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Recently, Network Function Virtualization (NFV) has gained a lot of attention as an enabling technology of the future
inter-networking paradigm. By decoupling substrate network equipment from network functions that run on them, NFV helps
Telecommunication Service Providers reduce Operating Expenses (OPEX) and Capital Expenses (CAPEX). One of the main challenges
of NFV deployment is the optimal Virtual Network Function (VNF) placement in the network infrastructure in a suitable way.
This is called a VNF-Forwarding Graph Embedding (VNF-FGE) problem, which is considered as a generalization of the virtual
network embedding (VNE) problem. [1]. Previous research formulates VNF placement as a mixed integer linear programming
problem that has been proved to be NP-hard. On the other hand, some heuristic approaches are proposed to simplify the VNF
placement into two separate stages. However, this separation overlooks the coordination between virtual functions and associated
virtual links, thereby resulting in low acceptance ratio and inefficient substrate resource utilization. To address the limitations of
previous approaches, we propose a distributed parallel Genetic Algorithm that is combined with graph theory for solving VNF
placement in one-stage. Extensive simulations have shown that our proposed algorithm achieves better performances compared to
previous baseline solutions, while meeting the stringent time requirements for online VNF placement applications.

Index Terms—Network Function Virtualization, VNF placement, Virtual Network Embedding, Genetic Algorithm, Graph Theory,
Parallel Distributed Algorithm.

I. INTRODUCTION

TRADITIONAL networks are rooted in fixed-function
physical infrastructure (e.g. switches or routers). There

are certain functions largely implemented in these dedicated
network devices to support the networking, which makes
the traditional networks lack flexibility to adapt network
requirement changes. Therefore, network virtualization (NV)
has been proposed to overcome the resistance of the tradi-
tional networks to the fundamental change. Virtualization of
computational and storage resources is widely used in cloud
computing, however, virtualization in network functions has
proven to be a lot more challenging [2].

To address this challenge, Network Function Virtualization
(NFV) has emerged as a new approach to design, deploy and
manage network services. The idea of NFV is decoupling
the network functions from physical network equipment. This
‘virtualization’ makes service deployment more flexible and
scalable [3]. In the NFV architecture, the traditional Internet
Service Providers are decoupled into Services Providers (SPs)
and Infrastructure Providers (InPs). The SPs are responsible
for deploying and offering customized network services to end
users, while InPs are in charge of maintaining and allocating
physical resources to different SPs. A SP generally operates
and maintains virtual networks (VNs) leased from substrate
networks (SNs) of the InP according to a virtual network
embedding (VNE) strategy. This means a VN is made up of
a set of virtual network functions (VNFs), which could be
initialized and terminated on physical devices in runtime. An
example of allocating a VN into the SN is described in Fig. 1.

To achieve fast, scalable and dynamic composition and
allocation of VNFs, it becomes the NFV resource allocation
(NFV-RA) problem. NFV-RA is carried out in three stages [1]:
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Fig. 1: An example of a VN with its associated SN.

1) VNFs Chain composition (VNFs-CC), 2) VNF Forward-
ing Graph Embedding (VNF-FGE) and 3) VNFs Scheduling
(VNFs-SCH). Specifically, VNF-FGE, acting as an important
step in NFV-RA, seeks where to allocate the VNFs in the
network infrastructure in a suitable way. VNF-FGE [1] can be
considered as a generalization of the well-known VNE, which
aims to enable high volume, large scale, and agile network
services. The VNE problem can be considered as a multi-
objective optimization problem (e.g. lower network cost, long-
term profits) with several stringent constraints, and solving the
VNE problem is NP-hard even in an offline setting [4]. An
offline setting handles a set of VN requests (VNRs) that are in-
deed known in advance in a static network topology. However,
in most real-life scenarios, VNE is an online problem, which
requires a speedy and efficient solution. Additionally, a global
optimality under dynamic demands is hard to achieve since its
solution normally do not try to reallocate the already-mapped
requests in the past to avoid possible network disruptions to the
existing services. Moreover, the unknown future requests are
difficult to anticipate. Most of the current NFV-RA approaches
are based on heuristics that attempt to place online VNFs in
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polynomial time by sacrificing some degrees of optimality.
To simplify the allocation of virtual resources, the contem-

porary research proposals mostly decouple the VNE problem
into two separate stages: mapping VNFs as virtual nodes into
substrate nodes – virtual node mapping (VNoM) and mapping
virtual links into substrate paths with multiple connected
substrate links – virtual link mapping (VLiM).

The two-step decomposition approaches can simplify the
algorithmic complexity. However, the complexity is still NP
hard. Moreover, these two-stage algorithms might result in the
situation that virtual neighbouring nodes are mapped onto the
substrate nodes that are probably far from each other. The
long distance between substrate nodes may lead to unexpected
longer substrate paths and network defragmentations. This fact
is consequently caused by an inefficient VNE solution that
declines the substrate resource utilisation and the acceptance
ratio in the long term. Although some approaches [5] are
claimed to consider the coordination between VNoM and
VLiM stages, the achieved results are still far from the optimal.

A VNE approach can be classified into either splittable or
unsplittable. VNE under splittable and unsplittable configura-
tions is a principle research topic in Software Defined Network
(SDN), NFV and Future Edge Clouds. A splittable mapping
allows to split a virtual node/link over multiple substrate
nodes/paths in the SN. Indeed, splitting mapping enables better
resource utilization in theoretical analysis by gathering small
pieces of available substrate resources, thereby increasing the
acceptance ratio. However, such method has many imple-
mentation issues in practice [6]. On the other hand, there
are limited research on the unsplittable mapping. In most
previous work, unsplittable mapping algorithms, formulated as
Integer Programming problems, are still NP-hard. The major
challenge of unsplittable embedding is again its complexity
issue. Several VNE algorithms apply a heuristic approach for
VNoM and the k-shortest path for VLiM stage. Although such
decomposition can compromise the time complexity, these
heuristic solutions cannot guarantee optimal or even near-
optimal mapping results. In this paper, we propose a one-stage
solution to address previous unsplittable embedding limitation
on time complexity.

Recently, some online VNE approaches claim that their
approaches [7], [8] could complete in polynomial time. How-
ever, the approaches still take longer time than the industry
expectations on an online embedding system. Current VNE
approaches have to make a compromise between the mapping
performance (e.g., acceptance ratio and network utilization)
and the embedding execution time. Based on the above con-
cerns, an unsplittable, one-stage, heuristic and efficient online
VNE solution is in sore need of further study. In this paper,
by introducing the augmented graph and combining graph
theory, we propose a tailored Genetic Algorithm (GA) that
coordinately solves the VNE problem in one-stage as well
as reducing the embedding time complexity by deploying a
distributed parallel architecture. To the best of our knowledge,
this is the first paper that applies a novel metaheuristic GA,
namely GAOne, for tackling the VNE problem in one-stage.

We conclude our contributions as follows:
First of all, most of the VNE heuristic algorithms im-

plement the k-shortest path mechanism for link mapping,
no matter what the objectives are. The k-shortest path is a
greedy approach that likely produces a good solution but it
cannot efficiently handle the rigid multiple objectives such as
accumulated long-term revenue, low network cost, improved
resource utilization, high acceptance ratio and so on. In our
proposed algorithm, the coordination between node and link
mappings are object-oriented. Only the solution with highest
fitness value can "survive" in the GA’s procedures. Besides,
during the evolutionary process, the embedding solution of
virtual nodes combined with associated link mapping can be
generated in the crossover and mutation operations in GA,
which is able to avoid local optima.

Secondly, a number of heuristic/metaheuristic algorithms
simplify VNE problems by separating steps, even for some
one-stage algorithms. These algorithms solve the partial prob-
lem by separating node and link stages or iterating virtual
nodes. We will discuss this part in detail in Section II. In this
paper, we consider the whole embedding solution as a single
feasible solution and then evolve feasible solutions through
GA operations. The fitness value of each feasible solution is
calculated with the coordination of all virtual nodes and links.

Last but not least, one-stage solutions usually accompany
with the cost of time complexity due to their complicated
mathematical models. Our proposal tackles this severe prob-
lem by a distributed and parallel scheme. The distributed
and parallel computing has recently emerged as an effective
mechanism to handle large and complex problems with less
time consuming and lower cost. However, a VNR includes
several VNFs and virtual links that are highly dependent
on each other making parallelism complicated, so finding
an efficient one-stage VNE algorithm is literally challenging.
In our proposed GA, the genetic operations are conducted
among different feasible solutions that are independent and
mutually exclusive. GA generally seeks for the best solution by
evaluating and improving multiple feasible solutions through
its evolution processes.

In summary, our main objective is to propose a coordinated
one-stage VNE strategy in the NFV environment to improve
resource utilization and deploy our approach in a distributed
and parallel framework to meet the time requirement in an
online scenario. The rest of this article is organized as below:
the related work is described in Section II. The network
model and objective function are presented in Section III. In
Section IV, our proposed GAOne is detailed. We illustrate our
performance evaluation results and discussions in Section V
and finally we conclude the paper in Section VI.

II. RELATED WORK

A. Previous literature

VNE problems have attracted many researchers’ attention in
the past decade. Since VNE is known as a NP-hard problem,
some exact methods formulated VNE problems as integer lin-
ear programming (ILP) or mixed integer linear programming
(MILP), bringing an exponential run-time cost. Consequently,
most of the prior studies have proposed heuristic solutions
to reduce the time complexity. Existing literature experiences
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several heuristic VNE algorithms proposed to achieve global
optimality as well as embed each given VN in polynomial
time. However, the majority of these approaches address the
VNE problem in two stages consisting of embedding all virtual
nodes and virtual links separately. Each stage tends to get a
partial solution without any performance guarantee.

Generally, two-stage unsplittable VNE algorithms involve
a greedy node embedding and a subsequent k-shortest path
(SP) link mapping [9], [10], or a ranking-based node embed-
ding and again the k-shortest path (SP) link mapping [11],
[12], [13]. Some metaheuristic methods are also proposed in
VNE problems, for example, [14] presents a particle swarm
optimization to achieve a better local selection strategy for
VNoM by adjusting possible VNE solutions and then the k-
shortest path (SP) is deployed for VLiM stage.

In terms of one-stage proposals, [5] formulated the VNE
problem as a pure MILP model. Due to the computing
complexity, the authors applies an integer relaxation so that the
solution could be obtained in polynomial time. However, the
relaxation variant is executed in two stages and the embedding
results of the relaxed model are considered as node mapping
outcome.

Di et al. in [15] proposes a one-stage VNE solution that
coordinates node mapping and link mapping. At each step,
a virtual node is mapped according to the already-mapped
virtual nodes and the connecting virtual links among mapped
virtual nodes. Therefore, the link embedding is considered dur-
ing node mapping. Besides, this approach allows backtracking
steps that can improve the probability of successful mapping
by iterating over more possible mappings.

The authors in [8] deployed a heuristic method (CAN-
A) to construct the candidate substrate node subset and the
candidate substrate path subset before conducting the ILP-
based mapping. Through the time complexity analysis in [8],
the approach reduces the execution time compared with the
pure MILP solution. However, it takes longer time than the
mentioned approaches [5]. Hence, these one-stage solutions
can be gained for small problem instances. With the network
scales increase, the embedding time still grows exponentially,
which is impractical for the online VNE problem.

Similarly, [7] deploys an one-stage heuristic mapping al-
gorithm (VNE-RTOS). For each VNR, VNE-RTOS adopts a
node ranking for both VN and SN, then conducts the greedy
embeddings for the first two highest ranked-value virtual nodes
and eventually maps the corresponding virtual links between
these nodes using SP method. This procedure iterates untill
all virtual nodes and links have been mapped. Indeed, these
approaches [15], [7] perform the coordinated mapping between
virtual nodes and virtual links. However, they neglect the co-
ordinations between virtual nodes. They map one virtual node
at a time in accordance with specific heuristic node ranking
methods. In fact, these method still separate the mapping
procedure into multiple virtual nodes’ stages. Hence, these are
not pure one-stage algorithms in essence.

With respect to metaheuristic algorithms proposed to tackle
VNE problems, most embedding solutions are only focused
on node mapping stage, and leaving link mapping stage
for k−shortest path (unsplittable-support) or multi-commodity

flow (MCF) algorithms (splittable-support). This two-stage
mapping would certainly restrict the solution spaces for the
link mapping stage. To our best knowledge, most of the GA-
based VNE solutions are conducted in two separate stages,
specializing for node mapping [16] [17] [18]. Even in our
previous study [19], a GA is merely focused on the link
mapping stage, that leaves the node mapping solved separately
by a greedy algorithm.

B. Summary

To summarize, most heuristic algorithms solve the VNE
problem in two separate stages, using relaxed ILP model or
greedy methods in node mapping stage and deploying the
link mapping by k-shortest path approach. The two-stage
methods provide sub-optimal solutions for each stage. This
separation lead to an unguaranteed result. Even some one-stage
heuristic algorithms still deploy the k-shortest path approach
for link mapping; however, these approaches still solve the
VNE problem in separate steps. For exact VNE algorithms,
they are realized in a pure one-stage operation and the majority
of them usually utilize the MILP/ILP model, causing a non-
polynomial execution time. Previous pure one-stage solution
cannot meet the time requirement for an online scenario.

III. NETWORK MODEL

THIS section elaborates on the VNE network model and
VNE problem descriptions. The main index notations

throughout this paper are listed in Table I.

A. Network Model Description

1) Substrate Network
In VNE problem, researchers usually model the underlying

SN by using the bidirectional weighted graph Gs = (Ns, Es).
The SN infrastructure is composed of a set of substrate nodes
Ns (e.g. hosts, routers) and a set of substrate bidirectional
links denoted as Es (e.g. twisted pairs).

Each substrate node ns ∈ Ns is characterized by its node
capacity C(ns), and its geographic location loc(ns). The
location of a substrate node is defined on x and y coordinates
in this paper. The substrate link esmn ∈ Es indicating the
link between substrate node ms and ns has a finite bandwidth
B(esmn). B(esmn) is always equal to B(esnm) due to the
nature of bidirectional substrate graphs. In addition, we use
P s(ms, ns) to represent the set of all substrate path from
node ms to ns. pmn is one path selected from the path set
P s(ms, ns).

2) Virtual Network
Conventionally, a VN consists of a set of dedicated network

service boxes such as firewall, load balancers and application
delivery controllers that are concatenated together to support a
specific application [20]. The VNR is modeled as a weighted
graph, denoted by Gv(ta, td, D) = (Nv, Ev, ta, td, D). Nv is
a set of virtual nodes, whilst Ev denotes a set of virtual links.
ta is arrival time of the VNR. td is the duration of the VNR and
D represents the maximum distance between a virtual node
and its associated substrate node. Each virtual node nv ∈ Nv

in a VNR has a CPU capacity requirement C(nv) and a desired
virtual node location loc(nv). The distance between a substrate
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TABLE I: Mathematical notations used in the paper

Variable Description
Ns a set of substrate nodes
Es a set of substrate links

ms,ms a substrate node
esmn a substrate link

C(ns)/C(nv) the CPU capacity of ns/ the CPU requirement of nv

B(esmn)/B(evmn) the bandwidth capacity of esmn/ the bandwidth requirement of evmn
loc(ns) geographical location of ns

P s(ms, ns) a set of substrate paths from ms to ns

pmn a substrate path from ms to ns

nv ,mv a virtual node
evmn a virtual link between mv and nv

Nv a set of virtual nodes
Ev a set of virtual links
D maximum distance between a virtual node and its associated substrate node

dis(loc(nv), loc(ns)) the distance between two nodes
N vl the number of virtual links in current request virtual network
µ(nv) the meta node of nv

Nc(nv) the set of all candidate substrate nodes of nv

M(nv) the substrate node mapping of nv

Rn() the current remaining node capacity function
M(evnm) the substrate link mapping of evnm
Re() the current remaining link capacity function
Ev

c the set of all virtual links belonging to current allocated VNRs
rb remaining bandwidth ratio
ra VNR acceptance ratio

node and the virtual node is denoted by dis(loc(nv), loc(ns)).
Each link evmn ∈ Ev has bandwidth requirement value
B(evmn) that indicates the required bandwidth between virtual
node mv and nv . We also denote N vl as the number of virtual
links.

3) Augmented Network
Inspired by the approach adopted in [5], we also create

an augmented substrate graph Gs′ = (Ns′ , Es′) for the
graph Gs = (Ns, Es). For each nv ∈ Nv , a corresponding
meta-node µ(nv) is created. Each candidate substrate node
of nv ∈ Nv is connected to the meta-node through a
bidirectional meta-link with infinite bandwidth. We set Ns′ =
Ns ∪ {µ(nv)|nv ∈ Nv} and Es′ = Es ∪ {(µ(nv), ns)|nv ∈
Nv, ns ∈ N c(nv)}. N c(nv) denotes the set of all candidate
nodes for nv . The augmented graph for the example in Fig. 1 is
shown in Fig. 2. With the augmented graph, the node mapping
and link mapping phases of the VNE problems can be solved
coordinatedly in one stage.
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Fig. 2: The augmented graph of the example in Fig 1.

Previous research [5] deploys the augmented graph to solve
the one-stage mapping problem by MILP, which has been
observed to take too much time. This is because this technique
inflates the substrate graph by introducing meta nodes and

meta edges, which in turn increases the number of variables
and constraints in the linear program.

In this paper, we still adopt this augmentation idea but
applied it in the crossover and mutation operations of the GA.
The novel approach not only keeps the integrity of the VNE
problems in one stage, but also improves the mapping speed
meeting online dynamic placement constraints.

B. Constraints of Embedding VNR

When a VNR arrives, the SN is supposed to decide whether
such request is accepted or not based upon current remaining
resources (CPU and bandwidth). If SN has enough network
resources, this request will be assigned to specific substrate
nodes (VNoM) and corresponding substrate paths (VLiM)
with adequate resource requirements. The assignment is re-
leased and the substrate resources are returned after the request
expires.

1) Constraints of VNoM
We define M(nv) as the substrate node mapping from a

virtual node nv . First, each virtual node of the same VNR
must be assigned to a different substrate node as shown in
(1). Rn(M(nv)) represents the residual CPU capacity of the
substrate node. Therefore, Rn(M(nv)) is less than or equal
to the original node capacity C(M(nv))). The the remaining
CPU capacity of the mapped substrate node should have
enough CPU capacity as described in (2). Eventually, (3)
ensures that the deviation between the virtual node nv and the
selected substrate nodeM(nv)) must not exceed the radius D
of the VNR. All of above three expressions must be fulfilled
at the same time to make sure the successful VNoM.

M(nv) 6=M(mv) (1)

C(nv) 6 Rn(M(nv)) (2)
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dis(loc(nv), loc(M(nv))) 6 D (3)
where,

nv,mv ∈ Nv,

M(nv),M(mv) ∈ Ns,

Rn(M(nv)) 6 C(M(nv))

2) Constraints of VLiM
We determine a link mapping M(evnm) from a virtual

link (from nv to mv) to a substrate path between two
substrate nodes M(nv) and M(mv) respectively. Similar to
Rn(M(nv)), Re(es) is the remaining bandwidth of substrate
link es where every substrate link in M(evnm) should have
enough bandwidth resource to allocate the virtual link as
shown in (4).

B(evnm) 6 Re(M(nv),M(mv)) (4)

where,

evnm = (nv,mv), Re(es) 6 B(es),

M(evnm) ∈ P s(M(nv),M(mv))

Re(M(nv),M(mv)) = min
es∈M(evnm)

Re(es)

Only a VNR mapping, satisfying the above-stringent con-
straints for all nodes and links, is set as a feasible solution.

C. Performance Metrics

1) Remaining bandwidth ratio
Remaining bandwidth ratio rb is the current residual band-

width of a SN over the original bandwidth of all substrate
links:

Re(Es) =
∑

es∈Es

(B(es)−
∑

{ev|esuv∈M(ev)∪ev∈Ev
c }

B(ev))

(5)

rb =
Re(Es)∑
es∈ES B(es)

(6)

Ev
c is the set of all the virtual links, which belongs to

current successfully-allocated VNRs. In fact, rb is an important
performance metric to describe the embedding’s efficiency.
For example, when there are many VNRs rejected but the
remaining bandwidth ratio remains high, which means that
the substrate network has low resource utilization and it is
wasting much available bandwidth resources.

2) VNR acceptance ratio
VNR acceptance ratio ra is determined by the number of

successfully mapped VNRs a′(τ) and the number of proposed
VNRs a(τ) during the interval time τ . In practice, the VNR
acceptance ratio, used to evaluate an algorithm’s ability of
batch processing, is an essential metric for the performance
evaluation between the VNE algorithms.

ra =
a′(τ)

a(τ)
(7)

3) Objective function
In our proposed GA, we attempt to minimize the resource

mapping costs as well as to balance the network loads. As
our algorithm tends to map a VNR within a single stage,
the objective function aims to evaluate both node and link
embeddings at once, which is also called fitness function
in GA terminology. Towards the loads of substrate nodes
and links, we enumerate all the substrate resources (CPU
capacity or bandwidth) allocated for the virtual nodes/links. It
means the fitness function in this paper considers all resource
usage for a VNR as a whole, as opposed to other heuristic
mapping approaches [5][9], which sequentially consider the
virtual nodes/links based on a ranking method. In (8), σ is
a small positive constant to prevent the zero denominator.
f iuv describes total amount of flows from u to v for the
ith virtual link under a specific mapping scenario. And xmw

denotes a binary variable, which has the value 1 if the meta
link is activated shown in (10); Otherwise, it is set to 0.
0 6 αuv 6 Re(esuv) and 0 6 βw 6 Rn(ws) are parameters
to control the significance of load balancing during the VNR
mapping.

min F =
∑

esuv∈ES

αuv

Re(esuv)−
∑

i f
i
uv + σ

+
∑

ws∈NS

βw

Rn(ws)−
∑

mv∈Nv

xmwC(m
v) + σ

(8)

where,

f iuv = B(ev), if esuv ∈M(ev) ∪ ev ∈ Ev
c (9)

xmw =

{
1, if M(mv) = ws

0, otherwise
(10a)
(10b)

Several prior solutions apply linear objective functions to
facilitate the optimization process. In GA, a non-linear objec-
tive function has similar computing complexity with a linear
one. The paper [21] has shown that a non-linear objective
function outperforms a linear one due to the increased re-
source utilization. In a non-linear function, the fitness value
FNLP grows more quickly than using a linear function when
network costs increased. Furthermore, equation (8) is intended
to restrain the link mapping in case the residual bandwidth
is limited. Obviously, a non-linear objective function like
(8) improves the resource utilization efficiency since a small
residual substrate resource may cause resource fragmentation
and it is hard to be utilized for future VNRs under the
unsplittable mapping.

IV. PROPOSED ONE-STAGE ALGORITHM

Inspired by the process of natural evolution, a set of meta-
heuristics for global optimization are proposed in Evolutionary
Computation (EC). GA, one of the EC techniques, has been
successfully proven to produce a great performance for solving
the multi-objective optimization problem with flexibility and
adaptability. GA repeatedly updates a population of individual
solutions. At each step, the algorithm typically selects parents
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from the population, and then uses them to reproduce children
solutions for the next generation. The population is evolved
towards an optimal solution after successive generations.

GA algorithm is made up of four operations: initialization,
selection, crossover and mutation [22]. The first step is to ran-
domly generate some possible solutions called chromosomes
as the initial population. After initializing the population, the
quality of each possible solution in the population is mea-
sured through the fitness function. In the selection operation,
parental chromosomes are selected from the population and
then produce their offspring by exchanging genes in crossover
operation. Before the children chromosomes are generated
and put into the population, mutation operation is performed
by randomly tweaking genes to increase the diversity of the
population. GA algorithm is an iterative procedure until a
terminating condition has been reached. The chromosome with
the best fitness value becomes the final solution.

The advantages of deploying GA in VNE problems could be
summarized in three points. First, GA is a mature metaheuris-
tic algorithm which has been proved to be effective and widely
exploited in different areas. There are already some previous
research [16] [17] [18] [19] applied GA in VNE related
problems, which has a good performance. Second, Meta-
heuristic algorithms have great potential for online dynamic
VNE problems since they provide near-optimal solutions as
well as meeting strict time requirements. Besides, the paper
[23] reveals that the GA metaheuristic has better performance
than ant colony metaheuristic, which inspires us to develop a
GA decision-making approach for VNE. Finally, by utilizing
the exclusive features among feasible solutions, GA is such
an approach to be naturally implemented in parallel [24].
The easy-composition peculiarity makes GA applicable in a
distributed and parallel framework, thus further reducing the
execution time.

To tailor GA in VNE problems, we refine the GA repre-
sentation in a distributed parallel architecture. As mentioned
above, SPs cares much on the execution time of online VNE
problems. With the decreasing cost of computing devices and
the rapid development of cloud technology, distributed and
parallel computing has recently emerged as an effective mech-
anism to tackle large and complex problems. As illustrated
in Fig. 3, our proposed GA can be run in several machines
in a distributed manner. Except the first step refining the
set of candidate nodes and the last synchronization step, the
other procedures can be conducted by slave node machines in
parallel. These machines operate GA algorithm independently
to achieve feasible VNE embedding solutions that coordinate
nodes and links in the same pace. In our framework, only
the original requests with refined constraints and the mapping
results are transmitted between the master and slave machines.
There is no extra communication cost during the slave proce-
dures. Therefore, the benefits of parallel working scheme is far
beyond the extra cost between the master and slave machines.

In detail, each slave machine starts with the selection of an
initial population. Then it deploys the crossover and mutation
operators to reproduce offspring. These produced offspring
are added and sorted for the next generation. If parents have
better fitness values which are calculated through our objective

Start

Initial Population

Selection &CrossOver

Sorting Population

Mutation?

No

Yes Do Mutation

Initial Population

Selection &CrossOver

Sorting Population

Mutation?

No

Yes Do Mutation. . .  

Slave Node
X1

Slave Node
Xn

Synchronization
Tsyn

Terminating?

Finish

No No

Terminating?

No

Terminating?

No

Refine the set of candidate nodes
Tcs

Allocating mapping
Tm

Yes

Fig. 3: Parallel execution flow chart

function described in (8), their offspring have a better chance
to "survive". This process keeps iterating until the number of
predefined iterations have been reached and at the end, the
fittest individuals are achieved.

A. Refine the sets of candidate nodes

As described in Section III, we represent the set of all
candidate nodes for a virtual node as N c(nv). This set includes
all substrate nodes within the distance limitation of the virtual
node. Moreover, there are additional rigorous constraints of
mapping a virtual node as shown in (1) and (2). In this step, we
check all the node constraints with current available resources,
and later process the candidate nodes sets. Its initiative is to
avoid infeasible substrate nodes forming the population and
make the following genetic productions more effective.

B. Parallel slave procedure

After the candidate nodes have been refined by node map-
ping constraints, the slave nodes begin the GA procedures
independently. In EC, the primary step is to design a proper
genetic representation for a specific problem. Consequently,
we present the genetic representation and feature the genetic
operations as below.

1) Genetic representation
The representation scheme determines the way of repre-

senting solutions in EC methods. GA terminology is usually
analogous with natural genetics, using linear binary encoding
and fixed length representations. In this paper, a candidate
solution is called a chromosome which consists of several
genes. In NV, a VNR can consist of several virtual links which
connect virtual nodes together. The number of virtual links are
variable, and the path length of each link embedding is also



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS 7

inconstant. Therefore, we proposed variable length represen-
tations that are more complicated than the most general case.
Our proposed GA encoding method denotes each gene as a
VNR link mapping solution based on an augmented graph.
That is to say, a gene is started and ended by meta links and
each chromosome acts as a VNR mapping solution.

Specifically, the procedure begins with a set of chromo-
somes which are called a population. A chromosome ci
denoted by (11) represents a feasible solution for mapping a
VNR to a SN. Since N vl indicates the number of virtual links
for a request, there are totally N vl genes in a chromosome. A
gene gij is a mapping solution for the corresponding virtual
link. The first subscript i indicates its chromosome whereas
the second subscript j denotes the jth virtual link in the
chromosome. Similarly, a node denoted by nijk can represent
a substrate/meta node. The first two subscripts indicate its gene
while the third one denotes its position in the gene. Moreover,
a gene can be denoted by (12) with a variable length dij .
The first and the last links in a gene are the meta links that
represent the node mapping result while the intermediate links
indicate the link mapping solutions. Therefore the first and the
last nodes of a gene should be meta nodes. Each gene gij can
be divided into two partial paths as (13): head Hijk and tail
Tijk, where k is the index of node in the gene.

ci = {gi1, gi2, ..., gij , ..., giNvl} (11)

gij = {nij1, ..., nijk, ..., nijdij
} (12)

gij =
[
Hijk,Tijk

]
, ∀k ∈ (0, dij) (13)

where,
Hijk =

[
nij1, nij2, . . . , nijk

]
Tijk =

[
nij(k+1), nij(k+2), . . . , nijdij

]
2) Initial Population
Setup an initial population is the first step in the GA process.

The population P is composed of a set of chromosomes,
where each chromosome is a feasible solution for embedding
a VNR. There are two steps to constitute a chromosome. The
first step is to randomly choose the substrate nodes for each
virtual node from the set of candidate nodes. After all the
substrate nodes have been selected, all the meta links are set
in a chromosome. The second step is to find a substrate path
for each gene. We need to come up with some "good" potential
substrate paths in the SN for mapping virtual links. Eventually,
shortest paths based on hop count factor are certainly more
favorable because they tend to consume fewer resources. We
identify K shortest paths for each source-destination pair in
the SN. Existing K shortest path algorithm (e.g. Dijkstra’s
algorithm) can be reliably deployed to build the path pool.
The path pool is only dependent on the SN topology that can
be constructed before any online VNR arrives, and it can be
also reusable during the mapping procedure. Therefore, we do
not count the time for this process as part of the time for our
online embedding procedure.

According to the path pool, we finish the second step by
uniformly selecting a path for each gene. We use uniform
selection for both steps instead of another specific order

because if all initial populations are chosen by a deterministic
method, all parallel working machines will work with the same
population, which makes parallel running meaningless.

After a chromosome is formed, we do check the feasibility
of the chromosome as described in Section III-B. If the SN
has enough resources to allocate all genes of the chromosome,
such chromosome is regarded as a feasible solution. Generally,
only the feasible chromosome is added to the population.

P =



c1
c2
...
ci
...

cM


=



g11 . . . g1j . . . g1Nvl

g21 . . . g2j . . . g2Nvl

...
. . . . . .

...
gi1 . . . gij . . . giNvl

...
. . . . . .

...
gM1 . . . gMj . . . gMNvl


(14)

Otherwise, if the chromosome candidate does not pass the
feasibility measurement, we will go back to step 1 to select and
check another candidate chromosome again. This process con-
tinues until a feasible chromosome is selected. In some special
cases, the randomly initialization process could not find a
feasible chromosome due to the exhausted available resources.
Instead of rejecting the VNR directly, we select and stamp
some infeasible chromosomes into the population. Therefore,
the VNR still have chance to enter crossover and mutation
operations to produce feasible children chromosomes. After
initialization, the population P in Equation (14) basically has
M chromosomes, and each chromosome has N vl virtual links.
Thus, the size of P is M ×N vl.

3) Selection and Crossover
Selection operation is conducted to choose parent chromo-

somes from the initial population for the crossover operation.
In general, one or several pairs of parent chromosomes can be
chosen from this step. Each selected parent pair then performs
crossover operation. In this paper, to improve the degree of
parallelism, we only choose one-pair parents. We arrange the
selection scheme based on random selection with replacement
as paper [19]. The replacement means the parent chromosomes
will be put back into the population after crossover.

The crossover operation based on genes operates each gene
with its corresponding gene in the other parent chromosome.
Let take two selected parent chromosomes are cs and cr
as an example. We use c(M+1) and c(M+2) to denote the
two new children chromosomes generated from the parent
chromosomes. The genes inside parent chromosomes can be
denoted as gsj and grj , where j indicates the jth virtual link
of a request. Obviously gsj and grj have the same starting
and ending meta nodes. Each chromosome should exchange
partial genes with its counterpart through a crossover point.
For each pair of genes, we first identify a common node. If
there is a node nsju in gsj is equivalent to a node nrjv in
grj , where u and v are not the indices of source or destination
node, we denote the node as a common node. As a result, there
are two scenarios in the crossover operation:

a) : There are more than one common node in parental
genes. Thus, one common node is selected to become the
crossover point. With the common node known as the demar-
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cation point, we swap the second parts of two corresponding
genes to generate two children genes. Apparently, such chil-
dren generated in this fashion are still valid paths. The children
genes (15) and (16) are defined as below:

g(M+1)j =
[
Hsju,Trjv

]
(15)

g(M+2)j =
[
Hrjv,Tsju

]
(16)

b) : There is no common node between two-parent
genes. In this case, a link is selected as the crossover point in
each parent gene. To make sure the children’s genes are still
a valid path, a partial path obtained from the shortest path
pool connects the children genes. For instance, we randomly
select link (nsju, nsj(u+1)) as a crossover point for gsj , and
then select (nrjv, nrj(v+1)) for grj . A substrate path between
nsju and nrj(v+1) is chosen from the source-destination path
set P s(nsju, nrj(v+1)). Similarly, a substrate path is picked
from P s(nrjv, nsj(u+1)) to connect the partial child genes.
The results of crossover operator without the common node
should be (17) and (18).

g(M+1)j =
[
Hsju, pnsju,nrj(v+1)

,Trj(v+1)

]
(17)

g(M+2)j =
[
Hrjv, pnrjv,nsj(u+1)

,Tsj(u+1)

]
(18)

After crossover, the child gene may contain loops, which
is an invalid path. Hence, each gene will have the vali-
dation check to remove loops. Subsequently, we build the
children chromosomes from children genes through previous
crossover operations. Previous research [19] only performs the
crossover operation in the link mapping stage, and there are
2N

vl

combinations to form a chromosome. In the proposed
algorithm, the node mapping solution is indicated by the meta
links in the genes, which may be messed after the exchange
operation in the crossover. Specifically, when the crossover
operation is conducted, the parent genes will swap partial
nodes and generate the children genes. This operation will
intermingle the node mapping combinations due to the meta
links exchanged between parent genes. Therefore, we have
to carefully organize the children genes and a virtual node
mapped into the same substrate node in different genes of a
child chromosome. Indeed, there is only one way to compose
the children chromosomes based on the node mapping results
in each gene crossover.

The composition of a chromosome becomes a matching
problem [25] in graph theory. It means that, for a given
VNR, a matching is a set of pairwise non-adjacent virtual
links, none of which are loops. The matching problem could
be explained as the graph coloring problem, which requires
different colors for the all adjacent nodes. A special case in
the matching problem is that the request is a bipartite graph,
whose nodes can be divided into two disjoint and independent
sets, and every link connects a node from a set to one in the
other set. Determining whether or not the graph is bipartite is
computable in linear time using breadth-first search or depth-
first search.

Taking Fig. 1 as an example, the VN is a bipartite graph. We
select the meta links in parent chromosomes as demonstrated

in Fig. 4, after crossover the genes A − B and B − C, the
children genes could be integrated into children chromosomes
without node mapping disorder.

A-a

B-d

C-f

A-c

B-e

C-g

Meta links in parent chromosome Cs Meta links in parent chromosome Cr

After crossover

children chromosome C(M+1)

A-a

B-e

C-f

A-c

B-d

C-g

children chromosome C(M+2)

Fig. 4: Node mapping results after crossover for a bipartite graph

However, the VNR sometimes is not a bipartite graph. For
example, a request contains a triangle: there is a extra virtual
link between A and C for the request in Fig. 1. As shown in
the blue solid line of Fig. 5, when crossovering the gene A−C,
the meta links in the child gene will lead to the node mapping
of virtual node A to substrate node c, which is contrary to
the result of crossover of the gene A−B where virtual node
A is mapped to a. To deal with this issue, we identify some
virtual links in the VN as free crossover links and others to
be restricted crossover links. The restricted crossover links
limit the meta link exchange in the crossover operations to
avoid node mapping disorder. Additionally, we prefer as many
free crossover links as possible in a non-bipartite VN, thereby
increasing the crossover freedom for the gene production. To
recognize and maximize the free crossover links in a non-
bipartite VN, the problem could be modeled as a maximum
cut problem [26]. The maximum cut problem is to find the
largest bipartite subgraph of the current graph. It has been
proved to be a NP-complete problem.

Therefore, we determine the free crossover links (eg. A−B
and B −C) and the restricted crossover links (eg. A−C) by
identifying the largest bipartite subgraph in the VN. It is noted
that the crossover operations happens in free crossover links.
To compose a chromosome, after coloring the bipartite sub-
graph, the restricted crossover links are appended according
to the node mapping results.

A-a

B-d

C-f

A-c

B-e

C-g

Meta links in parent chromosome Cs Meta links in parent chromosome Cr

Fig. 5: Node mapping results disordered after crossover

4) Mutation
Mutation operation aims to expand the solution space and

broaden the search, thereby avoiding local optima. In this
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paper, the mutation operation is relied on genes as the same the
crossover operation. Each gene in the children chromosomes
c(M+1) and c(M+2) goes through the mutation operation
with a fixed probability called mutation rate. The traditional
method is to choose two nodes called mutation points in
a gene and the partial path between these two nodes will
be replaced by an alternative path from our path pool [19].
In our proposed algorithm, a gene based on the augmented
graph represents both virtual node and link mapping results.
If the node mapping result is mutated, all genes in a children
chromosome have to be updated. The mutation procedure is
shown in Algorithm 1.

The first step is to check if a meta link is included between
the mutated nodes, which means one of the mutation points is
a meta node. In addition, a meta link represents the mapping
of a virtual node to a substrate node; as a result, we have
to update the node mapping over the whole chromosome if
meta link mutation occurs. To mutate a node mapping of nv ,
an alternative nodes ms from our refined candidate node set
N c(nv) is selected. Consequently, ms will replace the current
mapping node ns. We evaluate the new node ms and the non-
meta mutated node as the updated mutation points. Finding
all other genes including the node µ(nv) and updating all
corresponding meta links by the new substrate node mapping
result are a must. As we know that the genes are valid paths
in the augmented graph; hence, if we change one node in the
gene, we have to make sure the gene is still a connected path.
The new node ms is an intermediate node which connects to
a meta node and a substrate node.

Accordingly, we replace the new node ms as the updated
mutation point for the next step. Then the mutation operation
goes to the second step: path mutation. An alternative path
chosen from the path pool substitutes current partial route and
connects two updated mutation points.

Algorithm 1 Mutation Operation

1: procedure MUTATION
2: for a gene in a chromosome do
3: Generating mutation points
4: Selecting two nodes in the gene as mutation points
5: if a selected node is a meta node µ(nv)
6: goto node mapping mutation
7: else:
8: goto path mapping mutation
9: procedure NODE MAPPING MUTATION

10: Selecting an alternative node ms from N c(nv)
11: make M(nv)= ms

12: for all genes contain µ(nv) do
13: Replace M(nv) as the mutation point
14: goto path mapping mutation
15: procedure PATH MAPPING MUTATION
16: choosing an alternative path between two mutation

points from path pool

5) Sorting population
After crossover and mutation operations, two children chro-

mosomes are created. Then, it is the time to update the
population for the next generation. The new chromosomes are
sorted by their fitness values together with other chromosomes.
Only the best M (population size) chromosomes are saved
as in the updated population. A new iteration starts with the
updated population that goes to the selection procedure to
figure out parents for another crossover and mutation forming
the succeeding generation. This procedure will be ultimately
stopped when the maximum count is reached or there are no
different children chromosomes available.

C. Synchronization and Allocation

The synchronization starts when all slave working nodes
have terminated their GA procedures. The best chromosomes
from each slave working nodes are synchronized and could
become the initial population for the next round slave pro-
cedure. Finally, the best chromosome after synchronization is
the final VNE solution. The last step is to allocate the VNR,
then the residual resources of the SN get updated.

D. Execution time analysis

In terms of execution time in online VNE problems, SPs
expects to achieve rapid and efficient online embedding. By
utilizing the parallel distributed framework, the execution
time can be extremely reduced with sufficient computing
resources. In this paper, we define the number of slave working
procedures as the parallel level. The parallel level can be
tuned according to the trade-off between available computing
resources and the expected performance.

To analyse how much time could be saved in the proposed
distributed parallel architecture, we firstly need to consider the
time spending without a parallel structure. It means all slave
procedures running sequentially. The total time consuming for
sequential running can be calculated by the sum of each par-
allel slave procedure. Therefore, the complexity for sequential
running grows linearly along with the parallel level.

In parallel running paradigm as shown in Fig. 3, there
are two procedures running sequentially: refining the set of
candidate nodes (Tcs), synchronization (Tsyn), and allocat-
ing VNR(Tm). These procedures, through simulation, only
accounts for 0.9% of the total parallel execution time on
average as depicted in Fig. 10. Therefore, we approximate the
total parallel execution time as the execution time of parallel
running procedures. In terms of parallel running procedures,
the execution time is equal to the maximum execution time
amongst all parallel nodes because the synchronization pro-
cedure should wait until the slowest parallel node finishes its
task.

Furthermore, we evaluate the upper bound of the mean
value of the total parallel execution time according to Cramer-
Chernoff method and Jensen’s inequality. Finally, we found
that the parallel running scheme can improve the execution
time from linear time to logarithmic time. The detailed deriva-
tion can be found in [19].
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TABLE II: Compared Algorithms

GAOne Our proposed parallel GA for one-stage mapping.

PBGA Greedy worst fit node mapping
parallel Path Based GA Link Mapping.

SBGA Greedy worst fit node mapping
parallel Segment Based GA Link Mapping.

G-SP Greedy worst fit node mapping
Shortest path based link mapping.

R-ViNE Randomized node mapping
unsplittable link mapping based on shortest path.

D-ViNE Deterministic node mapping
unsplittable link mapping based on shortest path.

V. PERFORMANCE EVALUATION

This section presents the simulation settings followed by
the performance results. We select the rival algorithms with
the same evaluation environment to make the comparison
fairly. These algorithms are listed in Table II along with our
proposed Genetic-based algorithms. The compared algorithms
we chose are based on the performance-oriented and speed-
oriented aspects.

Specifically, we selected DViNE and RViNE in [5] since [5]
is the most popular VNE research work and also considered
as a benchmark in several research papers, even in recent
research. Besides, these two algorithms formulate the VNE
as MCF-based model using the augmented graph. Moreover,
SP [9] is considered for comparison because it uses the
shortest path algorithm for link mapping stage, which is widely
deployed by a numerous number of heuristic algorithms as
mentioned above, and also because it is known as the fastest
algorithm due to its simplicity. In addition, we compared our
proposed algorithm with [19] that merely employs a GA in
link mapping stage. Comparing with [19], we can clearly
learn about how much our one-stage algorithm improves the
performance.

A. Simulation settings

We set up the simulation parameters with the same settings
in [5] and [19]. We randomly generate three different SN
typologies with average 50 nodes in 25×25 grids by Waxman
algorithm. All the simulation results are gotten from the
average based on these SNs. CPU capacity and bandwidth
resources of the SNs are real numbers uniformly distributed
between 50 and 100. We assume that the VNRs dynamically
arrive in a Poisson distribution with average rates ranging
from 4 to 8 requests per 100 time units, and each has an
exponentially distributed lifetime with an average of 1000 time
units. Each simulation was run for 50000 time units that are 50
times longer than the average lifetime of a request. Basically,
we have 6 simulations for each SN. Each VNR consists of
various numbers of virtual nodes and virtual links. The number
of virtual nodes follows a uniform distribution between 2 and
10. CPU capacity requirements of virtual nodes are uniformly
distributed from 0 to 20 whereas the bandwidth requirements
of the virtual links are uniformly distributed from 0 to 50.

B. Performance metrics

• Acceptance ratio ra: the percentage of the number of
accepted VNRs calculated in (7).

• Execution time: the average time consumed for allo-
cating a VNR. All algorithms are executed on Ubuntu
18.10 64-bit with 7.7GiB memory and Intel Core i5-
6200U CPU@2.30GHz×4, and the linear program solver
used in D-ViNE and R-ViNE is glpk same as [5].
• Remaining bandwidth ratio rb: the sum of bandwidth

of all available substrate links as shown in (6).

C. Evaluation Results

The performance metrics in this article include average
acceptance ratio, remaining bandwidth ratio, embedded path
length and the execution time analysis. We pay more at-
tention on link utilization analysis than node utilization in
simulation, since we assume the node mapping is unsplittable.
The acceptance ratio in Fig. 6 can somehow indicate the
node utilization. Generally, the link mapping solution contains
multiple substrate paths, thereby deserving more attentions in
this paper. Fig. 6, 7, 8 describe the average values over arrival
rates from 4 to 8 per 100 time units with 95% CI (confidence
interval).

The execution time is measured for each procedure as shown
in the Fig. 3. Procedures running in the master node have to
be executed in sequential while the parallel procedures can
be independently performed. Hence, the execution time of
the parallel procedures depends on the maximum execution
time amongst all parallel working machines since the paral-
lel algorithm should wait until the slowest parallel machine
accomplishes its task. The time complexity and convergence
analysis of a distributed parallel architecture had been dis-
cussed in paper [19]. In a nutshell, the parallel scheme can
be finished in logarithmic time. According to the convergence
analysis [19], the acceptance ratio reaches converged values
when the parallel level goes up to 16. Definitely, the parallel
level can be adjusted freely regarding a time restriction or a
highly expected acceptance requirement. We set the parallel
level (the number of slave parallel machines) as 16 in the
simulation.

1) VNR Acceptance Ratio
Fig. 6 shows the average VNR acceptance ratio as a function

of the VNR arrival rate. As cited, VNR acceptance ratio is one
of the most vital metric to evaluate different VNE algorithms.
In Fig. 6, the acceptance ratios of all selected algorithms
decay with the increase of VNR arrival rates. It is because the
substrate network is getting congested and it does not have
enough resources for embedding the VNRs.

Besides, we can find our proposed GAOne algorithm outper-
forms other selected algorithms over all arrival rates. The dif-
ferences between the best compared algorithm and GAOne is
more than 10%. This result indicates that GAOne is an efficient
and effective VNE algorithm. This observation also implies
that our GAOne with a comprehensive objective function can
generate more efficient solutions. Moreover, the results verify
the benefits of one-stage strategy.

2) Average remaining bandwidth and average path length
The average remaining bandwidth ratio is plotted in Fig.

7. Similar with VNR acceptance ratio, the average remaining
bandwidth ratio of every selected algorithms decreases along
with the increase of arrival rates.
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Fig. 6: Average acceptance ratio over arrival rates
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Fig. 7: Average remaining bandwidth over arrival rates

Combined with the results in Fig. 6, the greedy solutions
(G-SP, D-ViNE, R-ViNE) occupy more network resources
in Fig.7, while the load-balanced solutions (GAone, SBGA,
PBGA) utilize the bandwidth more efficiently. We can observe
that the greedy solutions consume more substrate link re-
sources when embedding a virtual link. This recognition where
the load-balanced algorithms save much more the bandwidth
resources for future VNRs saving derives from less average
path lengths shown in Fig.8.

Moreover, amongst the load-balanced solutions, our pro-
posed GAOne takes the least path length and has smaller
remaining bandwidth ratio. The efficiency of our proposed
GAOne leads to accepting more VNRs as shown in Fig. 6.
This observation depicts the higher bandwidth utilization of
GAone compared to SBGA and PBGA algorithms.

3) Time complexity
As shown in Fig. 9, D-ViNE and R-ViNE need much more

time to approach a VNE solution due to their relaxed linear
programming mechanism. In particular, D-ViNE consumes
more time than R-ViNE due to its deterministic variation. The
G-SP performs the greedy node mapping and greedy shortest
path link mapping, which simplifies the problem with small
consuming time. However, G-SP still takes longer execution
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Fig. 8: Average path length analysis
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Fig. 9: Total execution time over different algorithms

time than the solutions in our distributed parallel framework.
With regard to the parallel algorithms, SBGA and PBGA

essentially realize a partial parallelism as they separate node
and link mapping and run the node mapping stage sequentially.
The average execution time is 18.74ms and 16.62ms for SBGA
and PBGA respectively. SBGA consumes more time because
it considers the path restructuring while PBGA is a path based
algorithm. Our proposed algorithm GAOne considers the path
restructuring as well as the node remapping and takes 16.05ms
to allocate one request on average. The gain of execution time
of GAOne is from the fully parallel running mechanism of
one-stage strategy.

Moreover, as exposed in Fig. 10, four procedures with
average execution time are simulated in our proposed GAOne
algorithm. Parallel running procedures Tx takes the most
time whilst other sequential functions relatively take less time
compared with the parallel working procedure. The parallel
procedure takes 99% of the total time, which implies our
proposed framework realises a full one-stage based on the
distributed parallel scheme.

VI. CONCLUSION

This paper presents a one-stage VNE solution which has
merely received a few research investigations due to its
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complexity. Our proposed solution utilizes a novel GA in
an augmented graph combined with Graph Theory to solve
the VNE problem without separated stages. Comprehensive
simulations are conducted to prove the effectiveness of the
proposed algorithm. Performance results show that the GAOne
algorithm outperforms typical heuristic algorithms. With re-
spect to average VNR acceptance ratio, the proposed GAOne
exceeds other selected algorithms at least 10%. In terms of
execution time, GAOne algorithm reduces the time complexity
to logarithmic time through a distributed parallel paradigm.
The simulation demonstrates that our proposal consumes much
less execution time than all other rivals. In addition, the
results confirm our argument that the one-stage mapping
greatly broadens the solution space and provides more efficient
mapping results.
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