
Towards Automatic Derivation of a Product Performance
Model from a UML Software Product Line Model

Rasha Tawhid
School of Computer Science

Carleton University, Ottawa, Canada
rtawhid@connect.carleton.ca

Dorina Petriu
Dept. of Systems and Computer Engineering

Carleton University, Ottawa, Canada
petriu@sce.carleton.ca

ABSTRACT
Software Product Line (SPL) engineering is a software
development approach that takes advantage of the commonality
and variability between products from a family, and supports the
generation of specific products by reusing a set of core family
assets. This paper proposes a UML model transformation
approach for software product lines to derive a performance
model for a specific product. The input to the proposed technique,
the “source model”, is a UML model of a SPL with performance
annotations, which uses two separate profiles: a “product line”
profile from literature for specifying the commonality and
variability between products, and the MARTE profile recently
standardized by OMG for performance annotations. The source
model is generic and therefore its performance annotations must
be parameterized. The proposed derivation of a performance
model for a concrete product requires two steps: a) the
transformation of a SPL model to a UML model with
performance annotations for a given product, and b) the
transformation of the outcome of the first step into a performance
model. This paper focuses on the first step, whereas the second
step will use the PUMA transformation approach of annotated
UML models to performance models, developed in previous
work. The output of the first step, named “target model”, is a
UML model with MARTE annotations, where the variability
expressed in the SPL model has been analyzed and bound to a
specific product, and the generic performance annotations have
been bound to concrete values for the product. The proposed
technique is illustrated with an e-commerce case study.

Categories and Subject Descriptors
C.4 [Performance of Systems]: modeling techniques,
performance attributes. D.2.4 Software/Program Verification:
model checking

General Terms
Performance, Design.

Keywords
Software Product Line, Software Performance Engineering,
model transformation, UML, MARTE.

1. INTRODUCTION
Software Product Line (SPL) engineering is a software
development approach that takes advantage of the commonality
and variability between products from a family. Commonality
defines those characteristics that are common to all SPL members,
while variability distinguishes the members of a family from each
other and needs to be explicitly modeled and separated from the
common parts [5]. The main challenge in the context of SPL
approach is to model and manage this variability and to support
the generation of specific products by reusing a set of core family
assets. SPL aims at improving productivity and decrease
realization times by gathering the analysis, design and
implementation activities of a family of systems. It is based on the
reuse of core assets instead of working from scratch [23].
Clements and Northrop define a product line as a set of software
intensive systems sharing a common, managed set of features that
satisfy specific needs of a particular market or mission, and that
are developed from a common set of core assets in a prescribed
way [7].
The Unified Modeling Language (UML) is a well-known wide-
spread notation for modeling software systems. Therefore, it
would be beneficial to use UML for specifying and modeling a
SPL, in order to get all the advantages of UML, including tool
support and standardization. However, since UML does not
support modeling variability as required for SPL, several UML
extension mechanisms to specify product line variability were
introduced by different authors [4][6][10][13] [18][19][23]. Each
one of these works proposes a set of stereotypes, tagged values
and constraints for SPL, but so far there is no standard UML
profile for SPL.
The evaluation of software and system designs for non-functional
properties such as performance, reliability, and security can be
enabled by attaching to the UML model suitable additional
information specific to the property to be evaluated [20].
Performance properties can be annotated on UML models by
using the UMP Profile for Schedulability, Performance and Time
(SPT) or its recent replacement, the UML Performance Profile for
Modeling and Analysis of Real-Time and Embedded Systems
(MARTE) [14]. The SPT and MARTE profiles define stereotypes
and tagged values that can be attached to design model elements,
particularly in the architecture, behaviour and deployment
specifications. An annotated UML model can be transformed into
a performance model and analyzed with known analysis
techniques and tools [1][21]. Traditionally, performance analysis
models were built “by hand” by specialists in the field, who
“abstracted” from the software only the properties of interests.
However, in the context of model-driven development, a new
approach for constructing analysis models is emerging, where
software models with performance annotations are automatically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP’08, June 23-26, 2008, Princeton, NJ, USA.
Copyright 2008 ACM 1-59593-297-X/XX/XXXX…$5.00.

transformed into performance analysis models. A good survey of
transformations of software models into different performance
models is given in [1]. Examples of such transformations are from
UML to Layered Queueing Networks in [16], to Stochastic Petri
Nets in [2], and to Stochastic Process Algebra in [3]. In our work
we are using the transformation framework PUMA described in
[20][21], which converts annotated UML models into different
performance models (Layered Queueing Networks, Queueing
networks, Petri Nets).
This paper proposes a UML model transformation approach for
software product lines to derive a performance model for a
specific product. The proposed derivation of a performance model
for a concrete product requires two steps: a) the transformation of
an annotated SPL model to a UML model with performance
annotations for a given product, and b) the transformation of the
outcome of the first step into a performance model. This paper
focuses on the first step as shown in Figure 1, where the input
(i.e., the source model), is a UML model of a SPL with
performance annotations, which uses two separate profiles: a
“product line” (PL) profile similar with [10] for specifying the
commonality and variability between products, and the MARTE
profile recently standardized by OMG for performance
annotations.
The source model is generic and therefore its performance
annotations must be represented as variables rather than concrete
values. The output of this step, the target model, is a UML model
with MARTE annotations, where the variability expressed in the
SPL model has been analyzed and bound to a specific product,
and the generic performance annotations have been bound to
concrete values for the product. The proposed technique is

illustrated with an e-commerce case study, which models the
commonality and variability in both structural and behavioural
views based on the Product Line UML-based Software
Engineering (PLUS) method presented in [10].
Usually, for each individual system, the performance model has to
be built from scratch. However, there may be many pre-existing
sub-models. This paper aims to take advantage of the SPL
engineering approaches by introducing the performance
annotations in the early life cycle of the software development
process for building the SPL models. Therefore, the derivation of
a member of the SPL process not only considers binding the
variability expressed in the SPL to a specific product, but also

binding the generic performance annotations to concrete values
for this product. The second step of our approach to derive
automatically a performance model for a specific product will use
the PUMA transformation approach of annotated UML models
that has been previously developed in our research group [20]
[21]. After the performance model for a product was generated, it
can be analyzed with existing solvers and feedback regarding its
performance properties will be given to the software development
team. PUMA is a tool architecture that provides a unified
interface between different kinds of design specifications and
different kinds of performance models in the form of an
intermediate model called Core Scenario Model (CSM). CSM
captures the essence of software performance specification and
estimation, and strips away the design detail which is irrelevant to
performance analysis. It is suited to the production of
performance models of several kinds, as for example layered and
regular queuing networks, and stochastic Petri nets [20].
The paper is organized as follows. Section 2 presents the source
model for a SPL, and section 3 the target model for a specific
product. The model transformation algorithm for deriving the
target model is illustrated in section 4. Section 5 discusses related
research for managing variability and product derivation in SPL,
and Section 6 presents the conclusions and future work.

2. SOURCE MODEL
The software product line engineering process consists of two
major processes: a) domain engineering for analyzing the
commonality and variability between members of the product line
and establishing reusable SPL models, and b) application
engineering for deriving an individual product that is a SPL
member from reusable models defined in the first process rather
than starting from scratch.
A very important concept in SPL is that of feature, used to
represent reusable characteristics of a product line. Features are
used to differentiate among members of the product line and to
define the commonality and variability in the functionality offered
by different SPL products. The feature model is essential for both
variability management and product derivation. Gomaa defines in
[10] a feature as a requirement or characteristic that is provided
by one or more members of the product line. Since UML does not
represent features as first-class model elements, the feature model
is represented in [10] as a class diagram (see Figure 3, which will
be explained in more details later). The stereotypes «common
feature», «optional feature», and «alternative
feature» are used to distinguish among features that a) must be
provided by every members of the SPL, b) need to be provided by
only some members, and c) are alternatives to each other,
respectively. Related features are grouped into feature groups,
which place a constraint on how features are used by a product.
Features and feature groups are represented as stereotypes applied
to the UML classes that represent features. Different association
names are used to model dependencies between features such as
requires or mutually_includes and constraints such as
mutually_exclusive.

In order to model the functional requirements of a SPL, the use
case model has to be extended to model the SPL communality and
variability. The stereotypes «kernel», «optional», and
«alternative» are used to differentiate between use cases
that are a) always required by all members of the SPL, b) required

Figure 1. Proposed model transformation approach

Focus of the paper

UML - SPL model with
generic performance
annotations

SPL model to Product
model Transformation

UML+MARTE
Product model

UML model to
Performance model
Transformation (PUMA)

Performance model

Feedback

Focus of the paper

UML - SPL model with
generic performance
annotations

SPL model to Product
model Transformation

UML+MARTE
Product model

UML model to
Performance model
Transformation (PUMA)

Performance model

Performance Solver

Feedback UML - SPL model with
generic performance
annotations

SPL model to Product
model Transformation SPL to Product Model
Transformation

UML+MARTE
Product model
UML+MARTE
Product Model

UML model to
Performance model
Transformation (PUMA)

UML+MARTE to
Performance model

Transformation (PUMA)

Performance modelPerformance
model

Performance results
and design adviceFeedback

UML+MARTE+PL
SPL Model

by some but not all members, and c) use cases in which a choice
must be made, respectively. Furthermore, the use case variability
can be handled through variation points. A variation point is a
location in a use case where variation will occur. For small
variations, a variation point is identified within the use case
scenario to specify a location where the change can take place.
However, for complex variations, the “extend” and “include”
relationships between use cases may be used to model variations.
When modeling the structure of a SPL, variability is introduced

through abstract classes and subclasses and through
parameterization. The classes are categorized into “kernel class”,
“optional class”, and “variant class” and depicted with stereotypes
(see Figure 5). In the behaviour modeling, a sequence diagram or
communication diagram is created for each scenario in each use
case and categorized as «kernel», «optional», or
«alternative», according to the respecting use case. It is also
possible to model variability in SPL by using inherited statecharts
and parameterized statecharts [10].

«common feature»
E-Commerce Kernel

<<kernel>>
Browse Catalog

<<kernel>>
Make Purchase

Order

<<kernel>>
Process Delivery

Order

<<kernel>>
Confirm Shipment

«alternative feature»
Business Customer

<<alternative>>
Create Requisition

<<alternative>>
Confirm Delivery

<<alternative>>
Send Invoice

«alternative feature»
Home Customer

«extend» «extend»

<<alternative>>
Check Customer

Account

<<alternative>>
Bill Customer

{ext point=Payment}

<<optional>>
Pay by Check

<<optional>>
Pay by CreditC

<<optional>>
Deliver Purchase

Order

<<optional>>
Prepare Purchase

Order

«optional feature»
Purchase Order

«common feature»
E-Commerce Kernel

<<kernel>>
Browse Catalog
<<kernel>>
Browse Catalog

<<kernel>>
Make Purchase

Order

<<kernel>>
Make Purchase

Order

<<kernel>>
Process Delivery

Order

<<kernel>>
Process Delivery

Order

<<kernel>>
Confirm Shipment
<<kernel>>

Confirm Shipment

«alternative feature»
Business Customer

<<alternative>>
Create Requisition

<<alternative>>
Create Requisition

<<alternative>>
Confirm Delivery
<<alternative>>
Confirm Delivery

<<alternative>>
Send Invoice

<<alternative>>
Send Invoice

«alternative feature»
Home Customer
«alternative feature»
Home Customer

«extend» «extend»

<<alternative>>
Check Customer

Account

<<alternative>>
Check Customer

Account

<<alternative>>
Bill Customer

{ext point=Payment}

<<optional>>
Pay by Check
<<optional>>
Pay by Check

<<optional>>
Pay by CreditC
<<optional>>
Pay by CreditC

<<optional>>
Deliver Purchase

Order

<<optional>>
Deliver Purchase

Order

<<optional>>
Prepare Purchase

Order

<<optional>>
Prepare Purchase

Order

«optional feature»
Purchase Order

Figure 2. SPL Features represented as use case packages

requires

«common feature»
E-Commerce Kernel

«optional feature»
Bank

«optional feature»
Purchase Order

mutually
includes

requires

«exactly-one-of
feature group»

Customer

«alternative feature»
Home Customer

«alternative feature»
Business Customer

{mutually exclusive
feature}

«at-least-one-of
feature group»

Payment

«optional feature»
CreditCard Payment

«optional feature»
Check Payment

requires

Mutually
includes

requires

«common feature»
E-Commerce Kernel

«optional feature»
Bank

«optional feature»
Purchase Order

mutually
includes

requires

«exactly-one-of
feature group»

Customer

«alternative feature»
Home Customer

«alternative feature»
Business Customer

{mutually exclusive
feature}

«at-least-one-of
feature group»

Payment

«optional feature»
CreditCard Payment

«optional feature»
Check Payment

requires

Mutually
includes

Figure 3. Feature dependency in the e-commerce SPL

<<optional>>
Deliver Purchase

Order

<<optional>>
Prepare Purchase

Order

<<alternative>>
Confirm Delivery

<<alternative>>
Create Requisition

<<alternative>>
Check Customer

Account

<<optional>>
Pay by Check

<<optional>>
Pay by CreditC

<<kernel>>
Make Purchase

Order <<kernel>>
Confirm Shipment

<<kernel>>
Process Delivery

Order

<<kernel>>
Browse Catalog

<<alternative>>
Send Invoice

Customer

<<extend>>

<<extend>>

Authorization Center

Supplier

WholesalerBank

<<alternative>>
Bill Customer

{ext point=Payment}

<<optional>>
Deliver Purchase

Order

<<optional>>
Deliver Purchase

Order

<<optional>>
Prepare Purchase

Order

<<optional>>
Prepare Purchase

Order

<<alternative>>
Confirm Delivery
<<alternative>>
Confirm Delivery

<<alternative>>
Create Requisition

<<alternative>>
Create Requisition

<<alternative>>
Check Customer

Account

<<alternative>>
Check Customer

Account

<<optional>>
Pay by Check
<<optional>>
Pay by Check

<<optional>>
Pay by CreditC
<<optional>>
Pay by CreditC

<<kernel>>
Make Purchase

Order

<<kernel>>
Make Purchase

Order <<kernel>>
Confirm Shipment
<<kernel>>

Confirm Shipment

<<kernel>>
Process Delivery

Order

<<kernel>>
Process Delivery

Order

<<kernel>>
Browse Catalog
<<kernel>>
Browse Catalog

<<alternative>>
Send Invoice

<<alternative>>
Send Invoice

Customer

<<extend>>

<<extend>>

Authorization Center

Supplier

WholesalerBank

<<alternative>>
Bill Customer

{ext point=Payment}

Figure 4. Use case model of e-commerce SPL

In this paper, the source model for the proposed transformation
consists of the SPL model with generic performance annotations.
We need to make sure that the SPL source model contains all the
views necessary for the derivation of performance models: a)
structural description of the software showing the high-level
software components, especially if they are distributed and/or
concurrent; b) the deployment of software to hardware devices,
and c) a set of key performance scenarios defining the main
system functions frequently executed. The steps for building the
source model by a human user are as follows:
1- Represent the functional requirements as use cases for the

SPL.
2- Represent SPL variability through feature modeling.
 FOR each feature
 IF the feature is large
 THEN

 Represent it as use case package
 ELSE

 Represent it as a variation point within a use case
 IF the variation is small
 THEN
 Represent it through a variation point
 in the use case from step 1
 ELSE // The variation is complex
 Represent it with the extend and include
 relationships between use cases

 ENDIF
 ENDIF
 ENDFOR
3- Model dependencies and constraints between features

through a feature dependency diagram.
4- Represent the structural view as a class diagram for SPL.
5- Model scenarios as sequence diagrams.
 FOR each use case
 FOR each scenario

 Create a sequence diagram annotated with
 generic performance parameters
 ENDFOR

 ENDFOR
6- Model the deployment that ensures maximum distribution.

To illustrate the proposed overall derivation process, we use an e-
commerce case study similar to [10] but with some modifications.
The e-commerce SPL is a World Wide Web-based product line
that handles business-to-business (B2B) as well as business-to-
consumer (B2C) systems. For example in B2C, a customer can
browse through several catalogs provided by the suppliers to
select items to purchase. The customer requests to purchase items
from the supplier and provides personal details, such as address
and credit card information which are stored in a customer
account. If the credit card is valid, a delivery order is created and
sent to the supplier. When the order is shipped, the customer is
notified and requested to pay. If the system supports several type
of payment, the customer has to choose one of them. Optionally, a
supplier may create a purchase order requesting new inventory
supplies from the wholesaler.
The first step for creating our source model, a use case diagram
for the e-commerce SPL is built as shown in Figure 4. The kernel
use cases (drawn in white) are common to all the e-commerce
systems. The light grey use cases are optional and can be used in

either B2B or B2C systems to purchase an order by the supplier.
The dark grey use cases are the alternative use cases which are
used by only one of the two systems. The use case “Bill
Customer” is extended at an extension point called “Payment”
within its scenario by two optional use cases “Pay by CreditC”
and “Pay by Check”. The extension points are indicated by a
tagged value associated to the stereotype of the base use case.

In the second step, the kernel use cases are grouped into a
common feature called “E-Commerce Kernel”, and depicted as a
use case package as shown in Figure 2. The use cases that are
used only by the B2C system are grouped into the alternative
feature “Home Customer” and the use cases that are used only by
the B2B system are grouped into the alternative feature “Business
Customer”. The two alternative features “Business Customer” and
“Home Customer” are mutually exclusive feature and hence they
are grouped into an exactly-one-of feature group called Customer
as depicted in the feature dependencies shown in Figure 3. The
optional feature “Purchase Order” is realized by the two optional
use cases “Prepare Purchase Order” and “Delivery Purchase
Order” and hence it is depicted as a use case package. The two
optional features “CreditCard Payment” and “Check Payment”
are small features and hence they are depicted through an
“extend” relationship between use cases. Therefore, both the base
use case “Bill Customer” and the extension use cases “Pay by
CreditC” and “Pay by Check” have to be selected in order to
realize these two optional features. These two optional features
“CreditCard Payment” and “Check Payment” are grouped into an
at-least-one-of feature group called Payment as depicted in Figure
3. Thus, an individual system can provide one of the features or
both of them. Figure 3 depicts dependencies and constraints
between features for the third step.

In the fourth step, the user creates the class diagram for the e-
commerce SPL as shown in Figure 5. The object
CustomerInterface behaves differently in B2B systems
than in B2C systems. Therefore, a generalization/specialization
hierarchy is used to model the different behaviours of this class.
The two subclasses B2BInterface and B2CInterface are
used by B2B systems and B2C systems respectively. The same
happens with the superclass SupplierInterface, which is
specialized into two variants POSupplier and Supplier. In
the SPL class diagram, each variant or optional class is annotated
with the feature that requires it (given through tagged values).

In the fifth step, a sequence diagram is created for each scenario
in each use case. The case study has 13 scenarios, but only 3 are
presented here due to space limitations. The optional sequence
diagram “Prepare Purchase Order” is shown in Figure 6, which
realizes the optional use case with the same name. The sequence
diagram is annotated with generic performance information which
has to be bound to concrete values during the derivation of a
product. Among these annotations, «PaRunTInstance» is a
stereotype indicating which run-time instance of a process
executes the lifeline role. It provides an explicit connection
between a role in a behavior definition (a lifeline) and a run time
instantiation of a process. «GaPerformanceContext» is a
performance analysis context with contextParams that are a
set of annotation variables defining global properties of this
analysis context. Properties of the workload, behaviour, and
resources may be defined as functions of such global variables.

In Figure 6, the first message PurchaseOrderReq is
stereotyped as «PaStep» with hostDemand represented by
the variable $SupD1, which will be bound to a concrete value
when a product is derived. This average processor demand applies
to the operation triggered by the message. It applies to the entire
operation up until the reply. The message is also stereotyped with
the message size (in the «PaCommStep» stereotype).

Figure 7 shows the kernel sequence diagram BrowseCatalog
with performance annotations that represent the resource demands
made by every scenario step, the scenario workload and the run-
time instances in which the life-line roles are running. For
instance, the first message GetList has a workload attached
with the stereoptype «GaWorkloadEvent» which defines a
stream of events driving the system.

Figure 5. Class diagram of e-commerce SPL

«optional»
«server»

«PaRunTInstance»
{instance

=PurchaseOrder}
:PurchaseOrder

«kernel-vp»
«user interface»

«PaRunTInstance»
{instance = Supplier}

:SupplierInterface

«optional»
«server»

«PaRunTInstance»
{instance =PurchDB}

:PurchOrdDB

<<GaPerformanceContext>> {contextParams=$ATime}

1: PurchaseOrderReq
«PaStep»
«PaCommStep»
{hostDemand=($SupD1,ms),
msgSize = ($OrderReq,KB)}

«kernel»
«server»

«PaRunTInstance»
{instance =
Inventory}
:Inventory

«optional»
«system interface»
«PaRunTInstance»

{instance
=Wholesaler}
:Wholesaler

2: CheckInventory
«PaStep»
«PaCommStep»
{hostDemand=($POD1,ms),
msgSize = ($Check,,KB)}

4: StorePurchaseOrder
«PaStep»
«PaCommStep»
{hostDemand=($POD2,ms),
msgSize = ($Store,KB)}

3: InventoryLevel
«PaCommStep»
{ msgSize = ($Rep,KB)}

6: Confirm
«PaCommStep»
{msgSize = ($Conf,KB)}

5: PlacePurchaseOrder
«PaStep»
«PaCommStep»
{hostDemand=($POD3,ms),
msgSize = ($Place,KB)}

sd Prepare Purchase Order

«optional»
«server»

«PaRunTInstance»
{instance

=PurchaseOrder}
:PurchaseOrder

«kernel-vp»
«user interface»

«PaRunTInstance»
{instance = Supplier}

:SupplierInterface

«optional»
«server»

«PaRunTInstance»
{instance =PurchDB}

:PurchOrdDB

<<GaPerformanceContext>> {contextParams=$ATime}

1: PurchaseOrderReq
«PaStep»
«PaCommStep»
{hostDemand=($SupD1,ms),
msgSize = ($OrderReq,KB)}

«kernel»
«server»

«PaRunTInstance»
{instance =
Inventory}
:Inventory

«optional»
«system interface»
«PaRunTInstance»

{instance
=Wholesaler}
:Wholesaler

2: CheckInventory
«PaStep»
«PaCommStep»
{hostDemand=($POD1,ms),
msgSize = ($Check,,KB)}

4: StorePurchaseOrder
«PaStep»
«PaCommStep»
{hostDemand=($POD2,ms),
msgSize = ($Store,KB)}

3: InventoryLevel
«PaCommStep»
{ msgSize = ($Rep,KB)}

6: Confirm
«PaCommStep»
{msgSize = ($Conf,KB)}

5: PlacePurchaseOrder
«PaStep»
«PaCommStep»
{hostDemand=($POD3,ms),
msgSize = ($Place,KB)}

sd Prepare Purchase Order

Figure 6. SPL scenario PreparePurchaseOrder

«kernel»
«server»

«PaRunTInstance»
{instance = CatServer}

:CatalogServer

«kernel-abstract-vp»
«user interface»

«PaRunTInstance»
{instance = CBrowser}

:CustomerInterface

«kernel »
«server»

«PaRunTInstance»
{instance = CatDB}

:CatalogDB

<<GaPerformanceContext>> {contextParams=$ATime}

1: GetList
«GaWorkload Event»
{open(IntArrTime = ($ATime,sec))}
«PaStep»
«PaCommStep»
{hostDemand=($CustD,ms), msgSize
= ($GetL,KB),
respT={(($ReqT,s,percent95),req),
(($CalT,s,percent95),calc)}}

2: GetList
«PaStep»
«PaCommStep»
{hostDemand=($CatSD,ms),
msgSize = ($GetL,KB)}

3: ReturnList
«PaCommStep»
{msgSize = ($RetL,KB)}

4: CatalogInfo
«PaCommStep»
{msgSize = ($RetL,KB)}

sd Browse Catalog

«kernel»
«server»

«PaRunTInstance»
{instance = CatServer}

:CatalogServer

«kernel-abstract-vp»
«user interface»

«PaRunTInstance»
{instance = CBrowser}

:CustomerInterface

«kernel »
«server»

«PaRunTInstance»
{instance = CatDB}

:CatalogDB

<<GaPerformanceContext>> {contextParams=$ATime}

1: GetList
«GaWorkload Event»
{open(IntArrTime = ($ATime,sec))}
«PaStep»
«PaCommStep»
{hostDemand=($CustD,ms), msgSize
= ($GetL,KB),
respT={(($ReqT,s,percent95),req),
(($CalT,s,percent95),calc)}}

2: GetList
«PaStep»
«PaCommStep»
{hostDemand=($CatSD,ms),
msgSize = ($GetL,KB)}

3: ReturnList
«PaCommStep»
{msgSize = ($RetL,KB)}

4: CatalogInfo
«PaCommStep»
{msgSize = ($RetL,KB)}

sd Browse Catalogsd Browse Catalog

Figure 7. SPL scenario BrowseCatalog

«optional»
«server»

«PaRunTInstance»
{instance =Billing}

:Billing

«kernel-vp»
«user interface»

«PaRunTInstance»
{instance = Supplier}

:SupplierInterface

«kernel»
«server»

«PaRunTInstance»
{instance

=DeliOrder}
:DeliveryOrder

1: RequestPayment
«PaStep»
«PaCommStep»
{hostDemand=($SupD1,ms),
msgSize = ($OrderReq,KB)}

«optional»
«server»

«PaRunTInstance»
{instance =
CAccount}

:CustomerAccont

2: OrderSubscription
«PaStep»
«PaCommStep»
{hostDemand=($BillD1,ms),
msgSize = ($OSub,,KB)}

4: AccountRequest
«PaStep»
«PaCommStep»
{hostDemand=($BillD2,ms),
msgSize = ($AReq,KB)}

3: OrderNotification
«PaCommStep»
{ msgSize = ($Noti,KB)}

6: RequestPayment
«PaStep»
«PaCommStep»
{hostDemand=($BillD2,ms),
msgSize = ($RPay,KB)}

«kernel-abstract-vp»
«user interface»

«PaRunTInstance»
{instance = CBrowser}

:CustomerInterface

5: Account Info
«PaCommStep»
{msgSize = ($Info,KB)}

«extension point»{extention=Payment}

alt

[Check Payment AND customer chooses CheckPayment]

<<GaPerformanceContext>> {contextParams=$ATime}

[CreditCard Payment AND customer chooses CCPayment]
ref

Pay by CreditC

Pay by Check

ref
Pay by Check

sd Bill Customer

«optional»
«server»

«PaRunTInstance»
{instance =Billing}

:Billing

«kernel-vp»
«user interface»

«PaRunTInstance»
{instance = Supplier}

:SupplierInterface

«kernel»
«server»

«PaRunTInstance»
{instance

=DeliOrder}
:DeliveryOrder

1: RequestPayment
«PaStep»
«PaCommStep»
{hostDemand=($SupD1,ms),
msgSize = ($OrderReq,KB)}

«optional»
«server»

«PaRunTInstance»
{instance =
CAccount}

:CustomerAccont

2: OrderSubscription
«PaStep»
«PaCommStep»
{hostDemand=($BillD1,ms),
msgSize = ($OSub,,KB)}

4: AccountRequest
«PaStep»
«PaCommStep»
{hostDemand=($BillD2,ms),
msgSize = ($AReq,KB)}

3: OrderNotification
«PaCommStep»
{ msgSize = ($Noti,KB)}

6: RequestPayment
«PaStep»
«PaCommStep»
{hostDemand=($BillD2,ms),
msgSize = ($RPay,KB)}

«kernel-abstract-vp»
«user interface»

«PaRunTInstance»
{instance = CBrowser}

:CustomerInterface

5: Account Info
«PaCommStep»
{msgSize = ($Info,KB)}

«extension point»{extention=Payment}

alt

[Check Payment AND customer chooses CheckPayment]

<<GaPerformanceContext>> {contextParams=$ATime}

[CreditCard Payment AND customer chooses CCPayment]
ref

Pay by CreditC

Pay by Check

ref
Pay by Check

sd Bill Customersd Bill Customer

Figure 8. SPL scenario BillCustomer

For performance analysis the workload can be open or closed. In
our example, the workload is open with an inter-arrival time
$ATime (ms). As this variable may appear in several scenarios,
it is considered a global annotation variable, and therefore listed
as a context parameter in «GaPerformanceContext». The
message GetList is also stereotyped with a percentile
requirement for the overall response time. Figure 8 shows the
sequence diagram “Bill Customer” which realizes the use case
with the same name. The extension point “Payment” is depicted
as a stereotype on the alt combined fragment. If the alternatives
correspond to mutually exclusive features, each product including
only one of them, then the sequence diagram for a single product
will contain just the right alternative for the given product. If,
however, the alternatives correspond to features that are not
mutually exclusive (as in this case) each product will contain the
alternatives it may chose, and the selection will happen at run-
time.

Although deployment is not usually represented in SPL models,
we need to add a deployment view to the SPL source model. In
the sixth step, the user creates the deployment diagram for the
SPL assuming maximum distribution. By “maximum distribution”
we understand providing the largest number of processors that
might ever be used for any product of the SPL, which is not to say
that we provide a processor for every artifact manifesting an
instance of an active or passive class. For example, if it is known
that some instances have to run always on the same processor,
this will be reflected in the deployment diagram. The SPL
deployment diagram contains all the possible artifacts contained
in all the products, even artifacts corresponding to optional or
variant classes. Every processing node in the deployment diagram
is stereotyped as an execution host. In performance modeling,
«GaExecHost» can be any device which executes behavior,
including storage and peripheral devices. The node may be
stereotyped with communication overheads. The attributes
commRcvOverhead and commTxOverhead are the host
demand overheads for receiving messages and sending messages,
respectively.

3. TARGET MODEL
The target model is a UML model with MARTE annotations,
where the variability expressed in the SPL model has been
analyzed and bound to a specific product. A product model does
not contain any more SPL-related stereotypes, tagged values and
constraints, because the variability has been resolved.

However, the product model contains performance annotations
that have been bound to concrete values, as indicated by the user.
The target model for a specific product consists of the following:
1. A use case view for the specific product
2. A product class diagram
3. A product sequence diagram for each scenario in each

selected use case
4. A deployment diagram of the product

Table 1 shows an example of mapping of the annotation
variables from the scenario PreparePurchaseOrder to concrete
values, which has to be provided by the user in the form of
binding directive to the transformation algorithm presented in the
next section. By “concrete values” we don’t mean only literal
values, but also expressions in function of annotation variables
that may be defined according to MARTE. Another kind of
binding that takes place during the derivation of a specific product
model from SPL is related to binding the generic roles associated
to sequence diagram life-lines to the desired role for handling the
chosen feature, as explained in the next section.

After obtaining the target model from the source model, it
will be transformed to a performance model using the PUMA
transformation approach [20][21], as mentioned in Section 1 (see
also Figure 1). The target model for our case study is described in
the next section, together with the transformation algorithm.

4. MODEL TRANSFORMATION
The transformation algorithm supports the automatic derivation of
a specific product model from the SPL models. It takes as an
input the source model described in section 2 and generates as
output the target model for a product presented in section 3.
The derivation process starts by selecting the features for the
product we want to develop. These chosen features are checked
against the feature dependency diagram from the source model to
identify any inconsistencies between features. An example is
checking to ensure that there no two mutually exclusive features
are chosen. The feature model from the source model is used to
identify the use cases realizing the chosen features. All the
“kernel” use cases have to be included in the product use case
diagram, since they represent functionality provided by every
members of the SPL. If a chosen feature is realized by a use case
package, all the use cases in the package have to be selected. If a
chosen feature is realized through “extend” or “include”
relationships between use cases, the base use case as well as the
inclusion or extension use cases have to be selected. If a feature is
realized as a variation point within a use case scenario, this use
case has to be chosen as well. Finally, the use case diagram for
the product is developed after all the SPL stereotypes were
eliminated.
The class diagram of the product is created by selecting first all
the “kernel” classes from the SPL class diagram. “Optional” and
“variant” classes are selected corresponding to the chosen
features. In the SPL class diagram, each class is annotated with
the feature that requires it. The class diagram of the product is
obtained by removing all “optional” and “variant” classes from
the SPL model that have not been selected. However, superclasses
of the selected “optional” or “variant” classes have to be kept.
Other elements to be removed at the end are the stereotypes from
the Product Line profile. $Conf

$Place

$POD3

$Store

$POD2

Generic
parameters

Concrete
values

$POD1

0.5 $Rep

4 $Check

$OrderReq

$SupD1

Concrete
values

Generic
parameters

10

5

0.7+.3*
$OrderReq

10

0.45

.0.2 *$Place

2

1.5

Table 1. Mapping of annotation variables to concrete values

For each scenario corresponding to a selected use case, the
corresponding sequence diagram is processed next. Each generic
role associated to a life-line has to be bound to a specific role
according to the selected features (an example on how this is
applied will be presented later in the case study). In addition, each
generic performance annotation has to be bound to a concrete
value, according to the user input. The sequence diagrams for the
product are completed after getting rid of the SPL stereotypes.
Finally, the SPL deployment diagram has to be tailored to the
concrete product. The binding directives indicate the mapping of
generic nodes from the SPL diagram to actual nodes for the
product (some SPL nodes won’t be necessary for each product, so
they will be deleted). The software artifacts for the product are
manifestations of the run-time instances indicated by an attribute
of <<PaRunTinstance>> stereotype associated to life-line
roles in the sequence diagrams derived in step 5 and 6; so the
product artifacts are also determined. A high-level description of
the transformation algorithm is as follows:
Algorithm: ModelTransformation
INPUT: SPL source model, selected features and binding
directive for the desired product
OUTPUT: target model for the desired product
BEGIN
1. Select the features that are chosen for the product we want
 to develop from the SPL feature model.
2. Check the selected features against the feature dependency
 diagram in the source model to ensure their consistent.
3. Select use cases realizing the chosen features from the SPL
 use case diagram according to these cases:
 SWITCH:
 CASE 1: Feature is realized through use case package
 THEN
 Select all use cases in the package;
 CASE 2: Feature is realized through “extend” or
 “include” relationships between use cases
 THEN
 Select the base use case and the inclusion or
 extension use cases;
 CASE 3: Feature is realized through a variation point
 within a scenario realizing the use case;
 THEN
 Select the respective use case;
 ENDSWITCH
4. Derive the product class diagram from the SPL class dgr.

• Select “kernel” classes;
• Select “optional” or “variant” classes corresponding
 to the chosen features;

5. FOR each scenario of the selected use cases
 Choose the corresponding sequence diagram;
 ENDFOR
6. FOR each chosen sequence diagram

• Bind each generic role associated to a life-line to the
 desired role for handling the chosen feature;
• Bind the performance annotations to concrete values;
ENDFOR

7. Build the product deployment diagram from the SPL one
• Determine product artifacts from life-line roles;
• Bind generic processing nodes to actual ones;
• Bind their performance annotations to concrete values

END

This algorithm is applied to the e-commerce case study presented
din section 2 to derive the business-to-consumer (B2C) model
from the e-commerce SPL model. The first step is to choose the
features for a specific B2C system. Let us assume that the
following features are chosen: alternative feature “Home
Customer”, both optional features “CreditCard Payment” and
“Check Payment”, and optional feature “Purchase Order”. The
common feature “E-Commerce Kernel” has to include, as well.
The feature dependency diagram verifies that these features are
consistent. The third step selects the four kernel use cases, as well
as the two optional use cases “Prepare Purchase Order” and
“Delivery Purchase Order” and the alternative use case “Check
Customer Account”. Since the B2C system supports both the
optional features “CreditCard Payment” and “Check Payment”,
the base use case “Bill Customer” and the extension use cases
“Pay by CreditC” and “Pay by Check” have to be selected, too.

The B2C class diagram is created by selecting first the “kernel”
classes from the SPL class diagram. “Optional” classes such as
“PurchaseOrder”, “WholeSaler”, and “Bank” have to be selected
because they support the optional feature “Purchase Order” as
well as the “variant” class “POSupplier”. In addition, the
“Optional” classes “Billing”, “CustomerAccount”,
“AuthorizationCenter” and the “variant” class “B2CInterface”
have to be selected because they support the alternative feature
“Home Customer”. Other “optional” and “variant” classes have to
be removed. However, the superclasses “CustomerInterface” and
“SupplierInterface” are kept.

The next step is to select the sequence diagrams that realize the
selected use cases. For example, the sequence diagram “Prepare
Purchase Order” in Figure 6 is chosen. The generic role
“SupplierInterface” has to be bound to the concrete one
“POSupplier”, which plays the desired role for handling “Prepare
Purchase Order” scenario. The generic performance annotations
are bound to concrete values as indicated by the user (an example
is shown in Table 1). The sequence diagram “BrowseCatalog” in
Figure 7 is also selected, because it realizes the “kernel” use case
of the same name. The generic role “CustomerInterface” is bound
to the concrete “B2CInterface”, which plays the role that handles
the feature “Home Customer”. Finally, the sequence diagram
“Browse Catalog” for the B2C system is derived from its SPL
counterpart by eliminating the SPL stereotypes and binding the
performance annotations. The sequence diagram “BillCustomer”
shown in Figure 8 is also selected, as it realizes a selected use
case. Since both features “CreditCard Payment” and “Check
Payment” are chosen for this product, the alt fragment will
contain both alternatives and the choice will happen at run-time.

The generic role “SupplierInterface” has to be bound to the
concrete one “Supplier”, which plays the desired role for handling
“BillCustomer” scenario. Also, the generic role
“CustomerInterface” is bound to the concrete object
“B2CInterface”. The deployment diagram for the B2C system is
depicted in Figure 9. The software components are deployed onto
actual processors and the performance annotations are bound to
concrete ones.

5. RELATED SPL RESEARCH
This section presents existing research related to SPL modeling in
UML. SPL requires mechanisms to specify variability and
commonalities in UML models, and techniques to manage a set of

constraints and dependencies between features. In addition,
approaches to derive products from the SPL are needed. Many
authors address variability at structure level, but fewer at
behavioural level.

In [18] is introduced the UML-F profile that supports product line
annotations. The author provides notational elements to specify
well known design patterns. This profile is defined for
frameworks and is concerned only with structural aspects.

A UML extension to support feature diagrams and to describe
variability in the UML diagrams is presented in [5]. Stereotypes
are used to model “variant” constraints and to show the
dependencies between classes. Only UML class diagrams are
considered. This work is extended for generic modeling in UML
in [6].

Stereotypes for variable features in UML are introduced in [19].
Variability models that can be used during the different life cycle
stages of software product lines are presented in [16], describing
variability in feature models, use case models, design models,
component models, and test models. In [13] it is introduced a
UML 2 profile for variability models, which uses activity
diagrams to show the impact of variability on the process flow.
An approach to extend UML 2.0 to represent variability on the
product line architecture is presenetd in [4].

A number of papers from the group led by Jézéquel propose a
UML profile for modeling variability at structural and
behavioural levels [15][22][23][24][25][26]. In [15], two types of
constraints for product line are proposed expressed as OCL
constraints at the UML meta-model level. Generic constraints
such as inheritance constraint and dependency constraint are
applied to any SPL. However, specific constraints such as
presence constraint and mutual exclusion constraint are applied to
a specific SPL. In [22], a model for behavioural requirements in
SPL is introduced. These requirements are expressed by high
level message sequence charts extended with constructs for
handling variability. An approach for deriving product models
from a UML SPL model based on a creational design pattern is
proposed in [24]. An UML 2.0 profile for SPL including
stereotypes, tagged values, and structural constraints is proposed
in [23]. The paper deals with deriving a product model from UML
class diagrams and sequence diagrams, by using generic and

specific constraints. In [25], an approach to create detailed
behaviour for each product member in the PL is proposed. First,
the author uses an algebraic construct to specify variability in the
sequence diagrams. Then, the algebraic expressions are
interpreted to resolve variability and to derive product expressions
which are subsequently transformed to a set of statecharts. An
UML model derivation technique for static and behaviour views
is proposed in [26]. The static derivation is started from a product
line class diagram with a decision model and generates the
product class diagram. However, an algebraic approach is
proposed to derive statecharts for a specific product from the
sequence diagrams of the product line, by transforming product
scenarios given as a reference expression for SD into a
composition of statecharts.

Another group addressing variability at both structural and
behavioural levels is Gomaa’s group. An extension to UML for
capturing the variability of a product family at the feature and
design level is presented in [8]. Variation points are defined
implicitly by marking features or classes as optional or variant.
Dependencies are modeled by dependency meta-classes and
restrict the selection of two variants. In [9] four different
approaches to model variability are described, by using
parameterization, information hiding, inheritance, and variation
points. The paper shows how variation points can be used to
model other three different approaches. In [10] is presented a
method called Product Line UML-based Software Engineering
(PLUS) for modeling explicitly the commonality and variability
in a SPL, by extending UML-based modeling methods used for
single systems. The product line profile in our proposed technique
uses the PLUS method (with some modifications). One of the few
papers that proposes tool support for representing multiple view
for product lines models stored in a repository is [11]. The paper
focuses on the class and feature model. A consistency checking
tool is developed to report inconsistencies among the views.
Automated support for product derivation from the product line
repository at the meta-model level is also proposed in [11]. A
modeling approach for dynamic reconfiguration of software
architectures is presented in [12]. The software architecture is
built out of architectural patterns. For each software architecture
pattern, there is a corresponding software reconfiguration pattern,
which describes how the architecture can be dynamically adapted.

«GAExecHost»
CustomerNode

«artifact»
CBrowser

«GAExecHost»

AuthorizationCenter
Node

«artifact»
AuthCenter

«GAExecHost»
BankNode

«artifact»
Bank

«GAExecHost»
PurchaseOrderNode

«artifact»
PurchaseOrder

«artifact»
PurchDB

«artifact»
WholeSaler

«GAExecHost»
CatalogNode

«artifact»
CatServer

«artifact»
CatDB

«GAExecHost»SupplierOrganizationNode
«artifact»
DeliOrder

«artifact»
DeliOrdDB

«artifact»
Supplier

«artifact»
Billing

«artifact»
CAccount «GAExecHost»

InventoryNode

«artifact»
Inventory

«artifact»
InventoryDB

«GAExecHost»
CustomerNode

«artifact»
CBrowser

«GAExecHost»
CustomerNode

«artifact»
CBrowser

«GAExecHost»

AuthorizationCenter
Node

«artifact»
AuthCenter

«GAExecHost»
BankNode

«artifact»
Bank

«GAExecHost»
BankNode

«artifact»
Bank

«GAExecHost»
PurchaseOrderNode

«artifact»
PurchaseOrder

«artifact»
PurchDB

«artifact»
WholeSaler

«GAExecHost»
PurchaseOrderNode

«artifact»
PurchaseOrder

«artifact»
PurchDB

«artifact»
WholeSaler

«GAExecHost»
CatalogNode

«artifact»
CatServer

«artifact»
CatDB

«GAExecHost»
CatalogNode

«artifact»
CatServer

«artifact»
CatDB

«GAExecHost»SupplierOrganizationNode
«artifact»
DeliOrder

«artifact»
DeliOrdDB

«artifact»
Supplier

«artifact»
Billing

«artifact»
CAccount «GAExecHost»

InventoryNode

«artifact»
Inventory

«artifact»
InventoryDB

«GAExecHost»
InventoryNode

«artifact»
Inventory

«artifact»
InventoryDB

Figure 9. Deployment diagram of the B2C product

We chose to base our work on Gomaa’s group work, especially on
PLUS [10], because it is a well developed method, it is applied to
real-time systems and pays a lot of attention to the representation
of behaviour, which is very important for performance analysis.
Furthermore, PLUS represents the feature model as a class
diagram, which is more intuitive than other approaches (for
instance, simpler than modeling features as OCL constraints).
However, our approach has a few differences from PLUS. Firstly,
we use sequence diagrams for modeling behaviour instead of
collaboration (communication) diagrams, due to the fact that the
modeling power of sequence diagrams has been considerably
enhanced in UML 2 with respect to comunication diagrams.
Secondly, we pay attention to the deployment of software
components to hardware devices, which is also important for
performance analysis. Thirdly, we modified the stereotype
attributes used in the SPL class diagram to specify the related
features.

6. CONCLUSIONS
One of the main advantages of the Software Product Lines
development process is that it takes advantage of the reusability
of a set of core assets shared among the members of a family of
products, instead of building each product from scratch. In this
paper, we intend to do the same (i.e., reuse performance
annotations) when applying Software Performance Engineering
techniques in the early phases of the SPL development. Instead of
annotating from scratch each UML model of each product, we
propose to annotate the SPL model once with generic annotations,
and to provide binding information when deriving the annotated
model of a desired product from the generic SPL model.
This paper proposes a two-step model transformation approach
for deriving a performance model for a specific product from an
UML model with performance annotations of a SPL. The first
step derives automatically a UML model with concrete
performance annotations for a specific product from a SPL model
with generic performance annotations. The second step transforms
the UML+MARTE model obtained in the first step into a
performance model by using PUMA, an existing model
transformation approach developed in our research group.
The paper contributes toward the long-term goal of developing
UML-based tool support for early performance analysis of a
product from a SPL model. The research challenge here is not
only in dealing with generic yet reusable performance
annotations, but also with proposing an algorithm that analyses
the variability in a SPL model and derives the model of a specific
product based on the set of features selected for that product.
Although there is a lot of existing research in modeling SPL
variability with UML, as surveyed in section 5, we have found
only two proposed transformation algorithms for deriving a
product from an SPL model [11] and [26]. However, none of
these deals with scenarios represented as sequence diagrams, as
proposed in our approach. The authors are in the process of
implementing the model transformation proposed in this paper on
top of the Eclipse framework and connecting it with the PUMA
toolset.

ACKNOWLEDGMENT
This research was supported by a grant from NSERC, the Natural
Sciences and Engineering Research Council of Canada.

REFERENCES
[1] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, “Model-

based performance prediction in software development: a
survey” IEEE Transactions on Software Engineering, Vol
30, N.5, pp.295-310, May 2004.

[2] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML
sequence diagrams and statecharts to analysable Petri net
models” in Proc. 3rd Int. Workshop on Software and
Performance (WOSP02), pp. 35-45, Rome, July 2002.

[3] C. Cavenet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens,
“Analysing UML 2.0 activity diagrams in the software
performance engineering process” in Proc. 4th Int.
Workshop on Software and Performance (WOSP 2004), pp.
74-83, Redwood City, CA, Jan 2004.

[4] Y. Choi, G. Shin, Y. Yang, and C. Park, “An approach to
extension of UML 2.0 for representing variabilities”,
Computer and Information Science, Fourth Annual ACIS
International Conference, INSPEC Accession 3, pp.258–
261, 2005.

[5] M. Clauss, “Modeling variability with UML”, GCSE 200–
Young Researchers Workshop, September 2001.

[6] M. Clauss, “Generic Modeling using UML extensions for
variability”, In: Workshop on Domain Specific Visual
Languages at OOPSLA, Tampa Bay, FL, USA, 2001.

[7] P. Clements, and L. Northrop, “Software Product Lines:
Practice and Patterns”, p.608, Addison-Wesley, 2001.

[8] H. Gomaa, M.E. Shin “Multiple-View Meta-Modeling of
Software Product Lines”, 8th International Conference on
Engineering of Complex Computer Systems (ICECCS 2002),
IEEE Computer Society 2002, pp. 238-246, 2002.

[9] H. Gomaa, D. L. Webber, "Modeling Adaptive and
Evolvable Software Product Lines Using the Variation Point
Model," hicss, p. 90268c, Proceedings of the 37th Annual
Hawaii International Conference on System Sciences
(HICSS'04) - Track 9, 2004.

[10] H. Gomaa, “Designing Software Product Lines with UML:
From Use Cases to Pattern-based software Architectures”,
Addison-Wesley Object Technology Series, July 2005.

[11] H. Gomaa, M. E. Shin “Automated Software Product Line
Engineering and Product Derivation”, Proceedings of the
40th Hawaii International Conference on System Sciences,
2007.

[12] H. Gomaa, M. Hussein “Model-Based Software Design and
Adaptation”, International Conference on Software
Engineering Proceedings of the 2007 International Workshop
on Software Engineering for Adaptive and Self-Managing
Systems Page: 7, 2007.

[13] B. Korherr, and B. List, “A UML 2 Profile for Variability
Models and their Dependency to Business Processes”,
Database and Expert Systems Applications DEXA '07, 18th
International Conference, Regensburg, Germany, pp: 829-
834, Sept., 2007.

[14] Object Management Group, UML Profile for Modeling and
Analysis of Real-Time and Embedded Systems, OMG
Adopted Specification ptc/07-08-04, August 6, 2007.

[15] L. Monestel, T. Ziadi, and J.-M. Jézéquel, “Product line
engineering: Product derivation”, In Workshop on Model
Driven Architecture and Product Line Engineering, at the
SPLC2 conference, San Diego, August 2002.

[16] D.C. Petriu, H.Shen, “Applying the UML Performance
Profile: Graph Grammar based derivation of LQN models
from UML specifications”, in Computer Performance
Evaluation (T. Fields, P. Harrison, J. Bradley, U. Harder,
Eds.) LNCS 2324, pp.159-177, Springer, 2002.

[17] K. Pohl, G. Böckle, and F. van der Linden, “Software
Product Line Engineering: Foundations, Principles, and
Technique”, Springer-Verlag Berlin, Heidelberg, 2005.

[18] W. Pree, M. Fontoura, and B. Rumpe. “Product line
annotations with uml-f”, in Gary J. Chastek, editor, Software
Product Lines, Second International Conference, SPLC2,
San Diego, CA, USA, August 19-22, 2002, proceedings,
LNCS vol 2379, Springer, 2002.

[19] S. Robak, B. Franczyk, and K. Politowicz, “Extending the
UML for Modeling Variability for System Families” Int. J.
Appl. Math. Comput. Sci., Vol.12, No.2, 285–298, 2002.

[20] C.M.Woodside, D.C. Petriu, D.B. Petriu, H.Shen, T.Israr. J.
Merseguer, “Performance by Unified Model Analysis
(PUMA)”, WOSP’05, Palma de Mallorca, Spain, July 11–15,
2005.

[21] C.M. Woodside, D.C. Petriu, J. Xu, T. Israr, J.Merseguer,
“Methods and Tools for Performance by Unified Model
Analysis (PUMA)”, submitted for publication to IEEE Trans.
on SE, 2007.

[22] T. Ziadi, L. Hélouët, and J.-M. Jézéquel, “Modeling
behaviors in product lines”, In Proceedings of REPL'02
(workshop on RequirementsEngineering for Product Lines),
pages 33–38, Essen, Germany, September 2002.

[23] T. Ziadi, L. Hélouët, and J.-M. Jézéquel, “Towards a UML
Profile for Software Product Lines”, In Software Product-
Family Engineering, 5th International Workshop, pages 129–
139, Springer, 2003.

[24] T. Ziadi, J.-M. Jézéquel, and F. Fondement, “Product line
derivation with uml”, In Jilles van Gurp and Jan Bosh,
editors, Proceedings Software Variability Management
Workshop, pages 94–102. University of Groningen
Departement of Mathematics and Computing Science, 2003.

[25] T. Ziadi, L. Hélouët, and J.-M. Jézéquel, “Behaviors
generation from product lines requirements”, In Proc.
UML2004 workshop on Software Architecture Description,
September 2004.

[26] T. Ziadi and J.-M. Jézéquel, “Software Product Lines,
chapter Product Line Engineering with the UML: Deriving
Products” pages 557-586, Springer 2006.

