional

observations for the system to learn from.

• General game playing is another type of general learning approach. The pri-

mary difference is that a general game playing system is provided with a formal

description of the game whereas a learning by observation system does not have

any such domain knowledge. However, unlike learning by observation systems

that get to observe an expert perform a behaviour, a general game playing

system must learn a strategy on its own.

2.2 Learning by Observation

Learning by observation is often referred to in the literature by names including

imitation learning, learning by demonstration, programming by demonstration, and

others. We can think of learning by observation as any technique where an agent

learns by observing an expert perform a behaviour. In this section, several existing

areas of learning by observation research will be examined.

2.2.1 General-purpose Learning by Observation

Ontañón, Montaña and Gonzalez provide a framework for characterizing the different

types of learning by observation and the properties of each type [40]. They identify

17

four levels of increasing difficulty: strict imitation, reactive skills, tactical behaviour

in known environments, and tactical behaviour in unknown environments. Strict im-

itation does not require any knowledge of the environments, since it only performs a

fixed sequence of actions, and is therefore not able to generalize its knowledge in any

way. Reactive learning by observation requires interaction with the environment in

order to map inputs to outputs and would cover most existing learning by observation

systems, whereas tactical learning by observation is able to learn from experts who

reason with internal information. Their most difficult category, tactical behaviour in

unknown environments, involves an agent who does not have predetermined knowl-

edge about where it will be deployed. A general-purpose learning by observation

agent, like the type being developed in this thesis, would fall under that category.

Learning by observation systems tend to be domain-dependant but there have been

attempts to create general-purpose learning by observation systems. The Darmok sys-

tem has been used to generate plans by watching an expert play a real-time strategy

game [39]. Each observation that is collected contains the current environment state,

the goal of the expert and a plan to achieve that goal. The learning agent can repro-

duce the expert’s behaviour by retrieving observations that have similar environment

states and goals, and executing the associated plans. This work has been extended

to work in multiple domains [22], including interactive dramas [35], however it still

requires a definition of the goals and subgoals the expert will attempt to achieve.

This also requires the learning agent to be aware of its own goals while reproducing

the expert’s behaviour. This approach to learning by observation has been found to

work well for behaviours that require planning but has been less successful for reactive

behaviours [41] because the generated plans tend to be more complex than necessary.

The authors have also examined the influence of observation acquisition on learning

by observation performance [38]. All of the examined acquisition approaches were

passive in nature and focused on the structure of observations and what information

18

is contained in them.

Rubin and Watson have used learning by observation to train a poker playing

agent [48]. The learning agent observes games involving other software agents and

is often able to outperform the agents it learns from [49]. While their initial work

was not general-purpose, they have subsequently examined how observations can be

generalized so that a case base collected by watching one variant of poker can be used

to play another variant of poker [50]. This allows their approach to move toward

general-purpose learning by transferring knowledge between highly related domains.

2.2.2 Lead-through Programming

Lead-through programming (also called walk-through programming) [10] is similar to

learning by observation in that it allows robots to be trained using expert demonstra-

tions. It is used primarily when the robot is required to move in a fixed path of motion.

However, the learner in lead-through programming only memorizes a sequence of ac-

tions and then performs the identical sequence of actions during deployment. The

agent is not situated in its environment because it only performs actions and does not

receive any external inputs. The fact that the agent does not reason using sensory

inputs makes it impossible to determine if the actions are having the desired influence

or to recover from errors.

In shipbuilding, lead-through programming has been used to show a robot how to

weld [2]. The human welder controls the robot and performs the welding while the

robot tracks the precise path that its welding arm is being moved. When the human

is no longer controlling, the robot imitates the behaviour by moving its welding arm

in exactly the same way as when the human controlled. The robot does not pay

attention to any sensory inputs, like if the welding was successful, so its behaviour is

only a fixed sequence of actions.

19

2.2.3 Learning Interface Agents

Learning interface agents [31] are a form of learning by observation. An agent acts

as a user’s personal assistant, for tasks like sorting e-mail messages, and learns by

observing the user. The agent stores instance data, containing information about the

email (the sensory input) and where the user moved it (the action), and then compares

new e-mail messages to these instances in order to determine where to recommend

they should be moved. This work is meant to be assistive to a user rather than replace

a user entirely (as is the case in many learning by observation systems). Many of the

features that are used are related to how the user initially interacts with a new e-mail,

like reading it or replying to it, so the agent would be unable to operate without the

user’s involvement.

A similar work, related to scheduling and meeting management, has examined

the ability of the interface agent to take automated actions [27]. They provide an

interface design that attempts to reason about the goals of the user to determine if

an action should be performed automatically or if further user input is needed. Since

the actions of an interface agent might have significant impact on the user, like if a

meeting was scheduled or cancelled, it should be certain it is taking actions that meet

the user’s goals. If it is not certain, it can reduce the uncertainty by providing the

user with possible solutions or getting more information from the user.

In both of these systems, the interface agents are designed to assist the user in a

specific task (email sorting and meeting scheduling) so the task is known in advance.

What the systems learn is a user’s behaviour and preferences when performing the

tasks.

Learning interface agents have also been used to predict how a user will behave

when note-taking [52]. The interface agent learns by watching the user enter textual

notes into a computer program. It can then assist the user by providing suggestions

20

for how to complete notes based on what has already been typed. In this work, the

agent is not necessarily observing the environment in the same way as the expert.

The user likely senses the environment by encountering the situation it is taking notes

about, like a school lecture, whereas the interface agent only senses the text the user

types. The examples the system uses to train itself will be significantly different from

the beliefs of the user so the system could never replace the user.

2.2.4 Learning by Observation using Case-based Reasoning

Case-based reasoning (CBR) is a problem solving approach that uses knowledge about

previous problem solving experiences to solve novel problems [1]. It is based on the

idea that similar problems tend to have similar solutions. This idea fits well with the

goals of learning by observation where a learner should produce the same outputs

(the solutions) as the expert in response to the same inputs (the problems).

Unlike many artificial intelligence approaches, CBR does not rely solely on gen-

eral knowledge about how problems should be solved or generalize previous problem

solving experiences but instead stores concrete examples of past problems and how

they were solved. For a general-purpose learning by observation system, it is ben-

eficial to not have to rely on domain knowledge or require input problems to take

a predefined format since this type of information might not be known in advance.

Instead, knowledge can be learnt from the concrete problem examples. Also, since

CBR does not generalize the problem solving examples, it allows new examples to

easily be added at any time.

We define the following case-based reasoning terms:

Case: An instance of a previously encountered problem solving situation. A case

will generally contain the problem, the solution to the problem, and possibly

information about how the solution was derived.

21

Case base: A collection of cases that is used by a case-based reasoning system.

Case-based reasoning systems generally follow a cycle [1]. The CBR cycle is

composed of four primary stages (Figure 2.1): retrieve, reuse, revise and retain.

Case
Base

Domain
Knowledge

Retrieve

input
problem

new
target
case

ReuseRevise

Retain

source
cases

solved
target
case

revised
target
case

learned
case

Figure 2.1: The case-based reasoning cycle

1. Retrieve: Prior to the retrieval stage, the input problem that is to be solved is

used to create a new case called the target case. The target case is initially an

incomplete case since it contains a problem but no solution. During retrieval,

the target case is compared to the cases in the case base (the way in which

cases are compared will depend on the domain and how the data in cases is

represented). The most similar cases, called the source cases, are returned by

the retrieval stage. The number of source cases returned could be a constant

or vary each time retrieval is performed, depending on the specific retrieval

approach that is used.

2. Reuse: This stage uses the solutions of the source cases to find a solution for the

target case. This could involve directly reusing one of the solutions, modifying

22

one of the solutions to fit the input problem, or combining parts from several

solutions to create a novel solution. This solution can then be added to the

target case and used to attempt to solve the problem.

3. Revise: If the CBR system is able to get direct feedback on the success or

failure of a solution, it can then revise the solution if necessary. A successful

solution would not require any revision but an unsuccessful, or partially suc-

cessful, solution may need to be modified. This modified solution, whether it is

a slight modification or a drastic change, can then replace the existing solution

of the target case. If possible, the CBR system can then attempt to apply the

modified solution to the problem and see if it is now successful (possibly leading

to further revision).

4. Retain: If the solution in the target case was successfully able to solve the input

problem, the target case can then be retained by adding it to the case base (in

some systems, it may even be possible to store target cases with unsuccessful

solutions as negative cases). This allows the case base to grow over time and

cover a wider subspace of possible problems. Retained cases can then be used,

just like any other cases in the case base, to help solve input problems.

While most CBR systems use these four stages, the CBR cycle only provides a

rough framework for system design. The method by which each stage is performed

can vary greatly and some systems may even omit certain stages.

The discussion of case-based reasoning is important because many learning by

observation systems use it to perform learning. This includes existing learning by

observation systems (discussed in Section 2.2.4.2) as well as our own research.

23

2.2.4.1 Case-based Reasoning Frameworks

There have been several efforts at creating frameworks for case-based reasoning sys-

tems. The two CBR frameworks that are currently being the most actively developed

are jCOLIBRI [11] and myCBR [55].

jCOLIBRI is a general-purpose, feature-rich CBR framework that allows the de-

velopment of a wide variety of stand-alone CBR applications. The framework was

developed with an emphasis on separating the algorithms used in the CBR systems

from the domain models. Unlike jCOLIBRI, myCBR focuses on similarity based

retrieval and does not place as much emphasis on other parts of the case-based rea-

soning cycle. It is particularly suited for prototyping purposes as it allows for retrieval

algorithms to be easily created, tested and compared.

Both myCBR and jCOLIBRI look to provide general frameworks that can be

applied in a variety of CBR areas such as textual CBR, recommender systems or

conversational CBR systems. We can think of them as providing building blocks that

allow existing case-based reasoning components to be interconnected. A designer

can use an application programming interface or graphical user interface to build

and test the systems. However, due to this general nature they are not optimized

for the specific needs of learning by observation systems. These needs can include

things like partial observability, non-determinism, complex environmental inputs and

real-time constraints. For example, since a learning by observation system might not

have predefined knowledge about the sensory inputs it will receive, it would not be

possible to define the format of the input data or the similarity functions in advance.

Similarly, their frameworks are designed to be used on desktop computers or as web-

based applications whereas a learning by observation system is often deployed in an

embedded system.

24

2.2.4.2 Learning by Observation Systems

Case-based reasoning has been a popular technique for learning by observation. We

have previously discussed two case-based learning by observation systems in the con-

text of general-purpose learning by observation, the Darmok system [22, 35, 38, 39, 41]

and the work of Rubin and Watson [48, 49, 50], but will now turn our attention to ad

hoc systems. The earliest work looked at learning to play chess by observation [14].

In their approach, cases are created by examining logs of grandmaster games and

finding common substructures of the chess board. Each move in the logged games is

used to create a case, composed of the chess board (represented by the substructures

it contains) and the resulting move. They found this approach, since it could be

automated, significantly reduced the time required to build a case base.

Romdhane and Lamontagne [47] have used a combination of case-based reasoning

and reinforcement learning to train a Tetris playing agent. The agent observes an

expert play Tetris in order to create a case base where each case contains the current

state of the game and the resulting action. As the agent plays Tetris on its own,

it uses reinforcement learning to identify which cases result in good game play and

which do not. They also examined which of these cases can be removed from the case

base when storage or computational resources are limited [46]. The main limitation

of this approach is that it requires a way to determine if a particular case helped the

agent play well. If no such measurement is possible, then reinforcement of cases can

not be performed.

In the previously mentioned CBR systems, the current environment state is used

to determine a single action that will be performed. In order to account for the

fact that a single environment state might result in one of several actions, Gillespie

et al. [21] use stochastic policies to represent, for a particular environment state,

the probability for each possible action. The expert demonstrations are analyzed in

25

order to create these policies and store them in cases. During runtime, when presented

with an environment state the agent can retrieve a similar case and use the associated

stochastic policy to select an action. Since this approach uses stochastic policies to

account for the same environment state having different possible actions, it does not

take into account that these actions may be dependant on internal state information.

2.2.5 Other Learning by Observation Approaches

Learning by observation has not been limited to robots that only perform sequences

of actions. One such work was used to teach a robotic helicopter how to perform ac-

robatic aerial manoeuvres [7]. The primary contribution of this work is that it learns,

using a Kalman smoother, manoeuvres from multiple demonstrations rather than a

single demonstration. The performance was improved because errors that might have

been present in a single demonstration were unlikely to occur in all demonstrations.

However, programmed expert knowledge was required, along with the expert demon-

strations, to successfully learn most manoeuvres. For example, restrictions on the

central position of the helicopter were required in order to learn how to flip the he-

licopter. While this added knowledge makes the manoeuvres learnable, it requires

knowledge engineering and fine-tuning from a domain expert.

The previously described techniques all learn by observing the expert or examining

game logs. One approach that attempts to improve on how observation occurs has

been performed in the domain of soccer playing robotic dogs [23]. This work uses

mixed-initiative control so that a robot can either be controlled by a software agent

or a human expert. A human expert is able to observe the software agent control

the robot and seize control of the robot when it determines the agent has made a

mistake. The agent can then record the expert’s behaviour and use those observations

to further train itself. This type of control is beneficial because it allows the expert to

fine-tune the agent’s behaviour. However, identifying problems and determining when

26

further observation is necessary is entirely controlled by the expert. It would be more

advantageous if the learning agent could examine its own behaviour and determine

its limitations. In their experiments, they found that simple behaviours like tracking

the soccer ball and moving could be successfully learnt but difficulties occurred when

sequences of actions were necessary. For example, walking toward the ball and then

kicking it. In order to overcome this they found it necessary to artificially add an

input that represented the agent’s current internal state [24].

Learning by observation has been used to control a software agent in a first-person

shooter video game [57]. Game logs, containing input-action pairs, are collected

by observing a hard-coded agent play the game and then used to train a neural

network. After training, the neural network is used by the software agent to control

its behaviour. This technique only uses an expertly selected subset of the sensory

inputs (related to the agent’s position and the nearest opponent’s position) and only

controls the movement of the agent. This selection of features was performed to

overcome the limited observability of the agent and ensure that there were always

known values for each sensory input.

Learning by observation has been used to create realistic virtual characters [12].

This work focuses on creating characters that appear to be human-like in their move-

ments. When an expert demonstrates human behaviour, only the sequence of ac-

tions is recorded. These action sequences are then used to produce agent behaviour

that is both novel and realistic. While the agents learn by observation, they require

fitness functions to measure the quality of generated behaviours. This requires pre-

programmed knowledge about what a correct behaviour should look like so the fitness

function will need to be designed by an expert for each behaviour.

27

2.2.6 Lessons Learnt

After examining the work in learning by observation, the following insights were

identified:

• Most existing learning by observation systems are designed to learn in a specific

domain. If there are any changes in the domain, or in some situations even a

change in the expert or behaviour, the agents need to be significantly modified.

This requirement is counter to learning by observation since it does not allow an

agent to learn on its own. Instead, the agent is heavily reliant on a programmer

to make modifications.

• The one learning by observation approach that does work in multiple unrelated

domains still requires pre-programmed expert knowledge since the goals of the

expert must be defined. Every time the domain, expert or behaviour is changed

the goals will also need to be re-programmed.

• The ability to transfer knowledge that is learnt by observation requires domains

that are highly similar to each other. While it is possible to transfer cases

between variants of the same game, it might not be applicable to our goal of

learning in substantially different environments.

• All existing learning by observation work performs the observation passively.

This can include directly observing the expert perform the behaviour or exam-

ining behaviour logs. This means that the agents have no control over what

they observe so they may be missing important data. For example, if an expert

never demonstrates a specific part of its behaviour the learning agent will never

be able to observe and learn it. One approach allows the expert to take control

and provide further demonstrations but this is still passive observation since

the agent is not in control of what is shown.

28

• Learning by observation approaches that do not take into account the environ-

ment, like lead-through learning, can only perform fixed sequences of actions.

Since they do not examine the success of their actions or look for any unexpected

environment states, they are not able to respond to changes or generalize their

behaviour.

• Expert observation analysis would be important for a learner to perform and

could include identifying and cleaning noise, and determining properties related

to the expert’s behaviour. Since the observed data is what an agent uses to

learn, it is important that it is of a high quality.

• The existing learning by observation approaches are not able to learn behaviours

that are dependant on an expert’s internal state. The internal state is not di-

rectly observable to an agent, since a learning by observation agent can only

examine an expert’s inputs and actions, so it must be inferred from observa-

tions. To some extent, approaches that use planning can perform multi-state

behaviours if the state transitions are encoded in the plans. However, even if

a single plan contains behaviours related to two (or more) internal states, the

current state is not explicitly identified or stored so when the agent switches

plans there is no guarantee the current state of the agent will be the same as the

required starting state of the plan. Since many complex experts, both humans

and software agents, maintain internal states, a robust learning by observation

system should be able to learn from multi-state experts.

• Based on the levels of difficulty, proposed by Ontañón, Montaña and Gonzalez,

a general-purpose learning by observation agent would be at the most difficult

level (tactical behaviour in unknown environments). The type of system we

look to develop in this thesis would be at that level because it would need to

learn from experts who reason with internal information while interacting with

29

their environment and have no predefined knowledge of their environment.

• Case-based reasoning would be a good artificial intelligence technique to use for

a general-purpose learning by observation system because it does not generalize

the training examples but stores them as concrete problem-solution instances.

This allows new training examples to be added at any time without needing

to retrain the system. Also, it does not constrain the examples to a fixed

predefined format, like a feature vector, and allows different examples to have

different structures.

• There are two major frameworks for developing case-based reasoning systems:

jCOLIBRI and myCBR. While both of these frameworks are designed to allow

the creation of a variety of CBR applications, they are not designed to handle

many of the needs of learning by observation systems. Similarly, the resulting

applications are not designed to be deployed on embedded systems, or other

systems with limited computational resources, so they may not meet the needs

of learning by observation systems.

2.3 Discussion

This chapter has examined related work in learning by observation and the issues

specific to learning from agents. Using the insights that were gained in this chapter it

is possible to identify the commonalities between the existing learning by observation

systems. More specifically, we can see what common tasks are performed in learning

by observation systems and how they learn. The remainder of this thesis will for-

malize the workflow of learning by observation systems and address the technological

requirements necessary to make them general-purpose in nature.

Chapter 3

Learning by Observation Cycle

Learning by observation agents attempt to reproduce the behaviour of an expert.

The expert is treated like a black box that receives inputs and in turn produces

outputs (Figure 3.1). The goal of the learning agent is to approximate how the

expert generates outputs in response to inputs.

Expert
inputs

outputs

Figure 3.1: An expert receiving inputs and producing outputs

For an expert that is situated in an environment, the inputs represent the sensory

information perceived by the expert and the outputs are the actions the expert per-

forms. At time t, the expert can interact with the environment by receiving sensory

information St and performing an action At (Figure 3.2). These expert-environment

interactions can be observed by a learning agent and used to determine how the expert

reasons.

Learning by observation agents do not train themselves with existing data but

instead collect and label the data themselves. After seeing the expert presented with

a problem, the sensory input, the learning agent infers what the solution was based

30

31

Environment
Expert

At

St

Figure 3.2: An expert interacting with the environment

on the actions the expert performed. Once the data has been collected, traditional

machine learning algorithms can then be used.

This chapter will examine the major steps involved in learning by observation and

how these steps fit together in a cyclical workflow. Initially, we will define how the

agent stores observations and how individual observations relate to each other. A

general learning by observation cycle will be presented that defines the steps that are

necessary for learning. Each of these steps will be examined to determine how they

should be performed.

3.1 Terminology

Each of the observed interactions between the expert and the environment, which

are composed of the sensory inputs and actions, can be stored by the learning agent.

Since the agent uses case-based reasoning, these interactions will be stored as cases.

A case Ct, observed at time t, contains the sensory input St and the action At that

were observed:

Ct = 〈St, At〉

Using case-based reasoning terminology, the sensory input is the problem and the

action is the solution to that problem.

Over a period of time, the learning agent is able to view an entire run [58] of

32

sensory inputs and actions. A run of length u, Ru, would contain u sensory inputs

and u− 1 actions:

Ru : S
A1−→

1 S
A2−→

2 S
A3−→

3 . . . S
Au−1−−−→

u−1 Su

Each run represents an entire sequence of the expert’s behaviour that was observed

by the learning agent.

3.2 Learning Cycle

Learning by observation has been used in numerous works but is generally looked at

as a single task to be performed. However, upon closer inspection, it can be seen that

learning by observation is actually composed of several subtasks. These subtasks are

interconnected, as we will show below, but not necessarily tightly coupled. This means

that each subtask of learning by observation can potentially be solved independently

and later combined to make a complete system. This section will identify what

the subtasks are, how they are connected, and which are crucial to making general-

purpose learning agents.

3.2.1 Tasks of the Cycle

The learning by observation cycle (Figure 3.3) contains four main tasks: modelling,

observation, preprocessing and deployment.

3.2.1.1 Modelling

The modelling task in learning by observation involves two steps: modelling inputs

and modelling outputs. Ideally, the way the observing agent models inputs and

outputs should be identical to how they are represented by the expert. This ensures

33

Preprocessing

Modelling

Observation

Deployment

Figure 3.3: The learning by observation cycle

that the information the agent uses to learn the expert’s behaviour is the same as

the information the expert uses to reason. The modelling would involve defining the

format for the sensory inputs received by the expert (St) and for the actions performed

by the expert (At).

If the input and output models used by the learning agent are not the same as the

inputs and outputs used by the expert, it may not be possible to successfully learn

the expert’s behaviour. For example, if the expert reasons about its actions based on

both what it can see and what it can hear, the learning agent should include both

of those pieces of sensory information in its input model. Failing to include either of

those items would leave out important information from the model. However, if the

model included extra sensory information, like what the expert can smell, this would

not have a significant negative impact on the agent’s ability to learn since the extra

34

information could be removed later (during the preprocessing task).

The modelling does not only involve what is contained in the inputs and outputs

but also how they are structured. This can involve modelling how the expert is

thought to observe its environment (a complete view of the environment or only a

limited area), how it represents objects it can view (are all objects unique or can some

be interchanged with each other), how objects are structured (are they atomic or can

they be composed of other objects), or how it represents missing sensory information

(such as objects outside its field of vision).

Let us consider an example of an agent learning to play the game of soccer.

The expert senses its environment visually and can see five types of objects on the

field: soccer balls, teammates, opposing players, boundary flags and goal nets. The

expert can also perform three actions: moving, turning and kicking. Therefore, the

modelling task should model the expert’s sensory inputs as a collection of visible

objects, with each object being of one of the five types, and the expert’s actions as

being one of the three possible action types. The more difficult task is modelling how

the visual objects are represented. For example, should the expert be assumed to

have a complete view of the field at all times or a limited view? This will influence

whether the sensory inputs will contain information about all objects on the field (if

the expert can view the entire field) or only a subset of objects (if the expert has

a limited field of vision). Also, it may be necessary to model if the expert views

different objects as interchangeable. For example, does the expert treat all opponents

as equal or behave differently depending on which particular opponent it is? The

correct answer for these modelling decisions may vary depending on the expert being

observed so these decisions can influence an agent’s ability to learn from a specific

expert.

The modelling task is the first learning by observation task that is performed

since the developed model is used by all other tasks. Once the modelling stage is

35

complete, the learning by observation agent can then proceed to the observation task

(Figure 3.3). In general, the modelling task will only be performed once. However,

if any of the other tasks determines that the input or output models are incorrect

they can return to the modelling task. Such a transition back to the modelling task

can occur as a result of an error in the initial modelling or due to changes in how the

expert interacts with the environment (the introduction of new sensory information

or ability of the expert to perform new actions).

3.2.1.2 Observation

The observation task involves watching the expert interacting with the environment.

Over a period of time, the observing agent is able to examine the run of the expert

and record observations related to the expert’s behaviour. Going back to our soc-

cer example, during each interaction the learning agent would record observations

containing what the expert could currently see on the soccer field (the collection of

visible objects) and the action the expert performed (move, turn or kick).

The format of the observed items, the actions and sensory inputs, are defined in

the modelling task stage. Therefore, the recorded observations are heavily influenced

by the modelling. Likewise, since the data that was collected is used in the remainder

of the cycle (preprocessing and deployment tasks), it has a significant influence on

the remaining tasks. If the agent did not observe the expert for a long enough period

of time or did not observe the expert’s inputs and outputs correctly (or accurately

due to incorrect modelling), it may not have enough information to correctly learn

the expert’s behaviour. The observation task can, however, be repeated later if the

agent needs to perform additional observation or to restart the observation from the

beginning.

36

3.2.1.3 Preprocessing

The observations that were recorded during the observation task are raw in nature.

The goal of the preprocessing task is to examine the raw observations in order to

extract any important information or to convert the observations in some way. The

manner in which the preprocessing is performed will be guided by one or more per-

formance metrics. These metrics could include the agent’s estimated response time,

estimated ability to perform the learnt behaviour, or any other desired metric.

Much like the metrics used to guide preprocessing can vary depending on the

particular goals of the learning agent, so too can the preprocessing methods that are

used. The preprocessing methods can include techniques to extract information from

the observations, like what information the expert uses during reasoning, or to modify

the collection of observations, like removing duplicate observations. The information

extracted, or modifications made to the observations, during preprocessing will later

be used during the deployment task.

In the soccer example, the sensory inputs can contain five different object types

(soccer balls, teammates, opposing players, boundary lines and goal nets). However,

the expert might not use information from all of those types of objects during rea-

soning. Let us consider an expert that only uses the soccer ball and goal nets during

reasoning. Keeping the other objects in the sensory inputs may be unnecessary or

even detrimental if it increases the computational requirements needed to perform

reasoning. Using preprocessing, the agent can determine which parts of the sensory

information are necessary (in this case, the ball and goal nets) and remove the oth-

ers. This will not only reduce the storage requirements for the observations but will

improve real-time performance since fewer pieces of information are examined during

reasoning [15].

37

3.2.1.4 Deployment

The final task in the cycle is deployment. The deployment task is where the agent will

use the observations it has collected, along with any information it extracted during

preprocessing, to train itself and perform the learnt behaviour. Various learning

methods can be used to train the agent so the choice of how the agent learns will

need to be selected, in advance, by the agent’s designer (a description of the learning

method used in this thesis will be provided in Chapter 4). This selection may be

guided by the nature of the task being learnt or by properties of the environment the

agent will operate in.

Once the agent has learnt the behaviour, it can then be deployed in the environ-

ment and attempt to perform the behaviour it has learnt from the expert. Returning

again to the soccer example, the learning agent would be placed on the soccer field

and attempt to play soccer like the expert did. If the learning was completely success-

ful, the behaviour of the agent should be exactly the same as the expert’s behaviour

would have been. However, in practice it may not be possible to replicate the expert’s

behaviour perfectly. Reasons for suboptimal learning can include the expert having

highly complex behaviour, the agent not observing enough of the expert’s behaviour,

insufficient preprocessing, errors in modelling or noise. If the agent did a good job

learning the behaviour, based on some performance criteria or a qualitative analysis

by a human, it can continue to perform the behaviour in the environment. However,

if the learning is deemed to be poor, the agent can change the learning algorithm used

or continue the learning cycle by performing additional observation (or remodelling

the inputs and outputs).

38

3.2.2 Case-based Reasoning Cycle within the Learning by

Observation Cycle

In the learning by observation cycle, reasoning occurs during deployment and so that

is where, for our system, case-based reasoning will be performed. As was described

in the previous chapter, the case-based reasoning cycle contains four stages (retrieve,

reuse, revise and retain). We will examine how each of these stages will be performed

in our learning by observation system and any limitations on how those stages can

be performed.

3.2.2.1 Retrieve

During the retrieve stage of the case-based reasoning cycle, input problems are com-

pared to cases in the case base in order to retrieve similar cases (details on specific

retrieval algorithms will be discussed in Section 4.4). In order to calculate how sim-

ilar cases are to the input problem, each case’s sensory input component (the case

problem) is compared to the input problem using a similarity function. One solution

would be to hard-code the similarity functions that are used, but that would require

prior knowledge of the sensory inputs and how they should be compared. Instead,

our approach will look to incorporate similarity functions in the modelling so that

each sensory input is responsible for how it should be compared (discussed in Section

4.1).

Consider an agent that has learnt to play soccer by observation. If it can currently

see a soccer ball directly in front of it (and nothing else), that will be its current

input problem and it will retrieve cases from its case base that are similar. Ideally,

the retrieved cases should all have a similar number of visible objects, a single soccer

ball, and the objects should be at a similar location, in front of the agent.

39

3.2.2.2 Reuse

The reuse phase of the case-based reasoning cycle in our framework was designed

to contain no domain information. This limits the reuse algorithms to those that

directly copy solutions from retrieved cases or perform knowledge-poor adaptation.

For direct solution copying, this could involve using the solution, unchanged, from

the most similar case in the case base or the most common solution found among

similar cases.

If any adaptation was performed, in order to tailor the solution to the specific

problem, it would need to be knowledge-poor adaptation since no domain knowledge

would be available. Instead, adaptation rules would need to be learnt from the ob-

served cases. Although such adaptation is possible, we have not currently investigated

adaptive reuse and only use solution copying.

In the soccer example, the retrieved cases would be examined to determine what

action to perform. Since the soccer ball was directly in front of the agent it is likely

that the retrieved cases would have a kick action. The agent could then reuse that

action and attempt to kick the soccer ball.

3.2.2.3 Revision and Retention

The remaining two parts of the case-based reasoning cycle, revision and retention,

have mostly been excluded from our framework. Both of these processes require some

knowledge about the task being performed. During revision, a case-based reasoning

system might evaluate the proposed solution or repair the solution. Without any

knowledge of the task that the expert has demonstrated or direct feedback from the

expert it would not be possible to know the quality of the proposed solution. Similarly,

since the quality of the solution can not be measured, the system would not know

which problem-solving episodes should be retained as new cases.

40

3.3 Discussion

The cycle presented in this chapter has described the major tasks performed by

learning by observation systems. Each task in the cycle can be implemented in a

variety of ways (or in some cases may not be performed at all). While the descriptions

of each task make it possible to see the common approaches of existing learning by

observation systems, it also makes it possible to see the requirements of each task in

order to allow for general-purpose learning by observation. In Chapter 4, solutions

will be presented to each of the four subtasks. Each proposed technique will look

to advance the state of the art in one of the learning by observation subtasks. As a

result, this will lead to an improvement in the agent’s learning performance or what

the agent can learn.

Chapter 4

Case-based Learning by Observation

The previous chapter described the learning by observation cycle and the major sub-

tasks that make up the cycle. This chapter will examine each of the subtasks and our

approaches to address them.

4.1 Modelling: General-purpose Modelling

Learning by observation agents attempt to shift the burden of knowledge transfer

from the expert, who has the knowledge, to the agent itself, who wishes to learn

that knowledge. However, the area of the learning by observation cycle that is not

performed by the learning agent and requires human intervention is the modelling

task. Ideally, the learning agents should be able to learn a variety of behaviours

from a variety of experts in a variety of environments. However, due to the human

intervention in the modelling task, a change in the behaviour, expert or environment

often requires a significant amount of time before the agent can begin learning.

The remainder of this section will describe an approach to learning by observation

agent design that is able to reason on a variety of inputs and outputs. Initially, we will

describe how the expert’s inputs and outputs are modelled. We will then describe how

agents can be designed in a way that decouples the parts of the agent that perform

41

42

reasoning from those that interact with the environment. A description of how the

agent can reason using the inputs and outputs will be presented. Particular attention

will be given to detailing how the agent is able to use these inputs and outputs,

without any prior knowledge of their exact formatting, as long as they follow the

modelling framework. Finally, case studies in several domains will be presented.

4.1.1 Input and Output Modelling

The sensory inputs received by the expert can come in many forms. If the expert

is a robot with simple sensors, the inputs would likely be in the form of numeric

readings from the sensors. An expert who plays a board game would likely receive

inputs regarding the current configuration of the board whereas an expert with object

recognition capabilities might get inputs in the form of a set of visible objects. In

order to account for the variability in what constitutes an expert’s sensory inputs, the

inputs can be viewed as coming in two forms: atomic inputs and complex inputs. An

atomic input is used to model simple feature values. Each complex input is composed

of a collection of other inputs, either atomic inputs or other complex inputs:

<input> ::= <atomic-input> | <complex-input>

<atomic-input> ::= <name> <feature>

<feature> ::= <value>

<complex-input> ::= <name> { <input> }

We take a similar approach when modelling actions. Actions can be atomic if they

represent a single action or complex if they represent a sequence of actions. Each

atomic action contains a collection of action features that represent the parameters of

the action. This allows the modelling of very specific actions that have no parameters,

like moving forward, or more general parameterized actions, like moving with a given

direction and velocity.

43

<action> ::= <atomic-action> | <complex-action>

<atomic-action> ::= <name> { <feature> }

<complex-action> ::= <name> { <action> }

It should be noted that nowhere in our models is there any information about what

the meaning of each input or action is. For example, no background information is

provided to tell the observer that the touch sensor of a robot indicates the robot

has come in contact with an obstacle or that a forward action is supposed to move

the robot. More importantly, nowhere in these models, or anywhere in our design,

is there a need to explicitly represent the goals of the expert or add non-observable

features related to those goals. This allows the same input and action models to have

task-dependent meaning and to be reused for different experts even if those experts

have different behaviours or work toward different goals.

Different domains can potentially have very different sensory inputs and will there-

fore require different approaches to calculate similarity. Instead of encoding the spe-

cific similarity metrics in the retrieval algorithms, we make use of the strategy design

pattern [19] (Figure 4.1). This allows each sensory input to be aware of its own

strategy for comparing itself to other inputs.

SimilarityMetricStrategy

 similarity(i1:Input,i2:Input)

ConcreteSimilarityMetricA

 similarity(i1:Input,i2:Input)

ConcreteSimilarityMetricB

 similarity(i1:Input,i2:Input)

Feature

 value

Input

 name

 similarity(i:Input)

AtomicInput

 similarity(i:Input)

ComplexInput

 similarity(i:Input)

 add(i:Input)

 remove(i:Input)

11 1

0..*

Figure 4.1: Each input has an associated similarity metric that will be used when its
similarity method is called

44

Each type of input can have its own method of similarity calculation, but the

similarity calculation strategy is decoupled from the input to allow different strategies

to be used, or for different features to (re)use the same strategy. This allows the

various retrieval algorithms to be developed independently of the input model. The

retrieval algorithm can call the similarity method of the input which will then delegate

the calculation to the associated similarity metric.

Actions, like inputs, have associated similarity metrics. This may seem unintuitive

since actions constitute the solution portion of the cases (what the reasoning system

attempts to predict). However, it may be necessary to compare actions if they can

be part of the case problem, like when the expert’s entire run is compared during

retrieval, or when comparing actions during solution adaptation (during the reuse

part of the CBR cycle).

4.1.2 Agent Design

The modelling approach that has been presented allows for a variety of different

inputs and actions to be modelled, but no mention has been made of how it will be

used by the learning agent. In our agent design (Figure 4.2), we look to decouple

the part of the agent that performs reasoning (the Reasoning module) from the parts

that interact with the environment (the Perception and Motor Control modules).

The agent is assumed to have sensors and effectors that allow it to interact with the

environment. If the agent is situated in a physical robot, the sensors and effectors

could be physical sensors, like a sonar sensor, and physical effectors, like a robotic

arm. In a virtual environment, those sensors and effectors would instead be methods

by which the agent can send or receive information from the software controller.

The Perception module is responsible for reading the sensors and converting their

readings into a form that can be understood by the Reasoning module (based on the

input model that was developed). This sensory information is used by the Reasoning

45

Environment

A

S

Agent
Motor Control

Reasoning

Perception

Effectors

Sensors

Figure 4.2: Learning by observation agent design

module to determine what action to perform. This action is then sent to the Motor

Control module which causes the appropriate effector to perform the action (either

physically or in a virtual way). These two modules, which could be implemented by a

human expert or provided as loadable modules by each sensor/effector, will generally

be quite simple since they only perform mappings. The Perception module maps from

raw sensor inputs into structured sensor inputs whereas the Motor Control module

maps from structured actions to raw effector actions.

The Reasoning module does not contain any prior knowledge about the set of

sensors and effectors that will be used, or the input and output models that they use,

so an identical Reasoning module can be used for a variety of environments. However,

both the Perception and Motor Control modules must be modified if the sensors or

effectors are changed. By using this design, the portion of the agent that performs

reasoning is completely separate from the parts that interact with the environment.

As long as the sensory information that is sent by the Perception module to the

Reasoning module follows the modelling framework, the Reasoning module is able to

reason with it.

46

4.1.3 Dynamic Case Representation

One method to create the Perception and Motor Control modules is for a human

expert to hard-code then. However, this human intervention is not ideal for a general-

purpose learning agent. Instead, we will examine an approach that allows an agent

to dynamically change how it senses and acts on the environment.

4.1.3.1 Changing a Robot’s Sensors and Effectors

For a multi-purpose robot, using a fixed hardware configuration might not be an ideal

design since the necessary sensors and effectors would be dependant on the particular

task. Instead, it might be more effective, from both a design and cost standpoint,

to make the robot modular so that hardware can be added or removed as necessary.

Even if the robot could be built initially with all possible sensors and effectors, a

modular design would still be beneficial since it would allow the addition of state of

the art hardware or the upgrade of old hardware.

The ability to dynamically change what hardware a robot has also requires a

controlling agent that is able to respond to the changes and make use of the new

hardware. This idea is largely motivated by how animal brains deal with newly

added sensors. It has been shown that frogs can incorporate sensory information

from surgically implanted extra eyes [8] and that humans are able to adapt when

existing sensors are substituted for new ones [4]. These results seem to indicate that

animal brains are not hard-coded for a fixed set of sensors but can use and learn from

any sensors that are wired to the brain.

4.1.3.2 Sensor and Effector Registration

We propose passing the burden of handling new sensors and effectors onto the hard-

ware itself instead of requiring a human expert to modify the agent. We extend the

47

agent design so that a change in the sensors or effectors no longer requires a redesign

of the Perception or Motor Control modules. To achieve this, each hardware com-

ponent becomes a smart-component that contains the necessary information about

itself. Each component has information Ik that contains its name nk, value type tk,

and similarity function fk.

Ik = 〈nk, tk, fk〉

The component name is a unique identifier that distinguishes between the various

components. The value type defines what kind of value a sensor produces or an

effector accepts and is selected from a set of predetermined types. These value types

can be simple (boolean, integer, continuous, etc.) or more complex (matrix, vector,

etc.) and are used to perform simple error checking on data sent to or received from

the component. The component information also includes a similarity function. This

similarity function would be the similarity strategy that the input uses to compare

itself to other inputs.

When a component is connected to the system it registers by providing this infor-

mation to the agent. The Perception module maintains a list of all registered sensors

and the Motor Control module keeps a list of registered effectors. This means that

the sensory information received, or observed, by the agent is no longer composed of

a constant number of predetermined sensory values. Instead, the number of sensory

values received by the agent is dependant on the number of registered sensors and

can therefore change over time. In Figure 4.3, there are initially no sensors registered

until a sensor (Sensor 1) registers with the Perception module. Once the sensor

registers, data from that sensor can be sent to the Reasoning module. Later, when

an additional sensor registers (Sensor 2) the Reasoning module will get sensor data

from both sensors. This requires having a case definition that is not static but can

be modified as new sensors and effectors register with the system.

48

Perception Sensor 1 Sensor 2 Reasoning

register(n, t, f)

D1 = getData()

sense(D1)

register(n, t, f)

D1 = getData()

D2 = getData()

sense(D1, D2)

Figure 4.3: Sensors registering with the learning by observation agent

To allow for a dynamic case definition, the sensory input created by the Percep-

tion module is initially empty. As new sensors register with the agent, the sensory

information will contain values from those new sensors. If there are currently REGt

registered sensors at time t, the sensory input St will contain data from each of those

sensors:

St = 〈D1, D2, . . . , DREGt〉

Where the data Dj from each sensor contains both the sensor value vj and the sensor

information Ij:

Dj = 〈vj, Ij〉

4.1.4 Case Studies

Case studies in five domains will be used to demonstrate how our modelling approach

can be utilized. We will demonstrate how agents can be created in each of these

49

domains and examine their performance when learning by observation.

4.1.4.1 Sensor-Based Agents

The first two domains we will examine involve controlling physical robots. The first

is an obstacle avoidance robot (Figure 4.4) that has a touch and sonar sensor. The

learning task is as follows: the robot should move forward until it detects an obstacle

in front of it, using the sonar sensor, or determines it has come into contact with

something, using the touch sensor. In situations where an obstacle is detected, it

turns either left or right (it toggles its turn direction after every turn). If it comes

into contact with something it moves backwards. We will model the sensory input

SAV OID as follows:

SAV OID = 〈Stouch, Ssonar〉

Stouch = 〈ftouch〉

Ssonar = 〈fsonar〉

The robot has a set AAV OID of four possible atomic actions it can perform: move

forward (AF), move backwards (AB), move left (AL), and move right (AR).

AAV OID = {AF , AB, AL, AR}

The following sample code shows how the sensory model for this robot can be

manually implemented by a domain expert using our framework:

50

1 Input avoid = new ComplexInput("avoid");

2 Input touch = new AtomicInput("touch");

3 Input sonar = new AtomicInput("sonar");

4 SimilarityMetricStrategy s1;

5 s1 = new Mean();

6 SimilarityMetricStrategy s2;

7 s2 = new NormalizedDifference();

8 avoid.setStrategy(s1);

9 touch.setStrategy(s2);

10 sonar.setStrategy(s2);

11 avoid.add(touch);

12 avoid.add(sonar);

Figure 4.4: Obstacle avoidance robot

Initially, each of the sensory inputs are created (lines 1-3). Two similarity metrics

are then created: Mean and NormalizedDifference (lines 4-7). As the names imply,

the Mean similarity metric calculates the mean similarity of all child inputs and the

NormalizedDifference similarity metric calculates the normalized difference between

inputs. The Mean strategy is used by the complex input (line 8) and the Normal-

izedDifference strategy is used by both atomic inputs (lines 9 and 10). The complex

input then adds both atomic elements as children (lines 11 and 12). It should be

noted that in this example, for illustrative purposes, the similarity metrics and rela-

tionships between inputs need to be set each time the inputs are created. Instead,

51

subclasses of ComplexInput and AtomicInput could be created for each input type in

order to encapsulate these settings.

The second robot we examine is a robotic arm (Figure 4.5). This robot has three

sensors: a colour sensor, touch sensor and sound sensor. The problem-space of this

domain is slightly larger than that of the obstacle avoidance robot but still relatively

small (approximately 100 states for the obstacle avoidance robot and 200 for the

robotic arm). It can perform five atomic actions: move the arm forward (AarmF),

move the arm backwards (AarmB), stop the arm (AarmS), close the claw (AclawC),

and stop the claw (AclawS). Upon detecting a significantly loud sound on the sound

sensor, the arm begins moving forward until the touch sensor signals it has come in

contact with an object. If the colour sensor ever determines a red object is within

the claw’s grasp, the claw will be closed around the object and the arm will move in

reverse. However, if it ever determines a blue object is within the claws grasp, it will

not close but instead move the arm in reverse. We model the sensory inputs SARM

and action set AARM of the robotic arm similarly to those of the obstacle avoidance

robot:

SARM = 〈Scolour, Stouch, Ssound〉

Scolour = 〈fcolour〉

Ssound = 〈fsound〉

AARM = {AarmF , AarmB, AarmS, AclawC , AclawS}

There are two things that should be noted from our modelling of the sensory

inputs and actions of these two robots. First, we see that although the robots were

quite different there was still an opportunity to reuse a small portion of the model

related to the touch sensor both robots had. Robots that make use of the same, or

highly similar, sensors can therefore be modelled in similar ways. Both models could

52

Figure 4.5: Robotic arm

use the same similarity strategy, for their complex inputs, that calculates the mean

similarity of the atomic inputs. Secondly, although we described the behaviour of the

obstacle avoidance robot and robotic arm, the models we created are applicable to

any robots that have the same sensors and effectors. If the obstacle avoidance robot

was reprogrammed to follow objects it could still be observed and learnt from using

the same model.

Evaluation

While we have shown how the expert’s inputs and actions can be modelled, we

will now turn our attention to the learning agent’s ability to learn from each of the

experts. In these experiments, both agents will use an identical Reasoning module

but will use individual Perception and Motor Control modules. During case retrieval,

the Reasoning modules retrieve the source case, from the case base CB, that is most

similar to the target case and directly reuse the solution:

Csource = arg max
Ci∈CB

sim(Ci, Ctarget)

The case similarity is calculated by calculating the similarity of the sensory input

53

components of the cases (either SAV OID or SARM). If you recall from the modelling

example presented earlier, the model defined that these sensory inputs (which are

complex) would use a similarly measure that calculated the mean similarity of all

atomic inputs contained in them.

A learning agent, using our agent design, passively observed each of these robot

control programs (performing the previously described behaviours) and generated 500

cases for each robot for use as a case base1. Additionally, each robot had 1000 extra

cases observed for testing purposes. During the deployment, the learning agent used

the case base to try and replicate the behaviour of the robots. Each of the testing

cases, which had a known action, were given as input to the learning agent. By

comparing the action selected by the learning agent to the known action of the test

cases the accuracy was measured.

For the robotic arm, the learning agent achieved 100% accuracy performing each

type of action (Table 4.1). For the obstacle avoidance robot, the learning agent

achieved 100% accuracy for forward and backwards actions, but a lower accuracy

for the left and right actions (row Avoid (toggle turn) in Table 4.2). This occurred

because the obstacle avoidance robot would toggle its turn direction, so the turn

direction was related to its internal state and not any external information that could

be observed.

Arm Claw

Overall Forward Backward Stop Close Stop

Robotic Arm 100% 100% 100% 100% 100% 100%

Table 4.1: Accuracy of the agent when learning to control the robotic arm

1Throughout this thesis, different domains will use different sized case bases. The sizes were
selected so that the learning agent would be able to search the case base and perform an action
within the real-time limits of the particular domain. Both these limits and the computational
complexity of the similarity calculations can be different for different domains.

54

Overall Forward Backward Left Right

Avoid (toggle turn) 75% 100% 100% 50% 50%

Avoid (constant turn) 100% 100% 100% 100% 100%

Table 4.2: Accuracy of the agent when learning to control the obstacle avoidance
robot

As a modification, the obstacle avoidance robot control program was changed

to only turn in one direction. This removed the need for the control program to

maintain an internal state and made it purely reactive. A new training case base

of 500 cases and a testing case base of 1000 cases were generated by observing the

modified robot. When the evaluation was performed2, the learning agent was able

to achieve an accuracy of 100% (row Avoid (constant turn) in Table 4.2). This

demonstrates that, even for simple behaviours where it is possible to achieve perfect

accuracy, state information can significantly hinder an agent’s ability to learn if it

assumes the expert will behave in a purely reactive manner. We will revisit dealing

with internal states in Section 4.4.

4.1.4.2 Object Inputs

We turn our attention to agents that have more complex sensory capabilities that

allow them to observe the environment at a higher level of abstraction. Instead of

receiving inputs in the form of sensor values, these agents are able to sense objects and

their locations. In simulated soccer (Figure 4.6), like the RoboCup Simulation League

[45], an agent’s sensory input SSOCCER contains the visible balls (Sball), teammates

(Steam), opponents (Sopp), goal nets (Snet), boundary lines (Sline), and flags (Sflag).

Each of these objects has sub-inputs related to their distance and direction relative

2A video of the learning agent performing the obstacle avoidance behaviour: http://sce.

carleton.ca/~mfloyd/LearningVideos/ObstacleAvoidanceRobotLearning.mp4

55

to the agent.

Figure 4.6: RoboCup Simulation League

SSOCCER = 〈Sball, Steam, Sopp, Snet, Sline, Sflag〉

Sball = {S1
object, . . . , S

a
object}

Steam = {S1
object, . . . , S

b
object}

Sopp = {S1
object, . . . , S

c
object}

Snet = {S1
object, . . . , S

d
object}

Sline = {S1
object, . . . , S

e
object}

Sflag = {S1
object, . . . , S

f
object}

Sobject = 〈Sdistance, Sdirection〉

Since objects can move in or out of the player’s field of vision, the number of objects

of each type can change over time. Therefore each object type is viewed not as a

single-valued feature but instead as a multi-valued feature. For example, if the player

is facing away from the field of play it might not see any opponents (|Sopp| = 0).

Later, when it turns back to the field it may see a number of opponents (|Sopp| > 0).

56

If the player can not uniquely identify the opponents, then when comparing two

sensory inputs any sub-input in the first (any individual opponent) could potentially

be compared to any sub-input in the second. The difficulty becomes determining

which sub-input in the second sensory input would be optimum (or near optimum)

to compare to. This requires the use of a similarity strategy that can handle multi-

valued features, such as the one described in [18] that uses bipartite set-matching

algorithms.

A soccer playing agent has a set ASOCCER of three possible atomic actions: kick

(Akick), dash (Adash) and turn (Aturn).

ASOCCER = {Akick, Adash, Aturn}

Akick = 〈fpower, fdirection〉

Adash = 〈fvelocity〉

Aturn = 〈fangle〉

Unlike in the physical robotic domains, where the actions did not have parameters,

the soccer actions all have associated parameter features. The kick action shows an

example of an action that can have multiple parameters since it has both a kick power

(fpower) and direction (fdirection).

The observing agent learnt from a computer controlled expert that turns until it

can see the soccer ball, runs toward the ball and kicks the ball toward the opponent’s

goal net. A case base of 5000 cases was used along with 3000 test cases. The accuracy

results, shown in Table 4.3, may seem low but other work has shown these results can

be drastically improved by preprocessing the case base [15]. Since the goal of this case

study was to highlight the modelling3 and not to optimize learning performance, no

preprocessing was performed. Also, this domain had a significantly larger problem-

space than the two robotics domains we examined previously (approximately 29600

3A video of the learning agent performing the soccer behaviour: http://sce.carleton.ca/

~mfloyd/LearningVideos/RoboCupLearning.mp4

57

states if the environment is discretized) and the distribution of actions is severely

imbalanced (fewer than 1% of observed cases have kick actions). We will revisit this

domain in Section 4.6 and show how the other subtasks (observation, preprocessing

and deployment) can improve these result.

Overall Kick Dash Turn

RoboCup 61% 27% 71% 83%

Table 4.3: Accuracy of the agent when learning the RoboCup simulated soccer be-
haviour

4.1.4.3 Tetris

Our next case study will involve the game of Tetris. In Tetris (Figure 4.7), there is

a rectangular game region where the player stacks incoming game pieces of varying

shapes. When the pieces form a horizontal line from one side of the game region to

the other, the entire line is removed from the game region thereby freeing space. The

player must strategically place pieces in order to ensure the stacked pieces do not

reach the top of the game region.

The sensory input in Tetris STETRIS contains two sub-inputs: the current state of

the game region (Sregion) and the current piece that needs to be placed (Spiece).

STETRIS = 〈Sregion, Spiece〉

Each of these sub-inputs is represented by a matrix containing information about

which squares are currently occupied. The game region is a 20 × 10 rectangle that

contains 200 squares and the piece is a 4×4 rectangle that is composed of 16 squares.

Each square Scell contains a feature (foccupied) representing if the square is occupied

58

Figure 4.7: Tetris

or not.

Sregion = 〈Scell,1, . . . , Scell,200〉

Spiece = 〈Scell,1, . . . , Scell,16〉

Scell = 〈foccupied〉

Unlike the soccer domain, where there was partial observability, the Tetris agent is

always able to see the entire game region and game piece. Due to the full observability

of these inputs it was possible to model them as being ordered and of a fixed-length

(length 200 and 16 respectively) rather than as multi-valued inputs with a time-

varying number of elements. This is important because similarity calculations become

more computationally expensive with multi-valued inputs [18] and should therefore

be avoided, if possible, when the agent has real-time constraints. Here, the similarity

strategy of the complex inputs just calculates the mean of the similarities of the

59

atomic inputs (like was done in the robot case study). The designer could also create

a custom similarity strategy that takes inspiration from human players [46].

The similarity strategy for the complex input calculates the mean similarity of

sub-inputs:

sim(Sa
TETRIS, S

b
TETRIS) = mean

(
sim(Sa

region, S
b
region) + sim(Sa

piece, S
b
piece)

)
Similarly, both the region sub-input and piece sub-input use a similarity metric that

calculates the mean similarity of their own sub-inputs.

sim(Sa
region, S

b
region) = mean

(
200∑
i=1

sim(Sa
cell,i, S

b
cell,i)

)

sim(Sa
piece, S

b
piece) = mean

(
16∑
i=1

sim(Sa
cell,i, S

b
cell,i)

)
This shows that all three types of inputs can make use of identical similarity functions.

The similarity strategy for individual cells just looks to see if they contain the same

value:

sim(Sa
cell, S

b
cell) =

1 , ifSa

cell = Sb
cell

0 , ifSa
cell 6= Sb

cell

In Tetris, there is only one action to perform. However, unlike the previous

domains, this action Amovepiece is a complex action that contains two atomic actions.

The first sub-action Aslide is related to how many squares the game piece should be

moved horizontally (with positive values representing sliding right and negative left)

and the other Arotate is related to how many times the game piece should be rotated

60

by 90 degrees clockwise.

ATETRIS = {Amovepiece}

Amovepiece = 〈Aslide, Arotate〉

Aslide = 〈fslide〉

Arotate = 〈frotate〉

Since Amovepiece is a complex action, both of the sub-actions will be performed. If the

player did not want to perform one, or both, of the sub-actions they could set their

parameters, fslide or frotate, to be zero.

In our experiments, the observing agent learnt by passively watching a Tetris

player, controlled by a computer program, and generated 100, 000 cases for the case

base. When playing Tetris by itself4, the agent was able to complete an average of

approximately 2 lines per game5 (over 350 test games). While this performance is far

worse than the expert, it does show that the agent is able to reproduce the behaviour

of the expert (completing lines in Tetris) to some extent. Comparatively, when the

agent just placed the pieces at random, it completed an average of approximately

0.1 lines per game (over 350 games). One reason for the poor performance of the

agent is the large state-space of Tetris (approximately 2216 using our representation).

This is compounded by the fact that the expert plays near-optimally and therefore

rarely puts itself in disadvantageous positions. However, the learning agent will make

mistakes which can cause the environment state to be significantly different from

any it has encountered during observation. This domain shows an example of where

alternative case acquisition approaches might be beneficial and we will revisit Tetris

in Section 4.2.

4A video of the learning agent playing Tetris: http://sce.carleton.ca/~mfloyd/

LearningVideos/TetrisLearning.mp4
5These results are comparable to the results obtained by Romdhane and Lamontagne [46] when

using a similar case representation for a case-based learning by observation agent in Tetris. Their
system completed an average of 1.8 lines per game.

61

4.1.5 Sensor Registration

The previous case studies have made use of Perception and Motor Control modules

that were hard-coded by a domain expert. For this case study, we will use the

extension of our modelling approach that allows hardware to register with the learning

agent (as described in Section 4.1.3). Initially, the learning agent is not aware of what

type of hardware it will be connected to and therefore has no registered sensors or

effectors. At this point, the agent is unable to perform any observation or learning

because it has no way to interact with the environment. Later, a robot (Figure 4.8)

is connected to the agent. The robot that is connected is the commercially available

iRobot Create [29].

Figure 4.8: The iRobot Create robot

When the robot is connected to the agent, each of the robot’s sensors and effectors

register with the agent. There are six sensors, all of which produce binary values,

that register with the agent: an infrared detector, left and right bumper sensors

(used to detect when the robot runs into something), and three wheel sensors (used

to determine if the wheels have pressure against them). The two effectors that register

are the drive system and the buzzer. The drive system can be controlled by sending

62

it one of five possible directional values: forward, reverse, left, right and stop. The

buzzer can be used to make a beeping sound.

The agent observes and learns a simple obstacle tracking behaviour. A power

charging station is placed in the robot’s environment and produces an infrared signal.

If the infrared signal can be detected, using the infrared sensor, the robot will drive

forward. However, if the infrared signal can not be detected the robot turns in a

clockwise direction until it can detect the signal. When the robot reaches the power

station, as indicated by either of its bumper sensors, the robot will stop.

A human expert was used to demonstrate the behaviour and provided one demon-

stration of the described behaviour. This resulted in 14 cases being observed. After

observing the expert, the agent was able to accurately reproduce the behaviour. To

examine the accuracy of the learning agent, an additional 100 cases were observed.

These cases were used as testing cases and each case had its sensor information given

as input to the agent. The action performed by the agent was then compared to

the action portion of the case to see if they matched. Our results showed the agent

was able to select the proper action 100% of the time. The ability of the agent to

learn this behaviour is what we would expect given the small problem space (only 26

states). While the behaviour learnt in this case study was simple, it did show that

the agent was able to learn without any predetermined knowledge about the task or

what robotic hardware it would be controlling. Our goal was not to learn difficult

tasks but instead to show the adaptive nature of our learning by observation agent.

We will revisit sensor and effector registration, and show how the agent can be easily

retrained, in Section 4.6.

4.1.6 jLOAF Framework

This section has described our approach for modelling the inputs and outputs of a

case-based learning by observation agent. Additionally, a method for agent design

63

was provided that decouples the reasoning of the agent from the parts of the agent

that interact with the environment. We have created a reference implementation6 of

the modelling and design framework described in this this section, called the Java

Learning by Observation Framework (jLOAF) [16, 17]. We have used the jLOAF

implementation for the case studies described in this thesis.

In addition to the work in this thesis, jLOAF has also been used for other learning

by observation research:

1. Glen Robertson and Ian Watson. Case-Based Learning by Observation: Prelim-

inary Work. In Proceedings of The 8th Australasian Conference on Interactive

Entertainment, 24 , ACM Press, 2012.

2. Glen Robertson. Applying Learning by Observation and Case-Based Reasoning

to Improve Commercial RTS Game AI. In Proceedings of the Doctoral Consor-

tium at the AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, 31-33, AAAI Press, 2012.

3. Vivian Andreeva, Sabrina Gaudreau and Jordan Beland. Using Player Imitation

to Create Non-Player Characters in a FPS Game. 4th Year Engineering Project

Report, Carleton University, 2013.

These works use jLOAF to create agents in gaming domains, but the domains

are different than those examined in this thesis. The work by Robertson and Watson

involves learning in real-time strategy games whereas the work of Andreeva, Gaudreau

and Beland involves a first-person shooter game.

4.1.7 Discussion

In this section we have described an approach for modelling the inputs and outputs

of a learning by observation agent and provided a design for such agents that uses

6Available at http://www.nmai.ca

64

case-based reasoning. We looked to provide an approach that did not require any

knowledge about the behaviour or goals of the expert being observed. Instead, a

learning agent only needs a definition of its input and action models along with

interfaces to allow it to properly observe and interact with the environment. By

separating the core reasoning algorithms from any domain specific knowledge, the

same reasoning system can be utilized in a variety of environments.

Additionally, we have described an approach for creating case-based learning by

observation agents that does not require reprogramming the agent when the available

sensors or effectors are changed. This approach, which was motivated by how animal

brains respond to changing sensors, does not use a fixed case representation but

instead dynamically modifies the structure of cases as sensors and effectors are added.

When a new piece of hardware is added to a robot, the hardware registers with the

case-based reasoning agent and provides any necessary information about itself. This

is particularly beneficial in domains where the necessary hardware configuration of

the robot can not be anticipated in advance.

While we have focused on a domain independent approach that is not biased

toward any specific task, there is nothing limiting an agent designer from introducing

such bias in order to optimize performance. For example, the sensory input models

could be designed to only contain inputs that the expert uses during reasoning or use

similarity metrics that are tailored to a specific behaviour. Ideally, our approach aims

to learn such optimization information during the preprocessing steps but it could

also be hard-coded in order to save time or to deliver improved performance.

We presented five case studies, in both simulated and physical environments, that

show how inputs and actions can be modelled using our framework. Our examples

65

included domains with simple sensor systems, high-level object detection, partial ob-

servability and full observability. Additionally, we described domains with parameter-

free actions, multi-parameter actions and complex sequences of actions. Our experi-

mental evaluation shows that the same agent, without changing the reasoning module,

can successfully learn a variety of behaviours in several different domains. Not only

do these agents perform well in experimental evaluations but they are also able to

perform the learnt behaviour after learning7.

There are several limitations of this modelling framework. If an agent is only going

to be used for a single task and domain knowledge can be obtained inexpensively,

using our framework may not be appropriate. The preprocessing approaches would

likely not learn the domain knowledge as precisely as if a domain expert provided it.

Additionally, since no information about the goals or behaviours of the expert are

provided the agent can not make use of techniques like reinforcement learning since

it does not know when it has done something correctly or incorrectly.

While the extension of our approach that allows hardware to register with the

agent removes the need to reprogram the agent, it does not completely remove the

programming requirement. Each sensor and effector needs to be programmed with

information about itself so it can register with the case-based reasoning agent. If

a single sensor is used in multiple robot configurations, the sensor only needs to be

programmed once whereas traditional learning by observation systems would requir-

ing modifying the agent for every configuration. Even if each sensor or effector is

only used once, the effort required to program each sensor would likely be less than

modifying the agent itself. An example of this would be adding a sensor and later

removing it. In our design, the registration and deregistration would handle mod-

ifying the agent whereas traditional learning by observation systems would require

7The video “Case-Based Imitation: A Sequel” from the 2010 AAAI Artificial Intelligence
Video Competition shows demonstrations of agents created using this framework: http://www.

videolectures.net/aaai2010_floyd_cbi/

66

modifying the agent twice (once for addition and once for deletion). While the case

study that used this approach looked exclusively at robotic domains, our techniques

could also be applied to simulated environments (although repurposing a simulated

agent might not have many practical applications).

The case studies allowed us to identify many possible areas for improving the

performance of the learning agent. In the subsequent sections, we will revisit many

of these case studies and examine how the other learning by observation subtasks can

improve the agent’s performance.

4.2 Observation: Alternate Approaches

Instead of making use of a case base where each case is manually authored by an

expert, case-based reasoning systems that learn by observation automate (to varying

degrees) case acquisition. Automatic case acquisition is highly desirable because it

greatly reduces the cost of generating each case. However, the downside of current

approaches for acquiring cases automatically is that there is no control over what

cases will be acquired.

Using passive observation, where the agent observes the expert without directly

interacting with it, the case generation process is completely dependant on the be-

haviour of the expert and the state of the environment. If the expert never performs

certain actions or encounters certain sensory inputs it will be impossible for the learn-

ing agent to obtain cases related to those actions and states. To overcome the limita-

tions of passive observation, two alternative observation approaches will be presented.

One approach, mixed-initiative case acquisition, allows the agent to request help from

the expert to solve difficult problems as the problems occur. The other approach, ac-

tive case acquisition, logs difficult problems and presents the logged problems to the

expert in bulk at a later time.

67

As we will see, while beneficial, these approaches are more invasive than purely

passive approaches since they require directly interacting with the expert rather than

passively observing. As such, they are designed to supplement passive observation,

to obtain cases that are difficult to gather passively, rather than replace the passive

approach.

4.2.1 Passive Case Acquisition

Learning by observation, by its nature, is a passive learning method. The observer

watches an expert and attempts to learn the behaviour the expert demonstrates.

Interaction occurs between the expert and the environment as the environment pro-

duces sensory inputs that are sensed by the expert and the expert performs actions

that influence the environment. As shown in Figure 4.9, the observer can then view

and learn from these interactions.

Figure 4.9: Observing an expert using passive case acquisition

There is no direct interaction between the observer and expert, and the expert

may not even be aware it is being watched. Using passive observation, the observing

agent has absolutely no control over what it sees (the environment controls which

sensory inputs are produced8 and the expert control the actions). This can be a

problem if the expert repeatedly performs some behaviours or does not perform other

behaviours. For example, consider in the domain of soccer if the expert is a very

strong player and is playing against a weak player. The expert may only demonstrate

8The expert can also attempt to influence the environment through its actions.

68

offensive behaviours, since it is far superior to its opponents, and never demonstrate

defensive behaviours. It may be impossible, no matter how long the expert was

observed, to ever view the defensive behaviours. One solution would be to simply

change the opponents the expert is competing against but it might not be possible

for the agent to know, in advance, that there is a limit to what they are observing.

Instead, the observing agent might not realize it is missing certain problem instances

until it encounters them during deployment.

4.2.2 Mixed-initiative Case Acquisition

The first approach to observation we will present is designed for when the expert is

willing to assist the learning agent at runtime. The expert can be thought of as a

teacher or tutor who is available to provide assistance when required. The learning

agent will, during the observation subtask, attempt to gauge how well it can replicate

the expert’s behaviour by solving problems on its own. However, if the agent feels

it can not properly solve an input problem it can request that the expert solves

the problem for it. Just like problems the expert solves during passive observation,

problems that are solved after a request by the learning agent can also be stored as

cases. Ideally, this should allow the learning agent to fine-tune its case base by only

adding new cases that it was unable to solve on its own.

To achieve this type of observation, mixed-initiative control will be used [26].

Mixed-initiative systems allow for the control of a single entity, in our case a software

agent or robot, by several controllers concurrently. At any time t, only one of the

n controllers has initiative over the agent and may control the actions the agent

performs. In our discussion we will limit the number of controllers sharing initiative

to two9: the case-based learning by observation system and the expert. It should be

noted that the software agent (or robot) being controlled refers to a dummy agent

9Although the work could easily be extended to include multiple experts.

69

that is used to interact with the environment, not the learning agent. In order to

avoid confusion, for the remained of this subsection we will refer to the dummy agent

as the agent and the case-based learning by observation agent as the CBR system.

Since the motivation for using a mixed-initiative approach is case generation,

under most circumstances the CBR system will control the agent. By giving the

majority of control to the CBR system there will be two primary benefits. Firstly,

the CBR system will handle the majority of the problem solving. This minimizes the

amount of work the expert must perform since it will be passive most of the time.

Secondly, and more importantly, the CBR system will be attempting to behave in a

similar manner to the expert but will likely make errors that the expert would never

have made. These errors in the ability of the CBR system to replicate the expert’s

behaviour can actually be advantageous because it allows for the exploration of pre-

viously inaccessible areas, due to the expert’s optimum behaviour, of the problem

space.

4.2.2.1 Agent Control

Since the agent can only be controlled by either the case-based reasoning system or

the expert at a particular moment in time, the mechanisms for transferring control

are important. Each controller has two control actions: they can seize control of

the agent or cede control to another controller. Therefore, the current controller

may either cede or do nothing and the other may either seize or do nothing. The

following details the situations in which the controllers will seize or cede control:

Expert

• Seize: The expert may seize control at any time (although this will likely occur

rarely). Seizing would generally be performed if the expert noticed the CBR

system to be performing poorly and wanted to provide unsolicited assistance.

70

• Cede: The expert will automatically cede control after controlling the agent

for a single turn. This is done to give the majority of the control to the CBR

system.

Case-based Reasoning System

• Seize: The CBR system will never attempt to seize control. Since the expert

will automatically cede control back to the CBR system there is no need to seize

control.

• Cede: The CBR system will cede control to the expert when it determines it

is unable to successfully solve the input problem. The system could also cede

if it required more information, however our implementation is currently only

failure-driven.

The case-based reasoning system determines which problems it is unable to solve

based on the similarity of a problem to the cases in its case base. The input problem

will be compared to each case in the CBR system’s case base. If none of the cases

in the case base CB have a similarity to the input problem Starget greater than a

threshold τ , the CBR system will cede control of the agent to the expert (∀Ci =

〈Si, Ai〉 ∈ CB, sim(Starget, Si) < τ). Otherwise, it will solve the problem itself. A

flowchart of the process is shown in Figure 4.10. By setting an appropriate similarity

threshold it is possible to control how often the CBR system will request help from

the expert.

When the case-based reasoning system has ceded control (or the expert has seized

control) of the agent it will then observe the expert and create a new case from the

observation. We have described how the CBR system cedes control of the agent to

the expert during runtime but even passive learning by observation can be thought

of in a mixed-initiative context. During the initial training the system essentially

sets the similarity threshold arbitrarily high (τ = ∞) such that it is constantly

71

Input
Received

Cede To
System

Expert
Solves

System
Solves

Expert
Seizes

System
has

initiative?

System
can

solve?

Expert
wants

initiative?

YES

Cede To
Expert

NO

YES

YESNO

NO

Figure 4.10: Flowchart of how initiative is seized and ceded by the expert and the
CBR system

allowing the expert to solve the input problems. The CBR system has a limited case

base so it is focused on letting the expert solve problems so that it can observe and

obtain more cases. As the case base size grows, and the CBR system becomes better

at solving problems on its own, the similarity threshold can decrease (either to a

constant value or at a specific rate over time) to allow the CBR system to behave

with more autonomy. Finally, when the expert is no longer available the CBR system

will never ask for assistance (τ = 0).

4.2.3 Active Case Acquisition

The primary limitation of mixed-initiative case acquisition is that it requires an expert

that is available to assist the learning agent at runtime. If the expert is unavailable,

or unwilling, to help at runtime then that approach can not be used. Instead, we

present an approach, called active case acquisition, that does not require the expert

72

to solve problems as they occur but instead stores them for a later time.

Like with the mixed-initiative approach, active case acquisition requires the learn-

ing agent to be able to identify problems it is unable to solve. This allows the learning

agent to identify areas in the problem space that are poorly represented in its case base

and supplement those areas using further observation. We present two methods that

can be used to identify potential problems to be solved using active learning. These

methods are not mutually exclusive and can be used in combination or separately.

• Runtime Identification: This is the same approach used by mixed-initiative

case acquisition. After the learning agent has learnt a number of cases, it can

then use those cases to attempt to perform the behaviour of the expert. During

runtime, the learning agent will receive sensory inputs from the environment and

search its case base for cases with similar problem portions. If no cases in the

case base are similar enough to the input problem (using the same threshold τ

used for mixed-initiative acquisition), then the learning agent can log the input

problem so it can be solved by the expert later using active learning. Like with

mixed-initiative case acquisition, the threshold value will influence the number

of input problems that are recorded for active learning, with higher threshold

values resulting in more input problems being logged.

• Secondary Case Base: When learning by observation, different case bases can

be created depending on the expert being observed. For each type of expert

that is observed a separate case base is created that represents the behaviour of

that expert. Two experts may perform the same task, like playing soccer, but

may do so in different ways and with different levels of skill. The two experts

may react differently when presented with the same sensory inputs, so it may

not be appropriate to have cases from two different experts in a single case base.

For example, one expert might be a defender on a soccer team and the other a

73

forward. The observer may only want to behave in an defensive manner. Even

if these case bases can not be combined directly, it is still possible to extract

information from other related case bases. Given two case bases, the learning

agent’s case base and a secondary case base, cases from the secondary case

base can be compared to those in the agent’s case base. Like with the runtime

approach, any cases that have no similar cases in the agent’s case base can be

logged for active learning.

A third method that could be applied would be to randomly create problems. This

approach, however, is limited in that there is no guarantee of the validity of these

randomly created problems. In the previous two approaches, all of the problems

have been encountered while observing an expert so these problems are known to

be valid. There may be underlying constraints on problems, such as the acceptable

values of sensory inputs, that need to be considered when creating problems. If these

constraints were unknown, it would be possible to create problems that are impossible

to actually encounter. For example, when observing a soccer playing expert there is

a limit to the number of opponents that the expert could ever see in the environment

due to the rules of soccer. If this limit was unknown to the observer, a randomly

created problem could be created that contained more opponents than are allowed.

When a problem is identified for active learning using the methods described

previously, it must be presented to the expert to be solved. Like with mixed-initiative

case acquisition, this requires an expert that is willing to assist the learning system.

It should be noted that although active case acquisition does not require the expert

to be available at runtime to assist, it does require the expert to be available at some

point in the future.

74

4.2.4 Automatic Case Acquisition in CBR

Active learning has been used in textual case-based reasoning domains in order to

efficiently prioritize which unlabelled data items should be presented to an expert

for labelling [28]. Their approach uses metrics of diversity (how dissimilar unlabelled

data is from the labelled data) and density (how close data items, both labelled and

unlabelled, are to each other). The primary difference between this work and our

own is that our approaches do not have the complete set of unlabelled examples in

advance. The mixed-initiative acquisition approach will only have a single unlabelled

data item, the current problem, available whereas the active approach may have more

available before they are presented to the expert but is not required to.

Active learning has also been used by case-based planning systems that reason

about, and potentially change, the goals of the system [42]. Since the plan being

executed is dependent on the goal of the system, it is important to know the correct

goal so an acceptable plan can be selected. In situations where the system is unsure

about the current goal, it can query an expert to get the correct goal. The active

learning in such a system only looks to get a single piece of knowledge from the expert

and does not actively learn other information (like the optimum plan to be executed).

Many case-based reasoning systems use cases that are created or collected by

an expert. However, there are approaches, other than learning by observation, that

allow for the automatic acquisition of cases. Asiimwe et al. [3] extract cases from

reports about home upgrades that help people with disabilities more easily live in

their homes. These reports are written by human experts but do not need to follow

any specific formatting or content guidelines. Similarly, Yang et al. [59] extract

information from aviation maintenance reports written by technicians. Data from

these textual reports are combined with information from computer generated fault

messages to create cases. In both approaches, cases are automatically acquired by

75

mining text documents. While these approaches remove the need for the expert to

format their knowledge in a specific way, they still require the person to take time

compiling a report. The expert is still manually providing the case data but is just

not explicitly formatting it as a case.

Automatic Case Acquisition (ACE) is an approach for generating cases that has

been used in the games of chess [43] and checkers [44]. When presented with a problem

to solve, ACE randomly selects an action to perform and uses that problem-solution

pair to create a new case. At the end of each game, cases are rewarded or penalized

based on if they were part of a winning or a losing game. This approach is able to

create a wide variety of cases but requires a method for evaluating how good each case

is. If the success of a solution can not be immediately measured, which is generally

the situation in learning by observation, then this approach can not be used. Also,

since solutions are randomly generated the approach is highly exploratory and does

not use any existing case knowledge to assist learning.

The previously mentioned approaches are able to automatically acquire data but

they do not attempt to control what data is acquired. Metrics can be used to analyze

existing data to find areas of the problem space that are poorly covered. This analysis

can then be used to determine a set of novel problems that should be solved by an

expert so that new cases can be collected. Two popular analysis metrics are the

complexity of existing data [33] and the coverage of existing data [34]. However, these

metrics require knowledge of both the size of the problem space and any restrictions

on problems. For example, in the domain of Tetris these approaches would need to

know which input problems can never occur (and that knowledge may not be available

to the agent). Additionally, the metrics are calculated offline so it may not be feasible

to determine if a problem encountered at runtime is of interest.

76

4.2.5 Evaluation

Our experiments will look to demonstrate the benefits of the two observation tech-

niques, mixed-initiative acquisition and active acquisition. If you recall, in Section

4.1 when the case study of Tetris was performed it was found that the agent often did

not have cases that were similar to its current sensory input. We will use the Tetris

domain in order to evaluate if these approaches can generate cases that can not be

obtained in a passive manner. The way in which the Tetris domain is modelled will

be exactly as it was described previously and the same computer-controlled expert

will be used.

4.2.5.1 Experiment Parameters

Both algorithms used a similarity threshold of τ = 0.80. This value causes the learn-

ing agent to determine it can not accurately solve the input problem if no case in its

case base has a similarity above 0.80. Fifteen case bases that each contain 100, 000

cases, five for each acquisition technique (passive, active and mixed-initiative), were

generated by observing a computer controlled expert. All case bases use the same set

of 90, 000 initial cases, called the seed cases, that were generated passively. The first

five case bases, which we will call the passive case bases, each contain an additional

10, 000 cases that were generated through passive observation (first column in Figure

4.11). The second five case bases, called the mixed-initiative case bases, each con-

tain 10, 000 additional cases that were generated using our mixed-initiative approach

(second column in Figure 4.11). To generate these additional cases, the agent used

the seed case base during reasoning and added new cases, by having the expert solve

the input problem, whenever it had no similar cases10. The final five case bases, the

10A video showing the learning agent playing Tetris and occasionally ceding to the expert
when unable to retrieve a similar case: http://sce.carleton.ca/~mfloyd/LearningVideos/

MixedInitiativeTetris.mp4

77

active case bases, each contain 10, 000 cases generated through active case acquisition

(third column in Figure 4.11). Like with the mixed-initiative case bases, the learning

agent initially only used the cases in the seed case base. For each active case base,

it continued to interact with the environment until it had logged 10, 000 problems it

could not solve. These 10, 000 problems were then given to the expert to be solved.

Seed
Cases

Passive
Cases

Seed
Cases

MI
Cases

Seed
Cases

Active
Cases

Figure 4.11: The source of cases in each type of case base

4.2.5.2 Rarity of Cases

The first experiments look to examine whether mixed-initiative and active acquisition

are able to generate cases that are unlikely to be obtainable through a purely passive

approach. As was described previously, for each of the mixed-initiative and active

case bases 10, 000 cases were generated using the appropriate acquisition approach.

It is possible that these cases were dissimilar to the 90, 000 seed cases but would have

occurred had more cases been generated passively.

To test this, a much larger case base of 2 million cases was generated passively.

The 10, 000 cases that were generated with either passive, active or mixed-initiative

acquisition (from each of the fifteen case bases) were compared to the larger case base

to find their most similar case. The results, shown in Table 4.4, show that while the

78

passively acquired cases frequently had identical or highly-similar cases in the larger

case base, the mixed-initiative and active cases did not. None of the mixed-initiative

or active cases had a case in the larger case base with a similarity of 0.85 or more,

whereas 96.9% of the passive cases had a similarity at least that high. Looking at the

mean similarity of each case, we can see that the passive cases are highly similar to

cases in the larger case base (mean similarity of 0.94) whereas the mean similarities

of the other approaches are much lower. The mean similarities for both the active

and mixed-initiative cases, 0.78 and 0.79 respectively, are actually lower than the τ

value of 0.80 that was used to generate the cases. It should be noted that while there

appears to be more mixed-initative cases than active cases with similarities above

0.80, the majority of the cases are only slightly above that threshold which is why

the mean similarities of both approaches are so close.

≥ 0.80 ≥ 0.85 ≥ 0.90 ≥ 0.95 = 1.00 mean

Passive 100% 96.9% 73.8% 40.0% 4.1% 0.94

Active 22% 0% 0% 0% 0% 0.78

MI 32.7% 0% 0% 0% 0% 0.79

Table 4.4: Percentage of acquired cases with a maximum similarity, when compared
to a larger passive case base, in various ranges

What these results demonstrate is that the vast majority of the cases generated

using the mixed-initiative and active approaches would not have been obtained even

if a much larger passive case base was generated. This confirms our hypothesis that

there are certain input problems that would not be observed in a purely passive

manner. The errors made by the CBR system lead to unexplored areas of the problem

space that could then be solved by the expert.

79

4.2.5.3 Game Performance

Having a case base with a more diverse collection of cases may be desirable but we

also look to show that it is beneficial for Tetris-playing performance. In order to

examine this we measured the average length, in number of game pieces played, of a

Tetris game. A longer game length implies the agent was better able to manage the

height of the stacked blocks by using strategic piece placement or completing lines.

The CBR system used each of the fifteen case bases to play 100 games of Tetris.

In total, each type of case base (passive, active and mixed-initiative) was used to play

500 games. During these games the CBR system was not able to receive assistance

from the expert and reasoned solely with the case base it was using. Table 4.5 shows

the mean number of pieces played for each type of case base (and the 95% confidence

interval).

Passive Active Mixed-Initiative

pieces 25.49 (± 0.55) 26.68 (± 0.54) 27.65 (± 0.63)

Table 4.5: Mean pieces played using each type of case base

We can see that both the mixed-initiative and active case bases result in a signif-

icant increase (using a paired t-test with p < 0.05) in the number of pieces played

per game compared to the passive case bases. The mixed-initiative results are also a

significant increase over the active results. The increased number of pieces per game,

while not a large increase, does show that using mixed-initiative or active case gen-

eration allows the case-based reasoning system to play the game of Tetris better. It

should also be noted that all of the case bases contained 90% of the same information

(the seed case base) so the improvement was a result of the remaining 10% of the

cases. This is likely because the CBR system is better able to recover from errors it

makes. Since the expert has solved problems that represent the game state after these

80

errors, the CBR system will possess cases that can help it during these situations.

Since the mixed-initiative approach can immediately learn from the expert, instead of

having the expert solve all 10, 000 problems at the end, it is able to collect cases that

are different from all cases, both the seed cases and any acquired cases, rather than

just the seed cases. This can make the acquired cases more diverse, compared to the

actively acquired cases, which is likely why the mixed-initiative results outperformed

the active ones.

4.2.5.4 Case Generation Cost

One other area of interest is related to the number of problems, during case acquisi-

tion, that the case-based learning by observation agent was able to solve itself. When

generating the 10, 000 mixed-initiative cases the CBR system solved a mean (and 95%

confidence interval) of 108673 ± 901 problems without the assistance of the expert.

Since it required the expert’s assistance for 10, 000 problems (the portion of the case

base generated using mixed-initiative control), the CBR system was able to solve ap-

proximately 91% of the problems itself. During active acquisition, the CBR system

was able to solve 56414±1500 problems by itself while generating the 10, 000 actively

acquired cases (approximately 85% of the problems solved by itself).

The large number of problems the CBR system can solve itself is beneficial for

two primary reasons. First, less of a burden is placed on the expert. The expert

only needed to solve problems that the CBR system was unable to solve. Even if

the initial case base was empty and all cases were generated using mixed-initiative or

active acquisition, the expert would still only be required a portion of the time since

the system would be able to solve more problems as more cases were added. Secondly,

had the CBR system added the first 10, 000 cases it observed it likely would have

added many cases that were highly similar to cases it already had in its case base.

81

Comparing the mixed-initiative and active approaches, we can see that the mixed-

initiative approach allows the agent to solve many more problems on its own while

generating the 10, 000 cases. This is because every time the agent encounters a

dissimilar problem it immediately has the expert solve it and adds it to its case base.

Any subsequent problems that are similar to that problem will be solvable by the

agent. However, since the active acquisition approach does not learn from the expert

until all 10, 000 problems have been logged there is the possibility that some of those

problems are similar or identical.

4.2.5.5 Mixed-initiative Learning Curves

The previous experiments identified mixed-initiative case acquisition as the top per-

forming case acquisition strategy but no attempt was made to optimize the parameters

used. In all previous experiments, a seed case base of 90, 000 cases and a similarity

threshold of τ = 0.8 were used. In these experiments we will examine the influence

of changing these parameters on the performance of the learning agent.

Figure 4.12 shows the performance, measured by the number of pieces played

per game, when a seed case base of 90, 000 cases is used with a variety of similarity

thresholds (from 0.75 to 0.99). For all settings, 10, 000 additional cases were generated

and used by the learning agent, along with the seed cases, to play 500 Tetris games.

One important result from this figure is that, except for the ends of the curve (τ > 0.98

and τ < 0.76), all values were statistically significant improvements over the passive

approach. This means that an ideal similarity threshold is not necessary in order for

mixed-initiative case acquisition to perform well. The curve has a single optimum

value that occurs at approximately τ = 0.87.

A similar analysis was performed by using the optimum threshold of τ = 0.87 and

varying the number of seed cases used during mixed-initiative case acquisition (from

1 to 99, 000). The results, in Figure 4.13, show that most sizes of seed case bases will

82

0.7 0.75 0.8 0.85 0.9 0.95 1
20

21

22

23

24

25

26

27

28

29

30

Threshold

P
ie

ce
s

 P
la

ye
d

Figure 4.12: The performance of a learning agent using 90,000 seed cases and a variety
of threshold values

result in improved performance over passive case acquisition. The only results that

were not statistically significant improvements over the passive approach where when

a very large seed case base is used (greater than 97, 000). This is to be expected since

larger seed case bases result in fewer cases being discovered using mixed-initiative

case acquisition. As the number of seed cases approach the maximum size of the

case base, in our experiments 100, 000, the case acquisition becomes almost entirely

passive.

The optimum size of the seed case base was found to be approximately 50, 000 seed

cases (50% of the total case base size). This indicates that there is a noticable benefit

in acquiring cases using the mixed-initiative approach. However, below 50, 000 seed

cases the performance declined, so passive case acquisition is still beneficial. This is

likely because it is beneficial to be able to retrieve exact solutions to some common

problems, like the start of games, instead of solutions to problems that are only

somewhat similar (a similarily of 0.87 in these experiments). It should be noted that

while these parameter values, τ = 0.87 and a seed case base of 50, 000 cases, were

found to be optimal when learning from the Tetris expert, these values would likely

be different in other domains.

83

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
20

21

22

23

24

25

26

27

28

29

30

Seed Case Base Size

P
ie

ce
s

 P
la

ye
d

Figure 4.13: The performance of a learning agent using a threshold of 0.87 and a
variety of seed case base sizes

4.2.5.6 Random Case Generation

An alternative approach to passive, mixed-initiative and active case acquisition is to

generate problems randomly. The limitation of random case generation is that not

all randomly generated problems may actually occur in the problem domain. In a

domain like Tetris, invalid board configurations can occur if the board contains a

completely occupied row (since that line would be immediately removed once it was

completed), an empty row with pieces above it, or pieces that are not touching any

other pieces or borders (since the pieces would be shifted downward into the empty

space). Without any prior knowledge of these restrictions, it is not possible to know

if a given problem is valid or not.

In order to evaluate the quality of randomly generated cases, the initial seed case

base of 90, 000 cases (the same seed case base used in previous experiments) was

used to generate five case bases of 10, 000 randomly generated cases. Problems were

generated randomly by uniformly selecting between 0 and 200 cells in the board to

be set as occupied and randomly selecting a valid Tetris piece. If no cases within

the seed case base had a similarity to the problem greater than 0.80 (τ = 0.8), the

problem was provided as an input to the expert and a case was stored. Otherwise,

the problem was discarded.

84

The case bases that were generated in this manner had a mean of 3696 ± 57

cases with problems that could never be encountered in Tetris (36.96% of cases).

It should be noted that these results are when a valid Tetris piece is used. If the

squares representing the piece are also set randomly, in a similar way to how the

board is randomly generated, then 9994 ± 2 cases have problems that can never be

encountered (99.94% of cases). It should be noted that the domain knowledge we

used to determine valid cases could also be used when generating random cases to

ensure valid cases. However, a general purpose learning by observation agent would

likely not have this information available for all domains it could be deployed in.

While the randomly generated cases are all different than the cases in the seed

case base, many of the cases can never be encountered by the agent so they are not

likely to be of any benefit. Each of the five random case bases was combined with

the seed case base, for a total size of 100, 000 cases in each case base, and used by

the learning agent to play 100 games of Tetris (for a total of 500 games played). The

agent played a mean of 25.89 ± 0.55 pieces per game. This is an improvement over

using cases that are only generated passively but the improvement is not statistically

significant. This is likely because only 63.04% of the cases, the cases that can actually

occur, are positively influencing the agent’s performance.

4.2.6 Discussion

The alternative observation approaches, mixed-initiative and active case acquisition,

were found to allow for acquisition of cases that could not be obtained through purely

passive observation. This was a result of errors the learning agent would make during

deployment leading to areas of the problem space the expert would never encounter

due to optimum or near-optimum behaviour. Since it is not reasonable to assume a

learning agent can learn every behaviour perfectly, it is important to have an obser-

vation strategy that can handle these situations.

85

In addition to acquiring cases that would be difficult or impossible to observe

passively, using the alternative acquisition approaches resulted in increased Tetris

game performance. Even though all three approaches (passive, active and mixed-

initiative) used a large percentage of identical cases, the additional cases that were

observed resulted in significantly improved performance for the mixed-initiative and

active approaches over the passive approach. Mixed-initiative acquisition was found to

be an improvement over active acquisition in both Tetris performance and how many

problems the agent was able to solve itself during acquisition. These results indicate

that, if possible, mixed-initiative case acquisition is preferable to active acquisition

but either approach would be more beneficial than purely passive observation.

Both of the approaches presented address the limitations of passive observation.

However, both approaches have limitations of their own. Both approaches require a

willing expert that is available to assist the learning agent when necessary. Mixed-

initiative case acquisition requires the expert to be available at runtime so that a

problem can be solved by the expert when it is encountered. Active acquisition does

not require the expert to always be available, since problems are logged for later, but

this delays when the cases can be used by the agent.

The cases that are acquired using any of the three acquisition approaches can be

used by the agent during deployment, as we have shown in our experiments, but they

can also be used to examine the behaviour of the expert. In the following section we

will turn our attention to preprocessing the case base, and show how the quality of

the cases can be improved and important information can be extracted.

4.3 Preprocessing: Trace Cleaning and Analysis

The observations that are collected by a learning by observation agent are vitally im-

portant since they contain the information that the agent uses to learn. However, the

86

observations could be incorrectly recorded if the learning agent made an observation

error or if the expert performed an error in manipulation or reasoning and produced

an erroneous output. Analyzing the generated observations in order to verify and val-

idate their quality becomes an important consideration since it can directly influence

the agent’s ability to learn.

In addition to analyzing the observations for errors, they can also be examined to

get insight into the behaviour the expert has demonstrated. This can include infor-

mation about how the expert reasons or how much information from the observations

is used during reasoning. By analyzing how the expert reasons, it becomes possible

to select an appropriate set of algorithms for the agent to learn and perform the ex-

pert’s behaviour. This can potentially improve the performance of the learning agent

or reduce the computational resources necessary for it to learn.

4.3.1 Expert Traces

The learning agent can generate a trace of the expert’s behaviour during observation.

An expert trace is simply a log of the entire run (which was defined in Section 3.1)

of the expert that was observed by the agent over a period of time. If the agent

observed the expert for time u then the expert trace T will contain u sensory inputs

and u actions:

T : S
A0−→

0 S
A1−→

1 S
A2−→

2 . . . S
Au−→

u

As can be seen from the definition, each trace alternates between sensory in-

puts and the resulting actions just like the runs that are used to create the traces.

Previously, we have defined each input-action pair as a case. However, since the

input-action pairs in a trace are part of the trace logs and not stored as cases in a

case base we will refer to each pair as an interaction It:

87

It = 〈St, At〉

However, it is likely that these interactions will eventually become cases once trace

analysis is complete. We can rewrite the expert’s trace as a temporally linked series

of observed interactions:

T : I0 → I1 → I2 → · · · → Iu

We wish to detect and analyze situations in a trace where the same sensory input

(S1) results in different actions (A1 and A2 where A1 6= A2):

∃A1, A2 ∈ A ∧ ∃S1 ∈ S such that 〈S1, A1〉 ∈ T ∧ 〈S1, A2〉 ∈ T

Initially, we will examine the different types of experts that can be learnt from and

how the agent can learn. This will allow us to identify why similar sensory inputs

may result in different actions and motivate how we will analyze traces.

4.3.2 Types of Learning

The method by which an agent learns by observation can be heavily influenced by

the complexity of the expert that is being observed. This complexity relates to how

the expert reasons about what actions it should perform and what information it uses

during reasoning. We will introduce three types of learning by observation for experts

of increasing complexity: rote, reactive and state-based.

4.3.2.1 Rote Learning

The simplest method of learning by observation involves rote learning. A rote learning

agent memorizes the sequence of actions demonstrated by the expert. An example of

learning by observation using rote learning is lead-through learning [10] (which was

88

discussed in Chapter 2). However, a rote learning agent does not pay attention to

the context in which those actions were performed. This means that such an agent

will perform the same sequence of actions that were demonstrated by the expert in

the exact order they were demonstrated. A rote learning agent assumes that the

expert selects an action A to perform without considering any outside information

and simply replicates a fixed sequence of actions:

A0 . . . At = constant

Even for a simple expert that does not reason using external inputs, there are still

challenges that can make learning by observation difficult. The two primary difficul-

ties are noise and expert error. If the learning agent does not observe the expert’s

actions perfectly and makes observation errors due to noise, the agent would be unable

to replicate the expert’s behaviour exactly as demonstrated. For example, consider

an expert that performs a behaviour where it makes a series of movements. If the

learning agent makes errors observing each of the movements, like observing how far

the expert moved each time, the learning agent may end up in a different location

after trying to perform the movements itself. Even if the agent can observe the expert

perfectly, the expert might make an error. For example, the expert may accidentally

move too far. Since the observing agent has no way of knowing this was done in

error, it will assume that it was the correct action and attempt to perform it when

replicating the expert’s behaviour. In such a situation, even an agent that can learn

perfectly will still end up learning the wrong behaviour.

This representation of an expert assumes that the expert does not reason with any

external information, such as sensory information, and just performs a fixed sequence

of actions. However, it is often unrealistic to make such an assumption. Many agents

need sensory information to determine the current state of their environment, and

therefore to decide on the next action to perform, or to verify that an action they

89

performed resulted in the desired outcome.

4.3.2.2 Reactive Learning

Consider an example in the domain of soccer where the expert performs the following

sequence of five actions: move forward, move forward, move forward, move forward,

kick ball. If the agent uses rote learning, it will always attempt to replicate the

behaviour by moving forward four times and then kicking the ball. The agent does

not pay attention to the location of the ball so if the ball if not near the agent after

moving forward four times the agent will be unable to successfully kick.

A method of learning by observation that takes into account external information

is reactive learning. Reactive learning assumes that the expert selected an action to

perform in response to the most recent sensory information St it received:

At = f(St)

Unlike with rote learning, where the learning agent could simply memorize a

sequence of actions, reactive learning requires approximating the function the expert

uses to select an action to perform. In our system, we use case-based reasoning

to approximate this function and determine what actions the expert would have

performed when presented with sensory information. Looking back at the soccer

example that was presented, if the agent knew what sensory information resulted in

the expert kicking, like the ball was less than 1 meter away, it could avoid performing

the kick action when the ball is not near.

The inclusion of sensory information in the reasoning process adds additional

challenges for the observing agent. In addition to noisy observation of actions and

expert error, which were also problems for rote learning, the observations of sensory

information can also be noisy.

90

4.3.2.3 State-based Learning

The major limitation of reactive learning is that it only considers the current sensory

information and assumes the expert does as well. If the expert has multiple internal

states, it may reason not only with the current sensory information but also its

internal state information. For experts that reason with internal state information,

the learning agent will need to use state-based learning. One difficulty of state-based

learning is that the expert’s internal state is not directly observable by the learning

agent. However, internal state can be inferred by examining the complete series of

past sensory information and actions the expert has encountered [58]. A state-based

expert will not only reason using the current sensory information but also using state

information that was determined using past sensory information and actions. We

can model the action selection of the expert as a function of the current sensory

information it perceives as well as all past sensory information it has received and all

actions it has performed (its entire run):

At = f(St, At−1, St−1, At−2, St−2, . . . , A0, S0)

As an example, consider an expert that controls a robot by navigating it toward

a landmark and then, after it reaches the landmark, navigates it to another location.

For this expert, the fact that the current sensory input indicated the landmark was

visible would not be enough to differentiate between moving toward the landmark or

toward the other location. Information contained in the run, related to if the robot

had reached the landmark yet, would be needed.

Each method of learning by observation increases the amount of information it

assumes the expert uses when reasoning. Both rote learning and reactive learning

are actually special cases of state-based learning that only consider a subset of the

information (rote learning only uses the past actions and reactive learning only uses

91

the most recent sensory information) and can therefore only be used to learn from a

subset of possible experts. While we have described the types of learning, no mention

has been made of how this learning will be performed (Section 4.4 will examine how

to learn from state-based experts).

4.3.2.4 Expert Action Selection

The simplest of the three experts, an expert that simply performs a fixed sequence of

actions, does not use any external information when selecting an action to perform.

Learning from a rote expert only involves keeping track of past actions so that the

learning agent will know how far along the sequence it is.

A reactive expert selects an action to perform based on the most recent sensory

input St it received from the environment (where St ∈ S). Such an expert will, unless

it makes an error, always perform the same action for each sensory input:

Expertreactive : S → A

The sensory input contains all of the information that is necessary for the reactive

expert to reason with and allows it to select a single action to perform for each sensory

input. However, if the expert uses an internal state during reasoning then it may use

any information from its run (any sensory inputs it has received or any actions it has

performed) during reasoning. This can result in a single sensory input leading to a

set of possible actions (where P(A) is the powerset of A):

Expertstate : S → P(A)

This is because the sensory input, on its own, does not contain all of the information

the expert uses during reasoning. The current sensory input is only the end of the

run:

92

Rt : R
At−1−−−→

t−1 St

On two runs of the expert that are each of length t, Ra
t and Rb

t , the most recent

sensory inputs might be identical (Sa
t = Sb

t) but the rest of the runs might have

differences ((Aa
t−1 6= Ab

t−1)∨ (Ra
t−1 6= Rb

t−1)). The entire run Rt (where Rt ∈ R) of the

expert might be necessary for a state based expert to always perform a single action

(assuming the expert does not perform any errors):

Expertstate : R → A

These three types of experts are all deterministic since they will perform the same

sequence of actions when presented with the same sequence of inputs. However, an

expert could also be non-deterministic in some or all of its behaviour. For example,

the expert might randomly select actions to perform rather than performing any

formal reasoning. Like with the state-based expert, a non-deterministic expert does

not select a unique action to perform based on the current sensory input:

Expertnon−deterministic : S → P(A)

Unlike a state-based expert, an expert that displays non-deterministic behaviour will

not always select a single action to perform even when presented with its entire run:

Expertnon−deterministic : R → P(A)

These definitions of the different types of expert reasoning will be used to analyze

runs and predict how a particular expert reasons.

93

4.3.3 Expert Trace Analysis

The discussion of the different types of experts that an agent can learn from allows

us to identify three key causes of similar sensory inputs resulting in different actions:

• Reasoning with an internal state

• Non-deterministic behaviour

• Error

A fourth cause of similar sensory inputs having different actions is if the agent

does not have some of the sensors that the expert has, and therefore it is missing

some of the features to describe a given perceived situation. For example, the agent

may not have a sound sensor but the expert reasons with sounds it can hear. Since

the agent can not observe theses sounds they will never be recorded in the traces.

In all of these situations, the agent is not viewing the interactions in the same way

the expert is and may not get a clear indication of how the expert reasons. We will

assume in what follows that the agent does have all the sensors needed to perceive

the environment like the expert does.

Differentiating between the three properties might not be obvious when only ex-

amining a single trace of the expert’s behaviour. For example, it would not be possible

to tell with any degree of certainty that the expert performed an erroneous action.

What was an expert error could also appear to be evidence of an internal state or non-

deterministic behaviour. In order to help differentiate between the three properties,

we will examine multiple traces that were derived from the original.

Two levels of analysis are performed: single trace analysis and multi trace analysis.

Initially, we perform single trace analysis in order to determine if a trace is a candidate

for multi trace analysis. Ideally, we would like to perform multi trace analysis on every

user trace that is generated. That may not be possible, since, as we will see later,

94

multi trace analysis requires the expert to solve additional problems. If the amount of

time the expert is available is limited, we would only want to make use of the expert

when it is clearly necessary.

4.3.3.1 Single Trace Analysis

Single trace analysis is used to identify traces that might have any of the three prop-

erties. Since, as we described earlier, each of the properties presents itself through

interactions where similar sensory inputs result in different actions, we will look to

measure how many of these differences occur in the trace. When looking for differ-

ences, each interaction in the trace is compared to all other interactions in the trace

as well as all interactions that occur in cases that are already in the case base. Cases

that are already in the case base are also used during single trace analysis because

they contain knowledge collected during past observation sessions. These cases were

likely collected as part of a previous user trace and then converted into cases and

stored in the case base.

When comparing two interactions, Ii and Ij, they are marked as noteworthy if

they have sensory inputs that are sufficiently similar (sim(Si, Sj) > τ , where τ is a

threshold used to determine if two sensory inputs are sufficiently similar) and they

have different actions (Ai 6= Aj)
11. If there are N interactions in the trace and n of

those interactions are noteworthy, we calculate the ratio of noteworthy interactions

(n
N

).

4.3.3.2 Multi Trace Analysis

In multi trace analysis, new traces are generated by having the expert replay the

sensory inputs it received during the initial trace. If the initial trace contained N

interactions between the expert and the environment, the N sensory inputs will be

11We could also use a threshold when comparing actions like we did with sensory inputs.

95

given to the expert, in their original order of occurrence, for the expert to reason with

again. Each time the expert replays the initial trace, the entire run of the expert will

be recorded as a new trace. The use of multi trace analysis makes the assumptions

that the expert will be available to generate the new traces and that the agent can

present the problems to the expert in a similar manner to how the expert receives

inputs from the environment. These would be reasonable assumptions if the expert is

willing to help the agent learn (and assumes the role of a tutor or teacher). Presenting

the problems to the expert is far more feasible in simulated environments or when

the expert interacts with the environment through a user interface.

The primary objective of multi trace analysis (Figure 4.14) is to identify the

differences, if any, that exist between the initial trace and all replay traces. If the

initial trace was used to generate M−1 additional traces (Generate Additional Traces

in Figure 4.14), there will be M total traces each containing N interactions. The ith

interaction in each of the M traces will all have the same sensory input but may have

different actions.

Each of the n noteworthy interactions from the original trace will be grouped to-

gether with the corresponding interactions from the other generated traces, resulting

in n groups of interactions each containing M interactions (Group Interactions in

Figure 4.14). For example, if the 3rd interaction from the original trace was deemed

noteworthy, it will be grouped together with the 3rd interactions from each of the

other M − 1 traces.

For each grouping of noteworthy interactions, we calculate the agreement ratio

ARi:

ARi =
si
M

Where si is the number of interactions in the ith grouping that had the same action

as the interaction from the initial trace. The agreement ratio can then be used to

96

Initial
Trace

Clean
Trace

Generate
Additional

Traces
Group

Interactions

Label
Interactions

Clean
Trace

Figure 4.14: Flow chart of multi trace analysis

label (Label Interactions in Figure 4.14) each of the groupings:

labeli =

state− based , if ARi ≥ α

non− deterministic , if β < ARi < α

error , if ARi ≤ β

Interactions of a state-based expert are identified as noteworthy since a single sensory

input can lead to multiple actions. However, during replay of those traces the expert

will generally perform a single action since it is reasoning with its entire run. This will

result in an agreement ratio that is greater than α for noteworthy interactions that are

a result of internal state. If there was an interaction that only occasionally (less than a

threshold β) resulted in one type of action being performed then it is labelled as being

an error. This assumes that the expert generally performs the correct action in the

traces and only rarely performs the erroneous action. A noteworthy interaction will

be labelled as non-deterministic if it results in several different frequently occurring

actions during replay (an agreement ratio between α and β). This assumes that

since there was no clear correct action that the expert selected the action in a non-

deterministic manner. One limitation of this labelling approach is when the expert

selects an action in a non-deterministic way but the probability of selecting the action

is low (less than β) or high (greater than α). In these situations, the interactions will

97

incorrectly be labelled as an error or internal state instead of non-deterministic. This

problem can be minimized by selecting an appropriate value of α and β but can not

be completely eliminated.

For any interactions that are labelled as having an error in the original trace,

those interactions can be cleaned by replacing them with the correct versions of the

interactions from one of the other traces (Clean Trace in Figure 4.14). The correct

version of an interaction is selected by finding the most common action from the

interactions in a grouping and using one of the interactions with that action (all

interactions with the same action will be identical since they will always have the

same sensory input). If the analysis was performed a second time, the number of

noteworthy interactions due to error should ideally decrease while the number of

noteworthy interactions due to state-based or non-deterministic behaviour should

remain (although some may be removed if they were only labelled as noteworthy due

to the erroneous interactions).

An example of trace analysis is given in Figure 4.15. Initially, only the origi-

nal trace, which contains five interactions, is available to the learning agent (Figure

4.15a). Single trace analysis is then performed (Figure 4.15b) and four noteworthy

interactions are found. The first and fifth interactions are noteworthy because they

have the same sensory input (Sa) but different actions (Aa and Ac). Similarly, the

second and fourth interactions had the same sensory input (Sb) but different actions

(Ab and Aa). In order to perform multi trace analysis, the expert is made to encounter

the same sequence of sensory inputs, contained in the original trace, to generate ad-

ditional traces. In this example, two additional traces are generated (Figure 4.15c).

Four groupings, one for each noteworthy interaction, are then compiled (Figure

4.15d). Each grouping contains one interaction from each trace and all interactions in

a group occur at the same position in their trace (and therefore have identical sensory

inputs). Using the threshold approach we described previously, each grouping can be

98

labelled (Figure 4.15e). Since the groupings that contain the first, second and fourth

interactions all have the same action (Aa, Ab and Aa respectively) they are labelled as

being state-based. However, the grouping of the fifth interactions do not all have the

same actions. The interaction in the original trace has one action (Ac) whereas the

others have a different action (Aa) so this grouping is labelled as an error. A cleaned

version of the original trace can now be generated (Figure 4.15f). Since there was

only one noteworthy interaction labelled as erroneous, the fifth interaction, only one

interaction is cleaned in the final trace. The most common action, from the entire

grouping, is used as the correct action for that interaction (Aa). It should be noted

that the first interaction in the original trace, which was labelled as state-based, was

labelled that way because of the erroneous interaction (the fifth interaction). If single

trace analysis was performed again, on the cleaned trace, it would no longer appear

to be noteworthy since the error would be fixed.

After the trace analysis has been completed and any errors have been eliminated,

the trace can be converted to cases and added to the case base. These cases will

now be of a sufficiently high quality that they can be used by the learning agent

when it attempts to perform the behaviour it learnt from the expert or they can be

used to identify noteworthy interactions in newly recorded traces. The interactions

that were not cleaned, those labelled as state-based or non-deterministic, provide

quantifiable insight into the behaviour of the expert. If a trace was determined to

contain non-deterministic behaviour or multi-state behaviour, appropriate learning

algorithms could be selected so they can properly deal with these behaviours.

4.3.4 Evaluation

In order to evaluate the trace analysis technique that was presented, we will examine

traces of a simulated obstacle avoidance robot. The simulated robot moves around

a 50 unit × 50 unit environment which contains a number of obstacles scattered

99

�� �� �� �� �� �� �� �� �� ��

(a) A trace of an expert’s behaviour

�� �� �� �� �� �� �� �� �� ��

(b) Identifying noteworthy interactions

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��

(c) Generation of additional traces

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��

(d) Grouping interactions

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��

����� ����� ����� �		
	

(e) Labelling each grouping

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� ��

����� ����� ����� �		
	

�� �� �� �� �� �� �� �� �� ��

(f) Generating a clean trace

Figure 4.15: Example of trace analysis

100

throughout. The sensory inputs and actions of the simulated robot will be modelled

similarly to the physical obstacle avoidance robot we looked at in Section 4.1. The

only differences were introduced in order to allow for the creation of slight variations

on the behaviour. There are 5 possible actions the simulated robot can perform:

move forward (AF), move backwards (AB), turn left (AL), turn right (AR) and reverse

direction (turn 180 degrees, AREV).

Arobot = {AF , AB, AL, AR, AREV }

In order to sense the environment the simulated robot has three sensors: touch,

sonar and sound. The touch sensor produces a binary value. When the robot comes

into contact with something, like an obstacle, the touch sensor produces a value of

1. A value of 0 is produced if nothing is being touched. The sonar sensor produces

a continuous value indicating the approximate distance to the nearest obstacle. The

sound sensor converts the received audio signal into a discrete value, in our case a

value from the set {0, 1, 2}, depending on what sound was heard. Each sensory input

is then a triple containing the feature values from all three sensors:

Srobot = 〈Stouch, Ssonar, Ssound〉

Stouch = 〈ftouch〉

Ssonar = 〈fsonar〉

Ssound = 〈fsound〉

Using the modelling of the robot’s sensory inputs we can now describe the similar-

ity metric that will be used. The similarity metric is calculated by taking the average

similarity of each of the sub-input features:

sim(Sa
robot, S

b
robot) = mean

(
sim(fa

touch, f
b
touch) + sim(fa

sonar, f
b
sonar) + sim(fa

sound, f
b
sound)

)

101

sim(fi, fj) =

1 , iffi = fj

1− |fi−fj |
fi+fj

, iffi 6= fj

The robot will be controlled by a computer control program (although we will also

use a human controller is Section 4.3.4.3). If the robot’s touch sensor indicates it has

come in contact with an obstacle, the control program will move the robot backwards.

Otherwise, it will base its action selection on the value of the sonar sensor. If the

sonar value is less than 2 the robot will reverse direction, if the value is between 2

and 3 the robot will turn, and if the value is greater than 3 it will move forward.

The direction the robot turns, when the sonar value is between 2 and 3, will be

changed depending on which properties we want to be present in the trace:

• No non-deterministic behaviour or internal state: The control program

will always turn the robot left.

• Non-deterministic behaviour but no internal state: The control program

will turn the robot left 50% of the time and right 50% of the time.

• Internal state but no non-deterministic behaviour: The control program

will toggle the direction it turns. For example, if it previously turned left it will

always turn right next.

4.3.4.1 Single-Property

To start, we will perform trace analysis on traces that only have one of the properties

present. Each of the traces will be generated by observing the control program for

10, 000 interactions.

• Base trace: This trace will contain no errors, non-deterministic behaviour or

reasoning with an internal state.

102

• Error trace: Errors will be added by incorrectly recording the action performed

by the control program in 2% of the interactions. The control program will not

exhibit any non-deterministic behaviour or use an internal state. A second

version of this trace without the errors will also be stored. After the errorenous

version of the trace has been analyzed and cleaned, it will be compared to the

correct version to see how successful the cleaning was.

• Non-deterministic trace: The control program will perform some non-

deterministic behaviour but will not use an internal state and no errors will

be added. A copy of this trace will be kept to make sure that after analysis no

errors have been introduced.

• Internal state trace: The control program will use an internal state when

reasoning but no non-deterministic behaviour or errors will be added. Like

with the non-deterministic trace, an identical second version of the trace will

be used to ensure no errors are introduced during analysis.

For the analysis, the threshold for sensory inputs to be considered highly similar is

τ = 0.9999 (99.99% similarity) and labelling thresholds of α = 0.90 and β = 0.10 were

used. These thresholds were selected so that an erroneous interaction can occur in at

most one other trace and a state-based interaction can have at most one other trace

with a different action. In both situations, these thresholds allow for the possibility

that replay traces will also contain some errors. During multi trace analysis, each

initial trace was used to generate nine additional traces. For each of the four initial

traces, the number of noteworthy interactions (coulmn NW in Table 4.6) that were

identified, along with the percentage of noteworthy interactions that were labelled as

errors (column Error), non-deterministic behaviour (column ND) and internal state

(column State) were measured. Additionally, the number of errors that existed in the

original traces (column Initial Errors) and final traces after cleaning (column Final

103

Errors) were also measured.

NW Error ND State Initial Errors Final Errors

Base 0 0% 0% 0% 0 0

Error 835 19.8% 1.2% 79.0% 200 35

Non-deterministic 445 0% 97.8% 2.2% 0 0

State 458 0% 0% 100% 0 0

Table 4.6: The analysis results and quality of each single-property trace after one
round of analysis

For the trace without any of the properties present, we can see that the analysis

does not identify any noteworthy interactions. The analysis of the internal state trace

is able to detect numerous noteworthy interactions and successfully labels them all as

a result of internal state. Similar results are displayed by the non-deterministic trace,

with nearly all noteworthy interactions labelled as resulting from non-deterministic

behaviour. However, several of the interactions are incorrectly labelled as resulting

from internal state. This is because for these interactions, during replay, most of the

generated traces had the same action randomly selected. This makes it appear as

if the agent intentionally performed the same action each time even though it was

purely coincidental.

The analysis of the trace with error added is less clear. We can see that some

interactions are correctly labelled as resulting from error but the majority are labelled

as resulting from internal state. This is because the erroneous interactions result in a

number of correct interactions being identified as noteworthy. The correct interactions

seem to be a result of state because the agent continues to respond the same way to

them in each of the generated traces. However, the trace cleaning is able to remove

a large number of the actual errors that exist in the trace (an 82.5% decrease from

200 to 35). After these errors have been removed, the correct interactions are no

104

longer identified as noteworthy. If three rounds of analysis are performed by further

analyzing each of the cleaned traces (Table 4.7), we can see that no interactions are

incorrectly labelled as resulting from non-deterministic behaviour or internal state.

There are still some erroneous interactions in this trace, even after cleaning, but they

are unable to be identified by the analysis because there were no similar interactions

in the trace. The results show only one instance of an error being introduced by the

analysis and cleaning. A single error was added to the Non-deterministic trace after

three rounds of analysis. For all other experiments, the number of errors was either

reduced or remained constant.

NW Error ND State Initial Errors Final Errors

Base 0 0% 0% 0% 0 0

Error 0 0% 0% 0% 29 29

Non-deterministic 445 0.2% 98.2% 1.6% 0 1

State 458 0% 0% 100% 0 0

Table 4.7: The analysis results and quality of each single-property trace after three
rounds of analysis

4.3.4.2 Multi-Property

The previous results evaluated the analysis technique when only one property was

present in each trace and now we will examine when more than one property exists

in a trace. Two additional traces were generated: one that has both errors and non-

deterministic behaviour (referred to as the Error+ND trace in the results tables),

and one that has both errors and internal state (Error+State in the results tables).

Both of these traces will have errors inserted in 2% of the interactions and a correct,

error-free version of the trace will also be stored. Like the previous evaluation, each

initial trace had nine additional traces generated during multi trace analysis and the

105

same thresholds were used for analysis (τ = 0.9999, α = 0.90 and β = 0.10).

The results (Table 4.8) show a sizable decrease in the number of errors in the

traces (80.5% decrease for Error+ND and 85.6% decrease for Error+State). This is

similar to what was seen when the trace only had errors and shows that the trace

cleaning still works even when other properties are also present. We also see that

the traces with errors in them continue to result in correct interactions being labelled

as resulting from internal states. As with the previous experiments, most of these

incorrect labels disappeared after the trace was cleaned and re-analyzed (Table 4.9).

After subsequent rounds of analysis and cleaning, nearly all of the noteworthy inter-

actions were correctly labelled as resulting from non-deterministic behaviour (in the

Error+ND trace) or internal state (in the Error+State trace). Several errors remained

in the traces but, as with the error-only trace from the previous experiments, these

erroneous interactions did not have any similar interactions in the trace so it was not

possible to label them as noteworthy.

NW Error ND State Initial Errors Final Errors

Error+ND 1061 14.6% 38.5% 46.9% 185 36

Error+State 1238 14.0% 0.6% 85.4% 202 29

Table 4.8: The analysis results and quality of each multi-property trace after one
round of analysis

NW Error ND State Initial Errors Final Errors

Error+ND 417 0% 98.1% 1.9% 35 35

Error+State 493 0% 0.2% 99.8% 24 24

Table 4.9: The analysis results and quality of each multi-property trace after three
rounds of analysis

106

4.3.4.3 Human Expert

The previous evaluations of the trace analysis technique used a computer program as

the expert and errors were artificially inserted. We look to extend our evaluation by

observing from a human expert. The human will likely perform errors by accident

due to reasoning errors, fatigue, lack of precision, or pressing an incorrect button.

The expert will attempt to control the robot in the same way as the control program

that used an internal state and will be observed for 250 interactions. While a trace

of the human expert is being generated, the control program will also select actions

to perform in order to generate a correct trace of what the human should have done

in each interaction.

Upon initial examination of the human trace, it is clear that the human expert

made significantly more errors than any of the previous experiments. The trace had

an error rate of 16.8% (42 erroneous interactions out of 250) compared to the 2% error

rate that was artificially added to other traces. The two primary sources of error were

maintaining the internal state and switching to different actions. The human expert

often forgot its internal state (which direction it had previously turned) so numerous

errors were a result of turning the incorrect direction. The second source of error

occured when the expert had been repeatedly performing one type of action, like

moving forward, and continued doing that action even after it should have switched

to another action, like turning. This is likely because the expert was quickly clicking

one button to repeatedly perform the first action and was not able to react in time

to the change in sensory inputs.

In the previous experiments, when identifying noteworthy interactions each in-

teraction was only compared to other interactions in the trace. For this round of

analysis, cases from an existing case base are also used to identify noteworthy in-

teractions. This is done to show the value of the previously observed cases during

107

trace analysis, especially when the newly generated trace is relatively short (only 250

interactions). The case base was built from the cleaned trace of the control program

when it used an internal state and had error artificially added (Error+State trace

in Table 4.8). Other than using the case base during analysis, all other parameters

remained the same (9 additional traces generated, τ = 0.9999, α = 0.90 and β =

0.10).

The results (Table 4.10) show that if only the human expert trace is used to

detect noteworthy interactions (row Human) then very few noteworthy interactions

are detected. The cleaned trace removes only one error (a 2.4% decrease). This is

what we might expect since the trace only contains 250 interactions so it is unlikely

an erroneous interaction will be highly similar to another interaction in the trace. If

the expert was available for significantly longer periods of time, so longer traces could

be generated, then it might be possible to identify more noteworthy interactions in

the trace. However, if the demonstrated behaviour is relatively short or the expert is

only willing to demonstrate for short periods of time then only using a single trace

will not be sufficient. The results are improved when an existing case base is also used

to detect noteworthy interactions (row Human+Casebase). The number of detected

noteworthy interactions increases and, more importantly, the number of errors in the

trace decreases (a decrease of 35.7%). While the decrease in errors is not as large as it

was in the previous experiments, the results show that cleaning can reduce the number

of errors even when the error rate is high (much higher than the artificially added

2% error rate and even higher than the β parameter). Even through the generated

replay traces also had high levels of noise, since they too were generated by observing

the human expert, the analysis was able to detect that the noteworthy intereactions

were largely due to errors and internal state.

108

NW Error ND State Initial Errors Final Errors

Human 2 50% 0% 50% 42 41

Human+Casebase 27 55.6% 3.7% 40.7% 42 27

Table 4.10: The analysis results and quality of a human expert trace

4.3.5 Discussion

This section has described an approach to analyze and clean traces of an expert’s

behaviour. The analysis identifies when a single sensory input can, at different times,

result in different actions being performed. The expert is made to replay the original

trace in order to generate several new versions of the trace and those traces are used to

determine if the expert reasoned with an internal state, performed non-deterministic

behaviour or performed any errors. The trace can then be cleaned in order to remove

any detected errors.

Our experiments demonstrated the applicability of the analysis in an obstacle

avoidance domain. The results showed that the analysis was able to correctly detect

which of the three properties were present in the trace and cleaning was able to

remove many of the errors. This was true when only one property was present in

each trace and when multiple properties were present, and for both computer and

human experts.

The major assumptions of this approach are that the expert is available to generate

new traces and that the agent is able to present the inputs in a realistic manner. If the

expert is not available, this approach can not be used since it relies on the generated

traces. If the agent does not present inputs to the expert in a way that is similar

to how the environment presents them, the expert may behave differently which can

compromise the quality of the generated traces.

In this section we have shown how state-based behaviour can be identified, but we

109

have not described how we can use this information during learning. The following

section will describe how a case-based learning by observation agent can use cases

collected from experts that reason with internal state information and perform the

demonstrated behaviours.

4.4 Deployment: Learning from State-based Ex-

perts

Any information that is internal to an expert, like the expert’s state, is not directly

observable by a learning agent. This can result in the observing agent missing key

information that it would need to accurately learn the expert’s behaviour.

This section will examine the idea that if an observing agent only uses the latest

sensory input as a case description it can only, at best, learn an expert’s reactive

behaviour. However, if the case description captures the expert’s behaviour over a

period of time it should be possible to extract temporal relationships between sensory

inputs and actions. Indeed, past inputs and actions may still influence the current

behaviour. This temporal relationship can then be exploited in order to approximate

the state of the expert.

4.4.1 Temporal Case Definition

For a state-based expert, the previous definition of a case (in Section 3.1) would not

be appropriate since it only contains the sensory input and action. Key information

is missing from the case as it does not contain any portions of the expert’s run related

to past sensory inputs or actions. As we discussed in the previous section, this can

result in cases that have identical problem portions but different solutions.

The entire run of an expert may be necessary in order to infer what the expert’s

110

internal state is [58] and successfully select which action to perform (as we described

in the previous section). This leads us to redefine a case Ct as a pair containing the

current run Rt and the performed action At:

Ct = 〈Rt, At〉

This definition of a case is appropriate because it allows for approximating the action

selection of a rote expert (using past actions), a reactive expert (using the current

sensory input) and a state-based expert (using the entire run).

When performing case retrieval the objective of the agent will be to compare its

current run to runs of the expert, which are stored as the problem portion of cases,

in order to find the most similar expert run and reuse the associated action. A run

is composed of both sensory inputs and actions. Therefore, when determining the

similarity of two runs of equal length, Ra
t and Rb

t , it is necessary to determine the

similarity of the elements of the runs:

sim(Ra
t , R

b
t) = f(sim(Sa

i , S
b
i), sim(Aa

i−1, A
b
i−1), sim(Sa

i−1, S
b
i−1), . . .)

This requires defining two similarity metrics: the problem similarity metric and solu-

tion similarity metric. The problem similarity metric is used to calculate the similarity

between two sensory inputs and the solution similarity metric is used to calculate the

similarity between actions (recall that in Section 4.1 both sensory inputs and actions

were modelled as having associated similarity functions). It should be noted that

actions can, at different times, be part of both a case’s problem portion and solution

portion. The current action is the solution portion of a case since the case-base rea-

soning cycle is used to retrieve an appropriate action to perform. However, after an

action is performed it is appended to a run, which is the problem portion of a case,

so the action then becomes part of the problem.

111

The agent should, ideally, compare its entire run to runs in the case base but this

may not be computationally feasible. As an agent interacts with the environment over

time, the length of the run it has encountered will grow and so too will the amount

of computation required to compare it to other runs. If the agent has received its

nth environment state Sn and is attempting to select its nth action to perform, An,

then the run will contain n environment states and n− 1 actions. Given the previous

definition of run similarity, this would make the similarity complexity O(n). The

value of n could potentially be very large if the agent has been interacting with the

environment for a significant amount of time. Since agents often operate under real-

time constraints, having a similarity function that becomes more computationally

expensive over time would not be a suitable option. This issue would be compounded

if the sensory inputs or actions had complex structures and required computationally

expensive similarity measures.

An alternative approach would be to only consider a fixed-sized run, of length l, for

the agent. This would have the benefit of reducing the computational complexity of

the similarity calculation to constant time, O(1), but can result in a loss of information

if an incorrect run size is selected. For example, in the situation where l = 1 the agent

is ignoring all past information and behaving in a purely reactive manner. It may

not even be possible to select an ideal value of l to use if the necessary run length

is time-varying or context-dependent. For example, the run length might be time-

varying if a single sensory input or action influences the expert’s internal state. As

the run grows, the influential sensory input will move further and further into the

past. In the domain of soccer, if a player toggles between kicking the ball and passing

the ball, the information that influences the internal state (whether the player kicked

last or passed last) will move further in the past if the player performs other actions

like moving around the field. There is no way to know, without examining the run,

where in the run the last kick or pass actions occurred.

112

Previous case-based reasoning work has examined using sequences of input data

during reasoning. Martin and Plaza [32] note that reasoning often can not be per-

formed at a single point in time but requires reasoning over a period of time. In

the domain of intrusion detection, they show the benefit of reasoning with a series

of inputs rather than just the currently received input. Similarly, it was found that

reasoning with a sequence of past inputs allows inputs that are otherwise similar to

be differentiated [54]. One limitation of these approaches is that they only consider

the influence of past inputs and do not consider past sequences of actions during

reasoning.

Approaches that do take into account sequences of past actions have been called

trace-based reasoning [36] and episode-based reasoning [51]. These approaches, while

they have different names, both follow a similar approach. Instead of reasoning with

a single input they use either a fixed-length sequence of past actions [13] or a fixed-

length sequence of both inputs and actions [6, 51]. This allows the past behaviour

of the reasoner, in the form of the previous actions it has performed, to influence

its future reasoning. These approaches are limited since they require defining, in

advance, the number of past inputs and actions to use. This can result in important

information being excluded or large amounts of extra information being included. One

alternative would be to store sequences of all possible lengths but that would increase

both the space complexity for storing sequences and computational complexity for

comparing sequences.

We propose an approach to run retrieval that starts with an initial run length of 1,

only taking into account the current sensory input, but can dynamically increase the

run length if more information is necessary. Looking again at the definition of a run,

we can see that the current run at time t, Rt, is composed of the run at t− 1, Rt−1,

along with the action performed in response to Rt−1, At−1, and the current sensory

input St.

113

Rt : R
At−1−−−→

t−1 St

Each case, which is composed of a run and the associated action, can be rewritten as

a 4-tuple containing the current sensory input, the action associated with the current

run, the previous run and the action of the previous run:

Ct = 〈Rt−1, At−1, St, At〉

Which can be further simplified as:

Ct = 〈Ct−1, St, At〉

This simplification is beneficial because each case no longer needs to store the entire

run as the problem but can instead store the most recent sensory input and a link to

the previous case.

4.4.2 Temporal Backtracking

One approach to finding cases that are similar to an input problem, which is key to

case retrieval in CBR, is to compare the entire input problem to the entire problem

portions of the cases. However, as was discussed previously, when the problems can

grow over time, like with runs, this can cause the similarity calculations to become

increasingly computationally expensive. Instead, our case retrieval algorithm will

exploit the recursive nature of our case definition.

The algorithm, shown in Algorithm 1, is able to dynamically backtrack, starting

with the current sensory input, until it has enough information (an agreeing set

of nearest neighbours) to select an action. The algorithm recursively attempts to

eliminate nearest neighbour cases by comparing portions of the runs, either sensory

inputs (retrieved using the state(..) function) or actions (retrieved using the action(..)

114

function), that occur further in the past. In order to eliminate potential cases, two

threshold values are used: the problem threshold (PT) and the solution threshold

(ST). The problem threshold is used when comparing sensory inputs and the solution

threshold is used when comparing actions. In some situations the algorithm only needs

to compare the current sensory input while in other situations it may be necessary to

compare a much longer portion of the runs. This is beneficial because even if an expert

is state-based it may not perform all of its reasoning using state information. There

may be times when it behaves reactively and so performing a full run comparison

would be unnecessary.

4.4.3 Evaluation

In Section 4.1, we saw that even a simple internal state, like toggling the direction in

which an obstacle avoidance robot turns, can have a significant impact on learning

performance. In those experiments, reactive retrieval was used to control a physical

obstacle avoidance robot. In this section we will look to demonstrate the benefits of

our temporal backtracking retrieval approach when learning by observing a simulated

version of the obstacle avoidance robot.

The simulated robot will use the same input and output models that were used

in Section 4.3. The problem similarity metric is the same metric that was used in

that section and the solution similarity metric produces a binary value depending on

if the actions are the same or not:

sim(Aa, Ab) =

1 , ifAa = Ab

0 , ifAa 6= Ab

115

Algorithm 1: Action Selection using Temporal Backtracking

Input: current run (run), candidate runs (pastRuns), time offset (time)
Output: action to perform (action)

Function: stateRetrieve(run, pastRuns, time) returns action

1 NN = ∅; NNactions = ∅; bestSim = −1; bestRun = NULL
2 foreach past ∈ pastRuns do
3 similarity = sim(state(run, time), state(past, time))
4 if similarity > bestSim then
5 bestSim = similarity; bestRun = past

6 if similarity > PT then
7 NN ← NN ∪ past
8 if action(past) /∈ NNactions then
9 NNactions← NNactions ∪ action(past)

10 if NN == ∅ then return action(bestRun)
11 else if |NNactions| == 1 then return {NNactions}
12 else return actionRetrieve(run,NN, time+ 1)

Function: actionRetrieve(run, pastRuns, time) returns action

1 NN = ∅; NNactions = ∅; bestSim = −1; bestRun = NULL
2 foreach past ∈ pastRuns do
3 similarity = sim(action(run, time), action(past, time))
4 if similarity > bestSim then
5 bestSim = similarity; bestRun = past

6 if similarity > ST then
7 NN ← NN ∪ past
8 if action(past) /∈ NNactions then
9 NNactions← NNactions ∪ action(past)

10 if NN == ∅ then return action(bestRun)
11 else if |NNactions| == 1 then return {NNactions}
12 else return stateRetrieve(run,NN, time)

116

4.4.3.1 Expert Agents

Three different expert agents will be passively observed and learnt from in our ex-

periments. All experts share the same general obstacle avoidance behaviour. If their

touch sensor indicates they have come in contact with an obstacle (a sensor value of

1), the robot will be moved backwards. Otherwise, the expert will base its action

selection on the value of the sonar sensor. If the sonar value is less than 2 the robot

will reverse direction, if the value is between 2 and 3 the robot will turn, and if the

value is greater than 3 it will move forward. The direction the robot turns, when the

sonar value is between 2 and 3, depends on what state the expert is in. The three

experts were selected because they have different causes of their state changes and

the internal states will need to be identified using different information in the runs.

The causes of state change that we examine are:

• Action-based state change (ABSC) - The state of the agent is changed

based on an action they perform. This expert toggles its turning direction after

each turn (Figure 4.16). In order to know which direction the expert will turn

it is necessary to examine the run to see the last direction the expert turned.

• Input-based state change (IBSC) - The state of the agent is changed based

on an external input. The expert (Figure 4.17) turns the same direction until

it receives an input on the sound sensor telling it what direction it should now

turn (a 1 value representing left and a 2 value representing right). The run

must be examined to find the previous turn-indicating value that appeared on

the sound sensor.

• Input and action-based state change (IABSC) - The state of the agent

is changed based on both past actions and external inputs. Like the IBSC

agent, the agent only switches its turn direction when it receives an input on

117

the sound sensor (Figure 4.18). However, the sound sensor does not explicitly

indicate which direction to turn but instead just informs the agent to switch its

turn direction. When examining the agent’s run, if there was a sound sensor

value indicating the turn direction should be changed (and the agent did not

turn afterwards) it is also necessary to see what the last turn direction of the

agent was.

������������	��
���	��������

���������
����

����������
����

����������
���	������������ ����������
���	������������

������������	��
���	������	
�

����������������� �����������������

����������
���������������� ����������
����������������

Figure 4.16: State machine of expert that has an action-based state change

�����������	
���������	��������������

�����������	
��������	������������	�

�����������	
��������	������������	�

��
	�����
����

��
	������
����

�����������	
��������	�������������	�

����������������	
��������	�������
���

����������������	
��������	�����������

�����������	����������������

�����������	
���������	��������������� �����������	
���������	���������������

����������������	
��������	��������
���

�����������	����������������

�����������	
��������	�������������	�

����������������	
��������	������������

�����������	
���������	��������������

�����������	���������������

�����������	���������������

Figure 4.17: State machine of expert that has an input-based state change

An example of the state changes, from the turn left next (TLN) and turn right

next (TRN) states12, is shown in Figure 4.19. This example demonstrates that even

though presented with identical inputs and starting from the same initial state (TLN)

the agents have different state transitions and outputs. The state of the ABSC agent

12It should be noted that these state names can be slightly misleading since, in Figure 4.17 and
Figure 4.18, there are state transitions where the turn direction is different than the name implies.
However, in order to use the same state names for all three agents, these names are used to indicate
what the most common turn direction will be.

118

�����������	
���������	��������������

����������������	
��������	����������	

�����������	
��������	�������������

�����������	
��������	�������������

�����������	
���������	��������������

��
	�����
����

��
	������
����

�����������	
��������	��������������

����������������	
��������	����������

�����������	����������������

�����������	
���������	��������������� �����������	
���������	���������������

����������������	
��������	�����������

�����������	����������������

�����������	
��������	��������������

����������������	
��������	�����������	

�����������	���������������

�����������	���������������

Figure 4.18: State machine of expert that has an input and action-based state change

is dependant on its past turn direction whereas the IBSC agent’s state is dependant

on the most recent non-zero value on the sound sensor. The IABSC agent’s state is

dependant on both its previous state and the value on the sound sensor.

BACKWARD

BACKWARD

TLNABSC

IBSC

IABSC

TLN

TLN

TRN

TLN

TLN

TRN

TLN

TRN

TLN

TLN

TRN

TLN

TRN

TRN

 touch
 sonar
sound

0
2.5
0

0
7.1
1

0
2.1
0

1
0.1
2

BACKWARD

FORWARD

FORWARD

FORWARDLEFT

LEFT

LEFT

LEFT

RIGHT

RIGHT

Figure 4.19: The state changes of the three experts in response to sensory inputs

Each of the experts was passively observed interacting with the environment over

a period of time. This resulted in a case base, for each expert, containing 50, 000

cases. Additionally, each expert agent was also observed in order to create testing

case bases for use during evaluation. There were 25 testing case bases created for

each expert and each case base contained 2, 500 cases. The placement of obstacles

and the initial starting position of the robot was different when creating each of the

26 case bases (the main case base and the 25 testing case bases).

119

4.4.3.2 Class Separation

The selection of the three experts was based on the assumption that their behaviour

could not be learnt using only the current sensory input during retrieval. The internal

state of the agent would be a necessary feature in order to properly separate different

classes in the problem space. In order to test this assumption, the similarity of

the nearest like neighbour (NLN) and the nearest unlike neighbour (NUN) for each

case was calculated. The nearest like neighbour is the most similar case with the

same associated action and the nearest unlike neighbour is the most similar case

with a different associated action. Each case in the case base was compared to the

remaining 49, 999 cases to find the NLN and NUN similarity values. The similarity

when comparing cases is performed using the problem similarity metric and only

takes into account the current sensory input (the values of the touch, sonar and

sound sensors).

The mean similarity13 of the nearest like neighbour and nearest unlike neighbour,

for each expert, is shown in Table 4.11. All of the actions, for each expert, had

a mean nearest like neighbour similarity that was nearly identical (a similarity of

approximately 1.00). This should be expected since the size of the case base is much

larger than the number of possible environment states (approximately 300 states if

we discretized the sonar value to the nearest integer). For most actions, the mean

NUN similarity was significantly lower (using a paired t-test with p < 0.01) than

the mean NLN similarity. However, for both the left and right actions there was no

significant difference between the mean NLN and NUN similarities. The cases with

these actions, on average, had nearly identical like neighbours and unlike neighbours.

Therefore, in many situations it would be impossible to determine the correct action

to perform since there would be multiple identical cases in the case base but the cases

13The confidence intervals are not show in the table since, when rounded to two decimal places,
they are all +/- 0.00.

120

would not all have the same action.

ABSC IBSC IABSC

NLN NUN NLN NUN NLN NUN

Forward 1.00 0.86 1.00 0.86 1.00 0.86

Reverse 1.00 0.92 1.00 0.92 1.00 0.92

Backwards 1.00 0.67 1.00 0.67 1.00 0.67

Left 1.00 1.00 1.00 1.00 1.00 1.00

Right 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.11: Mean similarity of nearest like neighbour and nearest unlike neighbour

4.4.3.3 Retrieval Results

The previous results indicate that the left and right actions appear to be difficult to

separate when using only the current sensory input during retrieval. In order to test

this, the accuracy of reactive retrieval (RR) was compared to the accuracy of temporal

backtracking retrieval (TB). Reactive retrieval only uses the current environment

input as a feature and performs a 1-nearest neighbour search to find the most similar

case in the case base. The action associated with the nearest neighbour is returned.

Temporal backtracking retrieval uses Algorithm 1. Each retrieval approach used the

large cases base, containing 50, 000 cases, as the training case base. Each testing trial,

25 trials per expert, used one of the testing case bases and used each case in the test

case base as input to the retrieval algorithms. The tests looked to see how accurately

the retrieval algorithms returned an action that matched the known action of the test

case.

One modification to the temporal backtracking approach is that the problem

121

threshold was split into two: the current problem threshold (CPT) and past prob-

lem threshold (PPT). This split was done to allow the algorithm to be more le-

nient on the similarities of past sensory inputs. For the temporal backtracking ap-

proach three similarity settings were tested (ST refers to the solution threshold):

{CPT = 0.99, PPT = 0.90, ST = 0.90}, {CPT = 0.99, PPT = 0.90, ST = 0.00},

{CPT = 0.99, PPT = 0.00, ST = 0.90}. The first set of thresholds takes into ac-

count both past actions and past environments, the second only takes into account

past environments and the third only takes into account past actions.

The results, in Table 4.12, show the accuracy results (and 95% confidence inter-

vals) of the reactive retrieval approach and of temporal backtracking retrieval us-

ing the best threshold set. For the action-based state change (ABSC) expert the

best threshold value was {CPT = 0.99, PPT = 0.00, ST = 0.90}. For the input-

based state change (IBSC) expert the best threshold was {CPT = 0.99, PPT =

0.90, ST = 0.00}, and the input and action-based state change (IABSC) expert was

{CPT = 0.99, PPT = 0.90, ST = 0.90}. The best threshold values found confirm

our assumptions about what information in the run is necessary to imitate each of the

experts. For all three experts, there was a significant increase (using a paired t-test

with p < 0.01) in the overall retrieval accuracy, the left action accuracy and the right

action accuracy. However, there were small, yet statistically significant, decreases in

the accuracy of the forward14 and reverse actions. It should also be noted that, while

not shown in the table, the temporal backtracking results using the other threshold

values also significantly increased the overall accuracy. This shows us that while the

settings for the threshold values are important it is possible to improve over reactive

retrieval using non-optimal thresholds.

14The accuracy values are rounded to 1.00, but if no rounding is performed there is a small,
statistically significant decrease to the temporal backtracking values.

122

ABSC IBSC IABSC

RR TB RR TB RR TB

Forward 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Reverse 1.00±0.00 0.97±0.01 1.00±0.00 0.97±0.00 1.00±0.00 0.96±0.01

Backwards 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Left 0.48±0.02 0.74±0.02 0.61±0.02 0.85±0.01 0.52±0.01 0.62±0.02

Right 0.50±0.02 0.73±0.02 0.59±0.02 0.86±0.01 0.51±0.02 0.62±0.02

Overall 0.80±0.01 0.89±0.01 0.84±0.01 0.93±0.00 0.81±0.00 0.84±0.01

Table 4.12: Retrieval accuracy of standard reactive retrieval and temporal backtrack-
ing

4.4.4 Discussion

In this section we have described an approach to case retrieval for use in learning

by observation systems. Unlike past approaches, our approach takes into account

the entire run of an expert rather than just the current environment state. This

is beneficial because it allows learning from experts who reason using internal state

information. Additionally, the amount of past information required does not need to

be defined a priori as our approach is able to dynamically look further back in the

past when necessary.

Our experiments examined the ability to learn from three different simulated ob-

stacle avoidance robots. While the behaviour of these three agents was simple, we

showed that retrieval using only the current environment state as input was not suf-

ficient to predict actions that were dependant on the agent’s internal state. However,

our temporal backtracking approach, which used past sensory inputs and actions

during retrieval, was able to significantly improve the retrieval accuracy. We found

selecting appropriate threshold values for use in the temporal backtracking algorithm

123

was able to improve results but even using non-optimal thresholds significantly im-

proves the results compared to reactive retrieval. While we were able to improve the

retrieval accuracy, the accuracy was not perfect on the testing data. This is because

there were situations where none of the cases had highly similar runs to the input

problem.

One other area of note is how far back in the run the temporal backtracking

approach needed to examine. In many cases, the algorithm only examined the current

sensory input. However, in some situations the algorithm needed to go as far as 58

time steps in the past in order to select the correct action to perform. If it would not

have had those past cases to examine, it would have been unable to successfully select

which action to perform. Even though there are only approximately 300 environment

states and 5 actions, a run of length n would have approximately 300n × 5n−1 states.

When comparing runs, a relatively simple and small state space becomes much larger.

Even if the maximum run length was 2, it would have been necessary to store 450, 000

unique runs (nine times larger than the case base we used) and these would have been

insufficient when longer runs were required.

It should be noted that, although this approach has been referred to as a case-

based reasoning retrieval algorithm, it actually performs both retrieval and reuse.

The algorithm returns an action, which is the solution to the input problem, instead

of returning one or more source cases. This could easily be changed by having the

algorithm return the set of nearest neighbour cases in order to make it only a retrieval

algorithm. This would allow a more complex reuse algorithm to be used instead of

directly copying the solution. However, since we reuse the solutions directly, the

retrieval and reuse algorithms were combined for simplicity.

The focus of this section has been on state-based learning, but all previous sec-

tions only made use of reactive retrieval. This means that no attempt was made

to examine the benefit of the previous techniques when learning from a state-based

124

expert. We will now further our evaluation by combining state-based learning with

case acquisition and trace analysis.

4.5 Combining Subtasks

The previous sections of this chapter have presented the techniques for each learning

by observation subtask but have examined those subtasks largely in isolation. Only

the modelling subtask was necessary for each other subtask since every subtask makes

use of the input and output models. In this section, the ability of subtasks to work

together will be examined. The applicability of mixed-initiative case acquisition for a

state-based expert will be examined as well as the benefit of using analysis to select

an appropriate retrieval algorithm to use.

4.5.1 Mixed-initiative Case Acquisition from a State-based

Expert

Mixed-initiative case acquisition was found to improve the performance of a learning

by observation agent, as shown in Section 4.2, but the experiments only involved a

reactive expert. We will now examine the benefits of mixed-initiative case acquisition

when learning from a state-based expert.

Recall that when mixed-initiative case acquisition was used the learning agent

would cede control to the expert when it was unable to solve an input problem.

This occurred when there were no problems in the case base with a similarity to the

input problem St above a threshold τ . However, when temporal backtracking retrieval

(Algorithm 1 in the previous section) is used to learn from state-based experts there is

a second type of retrieval failure that can occur. If, during backtracking, the retrieval

algorithm eliminates all possible candidate solutions then it will simply return the

action of the most similar case. In this situation, the learning agent will also cede

125

to the expert and the expert will provide both the correct action At as well as the

portion of its run it used to determine that action. For example, if the previous

turn direction influenced the expert’s current action, and the previous turn action

occurred three time steps in the past (At−3), then the expert will provide a portion of

its run that includes that information. The case base CB will have a case related to

the current sensory input and action along with cases from the other run information

provided by the expert (CB = CB ∪ {Ct, Ct−1, Ct−2, Ct−3} where Ct = 〈Ct−1, St, At〉,

Ct−1 = 〈Ct−2, St−1, At−1〉, Ct−2 = 〈Ct−3, St−2, At−2〉 and Ct−3 = 〈null, St−3, At−3〉).

This results in a varying number of cases being provided by the expert each time it

assists the learning agent and also makes the assumption that the expert can identify

what portion of its run should be provided to the agent. However, if the expert can

not identify what portion of the run should be provided then a fixed-length portion

of the run can be provided. For example, the expert could always provide the action

to perform and the five case from its run. However, if a fixed-length number of cases

are provided there is no guarantee that all necessary run information is included (or

that unnecessary information is not included).

The state-based expert we will use for experimentation is the action-based state

change agent that controls a simulated obstacle avoidance robot (from Section 4.4).

Recall that this expert toggles the direction it turns so it never turns in the same

direction twice in a row. In Section 4.4, this expert was observed passively in order

to create a case base of 50, 000 cases and 25 test case bases of 2, 500 cases each.

To generate the mixed-initiative case base, the learning agent initially started with

an empty case base. Whenever the agent ceded control to the expert and observed

the expert’s behaviour, those cases (the case related to the current sensory input

and action, along with the cases provided from the expert’s run) were added to the

case base until 50, 000 cases were generated using mixed-initiative case acquisition.

The thresholds used for temporal backtracking retrieval were identical to those used

126

previously (CPT = 0.99, PPT = 0.00; ST = 0.90) and the mixed-initiative similarity

threshold was τ = 0.99.

The accuracy of the learning agent when using the mixed-initiative case base was

measured by providing each case from each of the 25 testing case bases to the learning

agent and measuring how often the correct action was selected. Table 4.13 show the

results as well as the results that were previously found, in Section 4.4, when using

the passively acquired case base. These results show that even though both case

bases used by the agent were the same length, 50, 000 cases, the overall accuracy

when using the mixed-initiative case base was a statistically significant improvement

(using a paired t-test with p < 0.01). The accuracy when performing two actions,

turning left and right, were statistically significant improvements while the remaining

actions had no statistically significant differences.

Passive Mixed-initiative

Forward 1.00±0.00 1.00±0.00

Reverse 0.97±0.01 0.97±0.01

Backwards 1.00±0.00 1.00±0.00

Left 0.74±0.02 0.78±0.02

Right 0.73±0.02 0.78±0.02

Overall 0.89±0.01 0.91±0.01

Table 4.13: Retrieval accuracy when using a passive and mixed-initiative case base

4.5.2 Using Trace Analysis to Guide Algorithm Selection

The experiments in Section 4.3 have shown the results of trace analysis and now we

will see if performing trace analysis is beneficial for the performance of a learning

by observation agent (recall that the previous experiments only identified state-based

behaviour and never made use of that information during learning). We look to see if

127

the learning agent can benefit by knowing that the expert maintains an internal state

by selecting an appropriate case retrieval algorithm (such as the one described in Sec-

tion 4.4). The agent observed the computer controlled obstacle avoidance expert that

had an internal state and generated a trace of 10,000 interactions (this corresponds to

the Error+State trace that we previously showed in Table 4.9). The original version

of the trace was used to create one case base and the cleaned version of the trace was

used to create a second case base.

For testing purposes, 25 extra traces of 1,000 interactions each were created by

observing the same expert. For each of the 25 test traces, the sensory input from each

of the 1,000 interactions was given as input to the agent and the agent’s accuracy

was calculated by measuring the percentage of times the agent was able to select the

correct action (since each interaction in the trace also contained the correct action).

The average accuracy of all test runs and the 95% confidence interval were calculated.

Using reactive retrieval, the agent had a slightly higher accuracy when using the

cleaned case base (79.7%± 0.9%) compared to using the original case base (79.0%±

0.9%) although the difference was not statistically signficant (using a t-test with

p < 0.05). When the agent used state-based retrieval with the cleaned case base it

achieved its highest accuracy (87.9%± 0.5%). This was significantly higher than the

accuracy using reactive retrieval and the accuracy using state-based retrieval with the

original case base (86.4%± 0.6%).

These results show that cleaning errors out of the traces can improve the per-

formance of a case-based learning by observation agent. Perhaps more importantly,

the ability of the trace analysis to identify state-based behaviour allows the agent

to select an appropriate case retrieval algorithm to use. The agent had the largest

accuracy improvement by selecting the state-based retrieval algorithm instead of the

reactive retrieval algorithm. The agent could choose to use state-based retrieval in

all situations, without performing analysis, but using state-based retrieval is more

128

computationally expensive than reactive retrieval. Using the state-based retrieval

unnecessarily could be detrimental to the agent’s performance if the agent operates

under real-time constraints.

4.5.3 Discussion

This section has examined the ability to combine techniques together so that multiple

learning by observation subtasks are used by the learning agent. For both situations,

combining mixed-initiative case acquisition with state-based learning and combining

trace analysis with state-based learning, there was a quantifiable performance benefit

to using the subtasks together. These results help to illustrate that the subtasks in

the learning by observation cycle and the techniques developed in this thesis are not

stand-alone items but are part of a larger workflow.

4.6 Complete Cycle

This section will examine how all of the subtasks in the learning by observation cycle

can be used together to improve the performance of a learning agent. Simulated

soccer agents and an agent controlling a physical robot will be examined.

4.6.1 Simulated Soccer

The input and action models for simulated soccer were previously presented, in Sec-

tion 4.1, but we did not examine how the other learning by observation subtasks

influence the ability of an agent to learn soccer behaviour. Two expert agents will be

used for this evaluation:

• Krislet : Krislet15 agents behave in a simple reactive manner. They turn until

15http://www.ida.liu.se/~frehe/RoboCup/Libs/libsv5xx.html

129

they can see the soccer ball and then run toward the ball. When they get to

the ball they attempt to kick it toward their opponent’s goal.

• CMUnited : CMUnited [56] is far more complex and were the former champions

of the RoboCup Simulation League. They use a layered learning architecture

and a number of strategies including formation strategies and agent communi-

cation. CMUnited players can have multiple states of behaviour and maintain

internal models of the world, so their behaviour is significantly more complex

than anything we have examined and likely more similar to that of a human

expert.

Each of these agents was passively observed in order to collect a case base of

5, 000 training cases and 25 testing case bases of 3, 000 cases each. Each case base

was generated from a single, unique trace of the expert. The mean accuracy of the

learning agent, when attempting to predict the action of each test case using reactive

retrieval, was used to determine a baseline performance when learning from each

expert agent (the passive/reactive rows in Tables 4.14 and 4.15) .

Acquisition Retrieval Kick Dash Turn Overall

Passive Reactive 0.27±0.07 0.71±0.02 0.83±0.01 0.61±0.02

Mixed-initiative Reactive 0.48±0.11 0.65±0.02 0.86±0.00 0.66±0.02

Mixed-initiative State-based 0.48±0.11 0.65±0.02 0.86±0.00 0.66±0.02

Table 4.14: The accuracy of the learning agent when learning from Krislet

The baseline results demonstrate the use of the modelling and observation sub-

tasks. Those two training case bases were then used during preprocessing in order to

analyze the observations. The analysis performed single trace analysis by comparing

each training case to the remaining 4, 999 training cases in order to identify cases that

were highly similar (τ = 0.99) but resulted in different actions. As we might expect

130

Acquisition Retrieval Kick Dash Turn Overall

Passive Reactive 0.37±0.04 0.58±0.02 0.55±0.03 0.50±0.02

Mixed-initiative Reactive 0.45±0.03 0.57±0.02 0.57±0.03 0.53±0.02

Mixed-initiative State-based 0.48±0.03 0.62±0.02 0.61±0.04 0.57±0.02

Table 4.15: The accuracy of the learning agent when learning from CMUnited

from these experts, the reactive Krislet agent had no noteworthy interactions iden-

tified whereas the more complex CMUnited agent did (Table 4.16). Multiple trace

analysis was then performed on the trace used to generate the CMUnited training case

base (labelling thresholds of α = 0.90 and β = 0.10). The majority of CMUnited’s

noteworthy interactions were labelled as being a result of internal state, but there

was also a presence of non-deterministic behaviour and error. It should be noted that

after cleaning the identified errors there was no noticeable difference in the learning

agent’s performance when using reactive retrieval. This lack of improvement is to be

expected given the low error rate in the trace.

Noteworthy Error ND State

Krislet 0 - - -

CMUnited 113 6.2% 33.6% 60.2%

Table 4.16: The analysis results on traces of Krislet and CMUnited

The information gained from analysis, that Krislet is reactive and CMUnited is

largely state-based, can be used to guide further observation and deployment. As we

discussed in the previous section, when mixed-initiative case acquisition is performed

on a reactive expert the solution to a single problem is provided whereas for a state-

based expert a portion of its run is also provided. This makes it important to know

if the expert is reactive or state-based since retaining information about the expert’s

131

run will cause the case base to grow at a faster rate. If the learning agent can

only use a case base of a fixed size, then it may not be beneficial to acquire cases

related to problems the agent was able to solve itself (the learning agent would have

already asked the expert for assistance if it could not solve any previously encountered

problems). However, a state-based expert will need the other cases if state-based

retrieval is used.

Using the trace analysis results, when performing mixed-initiative case acquisi-

tion the Krislet agent will only provide the solution to the current problem whereas

the CMUnited agent will provide the solution to the current problem and the nine

previous problem-solution pairs in its run. This causes the learning agent to add a

single case every time it cedes to the Krislet agent and at most 10 cases every time it

cedes to the CMUnited agent. For each expert, the learning agent only used the first

2, 500 training cases (representing the first 2, 500 interactions in the training trace)

and was deployed in the environment until it had acquired an additional 2, 500 cases

using mixed-initiative case acquisition (using τ = 0.90). This resulted in a total case

base size of 5, 000 cases (the same size as the passively acquired case base). Each of

these case bases was then used by the learning agent and the accuracy on the 25 test

case bases was measured.

When reactive retrieval was used (mixed-initiative/reactive rows in Tables 4.14 and

4.15) the overall accuracy when learning from both experts was improved. The Krislet

agent had statistically significant (using a paired t-test with p < 0.05) improvements

in the overall accuracy, the accuracy of the kick action and the accuracy of the turn

action. There was also a significant decrease in the accuracy of the dash action.

This is likely because the action distribution is severely imbalanced with far more

dash actions than either kick or turn actions. Mixed-initiative case acquisition helps

to improve this imbalance by adding more kick and turn actions. Similarly, when

learning from the CMUnited agent there were statistically significant improvements

132

to the kick, turn and overall accuracy. While there was also a decrease in the dash

accuracy, the difference was not statistically significant.

While the results using mixed-initiative acquisition are an improvement over the

baseline, we will now use state-based retrieval in an attempt to improve the per-

formance further. When performing state-based retrieval (using a current problem

threshold of 0.95, a past problem threshold of 0.00, and a solution threshold of 0.90)

the agent will use the mixed-initiative case base for training. The results (mixed-

initiative/state-based rows in Tables 4.14 and 4.15) showed that there was no change

in the performance when learning from the Krislet agent. This is what we would ex-

pect since, based on the analysis performed previously, there were no similar problems

with different solutions so the state-based retrieval would never need to backtrack.

When no backtracking is performed, the state-based retrieval is essentially reactive

retrieval. However, there are statistically significant improvements (over both pas-

sive/reactive and mixed-initiative/reactive) for all accuracy values when using state-

based retrieval on the CMUnited case base. These results show that even for a highly

complex agent like CMUnited there is still a benefit of using state-based retrieval.

These experiments have shown how each subtask in the learning by observation

cycle can be used in combination and the relative performance improvement of each

technique. While there was a benefit, when learning from both the Krislet and CMU-

nited agents, using individual techniques the best performance was found when using

the techniques together. When learning from the CMUnited agent, the best perfor-

mance was a result of using mixed-initiative case acquisition and state-based retrieval.

Learning from the Krislet agent was not improved when using state-based retrieval

but there was also no decrease in performance (compared to using reactive retrieval

and the mixed-initiative case base). This shows that even if the Krislet agent was

incorrectly thought to be state-based there would not be a performance decrease in

using state-based retrieval. It should also be noted that while analysis did not provide

133

any quantifiable performance benefits it did provide important information that was

used to guide other parts of the learning by observation cycle.

While there were performance improvements, the ability to learn from complex

agents is still difficult and not fully achieved. When the learning agent uses the mixed-

initiative training data it is able to do a reasonable job of playing soccer like Krislet

(when examined qualitatively). However, the agent is still unable to perform the

CMUnited behaviour as expected (even when using mixed-initiative case acquisition

and state-based retrieval). The learning agent still performs many errors and often

times appears to be behaving significantly different than the original expert.

There are several key limitations of our approach that we feel result in the be-

haviour of highly complex agents like CMUnited to be difficult to fully learn. Firstly,

the CMUnited agent relies on inter-agent communication and the soccer model used

by the learning agent does not capture that. Since the learning agent can not observe

how the expert communicates with its teammates, it will not be able to reason with

that information. Secondly, the CMUnited agents maintain a world model and reason

with a significant amount of internal state information. This results in a significant

number of situations where the learning agent needs to look at past run information

during temporal backtracking. In many situations, the learning agent is unable to se-

lect an action with a high degree of confidence because none of the similar cases have

a run that is similar to the agent’s. One solution would be to increase the case base

size, but this is often not an acceptable solution since the size of the case base may be

limited by real-time constraints (the number of cases that can be compared within a

given time limit). Finally, no attempt is made to reproduce the non-deterministic be-

haviour of the expert. Although the behaviour is non-deterministic, an action selected

non-deterministically may influence further action selection (as part of the expert’s

run). In such a situation, it would be important to perform non-deterministic actions

with a similar probability distribution to that of the expert.

134

4.6.2 Physical Robot

We will now present a case study that shows how all tasks in the learning by obser-

vation cycle can be used when watching a human expert control a physical robot.

4.6.2.1 Modelling

The case-based learning agent learns by observing a human expert performing dif-

ferent behaviours with different hardware configurations. As in Section 4.1.3, the

sensors and effectors available to the learning agent are not defined in advance but

instead register when they are connected.

For the first behaviour, the iRobot Create robot (described in Section 4.1) is

connected to the learning agent and a human expert controls the robot while the

learning agent observes. The demonstrated behaviour is a tracking behaviour where

the robot is navigated toward its charging station (the same behaviour that was

demonstrated in the initial iRobot Create case study). If the robot can not currently

detect an infrared signal, which is produced by the charging station, it turns until

the signal can be detected and then moves forward. When the robot comes into

contact with the charging station (the infrared signal is present and the bumper

sensor indicates the robot is in contact with something) it will stop. The learning

agent collected 14 cases by observing the expert perform this behaviour.

The second behaviour also involves connecting the iRobot Create to the learning

agent. However, instead of moving toward an object (the charging station) the expert

demonstrates an obstacle avoidance behaviour. The expert moves the robot forward

until it comes in contact with an obstacle, as indicated by the bumper sensor, and

then turns until the robot is no longer in contact with the obstacle. Once the robot

is free of the obstacle it is then moved forward again. The demonstration of this

behaviour resulted in 15 cases being observed.

135

The final behaviour represents a hypothetical upgrade to the robot. The obstacle

avoidance behaviour requires the robot to actually come in contact with the obstacle

so the robot could potentially get stuck or be damaged. This behaviour has both the

robot and a sonar sensor connected to the learning agent. Like the sensors on the

robot, the sonar sensor registers with the learning agent when it is connected. Instead

of relying on the bumper sensor to detect an obstacle, the expert uses the value of

the sonar sensor. This allows the expert to detect and react to obstacles as the robot

nears them. 12 cases were collected when observing this behaviour.

The learning agent was able to achieve 100% accuracy, for each of the three be-

haviours, when attempting to predict the associated action of 100 test cases. More

importantly, when controlling the robot on its own the learning agent was able to

successfully perform all three of the behaviours16. This shows that the learning agent

is able to successfully learn and perform behaviours without any predefined knowl-

edge of what it will observe or what hardware it will have available. The robot can

rapidly be repurposed as its task or hardware change.

4.6.2.2 Mixed-initiative Case Acquisition

The learning agent was able to learn the obstacle tracking behaviour but did not

necessarily do it in the most efficient manner. Recall that the learning agent observed

the expert perform the entire behaviour and collected 14 cases. We will now examine

the ability of the agent to learn the obstacle tracking behaviour using mixed-initiative

case acquisition. Initially, the learning agent will start with an empty case base. If

the agent is unable to retrieve a case with a similarity to the current sensory input

above a threshold of τ = 0.90, the agent will prompt the user for an action to perform,

create a new case from the resulting interaction, and add the case to the case base.

16A video of the learning agent observing and performing all three behaviours: http://sce.

carleton.ca/~mfloyd/LearningVideos/LearningThreeBehaviours.mp4

136

If the agent can retrieve a case with a similarity above the threshold, it will perform

the associated action.

Using this approach, the agent collects four cases. Although this case base is

much smaller than the case base of 14 cases when cases are acquired passively, when

the learning agent uses the case base it still achieves the same accuracy on the test

cases (100%) and is able to perform the behaviour17. This is because the learning

agent stores many identical cases during passive observation and there is no benefit

in keeping numerous instances of the same case. Additionally, using mixed-initiative

case acquisition is beneficial because the expert only needs to demonstrate four actions

instead of demonstrating the entire behaviour (14 actions).

4.6.2.3 Preprocessing

The observed behaviours thus far have been error free. However, when learning from

a human expert there is the possibility that the expert might make an error when

demonstrating the behaviour. For this part of the case study, the tracking behaviour

was demonstrated again but the human expert performed errors. The learning agent

observed the expert perform the behaviour and 30 cases were collected. During the

demonstration, the human expert performed two errors (turning when the infrared

signal could be detected and moving in reverse instead of forward) but recovered from

the errors and fully demonstrated the behaviour.

The learning agent was unable to perform the tracking behaviour if it used the

case base that contains errors. Even though there are only two erroneous cases, these

cases caused the learning agent to behave incorrectly in many situations so it was

never able to get to the charging station. In order to handle the errors, trace analysis

was performed on the case base (using τ = 0.99, α = 0.90, β = 0.10 and 2 additional

17A video of the learning agent using mixed-initiative case acquisition to learn the behaviour:
http://sce.carleton.ca/~mfloyd/LearningVideos/MixedInitiativeRobotLearning.mp4

137

traces were generated). Single trace analysis identified 8 noteworthy interactions and

multi trace analysis labelled 2 of them as being a result of error and 6 of them as

being a result of state-based behaviour. As was the situation in previous trace analysis

experiments, the state-based interactions were a result of the erroneous interactions

causing cases to appear noteworthy. However, when the erroneous cases were cleaned

the resulting case base no longer had any noteworthy interactions when single trace

analysis was performed again.

When the cleaned case base was used by the learning agent it was able to suc-

cessfully perform the tracking behaviour18. This demonstrates that even a low error

rate can significantly impact the ability of a learning agent to perform a behaviour.

However, even if errors do exist they can be identified and removed so that the agent

is able to successfully learn.

4.6.2.4 State-based Learning

The previously demonstrated behaviours did not require reasoning with any internal

state information. For the final part of the case study, the tracking behaviour was

modified to require the use of an internal state. Instead of stopping when the robot

reached the charging station, the expert now moved the robot in reverse. This requires

the expert to maintain an internal state related to if the charging station has been

reached yet. If it has not, the robot should be moved toward the charging station

whereas if it has reached the charging station it should be moved away from the

charging station. The learning agent acquired 24 cases when observing this behaviour.

When the learning agent attempted to perform this behaviour using reactive re-

trieval it was unable to successfully perform the behaviour. The learning agent was

able to navigate the robot to the charging station but immediately stopped. This is

18A video of the influence of errors, and how trace analysis can remove errors and improve per-
formance: http://sce.carleton.ca/~mfloyd/LearningVideos/RobotTraceAnalysis.mp4

138

because the agent only retrieved cases with sensory inputs that were similar to the

current sensory input and did not take into account past sensory inputs or actions.

However, if the learning agent used temporal backtracking retrieval (using a current

problem threshold of 0.95, a past problem threshold of 0.95, and a solution threshold

of 0.90) it was able to perform the entire behaviour19. This shows that reactive re-

trieval can be used to learn portions of a state-based behaviour but in order to fully

learn the behaviour a retrieval algorithm that takes into account internal state must

be used.

4.6.2.5 Discussion

The physical robot case study has shown that even if behaviours can be learnt with

a high degree of accuracy, there is still a benefit in using the techniques presented in

this thesis. The modelling approach allows both the demonstrated behaviour and the

robotic hardware to be rapidly changed. Using mixed-initiative case acquisition, the

agent reduces the number of problems the expert needs to solve and avoids storing

redundant cases. If demonstrated behaviours contain errors or state-based behaviour,

the learning agent is unable to successfully perform the behaviours. However, using

trace analysis allows the agent to identify and remove errors and state-based retrieval

allows the agent to perform behaviours that require internal state information.

4.6.3 Discussion

In this section we have examined how the techniques developed in this thesis can be

used together in various domains. The learning agent was able to significantly improve

its ability to learn simulated soccer behaviours by combining the techniques together.

For both soccer experts, the expert initially had difficulty learning the behaviours

19A video of the expert demonstrating the state-based behaviour and the learning agent attempting
to perform the behaviour using both reactive and temporal backtracking retrieval: http://sce.

carleton.ca/~mfloyd/LearningVideos/StateBased.mp4

139

correctly but was able to show noticeable improvements as each new technique was

used.

The learning agent was initially able to learn the robot control behaviours well, un-

like the soccer behaviours, but the learning techniques in this thesis also showed ben-

efits in this domain. Mixed-initiative case acquisition allowed more efficient learning,

trace analysis allowed errors to be identified and cleaned, and temporal backtracking

retrieval allowed a state-based behaviour to be learnt.

However, even though we have shown two examples of successful uses of the various

techniques, there are still several key limitations that must be taken into account:

• Mixed-initiative case acquisition from a state-based expert requires the learning

agent to add additional cases, related to the expert’s run, not just a single case.

In situations where the expert knows what extra information it reasoned with,

the expert can provide the correct cases to the learning agent. However, in many

situations this is not possible. As we saw in the simulated soccer domain, the

learning agent always received a fixed-length number of previous cases. There

is no guarantee that these cases contained the correct information needed to

infer the expert’s state or, if the correct information was included, that no

unnecessary information was also provided.

• In domains where the learning agent has real-time constraints on the case base

size, there is a limit to the amount of previous run information that can be

added to the case base. If too much information from the run is added, the size

of the case base will quickly reach the size limit. However, if not enough run

information is added the learning agent will have difficulty inferring the internal

state.

• Case acquisition, trace analysis and temporal backtracking retrieval all require

threshold values to be set. Although we were able to show the benefits of the

140

techniques using largely similar threshold values in each domain, there is no

guarantee those threshold were the optimum values or that they would work in

every domain. The learning agent could attempt to optimize these threshold

values but, in situations where it needs to be deployed quickly, it might not

have the time necessary to compute the optimum values.

• The learning agent is able to use information contained in the run to infer the

expert’s internal state but it does not try to learn what information influences

the internal state. If this information was learnt, the agent could attempt to

maintain the state rather than infer it on every retrieval.

• The temporal backtracking retrieval algorithm works well for reactive and state-

based behaviour but does not attempt to perform non-deterministic behaviour.

For some experts, like CMUnited, it might be useful to identify when the agent

should be behaving non-deterministically and attempt to approximate this be-

haviour. Additionally, the evaluation of the agent would be improved if it could

be determined an error was due to incorrectly selecting an action in a non-

deterministic situation instead of a reactive or state-based situation.

4.7 Discussion

This chapter has presented improvements to each of the four learning by observa-

tion subtasks: modelling, observation, preprocessing and deployment. Each of these

approaches attempts to address a limitation of existing techniques and improve the

performance of learning by observation systems. The motivation for these improve-

ments was to address issues related to general-purpose learning by observation so a

variety of case studies and evaluation domains were used. In the examined domains,

each of these techniques was found to significantly improve the ability of the agent

141

to learn or increase what the agent can learn.

Chapter 5

Conclusions and Future Work

This thesis has addressed the research question “What are the issues specific to

learning by observation? Is it possible to come up with a general-purpose and task-

independent framework for learning by observation and, if so, what are the components

of such a framework?” by examining the state of the art in general-purpose learn-

ing and learning by observation systems. The major subtasks performed by learning

by observation systems were identified and used to define a cyclical workflow that

formalizes how these subtasks are interconnected. Additionally, since learning by

observation systems were decomposed into their major subtasks it was possible to

examine how each of these subtasks would need to be improved in order to allow for

general-purpose learning by observation.

This chapter will provide a summary of the contributions and results, describe

known limitations of the work and identify directions for long-term future work.

5.1 Summary of Contributions and Results

The following are a summary of the key contributions of this work:

1. Literature Review (Chapter 2): The state of the art in learning by obser-

vation was examined as well as the issues that are specific to learning from an

142

143

agent. It was determined that, although existing learning by observation work

is largely ad hoc, there exist a number of common subtasks that each of these

systems perform. These subtasks relate to how the expert’s inputs and outputs

are modelled, how the agent observes the expert, how the agent processes those

observations and how the agent performs the behaviour it has learnt.

2. Learning by Observation Cycle (Chapter 3): Four common subtasks in

learning by observation systems were identified and defined: modelling, ob-

servation, preprocessing and deployment. These subtasks were arranged into

a cyclical workflow, called the learning by observation cycle, that represents

the standard transitions between them. Additionally, four key requirements of

these subtasks were identified so that learning by observation could be used for

general-purpose learning:

• Modelling : The task of a learning by observation agent can be changed

so it is important not to hard-code a definition of the task. Similarly,

since the agent can be reconfigured to perform a new task it should not

hard-code the features it uses to reason or the actions it can perform.

• Observation: The way in which learning by observation systems observe an

expert is passive. This can result in parts of the behaviour that may never

be observed since the expert never fully demonstrates them. However,

since these systems learn by observing an expert it may be possibly to

more actively involve the expert in the learning.

• Preprocessing : Learning by observation systems observe expert agents or

human experts, both of which might make errors, reason using internal

state information or behave non-deterministically. The learning agent

should be able to examine the observations in order to characterize the

behaviour of the expert, and identify and clean errors.

144

• Deployment : Existing learning by observation systems can only learn from

reactive experts. If an expert has multiple internal states and uses that

state information to reason then agents will not be able to successfully

learn from it or reproduce the expert’s behaviour during deployment.

3. Modelling (Section 4.1): A framework for modelling the inputs and outputs

of a learning by observation system was presented. This framework was used

to design a learning by observation agent that separates the agent’s reasoning

capabilities, in its Reasoning module, from how it interacts with its environ-

ment, the Perception and Motor Control modules. Instead of having to modify

the entire agent when the environment is changed, only the Perception and Mo-

tor Control modules need to be changed. Case studies in obstacle avoidance,

robotic arm control, simulated soccer and Tetris were described in order to show

how a single Reasoning module can be used, in all four domains, by only chang-

ing the Perception and Motor Control modules. This design was extended to

allow sensors and effectors to be dynamically added or removed from the agent

without needing to reprogram the agent.

4. Observation (Section 4.2): Two observation strategies, active case acquisition

and mixed-initiative case acquisition, were presented that can be used as alter-

natives to passive observation. Unlike the passive approach, these approaches

allow the agent to identify areas of the problem space that are poorly covered

and attempt to have the expert solve problems in those areas. Mixed-initiative

case acquisition allows the agent to ask an expert to solve a specific problem if

the agent can not solve it itself. Active case acquisition differs in that it does not

have the expert solve difficult problems when they occur but logs them for later.

Both of these techniques were able to make observations that would rarely, or

145

in some instances never, be observable using a passive approach. Addition-

ally, when the agent had the additional observations it was able to improve its

learning performance.

5. Preprocessing (Section 4.3): The preprocessing technique that was developed

involves analyzing traces of the expert’s behaviour. Initially, the trace is exam-

ined in order to identify situations, called noteworthy interactions, where similar

sensory inputs result in different actions. These noteworthy interactions can be

a result of four properties: errors, non-deterministic behaviour, unobservable

features or multi-state behaviour. In order to differentiate between the prop-

erties, the expert is made to encounter the same sequence of sensory inputs

several times. The results showed that this analysis was able to successfully

measure which properties were present in each trace and remove a majority of

the errors from the traces.

6. Deployment (Section 4.4): A retrieval algorithm was developed that allows

learning from experts with multiple internal states. Instead of using only the

expert’s current sensory inputs during retrieval, the algorithm also uses past

sensory inputs and past actions. In order to make the retrieval computational

feasible, the algorithm only uses information when necessary. It starts by using

only the current sensory inputs, making it appropriate for reactive experts, but

if multiple actions are returned as solutions it begins adding extra information

in order to discriminate between the possible actions. The results showed that

reactive retrieval algorithms were not able to successfully learn from multi-

state experts. However, the novel retrieval algorithm was able to significantly

improve the learning performance. The algorithm was able to handle state

transitions that occurred due to past actions of the expert, past sensory inputs

or a combination of past sensory inputs and actions. Also, the algorithm was

146

able to handle both when the information that caused the state change was

relatively recent and when it was far in the past.

7. Combination of Techniques (Section 4.6): An evaluation of how the various

techniques in this thesis work together was performed in a simulated soccer

domain and a robotics domain. This demonstrated the relative benefit of each

technique and how the best learning performance was achieved when techniques

from all four learning by observation subtasks were used.

5.2 Derived Publications

The following peer-reviewed publications were derived from the results of this thesis:

1. M.W. Floyd and B. Esfandiari. Analysis and Cleaning of User Traces Through

Comparison of Multiple Traces. In Proceedings of the Twenty-Sixth Interna-

tional Florida Artificial Intelligence Research Society Conference, AAAI Press,

2013.

2. S. Ontañón and M.W. Floyd. A Comparison of Case Acquisition Strategies

for Learning from Observations of State-based Experts. In Proceedings of the

Twenty-Sixth International Florida Artificial Intelligence Research Society Con-

ference, AAAI Press, 2013.

3. M.W. Floyd, M.V. Bicakci and B. Esfandiari. Case-Based Learning by Obser-

vation in Robotics Using a Dynamic Case Representation. In Proceedings of

the Twenty-Fifth International Florida Artificial Intelligence Research Society

Conference, 323-328, AAAI Press, 2012.

4. M.W. Floyd and B. Esfandiari. Learning State-Based Behaviour using Tempo-

rally Related Cases. In Proceedings of the 16th United Kingdom Workshop on

147

Case-Based Reasoning, 34-45, 2011.

5. M.W. Floyd and B. Esfandiari. Building Learning by Observation Agents Using

jLOAF. In Proceedings of the Workshop on Case-Based Reasoning for Computer

Games at the 19th International Conference on Case-Based Reasoning, 37-41,

2011.

6. M.W. Floyd and B. Esfandiari. Supplemental Case Acquisition using Mixed-

Initiative Control. In Proceedings of the 24th International Florida Artificial

Intelligence Research Society Conference, 395-400, AAAI Press, 2011.

7. M.W. Floyd and B. Esfandiari. A Case-Based Reasoning Framework for Devel-

oping Agents Using Learning by Observation. In Proceedings of the 23rd IEEE

International Conference on Tools with Artificial Intelligence, 531-538, IEEE

Computer Society Press, 2011.

8. M.W. Floyd and B. Esfandiari. Toward a Domain-independent Case-based Rea-

soning Approach for Imitation: Three Case Studies in Gaming. In Proceedings

of the Workshop on Case-Based Reasoning for Computer Games at the 18th In-

ternational Conference on Case-Based Reasoning, 55-64, University of Piemonte

Orientale Press, 2010.

9. E. Acosta, B. Esfandiari and M.W. Floyd. Feature Selection for CBR in Imita-

tion of RoboCup Agents: A Comparative Study. In Proceedings of the Work-

shop on Case-Based Reasoning for Computer Games at the 18th International

Conference on Case-Based Reasoning, 25-34, University of Piemonte Orientale

Press, 2010.

10. M.W. Floyd and G.A. Wainer. Creation of DEVS Models using Imitation Learn-

ing. In Proceedings of the 42nd Summer Computer Simulation Conference, 334-

341, SCS Press, 2010.

148

11. M.W. Floyd and B. Esfandiari. Comparison of Classifiers for use in a Learning

by Demonstration System for a Situated Agent. In Proceedings of the Work-

shop on Case-Based Reasoning for Computer Games at the 8th International

Conference on Case-Based Reasoning, 87-96, 2009.

12. M.W. Floyd and B. Esfandiari. An Active Approach to Automatic Case Gener-

ation. In Proceedings of the 8th International Conference on Case-Based Rea-

soning, 150-164, Springer, 2009.

In addition to published research papers, descriptions and demonstrations of this

work has also been presented in video form. The video “Case-Based Imitation: A

Sequel” won the Best Video Award at the Artificial Intelligence Video Competition

held at the 24th Conference on Artificial Intelligence (AAAI 2010). Also, the video

“Case-based Reasoning in Games” was nominated for the Most Innovative Video

Award at the Artificial Intelligence Video Competition held at the 25th Conference

on Artificial Intelligence (AAAI 2011).

5.3 Limitations and Future Work

This work has examined a cyclical learning by observation workflow and has made

several improvements in the algorithms used for various subtasks of the cycle. How-

ever, there are still interesting open problems and limitations of this work that are

long-term future work. Several of these limitations and areas of future work are:

• Goal Inference: Since this work has dealt with a knowledge-poor approach

to learning by observation, no information about the expert’s goals is known.

It would be beneficial to be able to examine observations and learn the ex-

pert’s goals, which goals the expert is trying to achieve and how those goals

are achieved. This would allow other parts of the case-based reasoning cycle,

149

revision and retention, to be performed since the learning agent would have

some idea of what it should be doing.

• Less-expensive Trace Analysis: The preprocessing algorithm presented in

this thesis relies on having the expert replay traces of its behaviour. This can be

expensive since it requires a significant amount of time from the expert. It would

be beneficial to have an analysis technique that only requires the examination

of a single trace but can achieve results that are similar to the multi trace

approach.

• Large State-space: Experts with many internal states require a large case

base in order for the learning agent to successfully differentiate between those

states. However, as the case base grows so too does the computation resources

required to search the case base. If the learning agent has fixed computational

resources, it may not be able to store enough cases to successfully perform a

complex behaviour.

• Characterizing State Transitions: The presented retrieval algorithm is able

to learn from multi-state experts but it does not remember what information was

necessary to determine the state the expert was in. This information would be

useful to help characterize the behaviour of the expert and improve subsequent

retrievals.

• Mixed-initiative Case Acquisition from a State-based Expert: When

mixed-initiative case acquisition is used to learn from a state-based expert, the

learning agent acquires a case related to the current input-action pair as well

as cases from the expert’s run. In some situations, the expert can provide

the portion of its run that contains all necessary information to infer its state.

However, most experts will be unable to provide such precise information and

150

the learning agent will only be given a predetermined number of cases. These

cases may not contain all necessary information (too few cases) or they may

contain unnecessary information (too many cases).

• Learning Non-deterministic Behaviour: The agent is able to learn state-

based behaviour but does not attempt to replicate non-deterministic be-

haviour. As we have seen, some experts can perform both state-based and

non-deterministic behaviour so ideally the learning agent should be able to

handle both types of behaviours. This would involve learning probability dis-

tributions that approximate the non-deterministic behaviour of the expert and

attempting to perform actions using those distributions when appropriate.

• Life-long Learning: Existing learning by observation research has looked at

learning single behaviours or learning over a short interval of time. Future

work should examine how an agent can learn over its entire lifetime. This

would include how the agent responds to changing behavioural requirements,

transfers observations of one task to another task, and adjusts to changes in its

sensory and motor control abilities.

List of References

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological

variations, and system approaches. AI Communications, 7(1):39–59. IOS Press, 1994.

[2] M. H. Ang, W. Lin, and S.-Y. Lim. A walk-through programmed robot for welding in

shipyards. Industrial Robot: An International Journal, 26(5):377–388. Emerald Group

Publishing, 1999.

[3] S. Asiimwe, S. Craw, B. Taylor, and N. Wiratunga. Case authoring: From textual

reports to knowledge-rich cases. In 7th International Conference on Case-Based Rea-

soning, pages 179–193. Springer, 2007.

[4] P. Bach-y-Rita and S. W. Kercel. Sensory substitution and the human-machine inter-

face. Trends in Cognitive Sciences, 7(12):541–546. Cell Press, 2003.

[5] S. Carberry. Techniques for plan recognition. User Modeling and User-Adapted Inter-

action, 11(1-2):31–48. Kluwer Academic Publishers, 2001.

[6] P.-A. Champin, Y. Prié, and A. Mille. MUSETTE: Modeling USEs and Tasks for

Tracing Experience. In Workshop From Structured Cases to Unstructured Problem

Solving Episodes For Experience-Based Assistance: 5th International Conference on

Case-Based Reasoning, pages 279–286, 2003.

[7] A. Coates, P. Abbeel, and A. Y. Ng. Learning for control from multiple demonstrations.

In 25th International Conference on Machine Learning, pages 144–151. ACM Press,

2008.

[8] M. Constantine-Paton and M. I. Law. Eye-specific termination bands in tecta of three-

eyed frogs. Science, 202(4368):639–641. AAAS, 1978.

151

152

[9] E. de Barros Costa, M. A. Lopes, and E. Ferneda. Mathema: A learning environ-

ment based on a multi-agent architecture. In 12th Brazilian Symposium on Artificial

Intelligence, pages 141–150. Springer, 1995.

[10] M. P. Deisenroth and K. K. Krishnan. On-line programming. In S. Y. Nof, editor,

Handbook of Industrial Robotics, pages 337–352. John Wiley and Sons, 1999.

[11] B. Dı́az-Agudo, P. A. González-Calero, J. A. Recio-Garćıa, and A. A. Sánchez-Ruiz-

Granados. Building CBR systems with jCOLIBRI. Science of Computer Programming,

69(1-3):68–75. Elsevier, 2007.

[12] J. Dinerstein, P. K. Egbert, D. Ventura, and M. Goodrich. Demonstration-based

behavior programming for embodied virtual agents. Computational Intelligence,

24(4):235–256. Wiley, 2008.

[13] R. Doumat, E. Egyed-Zsigmond, and J.-M. Pinon. User trace-based recommendation

system for a digital archive. In 18th International Conference on Case-Based Reason-

ing, pages 360–374. Springer, 2010.

[14] S. Flinter and M. T. Keane. On the automatic generation of cases libraries by chunking

chess games. In 1st International Conference on Case-Based Reasoning, pages 421–430.

Springer, 1995.

[15] M. W. Floyd, A. Davoust, and B. Esfandiari. Considerations for real-time spatially-

aware case-based reasoning: A case study in robotic soccer imitation. In 9th European

Conference on Case-Based Reasoning, pages 195–209. Springer, 2008.

[16] M. W. Floyd and B. Esfandiari. Building learning by observation agents using jLOAF.

In Workshop on Case-Based Reasoning for Computer Games: 19th International Con-

ference on Case-Based Reasoning, pages 37–41, 2011.

[17] M. W. Floyd and B. Esfandiari. A case-based reasoning framework for developing

agents using learning by observation. In 23rd IEEE International Conference on Tools

with Artificial Intelligence, pages 531–538. IEEE Press, 2011.

[18] M. W. Floyd, B. Esfandiari, and K. Lam. A case-based reasoning approach to imitating

RoboCup players. In 21st International Florida Artificial Intelligence Research Society

Conference, pages 251–256. AAAI Press, 2008.

153

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addision-Wesley, 1995.

[20] M. R. Genesereth, N. Love, and B. Pell. General Game Playing: Overview of the

AAAI Competition. AI Magazine, 26(2):62–72. AAAI Press, 2005.

[21] K. Gillespie, J. Karneeb, S. Lee-Urban, and H. Muñoz-Avila. Imitating inscrutable

enemies: Learning from stochastic policy observation, retrieval and reuse. In 18th

International Conference on Case-Based Reasoning, pages 126–140. Springer, 2010.

[22] P. P. Gómez-Mart́ın, D. Llansó, M. A. Gómez-Mart́ın, S. Ontañón, and A. Ram.

MMPM: A generic platform for case-based planning research. In Workshop on Case-

Based Reasoning for Computer Games: 18th International Conference on Case-Based

Reasoning, pages 45–54, 2010.

[23] D. H. Grollman and O. C. Jenkins. Dogged learning for robots. In 24th IEEE In-

ternational Conference on Robotics and Automation, pages 2483–2488. IEEE Press,

2007.

[24] D. H. Grollman and O. C. Jenkins. Learning robot soccer skills from demonstration. In

6th IEEE International Conference on Development and Learning. IEEE Press, 2007.

[25] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

WEKA data mining software: An update. SIGKDD Explorations, 11(1):10–18. ACM

Press, 2009.

[26] M. A. Hearst. Trends & controversies: Mixed-initiative interaction. IEEE Intelligent

Systems, 14(5):14–23. IEEE Press, 1999.

[27] E. Horvitz. Principles of mixed-initiative user interfaces. In 18th Conference on Human

Factors in Computing Systems, pages 159–166. ACM Press, 1999.

[28] R. Hu, S. J. Delany, and B. M. Namee. EGAL: Exploration guided active learning for

TCBR. In 18th International Conference on Case-Based Reasoning, pages 156–170.

Springer, 2010.

[29] iRobot Corporation. http://www.irobot.com, 2012.

[30] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a survey.

Journal of Artificial Intelligence Research, 4(1):237–285. 1996.

154

[31] P. Maes and R. Kozierok. Learning interface agents. In 11th National Conference on

Artificial Intelligence, pages 459–465. AAAI Press, 1993.

[32] F. J. Mart́ın and E. Plaza. Ceaseless case-based reasoning. In 7th European Conference

on Case-Based Reasoning, pages 287–301. Springer, 2004.

[33] S. Massie, S. Craw, and N. Wiratunga. Complexity-guided case discovery for case

based reasoning. In 20th National Conference on Artificial Intelligence, pages 216–

221. AAAI Press, 2005.

[34] D. McSherry. Automating case selection in the construction of a case library.

Knowledge-Based Systems, 13(2-3):133–140. Elsevier, 2000.

[35] M. Mehta, S. Ontañón, T. Amundsen, and A. Ram. Authoring behaviors for games us-

ing learning from demonstration. In Workshop on Case-Based Reasoning for Computer

Games: 8th International Conference on Case-Based Reasoning, 2009.

[36] A. Mille. From case-based reasoning to traces-based reasoning. Annual Reviews in

Control, 30(2):223–232. Elsevier, 2006.

[37] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[38] S. Ontañón. Case acquisition strategies for case-based reasoning in real-time strategy

games. In 25th Florida Artificial Intelligence Research Society Conference, pages 335–

340. AAAI Press, 2012.

[39] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram. Case-based planning and exe-

cution for real-time strategy games. In 7th International Conference on Case-Based

Reasoning, pages 164–178. Springer, 2007.

[40] S. Ontañón, J. L. Montaña, and A. Gonzalez. Towards a unified framework for learn-

ing from observation. In Workshop on Agents Learning Interactively from Human

Teachers: 22nd International Joint Conference on Artificial Intelligence, 2011.

[41] S. Ontañón and A. Ram. Case-based reasoning and user-generated AI for real-time

strategy games. In P. A. Gonzáles-Calero and M. A. Gomez-Mart́ın, editors, Artificial

Intelligence for Computer Games, pages 103–124. Springer-Verlag, 2011.

155

[42] J. Powell, M. Molineaux, and D. W. Aha. Active and interactive discovery of goal selec-

tion knowledge. In 24th International Florida Artificial Intelligence Research Society

Conference, pages 413–418. AAAI Press, 2011.

[43] J. H. Powell and J. D. Hastings. An empirical evaluation of automated knowledge

discovery in a complex domain. In Workshop on Heuristic Search, Memory Based

Heuristics and their Applications: Twenty-First National Conference on Artificial In-

telligence, 2006.

[44] J. H. Powell, B. M. Hauff, and J. D. Hastings. Evaluating the effectiveness of explo-

ration and accumulated experience in automatic case elicitation. In 6th International

Conference on Case-Based Reasoning, pages 397–407. Springer, 2005.

[45] RoboCup. Robocup official site. http://www.robocup.org, 2012.

[46] H. Romdhane and L. Lamontagne. Forgetting reinforced cases. In 9th European Con-

ference on Case-Based Reasoning, pages 474–486. Springer, 2008.

[47] H. Romdhane and L. Lamontagne. Reinforcement of local pattern cases for playing

Tetris. In 21st Florida Artificial Intelligence Research Society Conference, pages 263–

268. AAAI Press, 2008.

[48] J. Rubin and I. Watson. Similarity-based retrieval and solution re-use policies in the

game of Texas hold’em. In 18th International Conference on Case-Based Reasoning,

pages 465–479. Springer, 2010.

[49] J. Rubin and I. Watson. On combining decisions from multiple expert imitators for

performance. In 22nd International Joint Conference on Artificial Intelligence, pages

344–349. AAAI Press, 2011.

[50] J. Rubin and I. Watson. Successful performance via decision generalisation in no limit

Texas hold’em. In 19th International Conference on Case-Based Reasoning, pages

467–481. Springer, 2011.

[51] M. Sànchez-Marrè, U. Cortés, M. Mart́ınez, J. Comas, and I. Rodŕıguez-Roda. An

approach for temporal case-based reasoning: Episode-based reasoning. In 6th Inter-

national Conference on Case-Based Reasoning, pages 465–476. Springer, 2005.

156

[52] J. C. Schlimmer and L. A. Hermens. Software agents: Completing patterns and con-

structing user interfaces. Journal of Artificial Intelligence Research, 1:61–89. AAAI

Press, 1993.

[53] K. Seymore, A. McCallum, and R. Rosenfeld. Learning hidden markov model struc-

ture for information extraction. In Workshop on Machine Learning for Information

Extraction at the 16th National Conference on Artificial Intelligence, pages 37–42,

1999.

[54] J. Shih. Sequential instance-based learning for planning in the context of an imperfect

information game. In 4th International Conference on Case-Based Reasoning, pages

483–501. Springer, 2001.

[55] A. Stahl and T. Roth-Berghofer. Rapid prototyping of CBR applications with the

open source tool myCBR. In 9th European Conference on Case-Based Reasoning,

pages 615–629. Springer, 2008.

[56] P. Stone, P. Riley, and M. M. Veloso. The CMUnited-99 champion simulator team. In

RoboCup, pages 35–48. Springer, 1999.

[57] C. Thurau and C. Bauckhage. Combining self organizing maps and multilayer percep-

trons to learn bot-behavior for a commercial game. In 4th International Conference

on Intelligent Games and Simulation, pages 119–126. EUROSIS, 2003.

[58] M. Wooldridge. An introduction to multiagent systems. John Wiley and Sons, 2002.

[59] C. Yang, B. Farley, and R. Orchard. Automated case creation and management for

diagnostic CBR systems. Applied Intelligence, 28(1):17–28. Springer, 2008.

