
Emission Mitigation Dispatch in Wind Power 
Generation with Expedited Machine Learning 

 

Xian Liu* 
Department of Systems Engineering 
University of Arkansas at Little Rock 

Little Rock, USA 
xxliu@ualr.edu 

*Corresponding author 

Changcheng Huang 
Department of Systems and Computer Engineering 

Carleton University 
Ottawa, Canada 

huang@sce.carleton.ca

Abstract—In this paper: a machine learning (ML) module is 
presented for emission mitigation dispatch (EMD) in wind 
power (WP) generation. It is developed for the mobile edge 
computing (MEC) platforms. Therefore, the module is based on 
a lightweight ML scheme: radial basis neural network (RBN). It 
has been well known that RBN is compact compared with a 
more popular ML scheme: feedforward neural network. 
However, this is the first study to combine EMD with RBN, 
strongly motivated by the MEC implementations. MEC is 
becoming an important platform in the evolving smart grid 
program. As a trial, a case study with 36 generators and 50 wind 
turbines is presented. Two standard ML stages, training and 
testing, are conducted in the simulation. It is shown that, by using 
the trained RBN, the time of solving EMD is significantly 
reduced. It is expected to be a desirable model for MEC. 

Index Terms— Artificial intelligence, emission mitigation, 
machine learning, electric smart grid, wind power. 

I. INTRODUCTION 

    One of the most prominent features of electricity smart grid 
(ESG) is integrating modern communication facilities, 
primarily the Internet, into the power grid. However, there are 
several distinct features in communications over ESG. For 
example, a significant portion of communication tasks is 
control-oriented. Examples include decision-making 
communications for optimizing energy utilization and such. 
This is especially important when renewable energy supplies 
are incorporated, such as wind power generation. This is 
because wind is highly dynamic in nature and the decisions 
must be promptly made for electricity scheduling and 
delivery. Machine learning (ML) would play a very active 
role in enhancing the decision-making process. 

    Modern power dispatch typically goes through three 
segments: generation (from fossil fuels), transmission, and 
distribution (commonly referred to as GTD in the utility 
industry). In the area of communications, there was a strong 
interest in ESG’s neighborhood area networks (NAN) ([2], 
[3]). In practice, a large portion of green energy generating 
utilities would be deployed near the segment of NANs.  
Therefore, the end devices will play an increasingly important 
role. Currently there is a growing consensus that the ML 
should be expeditiously introduced to the front end of smart 

grid communications. In fact, the interest in mobile edge 
leaning (MEL) is high due to the latest progress of beyond-
the-fifth generation (B5G) technologies [4]. 

    In this paper, we describe a lightweight ML module for 
emission mitigation dispatch (EMD) incorporating WP. Since 
the learning is to be done in the end devices, where the 
computing capacity is limited, we seeks small scale ML 
approaches. Our study found that the radial basis neural 
network (RBN) strategy performs much faster than 
feedforward neural network (FNN). Therefore, it is feasible to 
implement this lightweight ML module into mobile devices to 
exert the MEL’s ascendancy.  It is expected that the end 
platform of ESG can run this MEL client to find the locally 
optimal solution for scheduling WP. This solution is 
geographically local. Then these local solutions can be 
forwarded to a control hub to form an overall solution for the 
concerned area. 

    The rest of this paper is organized as follows. In Section II, 
a generic EMD model is reviewed, and the WP behavior is 
described. Then, in Section III, the essentials of RBN are 
highlighted. Next, in Section IV, the details of the training 
process and testing process are presented. Finally, conclusions 
are included in Section V. 

II. BACKGROUND 

    In electrical power systems, emission mitigation dispatch 
(EMD) is a variant of economic load dispatch (ELD) [5]. The 
main objective of EMD is to reduce the impacts caused by 
gaseous pollutants such as carbon oxides, oxides of nitrogen 
(NOx), and sulfur oxides (SOx) [6]. EMD is naturally a 
constrained nonlinear optimization problem. Recent studies on 
EMD usually take renewable energy into account [7]. When 
the wind power (WP) 1  is included in the supply-demand 
constraint, EMD becomes a stochastic optimization problem. 
Since WP is highly volatile, the EMD problem needs to be 
solved quickly. This is especially important for the 
management of short-term WP. The short-term is commonly 
agreed as ranging from 1 hour up to 72 hours. However, most 

 
1 Throughout this paper, WP is referred to as the electric power generated by 
wind turbines, i.e., wind power generation (WPG). 
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conventional solving methods are iteration-based and time-
consuming. In this paper, we apply the machine learning 
(ML) methodology to solve EMD with short-term WP. 

    Nowadays, the ML methodology plays a primary role in 
artificial intelligence (AI) [8]. In general, AI explores the 
capability of thinking and learning by computer systems. ML 
is typically built upon the artificial neural networks (ANNs). 
Up to date, a great deal of studies has revealed that ANN can 
improve the solving efficiency for a wide range of 
optimization problems. There are several types of ANN. The 
representatives include the feedforward neural network 
(FNN, a.k.a. multilayer perceptrons, MLP), convolutional 
neural network (CNN), recurrent neural network (RNN), and 
radial basis neural network (RBN), to name a few. For some 
specific optimization problems, it is highly beneficial to know 
which type of ANN is more effective and efficient than 
others. In the present work, we investigate the performance of 
RBN applied to solve the NOx problem with WP. 

    RBN has received an intensive interest since the early era of 
ML discipline [9]. The advantages of RBN include almost all 
desirable features of a good ANN: universal approximator, 
simple architecture, efficient training procedure, and effective 
generalization capacity. Similar to FNN, RBN can 
approximate a wide range of functions. However, RBN has 
only a single hidden layer, hence a very compact structure and 
the rapid training process. Moreover, RBN is robust against 
the noise in input dataset. On the other hand, a main drawback 
of RBN is the possibly large number of neurons, mainly due to 
its single-layer structure. However, for the small-scale through 
mid-scale applications, the size of hidden layer can be well 
controlled. Overall, the main features of RBN make it a 
promising facility to solve a wide range of optimization 
problems in real-time mode. In this study, we show that RBN 
can quickly solve the EMD problem with WP. 

    Currently, electric power is mainly generated by the 
thermal turbines fueled with coal, oil, or gas. Therefore, the 
power generation produces gaseous pollutants such as carbon 
oxides, NOx, and SOx [6]. As a case study, the present work 
chooses the emission produced by NOx as the primary 
concern. However, with some refinements, the modeling and 
solving schemes can be easily applied to other types of 
emissions. 

    In the literature, the following expression has been 
commonly used to characterize the impact of NOx emission 
[5, 7, 10, 11]: 

2
0 1 2 3 4exp( ), (1)y a a x a x a a x      

where )4,,1,0( kak  are the coefficients estimated from 

experiments, y  is the environmental impact index (EII), with 

the unit of kg/hour, while x is in the per-unit (p. u.) value 
with the base 100 MVA. In the present study, we consider n  
thermal generators and m  wind turbines. Accordingly, the 
EMD problem can be formatted as follows: 
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When the wind power is considered, we have: 
(EMD_WP) 

2
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Note that EMD_WP is an optimization problem in which y is 

the objective function and kx  is the decision variable. 

Moreover, jw  is treated as a random variable (RV). Some 

discussions would be helpful. WP is associated with wind 
dynamics, characterized by wind speed, altitude, atmospheric 
pressure, temperature, etc. In nature, these parameters 
fluctuate all the time in a stochastic manner and are 
commonly described by some RVs. In practice, the 
randomness of WP may be mitigated through several 
approaches, such as curtailment for generation and/or load. 
The present work mainly considers the raw effect of varying 
wind speed, without explicitly involving the curtailment-like 
schemes. In the short-term horizons like in hours, it has been 
shown that the WP approximately follows the beta 
distribution [12-14]. The PDF of beta RV is [15]: 

1 11
(1 ) , (0 1)

( , )( ) (6)

0, (otherwise)

a b

Z

z z z
B a bf z

     
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where ,0,0  ba and ),( baB  is the beta function (BF):  
1

1 1

0
( , ) (1 ) . ( 0, 0) (7)a bB a b u u du a b      

Two sets of practical data are listed in Table I, which are 
based on the data reported in [14, Figure 5]. 

TABLE I.  EXAMPLES OF PARAMETERS 

 a  b  ( )E Z  var( )Z  

Curve 1 9.4000 6.2667 0.6000 0.0144 
Curve 2 0.6457 0.4304 0.6000 0.1156 

 
    In above formulas, the random variable Z  represents the 
normalized WP, defined as: 

/ . (8)rZ w w  
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    For the short-term ELD problem involving multiple wind 
turbines ( 1),m   it is difficult to have the analytical 

approach. For example, even for the case of 2,m   the PDF 
of WP is already complicated: 
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where 1( )F   is the Appell’s first hypergeometric function of 

two variables. The derivation of (9) through (11) is due to 
[16, (3.211)]. On the other hand, the moment generating 
function (MGF) of 2m   is also complicated: 
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where 1 1( ; ; )F    is the confluent hypergeometric function 

[16, (9.210.1)]. The derivation of (12) is due to [16, 
(3.383.1)]. It is more challenging to derive the cumulative 
distribution function (CDF) of the summed beta RVs. 
Obviously, for arbitrary case such that 2,m   the analytical 
approach is intractable. Therefore, it is imperative to seek 
some new approaches. A promising approach is to introduce 
RBN. 

III. ML AND RBN 

    The modern ML discipline is built upon the artificial neural 
networks (ANNs). RBN is one of the representatives of ANN. 
The key insight can be gained by understanding the intrinsic 
principle of ANN. First, consider a generic problem: 
 

minimize ( , ), (13)

subject to ( , ) 0,

f x u

g x u 
 

where : ,nf R R : ,n mg R R x  is the vector of decision 

variables, and u  is the vector of parameters. In concept, the 
optimal point of (13) must satisfy the Karush–Kuhn–Tucker 
(KKT) conditions [17], which is generally a system of 
nonlinear equations: 

( , ) ( , ) 0,
(14)

( , ) 0,

T

T

f x u g x u

g x u





   



 

where   is the vector of Lagrangian multipliers, and the 
superscript T  stands for transpose. Denote the optimal 

solution as *.x  Since it is influenced by ,u  we formally write 
it as: 

* ( ), (15)x h u  

where ( )h   is a unknown function. Next, consider the ANN 

methodology. In general, ANN can perform the supervised 
training or unsupervised training [8, 9]. ANN can be applied 
to pattern classification or function approximation. For the 
present problem, we mainly address the aspects of ANN for 
function approximation and supervised training. In this 
context, the ANN discipline commonly begins from the 
regression scheme. 
    To simplify the concept, let us consider the linear 
regression. Prior to describing RBN, it is instructive to briefly 
review the feedforward neural network (FNN). Typically, 
FNN consists of an input layer, multiple hidden layers, and an 
output layer. The dimensions of the input layer and output 
layer are determined by the provided training data. Two types 
of datasets are needed for the supervised training. Before 
training FNN, a standard nonlinear programming (NLP) 
solver is used to obtain a set of solutions represented by (15). 
Note that (15) is conditional on the parameter u .  Each 
solution is represented by an M-dimensional vector. The 
target dataset consists of Q  such vectors, where Q is the 

number of samples.  The use of target dataset is one of the 
main features in the supervised training. The second type of 
dataset for FNN is commonly formatted as an R Q  matrix 

[18], where R is the dimension of a single input vector. 
Corresponding the NLP problem, R  is just the number of 
total random parameters, while Q  is the number of total 

scenarios. Accordingly, the dimension of input layer and is 
determined by R, while the dimension of output layer is 
determined by the target vector. 
    Unlike the input layer or output layer, the dimensions of 
hidden layers in FNN are not determined by the external 
datasets. Typically, a hidden layer consists of many 
operational units, referred to as neurons. These neurons are 
typically implemented by various activation functions to 
approximate the unknown function in (15), expressed as 
follows:  

* ( ), (16)Tx w u c   

where w  and c  are commonly called weight and bias.  Note 

that the term Tw u  is the dot product of two corresponding 
vectors. One of the most popular activation functions is the 
logistic sigmoid: 

1
( ) . (17)

1 exp( )
t

t
 

 
 

The training goal of FNN is to find the optimal values of 
( , )w c to minimize the difference between (15) and (16). 

After that, for any new values of ,u  the formula (16) can be 

used to calculate the corresponding *.x  It should be 
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mentioned that the KKT conditions are only of theoretical 
significance and have a limited usage in practical 
optimization. Here it is just used to describe the inherent 
relations. Also note that the result (16) generated by FNN 
provides the approximate solution for each particularly 
realized .u  Note that FNN tries to find the solution to be 
close to all scenarios, rather than perfectly interpolating each 
individual target represented by (15). RBN has several 
distinct features than FNN. Note that, in FNN, the argument 
of activation function is the dot product as shown in (16). In 
contrast, RBN uses the following argument in its activation 
functions: 

, (18)c w u  

where   is the Euclidian distance. One of the most popular 

activation functions in RBN is the Gauss function: 
2( ) exp( ). (19)t t    

There are several types of RBN. Two of the most 
representative implementations in Matlab are newrbe and 
newrb. The former is mainly used for exact function 
interpolations [19], while the latter is often used for function 
approximation. Since the ultimate mission of ML is to 
process the data not seen in the training phase, the exact 
interpolation is usually not a desired scheme. One of the main 
reasons is to mitigate overfitting [8, 9]. 

IV. SIMULATIONS 

A. Power System Setup 

    The main system parameters are presented in Table II. In 
Tables III and IV, the coefficients of six generators are listed 
as examples. These data were used in previous studies on EII 
reduction (e.g., [5]). The transmission loss is omitted for 
simplicity. Note that, in columns 1 through 3 of Table III, 
“ 210 ” means that every datum should be multiplied by 

.10 2  For example, the actual value of 10a  is 0.04091. 

TABLE II.  MAIN PARAMETERS IN TESTBED  

Parameter Value 

Number of thermal generators 36 

Number of wind turbines 50 

Rated WP of wind turbine 0.048 (p.u.) 

Total load demand 24 (p.u.) 

beta ( , )a b  (1-hr horizon) (9.4000,6.2667)  

beta ( , )a b (48-hr horizon) (0.6457,0.4304)  

TABLE III.  NOX EMISSION COEFFICIENTS OF THERMAL GENERATORS 

Generator 
Index i  

)10( 2

0


ia

 
)10( 2

1


ia

 
)10( 2

2


ia

 
3ia  4ia  

1 4.091 -5.554 6.490 2e-4 2.857 

2 2.543 -6.047 5.638 5e-4 3.333 

3 4.258 -5.094 4.586 1e-6 8.000 

4 5.326 -3.550 3.380 2e-3 2.000 

5 4.258 -5.094 4.586 1e-6 8.000 

6 6.131 -5.555 5.151 1e-5 6.667 

TABLE IV.  OPERATION RANGE OF THERMAL GENERATORS  

Generator 
Index i  

ixmin,  

(p.u.) 
ixmax,  

(p.u.) 
1 0.02 0.5 

2 0.03 0.6 

3 0.05 1.0 

4 0.06 1.2 

5 0.05 1.0 

6 0.03 0.6 

B. Training by RBN 

    In this study, we solve the ELD with WP by a radial basis 
neural network (RBN). The training and testing are conducted 
with newrb in Matlab [18]. Main parameters are in Table V. 

TABLE V.  MAIN PARAMETERS IN RBN 

Parameters Value 

Maximum number of 
neurons 

Q 

Spread 1 

MSE goal 0 

        In Table V, Q is the total number of input samples. In 
this simulation, Q = 274 was used. Each sample is a point in 
the R-dimensional space. In other words, each sample is a 
vector consisting of R components. These samples are 
generated by the NLP solver fmincon in Matlab. Three 
instances of the targets (one-hour horizon and 48-hour 
horizon) are presented in Tables VI and VII, respectively. 
The training procedure converged at 13MSE 1.419 10   

and 91.028 10 ,  respectively for 1-hour and 48-hour 
horizons (Figs. 1 and 2). 

TABLE VI.  EXAMPLES OF TARGET MATRIX (ONE-HOUR HORIZON) 

Row Column 1 Column 100 Column 200 

1 0.5000 0.5000 0.5000 

2 0.5942 0.5949 0.5959 

…  … … … 

35 0.7284 0.7294 0.7308 

36 0.6000 0.6000 0.6000 

TABLE VII.  EXAMPLES OF TARGET MATRIX (48-HOUR HORIZON) 

Row Column 1 Column 100 Column 200 

1 0.5000 0.5000 0.5000 

2 0.6000 0.5947 0.5938 

…  … … … 
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35 0.7388 0.7291 0.7279 

36 0.6000 0.6000 0.6000 

 

 

Figure 1.  Training performance with the dataset of one-hour horizon. 

 

 
 

Figure 2.  Training performance with the dataset of 48-hour horizon. 

C. Testing by RBN for One-Hour Horizon 

    To test the obtained RBN, the dataset of the one-hour 
horizon WP scenario is firstly generated by the NLP solver 
fmincon. Note that this dataset is different than the data 
used for training. This newly generated dataset is denoted as 
the “reference” data in the following. Then, the RBN is used 
to conduct testing. There are several metrics to evaluate the 
performance. Here we choose the sum of power produced by 
all thermal generators. Note that this metric is equivalent to 
the 1-norm of the solution vector. In Fig. 3, this sum is plotted 
against the random wind power. The result of RBN is 
compared with the reference data. In Fig. 4, the relation 
between the RBN output and the reference is illustrated. The 
testing results for 48-hour horizon are illustrated in Figs. 5 and 
6. It is observed that RBN has shown a very good matching. 

 

Figure 3.  Testing for one-hour horizon, thermal power vs. WP. 

 

Figure 4.  Testing for one-hour horizon, RBN vs. reference. 

 

Figure 5.  Testing for 48-hour horizon, thermal power vs. WP. 
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Figure 6.  Testing for 48-hour horizon, RBN vs. reference. 

D. Computational Efficiency 

    The performance of trained ANN needs to be further tested 
and compared with some benchmark methods. Conventional 
approaches of solving network optimization problems are 
represented by those iterative procedures. They are available 
in most standard numerical software packages. Since the 
datasets used in the present work were generated by a well-
known procedure Fmincon in Matlab, it is appropriate to 
compare the trained ANN with Fmincon. The concerned 
process is referred to as external testing, as it uses a different 
dataset that was unseen in the training phase. According to 
ANN principles, however, this new dataset must follow the 
same probability distribution as mentioned in Section II. The 
simulations were conducted in a small computer equipped 
with the 3.50 GHz quad-core CPU and 16 GB RAM. This 
makes the module very feasible for MEL platforms. 
    The computation time is listed in Table VIII., where the 
running time is averaged over all samples and the unit is 
millisecond. It is shown that, by using RBN, the 
computational efficiency has been significantly increased. 

TABLE VIII.  PERFORMANCE COMPARISON 

 1-hr 48-hr 

Fmincon 182.4 889.2 

RBN Test 1 0.2351 0.2694 

RBN Test 2 0.2203 0.2443 

RBN Test 3 0.0482 0.0386 

 
 

VI. CONCLUSION 

    Edge computing is becoming an indispensable frontline in 
modern smart grid. Equipping some lightweight ML features 
in edge computing represents one of the most important 
innovations for smart grid. In this paper, we make an initial 
effort to develop a lightweight ML module based on RBN. 

The selected case study comes from the emission mitigation 
program. It is of the increasing importance since the 
beginning of 2021, as the possibility of participating in Paris 
Agreement is high. 
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