
NEW TECHNIQUE TO ENFORCE A FAIR BEHAVIOR IN
ACCESSING THE MEDIUM IN THE CONTROLLER AREA

NETWORK
 Tamer A Beitelmal Ahmed M. El-Mahdi Hassan S. Abdulkarim

GECOL - Libya Garyounis University Garyounis University

 Faculty of Engineering
Department of Electrical Engineering

Faculty of Engineering
Department of Electrical Engineering

Tmr7813@hotmail.com ahmedelmahdi@garyounis.edu Hsa333lby@yahoo.com

Abstract--Controller Area Network (CAN) is a serial
network technology that was originally designed for the
automotive industry. Fundamentally, CAN is a type of Local
Area Network (LAN), which is based on the collision-
detection method similar to Ethernet. However, in Ethernet
collision-detection forces conflicting message senders to stop
and resubmit their messages after a random interval. In CAN
collision-detection, the message senders go into a non-
destructive arbitration process. CAN data transmissions are
distinguished by a unique message identifier, which also
represents the message priority. Since each application must
have its own unique identifier, it is not possible to make the
network consider two or more applications as equally urgent.
In the high traffic condition, network messages with low
relative priorities messages may be delayed by any higher-
priority message, even it could be delayed more than once by
the same higher priority message. In this paper we propose a
modified method (Taking Multiple Requests TMR method)
that has the ability to enforce a fair behavior in accessing the
bus with respect to original CAN. A comparison with the
original CAN is illustrated and the results of simulations are
shown.

Index Terms— CAN, MAC, Embedded System, Control
Networks.

1. INTRODUCTION

Recently, CAN has emerged from its home environment
"vehicle" to a broader class of applications in various
automated factory environments. In the low traffic and for
the systems where the messages are clearly organized in a
priority sequence “like in the cars", the CAN access
protocol is working properly by addressing the priority
depending on the importance. But when it is used in a
control network where some messages need the same
importance or where there is no explicit priority
classification, CAN access protocol fails to satisfy the
timing conditions for the low priority messages[1]. This
paper proposes a method called Taking Multiple Request
(TMR) method, where a group of messages which request
access of the bus at the same time are considered as a
group. Each message in the group is allowed to access the
network bus according to its priority for one time only till
all messages, within the group, are processed. The

proposed TMR method applies bus access priority without
the unfair behavior exhibited by the formal CAN protocol
under heavy traffic.

The remainder of the paper is organized as follows. In
section 2, we make a brief description of the arbitration
process in the CAN. The proposed technique is introduced
and the modifications of the original CAN are discussed in
section 3. Section 4 discusses simulation results of
comparing TMR technique with the medium access control
protocol that used in the traditional CAN method. A
conclusion is given in the last section.

2. CAN MEDIUM ACCESS CONTROL PROTOCOL

The CAN protocol implements most of the lower two
layers of the ISO/OSI reference model (Data Link and
Physical layers). The medium access control protocol
employed in CAN can be considered as one type of carrier
sense multiple access with collision detection (CSMA/CD)
with an additional feature may be named collision
resolution (CR). Unlike CSMA/CD where the conflicted
message senders are enforces to stop and resubmit their
messages after a random interval, in CAN collision-
detection, the message with the highest priority will gain
access to the bus, while all other nodes switch to a
“receiving mode". Thus CAN provides a non-destructive
bus arbitration [2][3].

2.1 CAN International Standards

The ISO 11898 standard, titled “Road vehicles –
Controller area network (CAN), was first published in
1993, followed in 1995 by an amendment that describes the
extended frame. There are two ISO standards classifying
the CAN protocol in terms of data rate; ISO 11898 which
can handle speed up to 1 Mbit/sec and ISO 11519 that can
handle speed up to 125 Kbit/sec.[4][5]

2.2 Message Broadcasting

CAN protocol is a message-based protocol not an
address based protocol. Communication is addressed by
message identifiers instead of station identifiers as in
normal LAN. Each message has an identifier that is unique

JASE online: jase.esrgroups.org ICEEDT'08 copyright (c) 2008 JES online: journal.esrgroups.org\jes

2nd International Conference on Electrical
Systems Design & Technologies,

Hammamet Tunisia, Nov. 8-10, 2008

throughout the network; it defines the priority and the
content of the message. [2][6]

2.3 Message Frame Architecture

CAN provides four different types of message frames:

Data Frame – Sends data
Data transfer from one sending node to one or several
receiving nodes.
Remote Frame – Requests data
Any node may request data from one source node.
Error Frame – Reports error condition
Any node may signal an error condition at any time during
a data or remote frame transmission.
Overload Frame – Reports node overload

A node can request a delay between two data or remote
frames. For demonstration purpose, the data frame
architecture is illustrated in figure1.

Fig. 1. The Standard CAN Data Frame Architecture [1] [2]

2.4 Dominant and Recessive Bus Level

The physical CAN bus uses a differential voltage
between two wires, CAN_H and CAN_L. The dominant
level (logic 0) always overrides a recessive level (logic 1),
which is important especially during bus arbitration, the
CAN bus level will be dominant in case any number of
nodes in the network output a dominant level. The CAN
bus level will only be recessive when all nodes in the
network output a recessive level. [2][3][5]

2.4 Bus Arbitration

CAN avoids message/data collisions by using the
message ID. A CAN node checks if the bus is busy (Carrier
Sense) before sending a message. If the bus is free, several
nodes could be sending at the same time (Multiple Access).

According to the flowchart shown in figure 2, each
transmitting node sends the message ID "arbitration field"
bit by bit. After sending each bit, each node compares its
output signal with the actual bus level. If a node found that
the bit value it has written is different from the bit value it
read back, then it will stop transmitting, it has detected a
collision and has lost in the arbitration process,
consequently the node will switch into receiving mode. If
the node has finished sending all arbitration bits without
losing the bus arbitration, it will transmit the rest of the
message. At this time all other CAN nodes in the network
will have switched to receiving mode. [2][5]

Figure 3 shows an example where three nodes in a four
node CAN network try to access the bus at virtually the
same time. In this example node C will win the bus access.

Fig. 2. Arbitration Flow Chart

The nodes in this example have the following message IDs:

A 1100101100 = 32C hex

B 1100110000 = 330 hex

C 1100101000 = 328 hex

The message ID of node D is of no significance, since it
is not requesting bus access. According to this example and
the CAN specification (lowest message ID represents
highest message priority) node C must gain the bus access.

Fig. 3. Bus Arbitration Example.

START

BUS BUSY?

WRITE
 NEXT BIT

READ BIT FROM BUS

READ =
WRITE?

STOP TRANSMISSION

CHANGE TO RECEIVING
MODE

EOF?

Yes

No

No

Yes

No

END

Bus
Idle

Arbitration
Field

Control
Field Data Field CRC

Field
ACK
Field EOF IFS Bus Idle

S
O
F

Node A
S
O
F

10 9 8 7 6 5 4 3 2 1 0

Message Identifier
11Bit –MSB first

Bus
IdleReceiving Mode

Node B
S
O
F

Bus
IdleReceiving Mode

Node D Bus
IdleReceiving Mode

Node C
S
O
F

Bus
Idle

Control
Field Data Field CRC Field ACK

Field EOF IFS
R
T
R

Bus Bus
Idle

Arbitration Phase RTR = 0==> Data frame
1 2 3

JASE online: jase.esrgroups.org ICEEDT'08 copyright (c) 2008 JES online: journal.esrgroups.org\jes

Msg. 3 Msg. 1 Msg. 3 Msg. 4 Msg. 7

7

3 4
7

1
3
7

3
4
5
7

4
5
7

5

M
es

sa
ge

s
ac

tu
al

ly
 tr

y
se

nd
in

g

Actual bus traffic

7
7
97

Msg. 5 Msg. 3

3

frame

Msg. 4

frame

7
3 4 13 5 4 3 9

time

R
ea

dy
 M

es
sa

ge
s

Msg. 9

Msg. 1 Msg. 3 Msg. 4

1
3
4

Actual bus traffic

Msg. 3

frame

Msg. 7

frame

Cycle Cycle

frame

Msg. 9

4
9

Msg. 4 Msg. 3

3

5

Msg. 5M
es

sa
ge

s
ac

tu
al

ly
 tr

y
se

nd
in

g

7
3 4 13 5 4 3 9

time

R
ea

dy
 M

es
sa

ge
s

7
3

3. THE PROPOSED TECHNIQUE: TAKING
MULTIPLE REQUESTS "TMR"

In the industrial control networks, where the same
quality of service should be ensured to a number of
different applications, the original CAN protocol is not able
to enforce either a fair division of the network medium
among the nodes or a satisfactory distribution of the access
delays experienced when transmitting messages. In the
high traffic condition, network messages with low relative
priorities messages may be delayed by any message with a
higher relative priority wants to access the bus, even it
could be delayed more than once by the same higher
priority messages; irrespective of how many times it tries to
access the bus and loses the arbitration. [4][5]

3.1 Traffic Pattern in the Original CAN

The traffic pattern in the original CAN protocol can be
illustrated by an example. Figure 4. illustrates a situation
where a message with identifier 7 becomes ready for
transmission. In this example message 7 becomes ready for
transmission, while at the same time instance message 3
becomes ready. The CAN arbitration mechanism ensures
that message 3 is allowed to transmit while message 7 is
forced to wait for the bus to become idle. While serving
message 3 and before the bus becomes idle, message 4
appears which has the priority over message 7 and will be
sent before it.

Obviously, the example illustrates the possibility of
delaying message 7 for a very long time, although it was
ready before many other messages. This delay is caused by
its relative low priority compared with them. Message 7 is
prevented from being transmitted by a higher priority
messages, even by messages 3 and 4 more than once, and it
takes a long time before it is eventually served.

Fig. 4. A traffic pattern in a CAN network

3.2 Traffic Pattern in the TMR-CAN

A modification of the original CAN protocol is
introduces, named taking multiple requests (TMR), which
enforces a fair behavior in accessing the network bus, and

it reduces the low priority messages' response time, by
increasing its opportunity to get the same QoS that is given
to the other higher priority messages, even in the case of
high traffic. With the proposed technique, the network is
enforced to work in a way that is similar to which is
illustrated in figure 5. Where a group of messages which
request access of the bus at the same time are considered as
a group. Each message in the group is allowed to access the
network bus according to its priority for one time only till
all messages, within the group, are processed.

Fig. 5. A traffic pattern in the TMR-CAN.

This behavior could be achieved by limiting the number
of times each message can be sent within a specific period
of time, known as a cycle. Each node will determine if it is
being accepted as a member of the selected group of the
current cycle and if it has the right to access the network
bus.
3.3 The Proposed Modification

Before going into the explanation of the proposed
method, we need to have a closer look at the original CAN
frame and review some of its important fields. The
intended fields are the SOF, EOF and IFS, where they play
a major role in the proposed technique.

SOF (1 Bit): The dominant Start of Frame (SOF) bit
represents the start of the frame and the arbitration field
follows right after the SOF bit. A CAN node, before
attempting to access the bus, must wait until the bus is idle.

End-of-Frame Field (EOF): Each frame is terminated by
a bit sequence of 7 recessive bits.

IFS (3 bits, recessive): The Interframe Space
(intermission) represents the minimum space between
frames, thus indicates the end of transmission and the bus
becomes idle.

Fig. 6. The frame termination fields

Each CAN message frame will be terminated by a
sequence of 11 recessive bits: The ACK Delimiter bit in the

C R C F ie ld
A
C
K

E O F IF S B us Id le

A C K D e lim ite r B it

1 7 3
In te rfram e

S p ace

N um b er
o f b its

JASE online: jase.esrgroups.org ICEEDT'08 copyright (c) 2008 JES online: journal.esrgroups.org\jes

Acknowledgement Field (1 bit), the EOF Field (7 bits) and
the IFS Field (3 bits). As shown in figure 6.

3.3.1 TMR Frame Format

The TMR frame format follows exactly the original
CAN frame format except the following modification: An
additional field is attached at the end of the original CAN
frame. This new field will indicate the end of cycle (EOC).
The EOC field can be made to include only one recessive
bit. However, we propose making the EOC field to include
three consecutive bits. This is done to ensure robustness in
a way similar to the IFS field. Figure 7 illustrates the TMR
frame format in comparison with the original CAN frame.

Fig. 7. Sample frame format of TMR including the EOC

Analogous to the CAN message frame, the TMR frame
will be terminated by a sequence of 11 recessive bits plus 3
recessive bits for EOC field. On other words the TMR
frame format will be terminated by a sequence of 14
recessive bits as shown in figure 8.

Fig. 8. The modified frame termination fields

3.3.2 Bus idle and bus completely idle conditions.

Referring to figure 7,8, after elapsing of the IFS field the
bus is considered idle; and when the bus is found recessive
for a given additional bits after the IFS bits, it is assumed to
be completely idle. By monitoring the EOC bits, it is
possible to detect the bus completely idle condition, with
negligible effects on protocol complexity and with almost
no effects on communication efficiency.

3.4 TMR Network Traffic Rules

In the TMR method, traffic in the network is divided
into transmission cycles. In each cycle a group of messages

will be transmitted in sequence according to their priority
and without repetition.

Figure 9 shows a flowchart for the arbitration process in
the proposed TMR method. Access to the network and
arbitration process is described by the following points:

- The appearance of 14 consecutive recessive bits on the
network bus indicates that the bus is completely idle and a
new cycle which we will define as the “current cycle” can
be started if there are nodes requesting access to the
network.

- An internal node which loses arbitration because of its
low priority will continuously try to access the bus by
sending SOF bit whenever it monitors an IFS bits (bus idle
condition i.e. 11 consecutive recessive bits).

- Nodes which did not transmit an SOF bit at the
beginning of the current cycle are considered as “external”
to the current cycle, these external nodes will switch to
receiving mode and they will wait till the next transmission
cycle.

- An external node can attempt accessing the bus
whenever it monitors an end of cycle (completely bus idle
condition i.e. 14 consecutive recessive bits). In summary:
An internal node waits for a bus idle while an external node
waits for a completely bus idle.

- An internal node which succeed in accessing the bus
will transmit its message frame according to the formal
CAN protocol format and then it will attempt to establish
an EOC condition by transmitting three recessive bits.
Finally, it will flag itself as an external node.

- The three EOC bits transmitted by an internal node
which has successfully accessed the bus will not actually
appear on the bus because they will be written over by the
SOF bits transmitted by the pending internal nodes which
start transmitting immediately after sensing a bus idle
condition (IFS bits). Only the EOC bits transmitted by the
last internal node will appear on the network bus, thereby,
establishing a completely bus idle condition and signaling
the external nodes to transmit SOF bits (if they have a
ready message) in order to be considered in the next
transmission cycle.

In the TMR method higher priority messages, will be
enforced to send just once per cycle and allow lower
priority messages to be sent. This is quite reasonable, so
that high priority messages should not be allowed to
occupy the network bus for a long time.

It is obvious that, the duration of the transmission cycle
is not constant but depends on the number of message
frames inside the cycle.

The TMR method implements a more effective control
over the collisions resolution which still relies on the
conventional arbitration mechanism of CAN.

Arbitration
Field

Control
Field Data Field CRC

Field
ACK
Field EOF IFS Bus

Completely Idle

S
O
F

EOC

Bus Idle

CAN Data Frame

TMR Data Frame

EOC (3 recessive bits): indicates end of cycle.

CRC Field
A
C
K

EOF IFS
Bus

Completely Idle

ACK Delimiter Bit

1 7 3

Interframe
Space

Number
of bits

EOC

3
End of
Cycle

JASE online: jase.esrgroups.org ICEEDT'08 copyright (c) 2008 JES online: journal.esrgroups.org\jes

Fig. 9. TMR arbitration process flowchart

3.5 Distinguish Between Original-CAN and TMR-CAN

Fortunately the designer of CAN frame provided
reserved bits which may be used for future modifications as
shown in figure 10. We can use the reserved bit r0 to
distinguish whether the frame format is a CAN format or
TMR format. We suggest using the reserved bit r0 as
follows:

 r0 = 0 conventional CAN frame format
 r0 =1 TMR-CAN frame format

 TMR format modification can be use either with the st

Fig. 10. The reserved bit r0 in the control field.

4. Comparison and Simulation Results

In this section a comparison is made between the
original CAN protocol and the proposed TMR technique.
The comparison concentrates on the fact that the medium
access method for the TMR technique is similar to that
used in the original CAN protocol in most aspects; the

main difference comes from modifying the way of
accessing the bus, by dividing the traffic into transmission
cycles. We estimate the improvement in fairness provided
by the TMR technique by means of simulated comparison.
The simulation compares the average time required for a
message to access the network bus (arbitration time)
between the two methods. The method which requires
lesser time will be considered as having more fairness.
4.1 Modeling The Number of Messages

Estimating the average arbitration time for a given
message requires determining the number of messages that
will be sent in a time period. This period of time starts
when the given message is ready for transmission till the
point of time when the message gets access to the bus. In
this section the following scheme is followed in modeling
the number of these messages:

 The number of messages which are ready for
transmission will be denoted by " n".
 The number of messages which are ready for
transmission and have a priority higher than the priority
of the message under consideration will be denoted by
" pn ". The parameter pn will be given a random value in

the range ()n−0 .
 The number of messages which have been sent and seek
repeated transmission before serving the message under
consideration will be denoted by " rn ". The parameter

rn will be given a value equal to pn multiplied by a

repetition factor (FR) which depends also on the degree
of network traffic.
 The number of messages which are included in the
current cycle which is already in progress will be
denoted by " cn ".

4.2 Computation of Arbitration Time ta
A. For the original CAN protocol

The arbitration time (at) includes the time of
transmitting np messages and the time of transmitting nr
messages.

∑∑
==

+=
nr

i

np

i
a tftft

11

 (1)

ft : is the frame time

B. For the TMR technique.

The arbitration time includes the time of transmitting cn
messages and the time of transmitting pn messages. The
second term is because the considered message is delayed
by pn messages which are in the same cycle.

∑∑
==

+=
np

i

n

i
a tftft

11

 (2)

Transmit Next
arbitration bit

Arbitration bit =
Bus level?

All arbitration bits
transmitted?

Transmit rest
of message

Stop
transmissition

Switch to
receiving mode

No

Yes

No

Yes

Yes

No

Wait until the
next cycle

Switch to the
internal receiving

mode

Wait for IFS
“Bus idle”

Lost the arbitration

Transmit
SOF

The conventional
CAN

Transmit EOC
bits

Transmit
SOF

Has message to
send?

Wait for EOC
“bus completely idle”

Bus
Idle 11 Bit Identifier

R
T
R

I
D
E

DLC
S
O
F

Arbitration Field

r
0

Control Field

JASE online: jase.esrgroups.org ICEEDT'08 copyright (c) 2008 JES online: journal.esrgroups.org\jes

The term pn is the same in the two methods. This is
necessary to make an equitable comparison between them;
where at a certain time, the node joins the same number of
nodes in competition either for CAN method or TMR
method.
4.3 Arbitration Time for 128 Different Messages

In this section we apply equations (1) and (2) to
determine the arbitration time assuming the number of
messages is 128.

In figure 11, we assume that the value of message
repetition factor (FR) is 0, while in figure 12 shows the
arbitration time when the value of message repetition factor
(FR) is 2. In figure 13 the value of repetition factor (FR)
is 4.

Fig. 11. Average arbitration time with minimum RF,

Fig. 12. Average arbitration time with medium RF.

Fig. 13. Average arbitration time with high RF.

From these three figures, it's clear that the proposed
technique ensures arbitration time smaller than that appears
in the original CAN when the network experienced high
traffic.

5. Conclusions

This paper introduces an explanation of the arbitration
mechanism that controls the media access used in CAN.
TMR technique that improves the fairness of the bus access
is illustrated. We also provide an explanation of how the
new technique enforces the network to behave in a way
that permit an equal chance for all messages. This fairness
behavior is ensured by dividing the transmission to cycles,
where each message can be sent just once per cycle. This
improvement is achieved by adding an additional field to
the original CAN frame, called End of Cycle (EOC).

From simulations results, it is clear that when the same
message is assumed to be sent more than once " may be
called heavy traffic", our technique gives good results and
improves the transmission rate.

TMR technique will be useful in networks that contain
certain situations. These situations are:

o When the control applications require the same
quality of service to be ensured to a number of
different messages. Since each application must
have its own unique identifier, it is not possible to
make the network to consider two or more
applications as equally urgent.

o Also when high repetition factor is expected "the
message is repeated frequently"

References
 [1] Gianluca Cena and Adriano Valenzano, " Achieving round-robin

access in controller area networks", Industrial electronics, IEEE
Transactions on Volume 50, Issue 4, Nov. 2004 Page(s):1093 -
1100

[2] ROBERT BOSCH GmbH, “CAN specification 2.0”, stuttgart 1991.

[3] “Controller Area Network – A serial bus system – not just for
vehicles”, esd gmbh Hannover.

[4] Gianluca Cena, Adriano Valenzano, “A Distributed Mechanism to
Improve Fairness in CAN Networks”, Dipartimento di Automatica
Informatica, Politecnico di Torino, 1998

[5] G.Leen, D. Heffernan, “Time-triggered controller area network”,
computer and control engineering journal, 2001.

[6] H. F. Othman, Y. R. Aji, F. T. Fakhreddin, A. R. Al-Ali "Controller
Area Networks: Evolution and Applications", information and
communication technologies, 2006. ICTTA'06.2nd.

JASE online: jase.esrgroups.org ICEEDT'08 copyright (c) 2008 JES online: journal.esrgroups.org\jes

