
Emission Mitigation Dispatch in Wind Power
Generation with Expedited Machine Learning

Xian Liu*
Department of Systems Engineering
University of Arkansas at Little Rock

Little Rock, USA
xxliu@ualr.edu

*Corresponding author

Changcheng Huang
Department of Systems and Computer Engineering

Carleton University
Ottawa, Canada

huang@sce.carleton.ca

Abstract—In this paper: a machine learning (ML) module is
presented for emission mitigation dispatch (EMD) in wind
power (WP) generation. It is developed for the mobile edge
computing (MEC) platforms. Therefore, the module is based on
a lightweight ML scheme: radial basis neural network (RBN). It
has been well known that RBN is compact compared with a
more popular ML scheme: feedforward neural network.
However, this is the first study to combine EMD with RBN,
strongly motivated by the MEC implementations. MEC is
becoming an important platform in the evolving smart grid
program. As a trial, a case study with 36 generators and 50 wind
turbines is presented. Two standard ML stages, training and
testing, are conducted in the simulation. It is shown that, by using
the trained RBN, the time of solving EMD is significantly
reduced. It is expected to be a desirable model for MEC.

Index Terms— Artificial intelligence, emission mitigation,
machine learning, electric smart grid, wind power.

I. INTRODUCTION

 One of the most prominent features of electricity smart grid
(ESG) is integrating modern communication facilities,
primarily the Internet, into the power grid. However, there are
several distinct features in communications over ESG. For
example, a significant portion of communication tasks is
control-oriented. Examples include decision-making
communications for optimizing energy utilization and such.
This is especially important when renewable energy supplies
are incorporated, such as wind power generation. This is
because wind is highly dynamic in nature and the decisions
must be promptly made for electricity scheduling and
delivery. Machine learning (ML) would play a very active
role in enhancing the decision-making process.

 Modern power dispatch typically goes through three
segments: generation (from fossil fuels), transmission, and
distribution (commonly referred to as GTD in the utility
industry). In the area of communications, there was a strong
interest in ESG’s neighborhood area networks (NAN) ([2],
[3]). In practice, a large portion of green energy generating
utilities would be deployed near the segment of NANs.
Therefore, the end devices will play an increasingly important
role. Currently there is a growing consensus that the ML
should be expeditiously introduced to the front end of smart

grid communications. In fact, the interest in mobile edge
leaning (MEL) is high due to the latest progress of beyond-
the-fifth generation (B5G) technologies [4].

 In this paper, we describe a lightweight ML module for
emission mitigation dispatch (EMD) incorporating WP. Since
the learning is to be done in the end devices, where the
computing capacity is limited, we seeks small scale ML
approaches. Our study found that the radial basis neural
network (RBN) strategy performs much faster than
feedforward neural network (FNN). Therefore, it is feasible to
implement this lightweight ML module into mobile devices to
exert the MEL’s ascendancy. It is expected that the end
platform of ESG can run this MEL client to find the locally
optimal solution for scheduling WP. This solution is
geographically local. Then these local solutions can be
forwarded to a control hub to form an overall solution for the
concerned area.

 The rest of this paper is organized as follows. In Section II,
a generic EMD model is reviewed, and the WP behavior is
described. Then, in Section III, the essentials of RBN are
highlighted. Next, in Section IV, the details of the training
process and testing process are presented. Finally, conclusions
are included in Section V.

II. BACKGROUND

 In electrical power systems, emission mitigation dispatch
(EMD) is a variant of economic load dispatch (ELD) [5]. The
main objective of EMD is to reduce the impacts caused by
gaseous pollutants such as carbon oxides, oxides of nitrogen
(NOx), and sulfur oxides (SOx) [6]. EMD is naturally a
constrained nonlinear optimization problem. Recent studies on
EMD usually take renewable energy into account [7]. When
the wind power (WP) 1 is included in the supply-demand
constraint, EMD becomes a stochastic optimization problem.
Since WP is highly volatile, the EMD problem needs to be
solved quickly. This is especially important for the
management of short-term WP. The short-term is commonly
agreed as ranging from 1 hour up to 72 hours. However, most

1 Throughout this paper, WP is referred to as the electric power generated by
wind turbines, i.e., wind power generation (WPG).

328

2023 10th International Conference on Power and Energy Systems Engineering

979-8-3503-2762-5/23/$31.00 ©2023 IEEE

20
23

 1
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ow

er
 a

nd
 E

ne
rg

y
Sy

st
em

s E
ng

in
ee

rin
g

(C
PE

SE
) |

 9
79

-8
-3

50
3-

27
62

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

PE
SE

59
65

3.
20

23
.1

03
03

24
0

Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on November 06,2023 at 14:13:04 UTC from IEEE Xplore. Restrictions apply.

conventional solving methods are iteration-based and time-
consuming. In this paper, we apply the machine learning
(ML) methodology to solve EMD with short-term WP.

 Nowadays, the ML methodology plays a primary role in
artificial intelligence (AI) [8]. In general, AI explores the
capability of thinking and learning by computer systems. ML
is typically built upon the artificial neural networks (ANNs).
Up to date, a great deal of studies has revealed that ANN can
improve the solving efficiency for a wide range of
optimization problems. There are several types of ANN. The
representatives include the feedforward neural network
(FNN, a.k.a. multilayer perceptrons, MLP), convolutional
neural network (CNN), recurrent neural network (RNN), and
radial basis neural network (RBN), to name a few. For some
specific optimization problems, it is highly beneficial to know
which type of ANN is more effective and efficient than
others. In the present work, we investigate the performance of
RBN applied to solve the NOx problem with WP.

 RBN has received an intensive interest since the early era of
ML discipline [9]. The advantages of RBN include almost all
desirable features of a good ANN: universal approximator,
simple architecture, efficient training procedure, and effective
generalization capacity. Similar to FNN, RBN can
approximate a wide range of functions. However, RBN has
only a single hidden layer, hence a very compact structure and
the rapid training process. Moreover, RBN is robust against
the noise in input dataset. On the other hand, a main drawback
of RBN is the possibly large number of neurons, mainly due to
its single-layer structure. However, for the small-scale through
mid-scale applications, the size of hidden layer can be well
controlled. Overall, the main features of RBN make it a
promising facility to solve a wide range of optimization
problems in real-time mode. In this study, we show that RBN
can quickly solve the EMD problem with WP.

 Currently, electric power is mainly generated by the
thermal turbines fueled with coal, oil, or gas. Therefore, the
power generation produces gaseous pollutants such as carbon
oxides, NOx, and SOx [6]. As a case study, the present work
chooses the emission produced by NOx as the primary
concern. However, with some refinements, the modeling and
solving schemes can be easily applied to other types of
emissions.

 In the literature, the following expression has been
commonly used to characterize the impact of NOx emission
[5, 7, 10, 11]:

2
0 1 2 3 4exp(), (1)y a a x a x a a x   

where)4,,1,0(kak are the coefficients estimated from

experiments, y is the environmental impact index (EII), with

the unit of kg/hour, while x is in the per-unit (p. u.) value
with the base 100 MVA. In the present study, we consider n
thermal generators and m wind turbines. Accordingly, the
EMD problem can be formatted as follows:

(EMD)

2
0 1 2 3 4

1

1

min, max,

minimize [exp()]; (2)

subject to

,
(3)

. (1,2, ,)

n

k k k k k k k k
k

n

k d L
k

k k k

y a a x a x a a x

x P P

x x x k n





   

  

    

When the wind power is considered, we have:
(EMD_WP)

2
0 1 2 3 4

1

1 1

min, max,

minimize [exp()]; (4)

subject to

,
(5)

. (1,2, ,)

n

k k k k k k k k
k

m n

j k d L
j k

k k k

y a a x a x a a x

w x P P

x x x k n



 

   

    

    

Note that EMD_WP is an optimization problem in which y is

the objective function and kx is the decision variable.

Moreover, jw is treated as a random variable (RV). Some

discussions would be helpful. WP is associated with wind
dynamics, characterized by wind speed, altitude, atmospheric
pressure, temperature, etc. In nature, these parameters
fluctuate all the time in a stochastic manner and are
commonly described by some RVs. In practice, the
randomness of WP may be mitigated through several
approaches, such as curtailment for generation and/or load.
The present work mainly considers the raw effect of varying
wind speed, without explicitly involving the curtailment-like
schemes. In the short-term horizons like in hours, it has been
shown that the WP approximately follows the beta
distribution [12-14]. The PDF of beta RV is [15]:

1 11
(1) , (0 1)

(,)() (6)

0, (otherwise)

a b

Z

z z z
B a bf z

     


where ,0,0  ba and),(baB is the beta function (BF):
1

1 1

0
(,) (1) . (0, 0) (7)a bB a b u u du a b    

Two sets of practical data are listed in Table I, which are
based on the data reported in [14, Figure 5].

TABLE I. EXAMPLES OF PARAMETERS

 a b ()E Z var()Z

Curve 1 9.4000 6.2667 0.6000 0.0144
Curve 2 0.6457 0.4304 0.6000 0.1156

 In above formulas, the random variable Z represents the
normalized WP, defined as:

/ . (8)rZ w w

329
Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on November 06,2023 at 14:13:04 UTC from IEEE Xplore. Restrictions apply.

 For the short-term ELD problem involving multiple wind
turbines (1),m  it is difficult to have the analytical

approach. For example, even for the case of 2,m  the PDF
of WP is already complicated:

2 2 1 1

1

2

2 1 2 1

1

() (1)
()

() (2)

,1 ,1 ,2 ; , , (0 1) (9)
1

(1, 1)
() , (1) (10)

(,)

() (1) (2)
()

() (2)

2
,1 ,1 ,2 ; , 2 , (1

1

a b

Z

Z

a b

Z

a b z z
f z

b a

z
F a b b a z z

z

B a b a b
f z z

B a b

a b z z
f z

a b

z
F b a a b z z

z

 

 

   
    
       

   
 

    
    

        
2) (11)

where 1()F  is the Appell’s first hypergeometric function of

two variables. The derivation of (9) through (11) is due to
[16, (3.211)]. On the other hand, the moment generating
function (MGF) of 2m  is also complicated:

2
1 1

2
1

1 0

() [(; ;)]

1 , (12)
!

w

kk

k j

M s F a a b s

a j s

a b j k



 

 

               
 

where 1 1(; ;)F    is the confluent hypergeometric function

[16, (9.210.1)]. The derivation of (12) is due to [16,
(3.383.1)]. It is more challenging to derive the cumulative
distribution function (CDF) of the summed beta RVs.
Obviously, for arbitrary case such that 2,m  the analytical
approach is intractable. Therefore, it is imperative to seek
some new approaches. A promising approach is to introduce
RBN.

III. ML AND RBN

 The modern ML discipline is built upon the artificial neural
networks (ANNs). RBN is one of the representatives of ANN.
The key insight can be gained by understanding the intrinsic
principle of ANN. First, consider a generic problem:

minimize (,), (13)

subject to (,) 0,

f x u

g x u 

where : ,nf R R : ,n mg R R x is the vector of decision

variables, and u is the vector of parameters. In concept, the
optimal point of (13) must satisfy the Karush–Kuhn–Tucker
(KKT) conditions [17], which is generally a system of
nonlinear equations:

(,) (,) 0,
(14)

(,) 0,

T

T

f x u g x u

g x u





   




where  is the vector of Lagrangian multipliers, and the
superscript T stands for transpose. Denote the optimal

solution as *.x Since it is influenced by ,u we formally write
it as:

* (), (15)x h u

where ()h  is a unknown function. Next, consider the ANN

methodology. In general, ANN can perform the supervised
training or unsupervised training [8, 9]. ANN can be applied
to pattern classification or function approximation. For the
present problem, we mainly address the aspects of ANN for
function approximation and supervised training. In this
context, the ANN discipline commonly begins from the
regression scheme.
 To simplify the concept, let us consider the linear
regression. Prior to describing RBN, it is instructive to briefly
review the feedforward neural network (FNN). Typically,
FNN consists of an input layer, multiple hidden layers, and an
output layer. The dimensions of the input layer and output
layer are determined by the provided training data. Two types
of datasets are needed for the supervised training. Before
training FNN, a standard nonlinear programming (NLP)
solver is used to obtain a set of solutions represented by (15).
Note that (15) is conditional on the parameter u . Each
solution is represented by an M-dimensional vector. The
target dataset consists of Q such vectors, where Q is the

number of samples. The use of target dataset is one of the
main features in the supervised training. The second type of
dataset for FNN is commonly formatted as an R Q matrix

[18], where R is the dimension of a single input vector.
Corresponding the NLP problem, R is just the number of
total random parameters, while Q is the number of total

scenarios. Accordingly, the dimension of input layer and is
determined by R, while the dimension of output layer is
determined by the target vector.
 Unlike the input layer or output layer, the dimensions of
hidden layers in FNN are not determined by the external
datasets. Typically, a hidden layer consists of many
operational units, referred to as neurons. These neurons are
typically implemented by various activation functions to
approximate the unknown function in (15), expressed as
follows:

* (), (16)Tx w u c 

where w and c are commonly called weight and bias. Note

that the term Tw u is the dot product of two corresponding
vectors. One of the most popular activation functions is the
logistic sigmoid:

1
() . (17)

1 exp()
t

t
 

 

The training goal of FNN is to find the optimal values of
(,)w c to minimize the difference between (15) and (16).

After that, for any new values of ,u the formula (16) can be

used to calculate the corresponding *.x It should be

330
Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on November 06,2023 at 14:13:04 UTC from IEEE Xplore. Restrictions apply.

mentioned that the KKT conditions are only of theoretical
significance and have a limited usage in practical
optimization. Here it is just used to describe the inherent
relations. Also note that the result (16) generated by FNN
provides the approximate solution for each particularly
realized .u Note that FNN tries to find the solution to be
close to all scenarios, rather than perfectly interpolating each
individual target represented by (15). RBN has several
distinct features than FNN. Note that, in FNN, the argument
of activation function is the dot product as shown in (16). In
contrast, RBN uses the following argument in its activation
functions:

, (18)c w u

where  is the Euclidian distance. One of the most popular

activation functions in RBN is the Gauss function:
2() exp(). (19)t t  

There are several types of RBN. Two of the most
representative implementations in Matlab are newrbe and
newrb. The former is mainly used for exact function
interpolations [19], while the latter is often used for function
approximation. Since the ultimate mission of ML is to
process the data not seen in the training phase, the exact
interpolation is usually not a desired scheme. One of the main
reasons is to mitigate overfitting [8, 9].

IV. SIMULATIONS

A. Power System Setup

 The main system parameters are presented in Table II. In
Tables III and IV, the coefficients of six generators are listed
as examples. These data were used in previous studies on EII
reduction (e.g., [5]). The transmission loss is omitted for
simplicity. Note that, in columns 1 through 3 of Table III,
“ 210 ” means that every datum should be multiplied by

.10 2 For example, the actual value of 10a is 0.04091.

TABLE II. MAIN PARAMETERS IN TESTBED

Parameter Value

Number of thermal generators 36

Number of wind turbines 50

Rated WP of wind turbine 0.048 (p.u.)

Total load demand 24 (p.u.)

beta (,)a b (1-hr horizon) (9.4000,6.2667)

beta (,)a b (48-hr horizon) (0.6457,0.4304)

TABLE III. NOX EMISSION COEFFICIENTS OF THERMAL GENERATORS

Generator
Index i

)10(2

0


ia

)10(2

1


ia

)10(2

2


ia

3ia 4ia

1 4.091 -5.554 6.490 2e-4 2.857

2 2.543 -6.047 5.638 5e-4 3.333

3 4.258 -5.094 4.586 1e-6 8.000

4 5.326 -3.550 3.380 2e-3 2.000

5 4.258 -5.094 4.586 1e-6 8.000

6 6.131 -5.555 5.151 1e-5 6.667

TABLE IV. OPERATION RANGE OF THERMAL GENERATORS

Generator
Index i

ixmin,

(p.u.)
ixmax,

(p.u.)
1 0.02 0.5

2 0.03 0.6

3 0.05 1.0

4 0.06 1.2

5 0.05 1.0

6 0.03 0.6

B. Training by RBN

 In this study, we solve the ELD with WP by a radial basis
neural network (RBN). The training and testing are conducted
with newrb in Matlab [18]. Main parameters are in Table V.

TABLE V. MAIN PARAMETERS IN RBN

Parameters Value

Maximum number of
neurons

Q

Spread 1

MSE goal 0

 In Table V, Q is the total number of input samples. In
this simulation, Q = 274 was used. Each sample is a point in
the R-dimensional space. In other words, each sample is a
vector consisting of R components. These samples are
generated by the NLP solver fmincon in Matlab. Three
instances of the targets (one-hour horizon and 48-hour
horizon) are presented in Tables VI and VII, respectively.
The training procedure converged at 13MSE 1.419 10 

and 91.028 10 , respectively for 1-hour and 48-hour
horizons (Figs. 1 and 2).

TABLE VI. EXAMPLES OF TARGET MATRIX (ONE-HOUR HORIZON)

Row Column 1 Column 100 Column 200

1 0.5000 0.5000 0.5000

2 0.5942 0.5949 0.5959

… … … …

35 0.7284 0.7294 0.7308

36 0.6000 0.6000 0.6000

TABLE VII. EXAMPLES OF TARGET MATRIX (48-HOUR HORIZON)

Row Column 1 Column 100 Column 200

1 0.5000 0.5000 0.5000

2 0.6000 0.5947 0.5938

… … … …

331
Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on November 06,2023 at 14:13:04 UTC from IEEE Xplore. Restrictions apply.

35 0.7388 0.7291 0.7279

36 0.6000 0.6000 0.6000

Figure 1. Training performance with the dataset of one-hour horizon.

Figure 2. Training performance with the dataset of 48-hour horizon.

C. Testing by RBN for One-Hour Horizon

 To test the obtained RBN, the dataset of the one-hour
horizon WP scenario is firstly generated by the NLP solver
fmincon. Note that this dataset is different than the data
used for training. This newly generated dataset is denoted as
the “reference” data in the following. Then, the RBN is used
to conduct testing. There are several metrics to evaluate the
performance. Here we choose the sum of power produced by
all thermal generators. Note that this metric is equivalent to
the 1-norm of the solution vector. In Fig. 3, this sum is plotted
against the random wind power. The result of RBN is
compared with the reference data. In Fig. 4, the relation
between the RBN output and the reference is illustrated. The
testing results for 48-hour horizon are illustrated in Figs. 5 and
6. It is observed that RBN has shown a very good matching.

Figure 3. Testing for one-hour horizon, thermal power vs. WP.

Figure 4. Testing for one-hour horizon, RBN vs. reference.

Figure 5. Testing for 48-hour horizon, thermal power vs. WP.

332
Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on November 06,2023 at 14:13:04 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Testing for 48-hour horizon, RBN vs. reference.

D. Computational Efficiency

 The performance of trained ANN needs to be further tested
and compared with some benchmark methods. Conventional
approaches of solving network optimization problems are
represented by those iterative procedures. They are available
in most standard numerical software packages. Since the
datasets used in the present work were generated by a well-
known procedure Fmincon in Matlab, it is appropriate to
compare the trained ANN with Fmincon. The concerned
process is referred to as external testing, as it uses a different
dataset that was unseen in the training phase. According to
ANN principles, however, this new dataset must follow the
same probability distribution as mentioned in Section II. The
simulations were conducted in a small computer equipped
with the 3.50 GHz quad-core CPU and 16 GB RAM. This
makes the module very feasible for MEL platforms.
 The computation time is listed in Table VIII., where the
running time is averaged over all samples and the unit is
millisecond. It is shown that, by using RBN, the
computational efficiency has been significantly increased.

TABLE VIII. PERFORMANCE COMPARISON

 1-hr 48-hr

Fmincon 182.4 889.2

RBN Test 1 0.2351 0.2694

RBN Test 2 0.2203 0.2443

RBN Test 3 0.0482 0.0386

VI. CONCLUSION

 Edge computing is becoming an indispensable frontline in
modern smart grid. Equipping some lightweight ML features
in edge computing represents one of the most important
innovations for smart grid. In this paper, we make an initial
effort to develop a lightweight ML module based on RBN.

The selected case study comes from the emission mitigation
program. It is of the increasing importance since the
beginning of 2021, as the possibility of participating in Paris
Agreement is high.

REFERENCES

[1] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid
communication infrastructures: motivations, requirements and
challenges”, IEEE Communications Surveys & Tutorials, vol. 15, no. 1,
pp. 5-20, First Quarter 2013.

[2] W. Meng, R. Ma, and H.-H. Chen, “Smart grid neighborhood area
networks: a survey”, IEEE Network, vol. 28, no. 1, pp. 24-32, Jan.-Feb.
2014.

[3] C. Kalalas, L. Thrybom, and J. Alonso-Zarate, “Cellular
communications for smart grid neighborhood area networks: a survey”,
IEEE Access, vol. 4, pp. 1469-1493, April 2016.

[4] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an
intelligent edge: wireless communication meets machine learning”,
IEEE Communications Magazine, vol. 58, no. 1, pp. 19-25, January,
2020.

[5] R. Yokoyama, S. H. Bae, T. Morita, and H. Sasaki, “Multiobjective
generation dispatch based on probability security criteria,” IEEE
Transactions on Power Systems, vol. 3, pp. 317–324, Feb. 1988.

[6] E. Denny and M. O'Malley, “Wind generation, power system operation,
and emissions reduction”, IEEE Transactions on Power Systems, vol.
21, no. 1, pp. 341-347, 2006.

[7] X. Liu and W. Xu, “Minimum emission dispatch constrained by
stochastic wind power availability and cost”, IEEE Transactions on
Power Systems, vol. 25, no. 3, pp. 1705-1713, August 2010.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning,
MIT Press, 2016.

[9] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[10] M. A. Abido, “Environmental/economic power dispatch using
multiobjective evolutionary algorithms”, IEEE Transactions on Power
Systems, vol. 18, no. 4, pp. 1529-1537, 2003.

[11] D. B. Das and C. Patvardhan, “New multi-objective stochastic search
technique for economic load dispatch,” Proc. IEE Gen. Transm. Dist.,
vol. 145, no. 6, pp. 747-752, 1998.

[12] S. Bofinger, A. Luig, and H. G. Beyer, “Qualification of wind power
forecasts,” in Proc. 2002 Global Wind Power Conf.

[13] A. Fabbri, T. G. S. Roman, J. R. Abbad, and V. H. M. Quezada,
“Assessment of the cost associated with wind generation prediction
errors in a liberalized electricity market”, IEEE Transactions on Power
Systems, vol. 20, no. 3, pp. 1440-1446, 2005.

[14] H. Bludszuweit, J. A. Dominguez-Navarro, and A. Llombart,
“Statistical analysis of wind power forecast error”, IEEE Transactions
on Power Systems, vol. 23, no. 3, pp. 983-991, 2008

[15] A. Leon-Garcia, Probability, Statistics, and Random Processes for
Electrical Engineering (3rd ed.), Pearson, Upper Saddle River, NJ,
2008.

[16] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products (7th ed.), Academic Press, 2007.

[17] R. Fletcher, Practical Methods of Optimization (2nd ed.), John Wiley &
Sons, NY, 1987.

[18] Neural Network Toolbox, Matlab, R2018a.

[19] M. J. D. Powell, “Radial basis functions for multivariable interpolation:
a review”. In J. C. Mason and M. G. Cox (Eds.), Algorithms for
Approximation, pp. 143–167. Oxford University Press, 1987.

333
Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on November 06,2023 at 14:13:04 UTC from IEEE Xplore. Restrictions apply.

