Data Analytics - Measuring Habit Variations to Identify Drivers

B Wallace¹, R Goubran¹,², F Knoefel¹,², S Marshall³, M Porter⁴

¹ Carleton University, ² Bruyère Research Institute, ³ Ottawa Hospital Research Institute, ⁴ University of Manitoba

Objective and Background
- Chronic illness is increasing and impacts driving.
- Clinicians must report driving concerns
- No agreed standardized tests for driving risk.
- In-car “black box” data provides new data source
- Vehicles are typically shared by multiple drivers
- This project explores the identification of a driving signature to distinguish between drivers and to provide a foundation for future analysis of driving signature change as a predictive tool of driving ability.

Methodology
- Collaboration with Candrive project at OHRI:
 - Candrive is in the 5th year of collecting GPS and Engine Computer data
- Analyze for attributes that distinguish drivers
 - Trip measures: Time of day, Distance, Duration
 - Driver choices: Road types (city, highway)
 - Driving habits: Velocity, Acceleration, Throttle use, Speeding
- Techniques and goal
 - Use signal processing and data analysis
 - Identify features that distinguish drivers
 - Build towards a driving signature tool

The Data Set
- Over 1000 drivers enrolled in program in Canada, Australia and New Zealand.
- For Ottawa drivers – now collecting the 5th year data. On average ~1000 hours of driving collected for each enrolled vehicle
- Global data set ~1TB

Analysis
- Histogram of trip durations for the 100 trips for each of the participants shown on two different scales. Driver 1 - dark blue, 2 - light blue, 3 - yellow, 4 - red.

Summary demographic information for the Ottawa Candrive participants at entry to the project.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measure Value</th>
<th>Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Date/time (second)</td>
<td>GPS</td>
</tr>
<tr>
<td>Location</td>
<td>Latitude/Longitude</td>
<td>GPS</td>
</tr>
<tr>
<td></td>
<td>Fix accuracy</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>km/hr</td>
<td>GPS</td>
</tr>
<tr>
<td>Speed Limit</td>
<td>km/hr</td>
<td>GPS/GIS mapping</td>
</tr>
<tr>
<td>Alerts</td>
<td>text (e.g., school zone)</td>
<td>GPS</td>
</tr>
<tr>
<td>Trip Data</td>
<td>Trip counter</td>
<td>OBDII recorder</td>
</tr>
<tr>
<td>Engine</td>
<td>Engine RPM</td>
<td>OBDII recorder</td>
</tr>
<tr>
<td></td>
<td>Absolute throttle position</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>Vehicle speed sensor (dashboard)</td>
<td>OBDII recorder</td>
</tr>
</tbody>
</table>

Information captured by Candrive sensor system. All data captured at a 1Hz sampling rate.

Results
- Preliminary results show how the various analysis techniques create features that distinguish the differing driving habits and tendencies of drivers.
- Specifically the analysis shows differentiation potential of:
 - road choice (highway avoidance)
 - time of day of travel (night/high traffic times)
 - velocity and acceleration (driver habits)
 - velocity/posted limits (speed limit compliance)

Acknowledgements
Natural Sciences and Engineering Research Council (NSERC) and industrial and government partners, through the Healthcare Support through Information Technology Enhancements (hSiITE) Strategic Research Network.
Candrive prospective study (www.candrive.ca) funded by the Canadian Institutes of Health Research (CIHR) Bruyère Academic Medical Organization (Innovation Funding).

© 2014 – Wallace, Goubran, Knoefel, Marshall, Porter