
Service Function Chaining Design &
Implementation Using Network Service

Mesh in Kubernetes

Abdullah Bittar1(B) , Ziqiang Wang1 , Amir Aghasharif1 ,
Changcheng Huang1 , Gauravdeep Shami2, Marc Lyonnais2,

and Rodney Wilson2

1 Carleton University, Ottawa, ON K1S 5B6, Canada
{abdullahbittar,ziqiangwang,amiraghasharif,huang}@carleton.ca

2 Ciena Corporation, Ottawa, ON K2K 0L1, Canada
{gshami,mlyonnai,rwilson}@ciena.com

Abstract. Service Function Chaining (SFC) in a cloud-native environ-
ment is becoming essential as more users move towards clouds today.
Cloud-native environments utilize container-based microservices to pro-
vide software solutions. Integrating SFC with container-based microser-
vices introduces new challenges. This paper exploited Network Service
Mesh (NSM) framework features to create a service function chain on
a multi-node Kubernetes cluster. We focus on the design and imple-
mentation of SFC in Kubernetes using NSM. Also, we deployed our
custom-built containers in the Kubernetes cluster to create a service
function chain. Hence, we demonstrate how an SFC is designed in a
cloud-native environment rather than a traditional NFV/SDN approach.
Furthermore, to evaluate the performance, we compare different frame-
works that support SFC in Kubernetes, highlighting the advantage and
disadvantages of each framework.

Keywords: Service Function Chain · SFC · Kubernetes · Network
Service Mesh · NSM · Design · Implementation

1 Introduction

Next-generation networks mainly rely on the virtualization of network functions
[1]. The network virtualization concept affects network operations, deployment,
and expansion, especially by leveraging its benefits. Network Function Virtual-
ization (NFV) provides some benefits such as scalability, flexibility, and cost.
The idea behind NFV is to integrate different network equipment into industry-
standard high-capacity servers, storage, and switches that can be located in
various locations, such as data centers [2].

NFV introduced new opportunities to exploit the network and provide bet-
ter services for its users. According to the International Data Group (IDG)
c© The Author(s) 2022
D. K. Panda and M. Sullivan (Eds.): SCFA 2022, LNCS 13214, pp. 121–140, 2022.
https://doi.org/10.1007/978-3-031-10419-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10419-0_8&domain=pdf
http://orcid.org/0000-0003-1898-5840
http://orcid.org/0000-0002-0570-4643
http://orcid.org/0000-0001-6101-0921
http://orcid.org/0000-0001-6300-8526
https://doi.org/10.1007/978-3-031-10419-0_8


122 A. Bittar et al.

2020 survey, 92% of the organization’s IT environments are at least somewhat
in the cloud today. More than half of the organizations currently use multiple
clouds [20]. This considerable shift towards cloud-based operation introduces
new techniques such as adopting microservice software to bring more flexibil-
ity and agility to NFV architecture. This phenomenon brought the so-called
Cloud-native Network Function (CNF) [21]. CNF re-designed network functions
to become self-contained, transforming them into a container format. This inspi-
ration introduces challenges for supporting new applications, such as identifying
and steering traffic for different users or content. Furthermore, cloud-native envi-
ronments such as Kubernetes do not support NFV networking requirements,
such as network isolation and fixed containers IP [31]. Lacking the support
of network requirements endangers an essential task in NFV, Service Function
Chaining (SFC). SFC is a mechanism that allows multiple different service func-
tions to be connected to form a chain enabling carriers to benefit from the
virtualized software-defined infrastructure. Hence, SFC is essential to spawning
on-demand network services. In this paper, we concentrate on the design and
implementation of SFC in a cloud-native environment, an approach that has not
been addressed yet. While traditional SFC solutions have been widely addressed
using the Software-Defined Networking (SDN) approach, SFC cloud-native is
still somewhat novel in the research community. Our primary goal in this paper
is detailing the design and the implementation of SFC concept deployed in a
Kubernetes-based solution by leveraging Network Service Mesh (NSM) frame-
work. The contribution of this paper is threefold:

1. We investigate various tools that can be utilized to build an SFC over Kuber-
netes

2. Inspired by the Network Service Mesh (NSM) approach, we design and imple-
ment a multi-node cloud-native SFC framework using a custom-build con-
tainer in a Kubernetes cluster.

3. Performance analysis and evaluation of various Kubernetes SFC tools

The rest of the paper is organized as follows. Section 2 provides background
on key concepts such as NFV, SFC, Kubernetes, containers, Container Net-
work Interface (CNI), NSM, and the motivation behind our work. Section 3
describes our cloud-native traffic steering design. Section 4 provides details about
the implementation process. In Sect. 5 we provide performance evaluation, while
in Sect. 6, we provide the limitations and future work. Section 7 summarizes the
main related work dealing with SFC in Kubernetes, and finally, the last section
will conclude the paper.

2 Background

The main idea of NFV is to integrate proprietary network devices into industry-
standard high-capacity servers, storage, and switches in various locations such
as data centers [2]. The NFV architecture inherently promises advantages such
as software and hardware decoupling, flexible network function deployment, and



SFC Design & Implementation Using NSM in Kubernetes 123

dynamic functioning [3]. The Internet Engineering Task Force (IETF) describes
Service Function Chaining (SFC) as an ordered set of service functions in which
they must be executed [4]. Therefore, an SFC would consist of physical or virtu-
alized network functions chained together where traffic will pass through before
reaching the destination.

2.1 Motivation

SFC plays a vital role in next-generation networks by benefiting different tech-
nologies such as 5G, IoT, and edge computing [9,10,39,40]. SFC helps in pro-
viding customizable network function services to traffic flows between different
networks. The demand for new network services has grown exponentially, aided
by the explosion of new network technologies and infrastructures, such as the
success of cloud networks, that have increased the degree of pervasiveness and
connectivity between heterogeneous devices. Our motivation behind this paper
is to provide the reader with sufficient details regarding the design and imple-
mentation of SFC in Kubernetes using the NSM framework while delivering a
real-life use case. This approach has not been addressed before in a cloud-native
environment tool like Kubernetes. Focusing on chaining containers rather than
traditional virtual machines, we created a cluster in Kubernetes that consisted of
multiple Pods chained together and added video reduction and video broadcast
service functions.

2.2 Kubernetes

Kubernetes is a cloud-based platform that offers a Container-as-a-Service (CaaS)
layer for managing containerized workloads and services. According to Kuber-
netes’ main web page, Kubernetes is “an open-source system for automat-
ing deployment, scaling, and management of containerized applications” [5].
The simplest way to describe Kubernetes’ primary function is container clus-
ter orchestration. Google originally designed Kubernetes, but since 2014 Cloud
Native Computing Foundation (CNCF) has been responsible for maintaining
Kubernetes. Kubernetes is a decentralized architecture based on a declarative
model that defines the ultimate state. Users only describe the application’s struc-
ture to be deployed when using the declarative model. In contrast, in the imper-
ative model, the user must clearly define all the technical deployment tasks to be
performed in sequence order. Kubernetes implement a microservice architecture
that considers a single application as a collection of small services, each running
in its process and communicating with each other with a lightweight mechanism,
typically an HTTP service/gRPC service and corresponding API.

A cluster in Kubernetes consists of master and worker nodes. A node in
Kubernetes may be either a virtual or a physical machine. Figure 1 is an exam-
ple of a Kubernetes cluster that consists of two master nodes and three worker
nodes. The main elements in a master node are different than those in a worker
node. Intuitively from its name, the worker node performs the actual work-
load. Applications will have to be containerized, and a Pod will encapsulate the



124 A. Bittar et al.

Fig. 1. Kubernetes cluster architecture and the main components.

container. The worker node will have at least one Pod. A Pod is the smallest
deployable unit of computing that can be created and managed in Kubernetes.
A Pod is a group of one or more containers in which they share resources such
as shared storage, networking and information about how to run each container.
Pods are temporary but can be automatically re-created to meet the desired
state. There are three main background services running in each worker node.
The first process is the container runtime which is responsible for running con-
tainers. Secondly, the Kubelet agent is the frontend CLI used to communicate
with kube-apiserver, which resides on the master node. Thirdly, the Kube Proxy
is a network proxy to forward the requests between different elements in the
cluster.

A master node is considered a control plane that includes four main processes.
The first process is API Server which acts as a cluster gateway and gatekeeper for
authentication. All requests initiated by users will first pass through API Server
for validation. The second process is Scheduler which is responsible for scheduling
Pods on nodes while considering the resources in the cluster. The third process
is the Controller Manager which is responsible for detecting cluster changes and
bringing the cluster status to its desired state. The last process is etcd which is
a key-value store for the cluster state [5].

Kubernetes offers minimal networking services. Kubernetes only provides
the networking model placeholder and does not provide networking ser-
vices/extensions in the cluster. In most cases, Kubernetes depend on third-party
projects that provide network functionality. Four different types of network-



SFC Design & Implementation Using NSM in Kubernetes 125

ing communication should be addressed when developing a network extension.
Firstly, highly-coupled container-to-container communications. Secondly, Pod-
to-Pod communications. Thirdly, Pod-to-Service communications and finally is
the External-to-Service communications. A Service in Kubernetes is an abstract
way to expose an application running on a set of Pods as a network service. Since
Pods are ephemeral, Pods are associated with Services through key-value pair,
where the Service will automatically discover new Pods with labels that match
the key-value pair. Furthermore, Kubernetes imposes fundamental requirements
on any networking implementation to allow Pods on a node to communicate
with all Pods on all nodes without Network Address Translation (NAT). Third-
party projects develop networking extensions that meet the networking module
requirements, while each may have a different focus. Hence, users will have to
choose amongst the available networking extensions that meet their needs to
deploy them in Kubernetes.

2.3 Containers

Self-contained network functions are moved into a container, such as routers or
firewalls. With containers, users can pack up their services neatly, including all
application binaries, software dependencies, and necessary configuration files.
This also means that the application will remain constant regardless of where
they are running. Containers incur significantly lower overhead than traditional
Virtual Machines (VMs). It is essential to mention that not all virtual network
functions are feasible to be containerized [7]. Containers help businesses modern-
ize by making it easier to scale and deploy applications. According to a CNCF
survey done in 2020, containers usage in production has increased 300% since
2016, and 92% of users surveyed say they use containers [6]. Lightweight virtu-
alization technologies such as cloud-native containers are the trend in deploy-
ing applications in the cloud infrastructure. Container-native Network Function
(CNF) is a software implementation of a network function built and deployed in
a cloud-native method [8]. Despite all the benefits gained from integrating con-
tainers into the NFV environment, there will be management and orchestration
challenges that may hinder the utilization of container-based VNFs. Containers
introduce new challenges and complexity by introducing an entirely new infras-
tructure ecosystem.

2.4 Different CNI Plug-ins

Networking in Kubernetes is provided by the so-called Container Network Inter-
face (CNI), a CNCF project that defines the configuration of network interfaces
for Linux containers. CNI comprises specifications and libraries for plug-ins to
configure network interfaces in Linux containers [11]. A unique file called the
CNI plug-in is responsible for inserting the correct network interface into the
container network while making any necessary changes on the host. There are
different kinds of CNIs, and each one provides a particular behaviour to allow
networking inside the cluster. Some of the most common CNIs are Calico and



126 A. Bittar et al.

Canal, according to [12]. Firstly, Calico is well known for its performance, flexi-
bility, and power. Calico provides additional functions, such as network security
and administration, and essential Pod to Pod connections [13]. Secondly, Canal
integrates Calico and another CNI called Flannel into one CNI to deploy in a
Kubernetes cluster. It uses Flannel for networking pod traffic between hosts via
VXLAN and Calico for network policy enforcement and Pod to Pod traffic [14].
Weave Net is another CNI plug-in. It is resilient and straightforward to use the
network for Kubernetes and its hosted applications [42]. Weave Net creates a vir-
tual network that connects Docker containers across multiple hosts and enables
their automatic discovery. One of Weave Net’s benefits is that it comes with a
Network Policy Controller that automatically monitors Kubernetes for any Net-
workPolicy annotations on all namespaces and configures iptables rules to allow
or block traffic as directed by the policy

2.5 Network Service Mesh (NSM)

Kubernetes’ principle includes service discovery and load balancing in an auto-
mated function for scaling up or down applications. On this basis, Kubernetes
does not focus on the networking aspect but on managing a cluster. Kubernetes
cannot provide some advanced L2/L3 network features, and it lacks the support
for cross-cluster connectivity. Network Service Mesh (NSM) utilizes Kuberne-
tres’ networking model to perform specific networking functions. NSM is a novel
approach to solving complicated L2/L3 use cases in Kubernetes that are tricky
to solve [17], such as SFC use case. NSM is inspired by Software Defined Net-
working (SDN), in which NSM maintains the separation between control and
data plane while providing network intelligence between microservices.

Fig. 2. NSM



SFC Design & Implementation Using NSM in Kubernetes 127

NSM is based on three basic concepts. The first concept is Network Service
(NS) which provides L2/L3 service. The second concept is Network Service End-
point (NSE), a Pod in a Kubernetes cluster that provides the NS application.
The final concept is the L2/L3 connection between the client’s Pod and the
NSE(s). NSM extends beyond kernel interface to support complex use cases and
provides other interfaces such as memif or vhost-user interfaces. A memif inter-
face, called Shared Memory Packet Interfaces, provides high-performance packet
transmit and receive between the user application and Vector Packet Processing
(VPP) [41]. NSM allows individuals to connect to an NS independently of the
infrastructure they are running on. An NS, such as a chain of microservices, must
be identified in a cluster to allow users to access it. After creating an NS, users
will request to join a specific NS in the cluster by assigning a Pod to the user
and creating a vWire to connect to the NS. User’s Pod will have a unique anno-
tation key-value pair that will specify which NS to connect. The NSM Manager
will create a vWire that connects the user’s Pod to the specified NS. A simple
example of NSM connectivity is in Fig. 2. This figure illustrates how a client
can access an NS on the Kubernetes cluster. Each NSE (Pod) includes a key-
value pair to identify which NS. it belongs to. In Fig. 2, a client would like to
connect to Service X by sending a request to the NSM Manager. In return, the
NSM Manager will examine the annotation key-value pair in the client’s Pod
and then check if the required NSEs and interface mechanism are available in
the cluster. If there is a match, the NSM manager will respond to the request
by creating a vWire to the appropriate requested NS.

NSM consists of a few elements that are important for its functionality.
Figure 3 provides a graphical representation of the NSM control and data plane
elements.

Fig. 3. NSM

Network Service Client is the first element involved in NSM. It is deployed
as a Pod in a Kubernetes environment, and its main aim is to require a cross-



128 A. Bittar et al.

connection to a specific NS. On the other hand, NSE oversees implementing
network functions in a network service. Both Network Service Client and NSE
can be composed of two containers, one container for implementing NSM control
plane functionalities and the other container implementing the primary service
function. NSM Manager Pod is fundamental in the control plane that consists
of three essential containers. The first container, which is the heart of the NSM
control plane implementation, is the nsmd container. This container is respon-
sible for all requests that involve cross-connections construction. The second
container is nsmd-k8s, responsible for registries between different NSM Man-
agers. The final container is nsmdp container which is in charge of checking that
all elements involved in NSM Manager functions are working correctly. Network
Service Forwarder’s main aim is to implement NSM data-plane functionalities.
When communication between Pods is provided, it is in charge of configuring
interfaces and building cross-connection between involved Pods. Lastly, Admis-
sion Webhook intercepts Pod creation request to api-server and based on its
internal configuration, and it can modify the request and inject specific code in
the YAML request.

3 Design

In this paper, we address the problem of SFC in microservices-based architec-
ture. Our contribution aims to provide details of the design and implementation
process in deploying SFC in the Kubernetes cluster using custom-build contain-
ers by leveraging the NSM plug-in while adding extra features. Deploying an
SFC in Kubernetes includes three steps: online search for third-party network-
ing extension supporting SFC, deploy correct configurations for creating SFC
and building an SFC in Kubernetes.

First Step is to search online for third-party projects (network extension) that
support SFC in Kubernetes. Luckily, there are few options available. The first
network extension is Contiv-VPP [15] which uses FD.io VPP to provide network
connectivity between Pods in a Kubernetes cluster. The FD.io [16] is the world’s
secure networking data plane project that focuses on supporting terabit software
data plane by using the VPP concept, which processes multiple packets at a time
with low latency. Contiv-VPP is a CNI plug-in that employs a programmable
CNF vSwitch offering SFC and other high-performance cloud-native networking
and services. The second network extension is called OVN4NFV-K8s [19], and
it is based on an Open Virtual Network (OVN) CNI controller to provide cloud-
native-based SFC and other overlay networking features. OVN4NFV-K8s is a
project under the Open Platform for NFV (OPNFV), a collaborative open-
source platform for NFV. The third and final network extension that supports
SFC in Kubernetes is NSM.

We tested the abovementioned three networking extensions to deploy SFC.
We were able to deploy an SFC in a Kubernetes cluster using the Contiv-VPP
extension successfully. Contiv-VPP provides three different scenarios to deploy



SFC Design & Implementation Using NSM in Kubernetes 129

an SFC [45]. The first scenario is adding a tap interface to Linux CNFs. Secondly,
each CNF Pod runs its own VPP instance and is connected with one or two addi-
tional memif interfaces. The final scenario is connecting a CNF to external Data
Plane Development Kit (DPDK) sub-interfaces via two additional memif inter-
faces. The additional tap/memif interfaces between Pods/external interfaces are
inter-connected on the L2 layer, using an L2 cross-connect on the vSwitch VPP.
Contiv-VPP may be used on bare metal servers or using VMs. We went with
VMs, where Kubernetes and service functions were on different VMs deployed
on a single server.

We faced challenges in deploying SFC in OVN4NVF. The main issue was
because the coreDNS Service Pod does not initiate. In other words, the API
server could not get the endpoint of kube-dns Service. We ensured that no firewall
was stopping the traffic and that coreDNS and API configurations were correct
and functioning. OVN4NVF provides instructions on how to set up Kubernetes
using VMs.

The third extension we tested was NSM, which is entirely orthogonal to stan-
dard Kubernetes networking. NSM allows Pods network with different workloads
across the cluster using a simple set of APIs designed to provide connectiv-
ity, security, and observability. NSM leverages the Custom Resource Definition
(CRD) service Kubernetes provides to define a custom resource in a cluster that
performs a specific function [18]. NSM introduces an NS CRD, representing the
logical implementation of a chain of network functions implemented as Pods in
the cluster. The NS also specifies the order of the network function chain in
which traffic should follow when traversing. It is also important to mention that
the NSM control plane implements a cross-connection between Pods to allow
proper communication. The cross-connection comprises two interfaces injected
in the Pods involved in the communication.

Second Step is divided into two phases where the first phase is to deploy a clus-
ter in Kubernetes, and the second phase is to configure the cluster according to
the networking extension you choose in step one. Deploying a cluster in Kuber-
netes can be done using different tools. Kubeadm is a tool to build a Kubernetes
cluster on a bare metal server [38]. Kubeadm toolbox will bootstrap a minimum
viable Kubernetes cluster that conforms to best practice, allowing adding many
nodes to the cluster. Another tool to build a cluster is using Kind tool. Kind is
an open-source tool that generates Kubernetes clusters using Docker [25]. Kind
was primarily designed for testing Kubernetes itself. Kind makes it easy to cre-
ate a cluster by simply passing the command ‘kind create.’ NSM (release v0.2.0)
uses the Kind tool to create clusters by default. Hence, Kind uses Kindnet [26]
as the default networking plug-in. Kindnet implements the Kubernetes network-
ing model using the CNI reference plug-ins and uses Docker’s default bridge
networking. We created a cluster in Kubernetes that consisted of multiple Pods
and services.

The second phase configures the Kubernetes cluster according to the network
extension deployed to build an SFC. In general, all networking extensions follow



130 A. Bittar et al.

the same concept to identify an SFC service. Differences are mainly founded
in the attribute values of the configuration files. The central idea is to create
a CDR and reference the CRD in the services deployed in the cluster. The
CRD is used to define an SFC with a name and schema. Figure 4a is a YAML
configuration file of our custom CRD based on the NSM framework schema. It
identifies a new custom resource that defines the concept of a networking service
chain with the name of NetworkServiceChain, which will be used to create a
network service chain, as Fig. 4b shows. Figure 4b is a YAML configuration file
that identifies a chain of network services. We used the NetworkServiceChain
name as an identifier and added it to the ‘kind’ attribute.

Traffic must follow the two matching rules, as depicted in Fig. 4b. Specifically,
the first matching rule requires that the forwarder direct all traffic flow from any
client that connects with this NS to the ‘firewall’ Pod, the entry point to the
chain in the cluster. The matching rule is indicated in the red box in Fig. 4b.
The second matching rule requires that traffic flow from the firewall Pod be
steered to a second Pod, the ‘vid-reduction’ Pod, as indicated in the orange
box in Fig. 4b. Hence, a flow request coming from an NSC Pod will be first
headed to the ‘firewall’ Pod then to the ‘vid-reduction’ Pod. The metadata name
attribute, ‘SFC-1’, in Fig. 4b is an essential attribute. This is the only method
for attaching a Pod to a chain by having the metadata name of the chain in the
Pod’s deployment configuration file.

Third Step in building an SFC in Kubernetes is to deploy the Pods in the
cluster. This step is container development and adding them to a Pod. Developers
need to create containers that will perform their application’s service/network
function. After that, containers will be wrapped by Pods in the Kubernetes
cluster. Our chain consists of three Pods in a sequence plus an extra Pod for
the client, as illustrated in Fig. 5. Inside each Pod, we added a container that we
custom-built to perform a specific function:

1. Firewall Pod: a firewall container to detect IP addresses and port numbers.
2. Vid-Reduction Pod: a container that performs video reduction size function.
3. Vid-Broadcast Pod: a container that broadcasts the video to users.

Docker is an open-source platform for building, deploying and managing con-
tainerized applications [22]. We used Docker to develop our containers and specif-
ically included a CNI responsible for allocating network interfaces to the newly
created container network namespace and making necessary changes on the host
to enable the connectivity with other containers on the same network. Using the
specification provided by the CNI GitHub [23], an IP address should be assigned
to the interface using the correct IP address management.

Network Automation. To complete the design process, it is a good idea to
automate the deployment process. There are multiple methods for automation,
and one of the methods is to develop coding scripts ready for deployment. In
our experiment, we created numerous Python scripts that configure, manage,



SFC Design & Implementation Using NSM in Kubernetes 131

(a) CRD (b) Network Service Chain

(c) Annotation Method (d) Environment Variables Method

Fig. 4. Kubernetes configuration files, YAML

and deploy the SFC in the Kubernetes cluster. We also built a simple web page,
User Interface (UI), for clients to interact with the cluster to choose a video
file from the available list for broadcasting. A request would be sent from the
web page (frontend) to the backend to broadcast the requested video. The web
page and the backend were developed using Python because of their simplicity
in integrating the frontend to the backend process.

The first action the backend performs is creating a Pod for the client. Pod cre-
ation is crucial because the newly created Pod will contain metadata to identify
which service function chain they would like to connect. There are two differ-
ent methods to define the service function chain name in the NSM framework.
Users can use annotation or include a variable in the environment specifications.
The client’s Pod configuration file will consist of an attribute called annotation,
which specifies the name of the NS or the service function chain they would like



132 A. Bittar et al.

Fig. 5. SFC in Kubernetes multidomain cluster topology

to be associated with, as illustrated in Fig. 4c. The other method is to include a
key value when deploying a Pod. The Pod will have an environmental value that
is the exact value of the metadata of the network service chain, i.e. ‘SFC-1’, as
illustrated in Fig. 4d. After creating the client’s Pod with the correct annotation
or environment variable, a request would be sent to the Network Service Man-
ager for connecting the client’s Pod to the specified NS. In return, the Network
Service Manager will register the client as an NSC and search in the Network
Service Registry for NSE. If an NSE is found in the registry, an interface will
be injected into the client and related NSE Pods to create a chain. This chain
will include only interconnected Pods, and each Pod will have separate NSM
interface(s) where the Pod can communicate with other Pods in the chain.

The chain we developed includes three different service functions. The first
service function (Pod) in the chain is the Firewall Pod. This Pod will act as an
entry point to the chain in the cluster. Figure 4b illustrates this action. This Pod
includes our custom-built container using the Nginx as a base image, and the
primary function is to authenticate requests entering the Kubernetes cluster. If
the request is allowed to enter the cluster, the traffic will be steered according to
the chain identified, as illustrated in Fig. 4b, and the next hop in the chain will
be the Vid-Reduction Pod. All traffic that egress the Firewall Pod will traverse
to the Vid-Reduction Pod.

The second Pod in the chain is the Vid-Reduction Pod. Traffic from the pre-
vious Pod in the chain will ingress into this Pod which is responsible for locating
the video file and checking the file size. If the file size is below a threshold, the file
will be sent to the next hop in the chain without any modification. Otherwise,
the video will be compressed. The Vid-Reduction Pod includes our custom-built
container, which was developed using an Nginx base image. Furthermore, we use
the FFMPEG tool to perform the compression function for the video file. After
the compression function, the compressed file will be sent to the next hop in the
chain. The file will leave from the Vid-Reduction Pod and traverse to the next
hop in the chain, the Vid-Broadcast Pod.

The third and final Pod in the chain is the Vid-Broadcast Pod. Traffic from
the previous Pod, Vid-Reduction Pod, in the chain will ingress into the Pod.
This Pod is responsible for broadcasting the requested video to fulfill the client’s
request. The Vid-Broadcast Pod container wraps the Nginx RTMP module and



SFC Design & Implementation Using NSM in Kubernetes 133

FFMPEG tool. Nginx is open-source software for web servers, reverse proxying,
load balancing, streaming, and more [24]. We choose Nginx because it provides a
fast and reliable static web server, plus it is one of the most popular web servers.

4 Implementation

Testbed. The experiments were conducted on our testbed, CINE, consisting of
2 servers. One of the servers has a 40-core CPU (Intel Xeon E5-2650 @ 2.30)
with one 1GbE NIC (Intel I350), and the other server has a 40-core CPU (Intel
Xeon Silver 4114 @ 2.20GHz) with one 1GbE NIC (BRCM 5720).

Kubernetes. We focused on using the latest version of Kubernetes. The client
version for Kubernetes is 1.21.3, and the server version for Kubernetes is 1.21.1.
We deployed Kubernetes on the two servers mentioned above. We also installed
kubelet and kubectl. The kubelet is the component that runs on all the machines
in the cluster and performs user’s requests such as starting a Pod and containers.
The latter is the command line to communicate with the cluster. We used the
Kubeadm tool to create clusters in Kubernetes.

Networking. We choose the NSM to be deployed in our cluster. The new release
of NSM (v1.0.0) does not depend on a specific CNI. Therefore, we select Net
Weave, a resilient and straightforward network for Kubernetes and its hosted
applications [42]. Weave Net creates a virtual network that connects Docker
containers across multiple hosts and enables their automatic discovery.

NSM. We tested two versions of the NSM releases. At first, we worked with
the v0.2.0 release. This release was only released against Helm version 2. NSM
is released through a set of Helm charts, which are easily deployable in the
Kubernetes cluster. Release v0.2.0 introduces more features such as interdomain,
DNS, security, and improvement to Network Service Endpoint. We also worked
on the new release, v1.0.0, which was not officially published when we wrote the
paper. Instead, the NSM community is releasing the latest version in phases.
We worked with the new release and created a cluster with our custom-built
containers to develop a chain of services. Release v1.0.0 added more features and
capabilities from the old release, such as supporting different types of payloads
(IP and Ethernet), latency reduction, and topology-aware scale.

5 Performance Evaluation

This section will provide a performance evaluation for the three different
frameworks under three categories: Operating System (OS)-level virtualization,
technology-based aspects, and management flexibility.

There are two different types of OS-level virtualization. The first one is VMs
and the second is containers. The difference between VMs and containers is



134 A. Bittar et al.

the level of OS virtualization. Traditional VMs are heavyweight that run guest
operating systems with their binaries, libraries, and applications that it services
and the VM may be many gigabytes in size. In comparison, containers incur
significantly lower overhead than traditional VMs and are gaining increasing
attention in recent years [43]. A container shares host OS kernel, binaries and
libraries, and they come in megabytes in sizes. Both OVN4NFV-K8s and Contiv-
VPP use the VMs technique, which adds management overheads. Developers will
have to deal with any additional issues when creating the VMs. While on the
other hand, the NSM framework focuses on containers to reduce management
overhead because they use the operating system’s standard system call interface.
But this comes with a flexibility issue where containers are not as flexible as a
VM.

Secondly, each framework uses a different technology to present its solution
for SFC. The Contiv-VPP extension only supports L2 cross-connect for intercon-
necting between Pods and only supports one single data path. Contiv-VPP relies
on Data Plane Development Kit (DPDK) technology which offloads packet pro-
cessing from the operating system kernel to userspace. Using DPDK technology
brings benefits such as accelerating packet processing workloads. Despite that,
it might be challenging to set up the correct environment and install DPDK for
Contiv-VPP to function correctly on bare metal servers. On the other side, if you
choose to implement Contiv-VPP using VMs, this will eliminate the challenges
of installing DPDK as the VMs will be ready to use. Furthermore, Contiv-VPP
requires a specific hypervisor, VirtualBox, limiting the users due to lack of sup-
port to VirtualBox hypervisor. It is essential to mention that Contiv-VPP only
uses memif interfaces. Finally, Contiv-VPP provides a user interface that might
help visualize the components and connect them.

OVN4NFV-K8s is based on Open Virtual Network (OVN), which supports
virtual network abstraction and complements the existing capabilities of Open
vSwitch that provides L2/L3 virtual networking, such as logical switches and
routers, multiple tunnel overlays, and L2/L3/L4 ACLs. It is essential to mention
that the OVN4NFV-K8s plug-in is a project under the Open Platform for NFV
(OPNFV). Hence, it inherits and is limited to the OPNFV features. The third
framework, NSM, complements traditional service mesh [44] and provides an
infrastructure layer over microservices to standardize the runtime operations of
applications. NSM focuses on supporting applications that might consist of many
microservices, leading to simplicity, flexibility, and scalability. However, manag-
ing different microservices is a complex task, where different languages might
be implemented, owned by different tenants, and/or constant changing states
to microservices. Finally, comparing NSM with Contiv-VPP and OVN4NVF
networking tools, NSM does not alter the Kubernetes CNI; instead, it is a stan-
dalone mechanism that consists of several components that can be deployed in
a Kubernetes cluster. NSM provides different types of interfaces to be injected
in a Pod. It gives the users a choice between using a memif or kernel interface.

The final category in evaluating the performance is each framework’s flexibil-
ity for developers to configure the framework accordingly. Creating a Kubernetes



SFC Design & Implementation Using NSM in Kubernetes 135

cluster using the OVN4NFV-K8s and Contiv-VPP framework was more com-
plex than the NSM framework. Both OVN4NFV-K8s and Contiv-VPP require
heavy pre-configuration. For OVN4NFV-K8s, the framework requires specific
pre-configuration before deploying the cluster. Plus, it depends on building VMs
rather than containers. On the other hand, deploying a Kubernetes cluster using
NSM is smooth. We started by using Calico and implemented Calico as CNI
with a single node cluster in using NSM. However, Calico causes some issues
when switching to two physical node clusters. It delays connections between
spire agent and spire server, consequently generating the failure of workload
registration in NSM infrastructure. But NSM provides the freedom for users
to choose amongst different networking plug-ins. Furthermore, NSM does not
require heavy pre-configuration to deploy the networking plug-ins as it provides
great flexibility.

6 Limitations and Future Work

We faced multiple challenges during our work to deploy an SFC in Kuber-
netes. The first challenge was working with NSM releases. Between old and
new releases of the NSM framework, the documentation provided is inferior.
The latest release of NSM introduces a new method to deploy Network Service.
It involves the Kubernetes concepts of the Kustomize tool, a standalone tool to
customize Kubernetes objects through a kustomization file [27]. We faced the
second challenge of integrating our custom-built containers into the NSM frame-
work. Specifically when adding the feature of injecting memif interfaces to coex-
ists with our service function. SM framework forces the injection of interfaces,
and traffic will have to ingress and egress specifically from those interfaces. This
can limit service functions types implemented in a chain. The final challenge we
faced was the transfer process of the video file between Pods. Transferring files
between Pods in a chain is different than regular file transfer using Kubernetes-
based features. There are many tools for file transfer, such as the secure copy
protocol, but implementing it in a container will increase the container image
size. This will eliminate one of the container’s benefits of being lightweight.

SFC is still not mature in microservice-based network architecture. More
research is needed to provide solutions for chaining service functions while using
containers and not traditional VMs. Furthermore, the SFC concept is limited to
small applications, such as load balancing and packet investigations. Big science
data flow applications might benefit from SFC features if deployed correctly.
Another area of improvement is an analytical study of the effect of different
network interfaces performance. In our example, we used both kernel and memif
interfaces. Ideally, it would be good to analyze how each different interface per-
forms in a container environment. Finally, applying network analysis to extract
network metrics and optimize the performance will provide a better QoS over
the chain.



136 A. Bittar et al.

7 Related Work

The authors in [28] provide a similar work by using NSM in Kubernetes to offer
SFC solutions. They proposed an efficient traffic steering orientation for cloud-
native service function chaining. They proposed a new network-aware traffic
orientation model based on weighted cycles. This is different from our work as
we focus on SFC’s design and implementation process using the NSM framework
in Kubernetes. Also, in [29], they offered a solution to maximize the QoS satisfac-
tion rate by load-balancing the traffic over the SFC path using the Convtiv-VPP
method. Few papers [30,31] focus on integrating OpenStack and Kubernetes
to deploy a chain of service functions. OpenStack provides VMs for users to
deploy their services and applications, while Kubernetes orchestrates and man-
ages containers. Bringing both OpenStack and Kubernetes together uses Kuryr,
an OpenStack project that aims to solve container networking issues in Open-
Stack. Many papers fill in the gap for container-based orchestration. Since there
is no standard for defining container-based VNFs, many articles fill the gap
by designing new solutions such as extending Tacker architecture (NFV man-
agement and orchestration framework) [32,33]. The authors in [34] proposed a
fault management system with dynamic policy recovery enforcement to support
the high availability of SFC in a multi-cloud environment. In [35], the authors
proposed a performance model approach for recommending an initial resource
provisioning for every microservice within all CNFs before deploying the SFC.
Another interesting paper [36] proposed a machine learning framework module
that can detect anomalies for SFC integrity. Finally, a recent paper [37] proposed
a resource and energy-aware SFC strategy in the edge-cloud environment for IoT
applications that would cope with dynamic load and resource situations emerg-
ing from dynamic SFC requests. Our work is related to those papers mentioned
in this section by building a service function chain. We took a different avenue
by providing sufficient details on SFC’s design and implementation process using
the NSM framework in Kubernetes and adding more value to a service function
chain. To our knowledge, no previous work used the NSM framework for building
a chain of network services using real-life use cases.

8 Conclusion

NFV is the future technology that enables cloud-based platforms to provide
public services and acquire resources such as networking, computing, and stor-
age. This concept unfolded innovations such as container-based microservices
for deploying services and applications. Containers are efficient and flexible
while incurring significantly lower overhead. Kubernetes is a tool to orches-
trate and manage containers. Kubernetes’ function strategy follows a declarative
microservice approach. Kubernetes provides service discovery and load balanc-
ing, automation in self-healing, optimal scheduling, and security mechanisms. It
also has a shorter time to deployment due to architecture, logging detail and live
“in-service” debugging. Kubernetes does provide a specific way to interconnect



SFC Design & Implementation Using NSM in Kubernetes 137

Pods and containers. Instead, it depends on the third party to provide overlay
network functions such as NSM over Kubernetes essential network functions.
These projects follow the Kubernetes networking model to build a networking
plug-in for the Kubernetes cluster. We provide details on different networking
extensions that support SFC. We also briefly explain the various networking
plug-ins that support CNI, such as Calico, Canal, and Contiv-VPP.

We created a Kubernetes cluster using the NSM framework, supporting the
SFC concept. We created a service function chain that consisted of multiple Pods
in a multi-node cluster. The Pods contained our custom-built containers, and
each container was built to perform a different function. The container functions
we built were firewall, video compression, and video broadcasting containers. We
found limitations when using the NSM framework to deploy the SFC concept.
Hence, the limitations of deploying the SFC concept on Kubernetes are related
to the functionality and features of the networking extension plug-in we used
(NSM). Our SFC design and implementation focused on providing a real-life
scenario compared to traditional chains with limited service functions.

Acknowledgement. This project is supported by the Mitacs Accelerate program
funded by NSERC between Ciena and Carleton University, Ottawa, Canada.

References

1. Tsuji, Y., Itoh, A., Kobayashi, M.: Future network technologies for the 5G/IoT
Era. NTT Tech. Rev. 16(6) (2018)

2. ETSI Industry Specification Group (ISG): Network Functions Virtualisation
(NFV): An introduction, benefits, enablers, challenges and call for action. SDN
and OpenFlow World Congress, Darmstadt, Germany (2012)

3. ETSI Industry Specification Group (ISG): Network Functions Virtualisation
(NFV): Architectural Framework (2014)

4. Halpern, J., Pignataro, C.: Service Function Chaining (SFC) Architecture. In:
RFC, number 7665, October 2070–1721, RFC Editor, RFC Editor (2015)

5. Kubernetes, Production-Grade Container Orchestration, https://kubernetes.io/.
Accessed 15 Nov 2021

6. Cloud Native Computing Foundation, CNCF Survey Report 2020. https://www.
cncf.io/wp-content/uploads/2020/12/CNCF-Survey-Report-2020.pdf. Accessed
15 Nov 2021

7. Cziva, R., Pezaros, D.P.: Container network functions: bringing NFV to the net-
work edge. IEEE Commun. Mag. 55(6), 24–31 (2017). https://doi.org/10.1109/
MCOM.2017.1601039

8. Cloud-Native Network Functions. https://cdnf.io/. Accessed 15 Nov 2021
9. Li, X., Rao, J., Zhang, H., Callard, A.: Network Slicing with Elastic SFC. In:

IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5 (2017). https://
doi.org/10.1109/VTCFall.2017.8287914

10. Barakabitze, A.A., et al.: 5G network slicing using SDN and NFV: a survey of
taxonomy, architectures and future challenges. Comput. Netw. 167, 106984 (2020).
https://doi.org/10.1016/j.comnet.2019.106984

11. CNI - the container network interface. https://github.com/containernetworking/
cni. Accessed 15 Nov 2021

https://kubernetes.io/
https://www.cncf.io/wp-content/uploads/2020/12/CNCF-Survey-Report-2020.pdf
https://www.cncf.io/wp-content/uploads/2020/12/CNCF-Survey-Report-2020.pdf
https://doi.org/10.1109/MCOM.2017.1601039
https://doi.org/10.1109/MCOM.2017.1601039
https://cdnf.io/
https://doi.org/10.1109/VTCFall.2017.8287914
https://doi.org/10.1109/VTCFall.2017.8287914
https://doi.org/10.1016/j.comnet.2019.106984
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni


138 A. Bittar et al.

12. Benchmark-k8s-cni-2020-08. https://github.com/InfraBuilder/benchmark-k8s-
cni-2020-08. Accessed 15 Nov 2021

13. Project Calico. https://docs.projectcalico.org/getting-started/kubernetes/.
Accessed 15 Nov 2021

14. KOPS -Kubernetes Operation. https://kops.sigs.k8s.io/networking/canal/.
Accessed 15 Nov 2021

15. Contivpp.https://contivpp.io/. Accessed 15 Nov 2021
16. FD.io, The world’s secure networking data plane. https://fd.io/. Accessed 15 Nov

2021
17. Network Service Mesh. https://networkservicemesh.io/. Accessed 15 Nov 2021
18. Custom Resources. https://kubernetes.io/docs/concepts/extend-kubernetes/api-

extension/custom-resources/. Accessed 15 Nov 2021
19. OPNFV/OVN4NFV-K8s-K8s-plugin. https://github.com/opnfv/ovn4nfv-k8s-

plugin/. Accessed 15 Nov 2021
20. IDG 2020 IDG Cloud Computing Study. https://resources.idg.com/download/

2020-cloud-computing-executive-summary-rl/. Accessed 15 Nov 2021
21. CDNF, Cloud-Native Network Functions. https://cdnf.io. Accessed 15 Nov 2021
22. Docker Homepage. https://www.docker.com/. Accessed 15 Nov 2021
23. Container Network Interface specification. https://github.com/

containernetworking/cni/blob/master/SPEC.md. Accessed 15 Nov 2021
24. NGINX Homepage. https://www.nginx.com/. Accessed 15 Nov 2021
25. Kind Homepage. https://kind.sigs.k8s.io/. Accessed 15 Nov 2021
26. Simple CNI plugin with IPv4, IPv6 and DualStack support. https://github.com/

aojea/kindnet. Accessed 15 Nov 2021
27. Declarative management of Kubernetes objects using kustomize. https://

kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/. Accessed
15 Nov 2021

28. Dab, B., Fajjari, I., Rohon, M., Auboin, C., Diquélou, A.: An efficient traffic steer-
ing for cloud-native service function chaining. In: 23rd conference on innovation in
clouds, Internet and Networks and Workshops (ICIN), pp. 71–78 (2020). https://
doi.org/10.1109/ICIN48450.2020.9059340

29. Bouridah, A., Fajjari, I., Aitsaadi, N., Belhadef, H.: Optimized scalable SFC traf-
fic steering scheme for cloud native based applications. In: IEEE 18th Annual
Consumer Communications & Networking Conference (CCNC), pp. 1–6 (2021).
https://doi.org/10.1109/CCNC49032.2021.9369583

30. Vu, X.T., et al.: An architecture for enabling VNF auto-scaling with flow migra-
tion. In: 2020 International Conference on Information and Communication Tech-
nology Convergence (ICTC), pp. 624–27. IEEE (2020). https://doi.org/10.1109/
ICTC49870.2020.9289507

31. Kouchaksaraei, H.R., Karl, H.: Service function chaining across openstack and
kubernetes domains. In: Proceedings of the 13th ACM International Conference
on Distributed and Event-based Systems (2019)

32. Hoang, C.-P., et al.: An extended virtual network functions manager architecture
to support container. In: Proceedings of the 2018 International Conference on
Information Science and System, pp. 173–176. ACM (2018). https://doi.org/10.
1145/3209914.3209934

33. Yang, H., Hoang, C., Kim, Y.: Architecture for virtual network function’s high
availability in hybrid cloud infrastructure. In: 2018 IEEE Conference on Net-
work Function Virtualization and Software Defined Networks (NFV-SDN), pp.
1–5 (2018). https://doi.org/10.1109/NFV-SDN.2018.8725784

https://github.com/InfraBuilder/benchmark-k8s-cni-2020-08
https://github.com/InfraBuilder/benchmark-k8s-cni-2020-08
https://docs.projectcalico.org/getting-started/kubernetes/
https://kops.sigs.k8s.io/networking/canal/
https://contivpp.io/
https://fd.io/
https://networkservicemesh.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/opnfv/ovn4nfv-k8s-plugin/
https://github.com/opnfv/ovn4nfv-k8s-plugin/
https://resources.idg.com/download/2020-cloud-computing-executive-summary-rl/
https://resources.idg.com/download/2020-cloud-computing-executive-summary-rl/
https://cdnf.io
https://www.docker.com/
https://github.com/containernetworking /cni/blob/master/SPEC.md
https://github.com/containernetworking /cni/blob/master/SPEC.md
https://www.nginx.com/
https://kind.sigs.k8s.io/
https://github.com/aojea/kindnet
https://github.com/aojea/kindnet
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/
https://doi.org/10.1109/ICIN48450.2020.9059340
https://doi.org/10.1109/ICIN48450.2020.9059340
https://doi.org/10.1109/CCNC49032.2021.9369583
https://doi.org/10.1109/ICTC49870.2020.9289507
https://doi.org/10.1109/ICTC49870.2020.9289507
https://doi.org/10.1145/3209914.3209934
https://doi.org/10.1145/3209914.3209934
https://doi.org/10.1109/NFV-SDN.2018.8725784


SFC Design & Implementation Using NSM in Kubernetes 139

34. Song, S.-Y., Lin, F.J.: Dynamic fault management in service function chaining. In:
IEEE 44th Annual Computers, Software, and Applications Conference (COMP-
SAC), pp. 1477–1482. IEEE (2020). https://doi.org/10.1109/COMPSAC48688.
2020.00-46

35. Khan, M.G., et al.: A performance modelling approach for SLA-aware resource
recommendation in cloud native network functions. In: 6th IEEE Conference on
Network Softwarization (NetSoft), pp. 292–300 (2020). https://doi.org/10.1109/
NetSoft48620.2020.9165482

36. Cheng, S.-T., Zhu, C.-Y., Hsu, C.-W., Shih, J.-S.: The anomaly detection mecha-
nism using extreme learning machine for service function chaining. In: 2020 Interna-
tional Computer Symposium (ICS), pp. 310–315 (2020). https://doi.org/10.1109/
ICS51289.2020.00068

37. Thanh, N.H., Kien, N.T., Van Hoa, N., Huong, T.T., Wamser, F., Hossfeld, T.:
Energy-aware service function chain embedding in edge-cloud environments for IoT
applications. IEEE Internet Things J. 8(17), 13465–13486 (2021). https://doi.org/
10.1109/JIOT.2021.3064986

38. Creating a cluster with kubeadm. https://kubernetes.io/docs/setup/production-
environment/tools/kubeadm/create-cluster-kubeadm/. Accessed 15 Nov 2021

39. Zou, D., Huang, Z., Yuan, B., Chen, H., Jin, H.: Solving anomalies in NFV-SDN
based service function chaining composition for IoT network. IEEE Access 6,
62286–62295 (2018). https://doi.org/10.1109/ACCESS.2018.2876314

40. Imagane, K., Kanai, K., Katto, J., Tsuda, T., Nakazato, H.: Performance eval-
uations of multimedia service function chaining in edge clouds. In: 15th IEEE
Annual Consumer Communications & Networking Conference (CCNC), pp. 1–4
(2018). https://doi.org/10.1109/CCNC.2018.8319249

41. Memif Poll Mode Driver. https://doc.dpdk.org/guides/nics/memif.html. Accessed
15 Nov 2021

42. Weaveworks, Integrating Kuberntes via the Addon. https://www.weave.works/
docs/net/latest/kubernetes/kube-addon/. Accessed 15 Nov 2021

43. Zhang, Q., Liu, L., Pu, C., Dou, Q., Wu, L., Zhou, W.: A comparative study of
containers and virtual machines in big data environment. In: IEEE 11th Interna-
tional Conference on Cloud Computing (CLOUD), pp. 178–185 (2018). https://
doi.org/10.1109/CLOUD.2018.00030

44. Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y.: Service mesh: challenges, state of
the art, and future research opportunities. In: 2019 IEEE International Conference
on Service-Oriented System Engineering (SOSE), pp. 122–1225 (2019). https://
doi.org/10.1109/SOSE.2019.00026

45. CONTIV/VPP. https://github.com/contiv/vpp/tree/master/k8s/examples/sfc.
Accessed 31 Jan 2022

https://doi.org/10.1109/COMPSAC48688.2020.00-46
https://doi.org/10.1109/COMPSAC48688.2020.00-46
https://doi.org/10.1109/NetSoft48620.2020.9165482
https://doi.org/10.1109/NetSoft48620.2020.9165482
https://doi.org/10.1109/ICS51289.2020.00068
https://doi.org/10.1109/ICS51289.2020.00068
https://doi.org/10.1109/JIOT.2021.3064986
https://doi.org/10.1109/JIOT.2021.3064986
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://doi.org/10.1109/ACCESS.2018.2876314
https://doi.org/10.1109/CCNC.2018.8319249
https://doc.dpdk.org/guides/nics/memif.html
https://www.weave.works/docs/net/latest/kubernetes/kube-addon/
https://www.weave.works/docs/net/latest/kubernetes/kube-addon/
https://doi.org/10.1109/CLOUD.2018.00030
https://doi.org/10.1109/CLOUD.2018.00030
https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.1109/SOSE.2019.00026
https://github.com/contiv/vpp/tree/master/k8s/examples/sfc.


140 A. Bittar et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Service Function Chaining Design & Implementation Using Network Service Mesh in Kubernetes
	1 Introduction
	2 Background
	2.1 Motivation
	2.2 Kubernetes
	2.3 Containers
	2.4 Different CNI Plug-ins
	2.5 Network Service Mesh (NSM)

	3 Design
	4 Implementation
	5 Performance Evaluation
	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References




