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Abstract—We have seen the tremendous expansion of ma-
chine learning (ML) technology in Artificial Intelligence (AI)
applications, including computer vision, voice recognition, and
many others. The availability of a vast amount of data has
spurred the rise of ML technologies, especially Deep Learning
(DL). Traditional ML systems consolidate all data into a central
location, usually a data center, which may breach privacy and
confidentiality rules. The Federated Learning (FL) concept has
recently emerged as a promising solution for mitigating data pri-
vacy, legality, scalability, and unwanted bandwidth loss problems.
This paper outlines a vision for leveraging FL for better traffic
steering predictions. Specifically, we propose a hierarchical FL
framework that will dynamically update service function chains
in a network by predicting future user demand and network state
using the FL method.

Index Terms—Service Function Chaining, SFC, Federated
Learning, FL, Dynamic

I. INTRODUCTION

Network Function Virtualization (NFV) implements Net-
work Functions (NFs) and middlebox services in software
instead of purpose-built hardware appliances [1]. NFs are
commonly chained, where a packet is handled by a succession
of NFs, known as Service Function Chaining (SFC), before
being forwarded to the destination. SFC plays a vital role in
next-generation networks supporting technologies such as 5G,
IoT, and edge computing.

SFC orchestration is considered an NP-hard problem. Most
previous work either focused on static or dynamic orches-
tration. However, these methods are heuristic and do not
adapt to the traffic trend in the network in large state spaces.
There is a need for a dynamic operation to achieve service
chaining, which will reduce configuration and management
complexities. With the emerging programmable networks [2],
[3], the time has come to re-think the network architecture to
leverage the benefits.

Deep Learning (DL) systems can absorb a large amount of
data and execute several tasks that occasionally surpass human
performance. Traditional DL systems are usually centralized,
storing and processing all data. This creates a new set of chal-
lenges, such as privacy and confidentiality of the dataset and
scalability. Federated Learning (FL), a decentralized learning
process, can be a solution for dynamic orchestration while
preserving users’ privacy.

Self-driving networks are becoming the trend [4]. With self-
driving networks, network operators merely define high-level
intentions, and the network is self-managed. The ambition of
a self-driving network is appealing, but how to achieve it is
an open question. This paper proposes a novel method for
improving service chaining orchestration. We lay out a vision
for leveraging FL for better traffic orchestration prediction.
The FL approach can predict user demand and network state
to aid dynamic traffic steering decisions. Our FL framework
consists of multiple FL agents in the network running the DL
model on local data and sharing the DL model’s high-level
features with the central controller for global model training.

This paper will cover a background on FL concept and
related work in Section II, problem statement and motivation
in Section III, opportunities and challenges in Section IV,
current status in Section V, and finally, a conclusion in Section
VI.

II. BACKGROUND AND RELATED WORKS

This section will include background details on Federated
Learning (FL) in subsection II-A and related work in Subsec-
tion II-B.

A. Federated Learning (FL)

Google researchers first proposed the FL idea in 2016 [5]
as a viable solution to the problems of communication costs,
data privacy, and legality. FL seeks to create a collaborative
ML model based on participants called ’clients’ while a
central coordinator called ’server’ oversees the process. The
FL consists of two phases: model training and model inference.
During model training, clients (end devices, organizations, or
individuals) use local data to train local models and then
share high-level model features with a server; no user data
is exchanged between the client and the server. The server
gathers the trained high-level features to create and update
a higher-level model, which sends back model parameters to
the clients for local model refining. In the inference phase,
clients use the refined models to process their data. In a
formal manner, consider N client data owner Fi, i = 1, ..., N
participating in training an ML model using their respective
datasets Di, i = 1, ..., N . In a conventional approach, all data
Di, i = 1, ..., N are collected together at one server to train
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an ML model MSUM . In the FL approach, client data owners
collaboratively train a model MFED without collecting all data
Di, i = 1, ..., N into a centralized location.

B. Related Works

Over the past few years, many SFC orchestration approaches
have been proposed. NFVdeep [6] proposed to deploy SFCs
for requests with different QoS requirements automatically.
Deep reinforcement learning, serialization and backtracking
methods were used to deal with SFC deployment in the real-
time network. STAR [7] divides the entire routing path into
several path segments. It leverages the characteristics of path
segments to allow packets from different requests to share the
same forwarding rules. In [8], the authors present a learning-
based (deep-Q learning) dynamic VNF scaling scheme to
adaptively trigger and perform VNF resource scaling and mi-
gration decisions based on detected traffic statistical changes in
a real-world non-stationary traffic trace, in order to satisfy the
probabilistic delay requirement consistently. However, none of
the abovementioned works consider the whole SFC process
dynamically.

We found one paper [9] focusing on a similar topic, SFC
orchestration. The paper proposed a novel scalable SFC chain-
ing algorithm for NFV-enabled networks through a federated
reinforcement learning technique. However, their work is
limited to Virtual Machines (VMs) and does not scale to large-
scale networks.

III. PROBLEM STATEMENT AND MOTIVATION

Previous research papers proposed solutions for different
kinds of issues to improve SFC: chain composition and load
balancing [10], making NF software-defined [11], parallel NFs
[12], dividing chain into sub-chain connections between hops
[13], enhancing OS scheduler for NFs chain fairness [14],
support L4-L7 middleboxes [15], adding In-band Network
Telemetry (INT) to NF [16], fault-tolerant to the entire chain
[17], and performance diagnosis tool for NF chain using
queuing periods [18]. Notably, the last few articles (years)
have focused on improving the chain, not on its dynamism.

Future direction/research in improving SFC has been dis-
cussed recently. In [19], the author proposes improving the
SFC architecture with a well-synchronized monitoring system
that collects the necessary network data. In [20], the author
mentioned that a dynamic scenario in the real world is still an
open research area. Furthermore, the author in [21] identified
that “research on the SFC traffic steering problem is in its
infancy” and added that the online dynamic SFC orchestra-
tion field in inter-DC multi-domain scenarios is still a big
challenge. Finally, [22] highlighted that more work is needed
to get the current network state and dynamically update the
current Service Function (SF) path in real time.

In our previous work [23], we designed and implemented an
SFC network in Kubernetes using the Network Service Mesh
framework. Further, we demonstrated a prototype [24] that
dynamically allows users to deploy network function chains
using a web interface-based orchestration. However, our work

falls short in predicting user and network states to achieve
better traffic orchestration.

Our analysis of the previous works mentioned in this
section, future research directions, and our learned lessons
indicate a lack of a flexible and efficient solution for a dynamic
SFC framework. All research papers focus on adding a new
feature to improve SFC (such as adding parallel NFs or
adding INT to NFs). However, no research paper focused on
improving the SFC framework to make it dynamic. Therefore,
we were motivated to propose a dynamic SFC framework.
Our general goal is to lower costs by using resources more
efficiently. Specifically, we suggest using a more dynamic SFC
to increase resource efficiency. Dynamic SFC has overhead,
which raises scalability challenges. We propose hierarchical
FL (HFL) to minimize the overhead and achieve scalability. A
side benefit is privacy that comes with FL architecture. HFL
imposes challenges, and we focus on how to predict the future
network state and user demand to dynamically update SFC in
the network to achieve better traffic orchestration in the next-
generation network. To tackle this challenge, we must consider
two critical questions in the design process. The first question
is, what are the challenges to collecting dynamic information
on network state and user demand? The second question is
how to distribute high-level features.

IV. OPPORTUNITIES AND CHALLENGES

Many research and standardization projects have enabled
the SFC paradigm, although most have concentrated on one
administrative domain. Due to lack of resources, tight latency
or resilience requirements, or functional reasons, a service
may need deployment in more than one domain. In SDN
and NFV, cloud servers supply compute resources for VNFs,
which compose the SFC. After the placement process, traffic
needs to be routed between VNFs. This problem is exacerbated
when VNFs are located in different domains, facing routing
difficulties. Furthermore, SFC requires dynamic operations
to reduce configuration and management complexity. Here,
an FL architecture in subsection IV-A can be leveraged to
provide solutions for a dynamic network operation described
in IV-B that would remove the scalability addressed in IV-C
and bandwidth utilization and privacy issues discussed in IV-D.
However, this will introduce new challenges in IV-E, which
need further research.

A. Architecture Proposal

The framework we argue for leverages a critical feature of
FL architecture: the decentralized concept. Figure 1 illustrates
the proposed framework. The HFL framework consists of an
FL central controller with multiple FL agents across numerous
domains. Each FL agent will use local data to train a local DL
model and send the high-level features to the central controller.
The central controller uses the aggregated local features to
train a global DL model that can predict global traffic states
and demands in longer terms. This process iterates as much as
needed until an optimal solution is achieved. Meanwhile, the
central controller sends parameter recommendations from its
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global model to the agent in each domain so that each agent
can refine its model to incorporate global features. During the
inference phase, agents will feed dynamic high-level traffic
features to the central controller. The central controller can
then predict global long-term traffic trends among different
domains and distribute them to the agents in each domain.
By utilizing these high-level features, the agents in each
domain can predict local traffic more accurately and help SDN
controllers schedule resources in both the long and short terms.
Hence, the SDN controller will update the network switches
accordingly. We propose the FL agent reside on servers and not
switches because switches have limited resources for the FL
agent to run on, and secondly, switches only see traffic flow. In
contrast, servers provide actual workload and resource usage.

Fig. 1. Hierarchical FL (HFL) Architecture

B. Dynamic Operation

Dynamic SFC has multiple dimensions, which include dy-
namic flow migration, resource scheduling/embedding, and
resource scaling. Dynamic resource management among em-
bedded services is vital to enable efficient and fair service
delivery over virtual networks with a QoS guarantee. Although
dynamic operation for SFC has been studied before, more
work is needed to develop a dynamic system with all di-
mensions. One of the essential opportunities FL provides is
its dynamic nature. Stochastic traffic arrival requests cause
significant fluctuations in network state and traffic, necessi-
tating a suitable model to represent these dynamic changes in
network transition. As indicated in Figure 1, the HFL agents
in the network will convey the aggregated future resource
utilization and workload to the central controller. The central
controller will utilize agent output features and train a global
model, leading to a prediction of the future network state
at higher granularity. The refined model in each HFL agent
will provide a much faster, more accurate, dynamic, and more
efficient method than conventional solutions [25]. Hence, the
FL model with its agents eliminates static orchestration and
predicts network state and user demands to trigger dynamic
adaptation.

C. Scalability

Scalable, rapid, and agile network operation is essential for
future networks. The opportunity of having scaling features
in a network can result in low maintenance costs, better
user experience, and greater agility. SDN has a centralized
architecture design, thus lacking scalability to fulfill large-
scale network requirements. With millions or billions of user
devices, scalability issues arise. FL can eliminate such scalabil-
ity limitations with its decentralized approach [26]. The HFL
model can learn users’ trends in a network and act accordingly
when an increase in demand enters a network. Using the
dispersed HhFL agents in the network, HFL agents can share
their aggregated states (resource utilization and workload) with
the central controller to trigger and perform resource scaling.
The central controller will utilize HFL agents’ states and find
an optimized scaling scheme. This would be possible only
if the network is dynamic since flow migration will occur
between resources to consistently satisfy the probabilistic
delay requirement.

D. Bandwidth Utilization and Privacy

In the traditional distributed DL model, there is heavy
communication between the central node and worker nodes
[27], leading to considerable bandwidth consumption. Fur-
thermore, bandwidth may be lost due to loss of packets
or/and retransmission. Transferring a large amount of data
between nodes in a network is not trivial and requires a tuning
algorithm for successful transmission. HFL utilizes bandwidth
more efficiently to overcome centralized training and inference
issues such as computational demand and network bandwidth
limitation. HFL agents will train a DL model using local data,
which will not be transferred to the central controller, saving
tremendous bandwidth. Each HFL agent will only send the
aggregated high-level features to the central controller for
training and inferencing. Reducing network communication
will reduce bandwidth costs significantly, especially when
saving on raw data transmission.

In general, centralized DL systems are concerned with
various issues, most crucially, the long-neglected security and
privacy of user data. As advocated by [28], FL can be the
solution. FL provides a method for preserving user privacy by
decentralizing data from the central server to end devices. DL
models will only be applied to local datasets with sensitive
data and heterogeneity. With its decentralized data approach,
FL has been one of the fastest-growing areas of DL in
recent years, as its security and privacy characteristics promise
compliance with rising user data protection legislation [29].

E. Challenges

Leveraging FL in obtaining network state and users’ demand
from the network that follows similar architecture as in Figure
1 faces new challenges. Some of the unique challenges we
anticipate are:

• Communication: in FL, communication is a crucial bot-
tleneck. Communication-efficient approaches that dynam-
ically transmit high-level features between the central
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controllers and agents during the inference phase are nec-
essary. To reduce communication in the HFL approach,
there are two crucial factors to consider: (i) decreasing the
total number of communication rounds through long-term
prediction or (ii) reducing the amount of communicated
messages through aggregated features at each round.

• Privacy: although one of FL’s goals is privacy by pro-
tecting data generated in each device and only sharing
high-level features, the shared high-level features may
still divulge sensitive information to third parties or the
central controller. To maintain privacy in an FL network,
there is a tradeoff between privacy and reduced model
performance or system efficiency.

• FL and SDN incorporation: the proposed HFL framework
imposes a new set of challenges when combining HFL
and SDN. HFL will convey future network predictions to
SDN, where SDN will update the network accordingly.
Further investigation into the communication protocol
between FL and SDN is required.

• FL in production: practically, there is a need for a
framework that outlines specific action steps when the
FL agent communicates with the central controller. For
example, there might be significant variations in the
FL agent model update in a small time interval, non-
malicious errors and steps in adding or removing devices
from the global FL model.

V. CURRENT STATUS

The design of our proposed HFL framework differs from
other FL architectures in that it is network-oriented, i.e., using
FL to solve networking problems. The closest FL architecture
to our approach is Vertical FL (VFL). However, VFL focuses
on exchanging parameters instead of features [30]. VFL is
more ML-oriented than network-oriented. In ML, features rep-
resent the inputs or the outputs at various levels, which change
with different inputs during the inference stage. Parameters
are the variables defining a model, which do not change with
different inputs during the inference stage. Our approach is to
exchange parameters and aggregate features between agents
and the central model rather than exchanging parameters only.

Hence, we propose using the HFL framework to solve
the most significant challenge in traffic information distri-
bution, namely scalability. With the increasing NFV-based
applications, traffic volume in a network is substantial and
dynamic, and the resources required to operate the service
(VM/container) fluctuate over time [6]. This leads to a critical
question regarding the data collection granularity, microflow
or macroflow? The idea of using HFL is to make the process
distributed and scalable. Using the HFL approach, a DL model
will be leveraged to extract aggregate features from microflow
information at each router or service node. HFL agents will
then send the high-level features to a central location or all
other routers/service nodes in a macroflow manner. Hence, this
will aid routers/service nodes in steering traffic efficiently.

We need information from the network to obtain current
user demand and network state for dynamically updating SFC

in the network for better traffic steering. Two types of network
information can be gathered: (i) resource management which
focuses mainly on server resources, e.g., CPU and (ii) memory,
and congestion control which targets network bandwidth and
flow completion time.

Choosing what information to collect from the network
is not a trivial task. Hence, we reviewed some high-quality
research papers to see what information they used for their
algorithms. DCTCP and D2TCP rely on ECN as the con-
gestion signal and react proportionally. Protocols such as
TIMELY, SWIFT, CDG [31], and DX [32] rely on RTT
measurements for window update calculation. XCP [33], D3
[34], and RCP [35] rely on explicit network feedback based on
rate calculations within the network. HPCC uses INT protocol
while PowerTCP [36] also uses the same feedback signal as
HPCC but uses the notion of power to update window size.

Similarly, we have surveyed high-quality research papers to
choose what parameters for resource management. DFR [37]
and Apollo uses CPU and memory data. Quincy is a queue-
based scheduling approach. TetriSched leverages metadata
from Ryan [38], a novel reservation-based scheduling system
by proposing Reservation Definition Language (RDL), to
provide a scheduling system rather than a reservation system to
make short-term job placement and ordering decisions. Karios
[39] uses the Least Attained Service (LAS) as the scheduling
policy by implementing the number of cores and the quan-
tum time for the smallest amount of time so far of service
execution. Finally, Hydra [40] leverages the Yarn Federation
architecture, in which a collection of loosely coupled sub-
clusters coordinates to provide the illusion of a single massive
cluster.

VI. CONCLUSION

This paper argues for a more dynamic operation network
using the HFL approach. The HFL approach has great po-
tential to solve different network issues, such as privacy,
scalability, and bandwidth utilization. Developing and imple-
menting dynamic network orchestration has been difficult in
the past because the technologies were not supportive enough.
However, network programmability emerged a few years ago
and is becoming mature. Furthermore, ML approaches have
been widely adopted to solve different network issues, giving
the network administrator more flexibility. This paper proposes
a new FL framework called Hierarchical FL as a solution
for dynamic SFC. HFL framework aims to minimize the
overhead and achieve scalability while preserving privacy. This
is possible by leveraging the decentralization nature of the FL
approach.
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Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[6] Yikai Xiao, Qixia Zhang, Fangming Liu, Jia Wang, Miao Zhao, Zhongx-
ing Zhang, and Jiaxing Zhang. Nfvdeep: Adaptive online service func-
tion chain deployment with deep reinforcement learning. In Proceedings
of the International Symposium on Quality of Service, pages 1–10, 2019.

[7] Ruixin Chen and Jin Zhao. Scalable and flexible traffic steering for
service function chains. IEEE Transactions on Network and Service
Management, 2022.

[8] Weihua Zhuang and Kaige Qu. Dynamic vnf resource scaling and migra-
tion: A machine learning approach. In Dynamic Resource Management
in Service-Oriented Core Networks, pages 85–129. Springer, 2021.

[9] Haojun Huang, Cheng Zeng, Yangmin Zhao, Geyong Min, Yingying
Zhu, Wang Miao, and Jia Hu. Scalable orchestration of service
function chains in nfv-enabled networks: A federated reinforcement
learning approach. IEEE Journal on Selected Areas in Communications,
39(8):2558–2571, 2021.

[10] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
and Minlan Yu. Simple-fying middlebox policy enforcement using sdn.
In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
pages 27–38, 2013.

[11] Anat Bremler-Barr, Yotam Harchol, and David Hay. Openbox: a
software-defined framework for developing, deploying, and managing
network functions. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 511–524, 2016.

[12] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. Nfp:
Enabling network function parallelism in nfv. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
pages 43–56, 2017.

[13] Pamela Zave, Ronaldo A Ferreira, Xuan Kelvin Zou, Masaharu Mori-
moto, and Jennifer Rexford. Dynamic service chaining with dysco. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 57–70, 2017.

[14] Sameer G Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan,
KK Ramakrishnan, Timothy Wood, Mayutan Arumaithurai, and Xiaom-
ing Fu. Nfvnice: Dynamic backpressure and scheduling for nfv service
chains. IEEE/ACM Transactions on Networking, 28(2):639–652, 2020.

[15] Guyue Liu, Yuxin Ren, Mykola Yurchenko, KK Ramakrishnan, and
Timothy Wood. Microboxes: High performance nfv with customizable,
asynchronous tcp stacks and dynamic subscriptions. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, pages 504–517, 2018.

[16] Jianzhe Liang, Jun Bi, Yu Zhou, and Cheng Zhang. In-band network
function telemetry. In Proceedings of the ACM SIGCOMM 2018
Conference on Posters and Demos, pages 42–44, 2018.

[17] Milad Ghaznavi, Elaheh Jalalpour, Bernard Wong, Raouf Boutaba, and
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