

A Web-based Orchestrator for Dynamic Service
Function Chaining Development with Kubernetes

Ziqiang Wang
Department of Computer and

System Engineering
Carleton University

Ottawa, Canada
ziqiangwang@cmail.carleton.ca

Abdullah Bittar
Department of Computer and

System Engineering
Carleton University

Ottawa, Canada
abdullahbittar@cmail.carleton.ca

Changcheng Huang
Department of Computer and

System Engineering
Carleton University

Ottawa, Canada
huang@sce.carleton.ca

Chung-Hong Lung
 Department of Computer and

System Engineering
Carleton University

Ottawa, Canada
chlung@sce.carleton.ca

Gauravdeep Shami

External Research, Office of CTO
Ciena Corporation

Ottawa, Canada
gshami@ciena.com

Abstract— The research community has been moving attention
from Virtual Network Function (VNF) to Cloud-native Network
Function (CNF) since cloudification has brought the Network
Function Virtualization (NFV) to an advanced level. It has already
been demonstrated that cloud-native technology brings high
flexibility and efficiency to large-scale network service deployment
compared to the traditional VNF with Virtual Machines (VMs).
However, more work is needed to provide a flexible and reliable
Service Function Chaining (SFC) development solution in a cloud-
native environment. This paper proposes a web-based
orchestrator system to deploy an SFC use case consisting of
multiple CNFs in a multi-node Kubernetes cluster using Network
Service Mesh (NSM). We demonstrate a cloud-native SFC
framework that allows users to dynamically create container-
based SFC rather than the traditional VMs with NFV/SDN
controller approach. Further, additional work is presented with
the support of an open-source monitoring system, Prometheus, to
validate the SFC path.

Keywords— Cloud-native, Service Function Chaining, Network
Service Mesh, Kubernetes, Prometheus

I. INTRODUCTION

 The technology evolution in the cloud-native world also
brings innovation to network applications. Currently, network
applications are primarily developed based on Network
Function Virtualization (NFV). Traditionally, network
functions runs in Virtual Machines (VMs) which are managed
by a VM orchestrator and Software-defined Networking (SDN)
controller such as OpenStack with ONOS [1] [8]. On the other
hand, in a cloud-native environment, Virtual Network
Functions (VNFs) are deployed in the form of containers
running on the cloud platform [2]. This new trend has provided
benefits to NFV based on the following facts: 1) containers
have less overhead than VMs. VMs run in a hypervisor
environment where each VM must have its operating system
(OS), along with its related binary code, libraries, and

application files which impose high overhead; 2) containers are
adaptable and portable. The deployment of a container is
independent of OS and hardware platforms.
 Furthermore, containers can be configured to form a Service
Function Chaining (SFC) which connects a list of networking
applications in a specific order to offer network services [3].
Leveraging both SDN and NFV, SFC can automate traffic flow
between services and optimize the use of network resources.
The cloud-native SFC could leverage containers’ agility,
flexibility, and scalability. Most importantly, it does not even
rely on an SDN controller to manage the application life cycle
[1].
 In this paper, we demonstrate the benefits of deploying an SFC
over Kubernetes using the proposed web-based orchestrator
system and ensuring the reliability of the SFC by adopting the
state-of-art monitoring solution. The contribution of this paper
is twofold:
1. Demonstrate a proof-of-concept prototype that allows

users to deploy network function chains using a web
interface-based orchestration dynamically.

2. Use the monitoring tool to ensure that the SFC path is
reliable by collecting metrics while adding minimum
overhead to the system.

 The rest of the paper is organized as follows. Section II
provides background on key concepts and the distinguishing
aspects concerning related studies. Section III describes the
system prototype and the list of individual items that will be
demonstrated. The summary of the innovation is discussed and
summarized in Section IV.

II. BACKGROUND AND RELATED WORK

 NFV describes the idea of virtualization in terms of network
services at both the virtualization layer and the application layer

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

978-1-6654-0694-9/22/$31.00 ©2022 IEEE 234

20
22

 IE
EE

 8
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
k

So
ftw

ar
iz

at
io

n
(N

et
So

ft)
 |

97
8-

1-
66

54
-0

69
4-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

et
So

ft5
43

95
.2

02
2.

98
44

08
6

Authorized licensed use limited to: Carleton University. Downloaded on September 12,2023 at 12:04:20 UTC from IEEE Xplore. Restrictions apply.

of SDN [4]. The SDN architecture inherently promises
advantages such as software and hardware decoupling, flexible
network function deployment, and dynamic functioning.
Cloud-native Network Function (CNF) is a software
implementation of NFV deployed in a cloud-native platform
such as Kubernetes. Kubernetes, also known as K8s, is a cloud-
based platform that offers a Container-as-a-Service (CaaS)
layer for managing containerized workloads and services [5]. A
Pod is the smallest deployable unit in the K8s cluster.
Combined with other features of K8s, cloud-native SFC offers
real-time and dynamic provisioning along with flexible traffic
steering, and could benefit from network upgrades.
 The authors in [6] proposed a novel traffic steering algorithm
to route traffic in cloud-native SFC using a dynamic weighted
round-robin algorithm. Also, in [1], the authors offered a
Ketama algorithm-based [7] traffic steering to maximize the
Quality of Service (QoS) satisfaction rate by load-balancing the
traffic over the SFC path using the Contiv-VPP network plug-
in. On the other hand, the author in [8] focused on integrating
Kubernetes with OpenStack to deploy a complex system that
leverages both the advantages of VM and container to build an
SFC. The authors in [9] proposed a novel fault management
system that can monitor the current SFC deployment and
dynamically recover the fault container-based VNF by creating
a backup VNF with the same functionality to replace it. In [10],
the author noticed that the security and integrity of the
container-based SFC are usually ignored compared to the VM-
based SFC. Hence, they proposed a framework that can be
integrated into NFV controller to detect anomalies using an
extreme learning machine (ELM).
 Unlike the existing SFC solution provided in [6]-[10] using
Contiv-VPP or OVN4NFV plug-in, our approach focuses on
dynamic creation of customized SFC across multiple nodes
using Network Service Mesh (NSM) and integration with a
web-based orchestrator. NSM provides the SFC data plane for
steering the traffic based on network policies [11]. The web-
based orchestrator automates the SFC developing process while
allowing users to choose different container-based
microservices and define the routing rules. The system also
integrates a resource and network state monitoring solution
supported by the Prometheus system [12]. The monitoring
framework provides metrics that can optimize network
performance and validate the SFC path. Furthermore, previous
research works mainly focus on the development of cloud-
native SFC but not on network reliability and SFC path
validation. To the authors’ best knowledge, this work is the first
to automate the SFC development process using a web-based
orchestrator system in a cloud-native environment practically
and concretely.

III. PROTOTYPE MODEL

 The graphical interface is a Python-based front-end web server
of the orchestrator system connected with both the Kubernetes
API to conduct user commands and the Prometheus API for
traffic validation. The network of K8s control plane is provided
by WeaveNet while the adopted NSM plug-in creates SFC
tunnels called Virtual-wires (V-wires) between Pods. The
overall system model is depicted in Figure 1. With reference to

Figure 1, the system contains several necessary elements of K8s,
NSM, and Prometheus.

Figure 1 The overall design of the NSM-based SFC with Kubernetes

 A new SFC is created by a client dragging and dropping the
pre-configured microservices’ icons from the network
application library in the web UI or using an existing pre-
designed SFC. This process automatically creates the
corresponding manifest files and deploys SFC components in
the K8s cluster. When the NSM manager receives an SFC
request from a client, it examines the existence of registered
Network Service Endpoints (NSEs). It establishes the chained
V-wire connections between the client and NSEs if the required
NSEs and the interface mechanism are available in the cluster.
New NSEs may get registered during this process to satisfy the
SFC creation according to the requested application label.
Figure 2 illustrates this entire process with the step numbers.
The web UI displays the Pod creation process and network
metrics so that the user can clearly understand the states of the
cluster.
 Meanwhile, the Prometheus monitors the node’s hardware
resources, QoS and validates the SFC traffic flows. There are a
few metrics that imply the performance of SFC, such as 1) the
latency for Pods initialization, 2) the network throughput for
each network device during the sample period, 3) the CPU and
memory utilization, 4) the HTTP request delay and error rate.

Figure 2 NSM communication flow chart

 The SFC demonstrated in this paper consists of 3 NSEs
distributed in two cluster nodes. All the NSEs are created from
the customized docker image built for this experiment. The
NSE1 located at the first node contains the function of video
streaming supported by the Nginx-RTMP and FFmpeg module.
It has one Kernel interface that connects with V-wire for
sending and receiving videos. The NSE2 is an ACL (Access

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

235
Authorized licensed use limited to: Carleton University. Downloaded on September 12,2023 at 12:04:20 UTC from IEEE Xplore. Restrictions apply.

Control List)-based firewall located at the second node. It has
two Shared Memory Packet Interfaces (MEMIF), which
connect with the Kernel interface in NSE1 and NSE3,
respectively. The NSE3 located at the end of the chain has the
function of video size reduction which reduces the size of a
video using the FFmpeg module to ensure that the user can
stream video faster when facing the network bottleneck. In this
case, the Network Service Client (NSC) implemented as an
Alpine Linux container is integrated with the NSE1 in the same
Pod, making the SFC tightly organized.
 Figure 3 demonstrates the system architecture of the video
streaming SFC. The NSM-admission-webhook injects the
corresponding interfaces into NSC and NSEs. After the SFC is
declared and containers are created, V-wires will be made in the
forwarder plane using the Vector Packet Processing (VPP)
traffic forwarder or the Kernel traffic forwarder. It is worth
noting that some of the V-wires have two different types of
interfaces at the two ends. An initial request is sent from the
NSC located at the first node along with the video that will be
compressed at NSE3 residing at the second node. Theoretically,
the traffic passes through NSE2 and reaches the destination
NSE3. The traffic is steered between two physical nodes and
among 3 Pods. Then, after NSE3 processed the video, the traffic
containing the compressed video is steered back from NSE3 to
NSE1 and passes NSE2. Hence, a content distribution network
that uses cloud-native SFC to distribute videos is achieved via
NSE2. Meanwhile, the entire workload will be registered with
the Spire agent/server to ensure that the SFC path is not
compromised. Simultaneously, the Prometheus system will
monitor the traffic, such as the latency of requests, the network
throughput, node CPU and memory utilization, etc. The
collected dataset is analyzed to validate the SFC traffic path.

Figure 3 The Overall System Architecture of NSM-based SFC

 This section demonstrates an emulated content distribution
network using the proposed web-based SFC orchestrator
system. Inclusion, the following list contains the individual
items that will be demonstrated.
 A user web interface where the user can configure network

applications and SFC. It also displays the collected metrics
to validate the SFC path.

 An SFC consists of 3 individual CNFs deployed across two
different physical servers.

 Multi-node K8s cluster with various applications such as
WeaveNet, Spire, NSM, and Prometheus.

IV. SUMMARY OF INNOVATION

 SFC plays a vital role in the next-generation networks by
benefiting different technologies such as 5G, IoT, and edge
computing. However, cloud-native SFC is still a novel
approach in industry and academia. Traditionally, developing
SFC is usually a time-consuming task that involves linking
various components together and configuring them individually
to ensure the functionality. With the help of a graphical
interface that facilitates the user to perform otherwise complex
operations, developers can focus on fostering new algorithms
for container-based service chaining.
 The SFC, by itself, cannot provide any insight into the system,
especially in terms of resource usage trends and network traffic
flows. Developers are not able to know how the SFC
deployment occupies the hardware resources and where the
traffic is dedicated. The reliability of the SFC may also be at
risk considering the security level of the container. More
importantly, any further improvement requires feedback to
provide the capacity and ability of the system from the central
and historical view. The proposed platform takes advantage of
state-of-the-art monitoring systems that help control the
performance and reliability of the deployed SFCs, which allows
the operator to adopt suitable tasks.

REFERENCES
[1] A. Bouridah, I. Fajjari, N. Aitsaadi and H. Belhadef, "Optimized Scalable

SFC Traffic Steering Scheme for Cloud Native based Applications," Proc.
of IEEE 18th Annual Consumer Communications & Networking
Conference (CCNC), 2021, pp. 1-6.

[2] Pantheon.tech, “Cloud-Native Network Functions,” CDNF,
https://cdnf.io. (accessed August. 9, 2021)

[3] J. M. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” RFC 7665, Oct. 2015.

[4] Y. Li and M. Chen, "Software-Defined Network Function Virtualization:
A Survey," IEEE Access, vol. 3, pp. 2542-2553, 2015.

[5] T. K. Authors, “What is Kubernetes,” The Linux Foundation,
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.
(accessed May. 24, 2021).

[6] B. Dab, I. Fajjari, M. Rohon, C. Auboin and A. Diquélou, "An Efficient
Traffic Steering for Cloud-Native Service Function Chaining," Proc. of
23rd Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN), 2020, pp. 71-78.

[7] libketama: Consistent Hashing library for memcached clients. [Online].
Available: https://www.metabrew.com/article/libketamaconsistent-
hashing-algo-memcached-clients

[8] H. R. Kouchaksaraei and H. Karl, “Service Function Chaining Across
Openstack and Kubernetes Domains,” Pro. of the 13th ACM
International Conference on Distributed and Event-based Systems, pp.
240–243.

[9] S. -Y. Song and F. J. Lin, "Dynamic Fault Management in Service
Function Chaining," 2020 IEEE 44th Annual Computers, Software, and
Applications Conference (COMPSAC), 2020, pp. 1477-1482.

[10] S. -T. Cheng, C. -Y. Zhu, C. -W. Hsu and J. -S. Shih, "The Anomaly
Detection Mechanism Using Extreme Learning Machine for Service
Function Chaining," Prof. of International Computer Symposium (ICS),
2020, pp. 310-315.

[11] The Network Service Mesh authors, “Architecture”,
networkservicemesh.io. (accessed 2022)

[12] YunlZhang, “Best Practices: 4 Golden Indicators and the USE Method”
in Prometheus-book (accessed Jan. 14, 2021)

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

236
Authorized licensed use limited to: Carleton University. Downloaded on September 12,2023 at 12:04:20 UTC from IEEE Xplore. Restrictions apply.

