
Service Function Chaining Implementation using
VNFs and CNFs

Abdullah Bittar
Dept. of Systems and

Computer Engineering
Carleton University

Ottawa, Canada
abdullahbittar@cmail.carleton.ca

Ziqiang Wang
Dept. of Systems and

Computer Engineering
Carleton University

Ottawa, Canada
ziqiangwang@cmail.carleton.ca

Changcheng Huang
Dept. of Systems and

Computer Engineering
Carleton University

Ottawa, Canada
huang@sce.carleton.ca

Abstract—The increasing popularity of cloud-based platforms
has led to the emergence of two prominent open-source solutions:
OpenStack and Kubernetes. OpenStack facilitates computing
and networking resources through virtual machine instances,
while Kubernetes excels in container orchestration, managing
containerized workloads and services. This paper explores the
implementation of Service Function Chaining (SFC) using a
combination of virtual machines in OpenStack and containers
in Kubernetes. The primary focus of our study is to analyze the
performance of containers within the context of chain deployment
in Kubernetes. Our experimentation reveals compelling insights
into container bootup times, showcasing their efficiency when
compared to virtual machines. Additionally, we meticulously
evaluate the impact of integrating SFC-related interfaces into
pods forming a chain, particularly assessing CPU, memory, and
bandwidth utilization. Our findings underline the advantages of
utilizing containers in SFC deployment scenarios and shed light
on the potential overhead that arises during interface integration.

Index Terms—Service Function Chain, SFC, OpenStack, Ku-
bernetes, VNF, CNF

I. INTRODUCTION

Network operators in enterprise networks [1], mobile net-

works [2], and data centers [3] often demand traffic to travel

through multiple network Functions (NFs) in a specific order

(e.g., firewall, IDS, proxy) [4], which is generally known

as Service Function Chaining (SFC). Software-Defined Net-

working (SDN) enforces chaining policies by steering traffic

through the appropriate NFs [4]. At the same time, Network

Function Virtualization (NFV) can offer flexible and dynamic

virtual network provisioning. SFC helps automate traffic flow

between services while optimizing network resources to im-

prove application performance using the best available routing

path. SFC is vital in next-generation networks supporting

technologies such as 5G, IoT, and edge computing [5]–[7].

Several cloud-based platforms have been developed and

made accessible to the public for diverse computing needs.

OpenStack and Kubernetes stand out among these platforms as

two of the most robust solutions. OpenStack, a free and open-

source cloud computing platform, facilitates the provisioning

of virtual machines and other crucial resources to users [8].

However, the deployment of Network Functions (NFs) in the

form of Virtual Network Functions (VNF) through Virtual

Machines (VMs) may introduce challenges in terms of ef-

ficiency when dealing with large-scale 5G or edge deploy-

ments. These scenarios require enhanced agility, scalability,

and minimized overhead. A cloud-native approach utilizing

containers instead of VMs becomes imperative to address

these challenges. Cloud-native Networking Functions (CNFs)

represent a specialized extension of VNFs designed explicitly

to operate within containers [9]. In this context, Kubernetes

emerges as a prominent open-source cloud platform adept

at managing containerized workloads and services [10]. By

leveraging Kubernetes’ container orchestration capabilities,

organizations can achieve a more streamlined and resource-

efficient deployment of CNFs, meeting the demands of modern

cloud environments.

This paper focuses on implementing the SFC concept in

both OpenStack and Kubernetes for a practical, real-world

experience. Specifically, we concentrate on the performance

differences between VNFs and CNFs by providing perfor-

mance results extracted from Kubernetes. CNFs are lighter

than VNFs, leading to faster booting-up time. But when

adding interfaces related to chaining services, we observed

an overhead that degraded the performance. We will cover

the background on OpenStack, Kubernetes, and VMs and

containers in Section II, the experiment setup in Section III,

the performance results and analysis in Section IV, and related

work in Section V. Finally, a conclusion is in Section VI.

II. SERVICE FUNCTION CHAINING IMPLEMENTATION

This section will include details on the SFC implementation

steps in OpenStack II-A and Kubernetes II-B. In II-C we

provide the differences between VMs and CNFs.

A. OpenStack

OpenStack acts as a fabric that can build a virtualized data

center on-demand with minimal realization time, providing a

large pool of computing, storage, and networking resources.

OpenStack identifies SFC as “a mechanism for overriding

the basic destination-based forwarding that is typical of IP

networks” [8]. SFC can be implemented as an extension to the

OpenStack networking module and makes it possible to create

a traffic-steering service chain using only port names since all

OpenStack networking services and compute instances connect

to a virtual network via ports.

193

2023 IEEE International Conference on Cloud Engineering (IC2E)

2694-0825/23/$31.00 ©2023 IEEE
DOI 10.1109/IC2E59103.2023.00029

A specific four-step logic approach exists for developing a

chain in OpenStack infrastructure. The first step is to create

a Flow Classifier (FC) used for traffic classification based on

predefined policies. A classifier will classify incoming traffic,

and if it matches the FC rules, traffic flow will be directed to an

SFC. The second step is creating a Port Pair (PP), representing

a service function instance’s ingress and egress port. The port

can be either uni- or bi-directional. The third step is to create

a Port Pair Group (PPG), a collection of one or more PPs.

Multiple PPs enable load balancing over a set of equivalent

service functions. PPG has an interesting feature that may be

used for monitoring and analyzing processes. When creating

the PPG, users can add the tap attribute for the service function

instance, where the instance will only receive a copy of the

flow without forwarding it to the next hop. The last step is the

Port Chain (PC) which defines and implements the Service

Function Path (SFP) by identifying the set of FCs and an

ordered list of PPGs. Traffic that matches the FC rules will

have to traverse the PPs placed in the PPGs. A unidirectional

PC applies when only the forward flows in the SFC chain

must match the criteria specified in the FC. A bi-directional

will have a symmetric feature where forwarding and reverse

traffic will obey the requirements specified in the FC.

After a chain has been designed and deployed, traffic

policies are implemented in the OpenStack network subsystem

by adding OpenFlow rules to Open vSwitch (OvS)-based

virtual switches in each compute node [11]. Integrating bridge

bri-int, to which all instances running in a given physical

node are connected, and the tunnelling bridge br-tun, from

which tunnels between instances on separate physical nodes

are configured with the ingress and egress traffic steering rules,

respectively. If traffic must traverse multiple compute nodes,

each hop included in the path must be configured correctly on

the physical network infrastructure. For this purpose, packets

must be encapsulated, and OpenStack only supports two types

of encapsulation, Multiprotocol Label Switching (MPLS) or

Network Service Header (NSH).

B. Kubernetes

Kubernetes, in simple words, acts as a container orchestra-

tor. Kubernetes is a microservice architecture, which means

developing a single application as a collection of small

services, each running in its process and communicating

with lightweight mechanisms, typically through HTTP ser-

vice/gRPC service and corresponding API.

Kubernetes, as a powerful container orchestration platform,

exhibits minimal networking services, serving solely as a

networking model placeholder within the cluster. To address

this limitation, Kubernetes relies on third-party projects that

offer network functionality. These external projects develop

diverse extensions catering to various networking module

requirements and objectives. Consequently, users are tasked

with the responsibility of researching and selecting compatible

networking extensions that support SFC. The deployment of an

SFC in Kubernetes entails three essential stages: conducting an

online search for third-party networking extensions that sup-

port SFC, implementing the correct configurations to enable

SFC support, and finally, creating the SFC within the Kuber-

netes environment. This paper investigates the dependency on

third-party networking extensions in Kubernetes to facilitate

efficient and customized SFC deployment, contributing to

the optimization of network capabilities within containerized

environments.

The first stage is to search for third-party projects (network

extensions) that support SFC in Kubernetes. Luckily, there are

a few options available for users. We found three different

network extensions that support SFC in Kubernetes. The first

extension is called OVN4NFV [12]. This plugin is an Open

Virtual Network (OVN) based on the Container Network

Interface (CNI) [13] controller, providing cloud-native-based

SFC and other overlay networking features. The second net-

work extension is Contiv-VPP, a CNI plugin that employs

a programmable CNF vSwitch based on FD.io/VP offering

SFC and other high-performance cloud-native networking and

services [14]. The Fast Data Project (FD.io) is a collaborative

open-source project focusing on terabit software dataplane.

Hence, they use the Vector Packet Processing (VPP) concept,

which processes multiple packets simultaneously with low

latency. The third and final network extension that supports

SFC in Kubernetes is the Network Service Mesh (NSM) [15].

NSM is a novel approach to solving complicated L2/L3 use

cases in Kubernetes that are tricky to solve, and one of its

features is to provide the policy-driven SFC concept. In our

experiment, we chose NSM as the network extension.

The second stage involves the configuration of the Kuber-

netes cluster to facilitate the deployment of an SFC service

with the chosen network plugin. While most networking

extensions share a common concept for identifying an SFC

service, variations lie in the attribute values within the con-

figuration files. To achieve this, Custom Resource Definition

(CRD) proves instrumental, enabling users to define a custom

resource with a specific name and schema. In our research,

we established a CRD named NetworkServiceChain, a distinct

identifier that plays a pivotal role in the subsequent step of

creating and deploying a Service to declare the SFC. The

Service acts as an abstract representation, defining a cohesive

set of pods and the access policy to govern them within

the cluster. This configuration process ensures a streamlined

and consistent approach to implementing Service Function

Chaining in the Kubernetes environment.

The third stage in building an SFC in Kubernetes is to de-

ploy the pods in the Kubernetes cluster. This step is container

development and encapsulates them in a pod. Developers

must create containers to perform their application’s service or

network function. To attach a pod to a chain in Kubernetes, a

metadata attribute must be added to the pod’s deployment file.

Our previous work [16] provides more details on deploying

SFC in Kubernetes using NSM.

C. Virtual Machine vs. Containers

An SFC would comprise physical or virtualized NFs that

traffic has to pass through before reaching the destination.

194

Fig. 1: Virtual Machine vs container OS architecture

The NFs can be either instantiated as a VM or container.

The difference between VMs and containers is the level of

Operating System (OS) virtualization.

Traditional VMs solution depends on the OS hypervisor,

which manages physical computing resources and makes

isolated hardware slices available for creating VMs [17].

Each VM requires a complete implementation of a guest OS,

including the binaries and libraries necessary for applications,

which might lead to the VM being several gigabytes in size.

As a result, the guest OS will compete for resources with

programs operating on the VM service, degrading QoS for

the applications [18]. Contrarily, lightweight virtualization

technologies such as cloud-native containers are flexible and

efficient. A container shares the host OS kernel, binaries,

and libraries, which come in megabytes. Containers can act

as a virtualized resource [19], [20], incur significantly lower

overhead than traditional Virtual Machines (VMs) [21] and

have faster network speed than traditional VNF [22], even

though not all virtual network functions are feasible to be con-

tainerized [23]. A Container-native Network Function (CNF)

[24] is a software implementation of a network function built

and deployed in a cloud-native method [25]. Despite all the

benefits of integrating containers into the NFV environment,

management and orchestration challenges may hinder the

utilization of container-based VNFs.

If we closely look at how VMs are built over the physical

hardware in Fig 1, there is a layer of Hypervisor which sits be-

tween physical hardware and operating systems. On the other

hand, Containers are like normal operating system processes.

They are isolated from other processes by the namespace

concept. Namespace has its own isolated resources without

actual partitioning of the underlying hardware. Performing

SFC for containers imposes a different process than virtual

machines.

III. EXPERIMENT SETUP

Testbed The OpenStack experiment consists of two servers.

One of the servers has a 40-core CPU (Intel Xeon E5-2650 @

2.30) with one 1GbE NIC (Intel I350), and the other server

Fig. 2: Virtual network topology

Fig. 3: SFC in Kubernetes multi-node cluster topology

has a 40-core CPU (Intel Xeon Silver 4114 @ 2.20GHz) with

one 1GbE NIC (BRCM 5720). The Kubernetes experiment

was conducted on the Google Cloud Platform, consisting of

three servers.

OpenStack We used DevStack [26] to install OpenStack.

Our topology consisted of seven VMs, as depicted in Fig. 2.

One VM was acting as a client, another VM was working

as a video storage server, two Service Functions (SFs) VMs,

and three tap VMs. The SFs are video compression for

compressing video, and the second SF is bandwidth limiter,

ensuring the compressed video is below a threshold. The tap
VMs were located across the chain for monitoring purposes

to ensure the traffic was going through the overlay and not the

underlay network.

Kubernetes We focused on using the latest version of

Kubernetes. The client version for Kubernetes is 1.21.3, and

the server version for Kubernetes is 1.21.1. We deployed

Kubernetes on the three servers mentioned above, one server

acting as a master node and two servers acting as working

nodes. Our chain consists of three CNFs in a sequence, as

illustrated in Fig. 3. We added a custom-build container to

perform a specific function inside each pod. The functions we

chose were firewall, video compression and video broadcast.

We chose the NSM networking extension to be deployed in our

cluster. The new release of NSM (v1.0.0) does not depend on

a specific CNI. Therefore, we selected Weave Net, a resilient

and straightforward network for Kubernetes and its hosted

applications [27]. Weave Net creates a virtual network that

connects Docker containers across multiple hosts and enables

their automatic discovery.

195

Fig. 4: Pod start latency without chain attachment for three

pods

Fig. 5: Pod start latency without chain attachment for six pods

IV. PERFORMANCE RESULTS AND ANALYSIS

Our experiment aims to create a dynamic, customized SFC

with a web-based orchestrator across multiple nodes. In our

previous work [16], we designed and implemented an SFC

network in Kubernetes using the NSM framework. Further, we

demonstrated a prototype [28] that dynamically allows users

to deploy network function chains using a web interface-based

orchestration. The orchestrator automates the SFC developing

process, allowing users to choose different container-based

microservices and define the routing rules. The system also

integrates a resource and network state monitoring solution

supported by the Prometheus system [29]. The monitoring

framework provides metrics to optimize network performance

and validate the SFC path. This study will present performance

test findings related to SFC in Kubernetes. The complexity

of the function itself, the relationships between processes,

and many other complex elements can affect how well the

SFC performs. Significant parameters that reflect the entire

system’s performance can be measured and gathered despite

such impractical characteristics. These parameters comprise

hardware conditions such as host and container CPU and mem-

ory utilization, host I/O device statuses and CPU temperature.

Network performance, including the throughput and latency

of the container network, is another factor in the performance

evaluation for SFC implementation. Additional environmental

factors would also be considered, such as service latency,

HTTP request error rate, and the trend of request delays, to

Fig. 6: Pod start latency for video streaming SFC with three

pods

Fig. 7: Networking architecture of the 6-pod video streaming

SFC deployment

cross-validate the network limits. We discuss the performance

of the suggested approach in terms of SFC initialization

latency IV-A, NSM control plane resource utilization IV-B,

communication channel bandwidth IV-C, inter-services traffic

latency IV-D, and service fault recovery time IV-E.

A. Chain Initialization Latency

Kubernetes allows the usage of any interface the network

extension deploys. The NSM network plugin uses Kernel

and memif interfaces. Specifically, NSM allows the edge pod

interface to be Kernel interfaces and anything between the

chain only to have memif interfaces. We conducted three

tests to investigate the effect of adding the NSM interface

while creating the chain. Our first test measured the pod

initialization time without adding the NSM interface to the

pods. In other words, how long does it take to deploy a pod

in the Kubernetes cluster without any NSM interfaces added

to it? The initialization latency calculated in this experiment

does not include the time for downloading the image from

the cloud to the local container runtime. Figure 4 illustrates

the results we found. We deployed three pods simultaneously

and repeated the test ten times. The minimum amount of time

required to deploy a pod and be in a ready status is one

second, and the maximum is four seconds. The average pod

initialization time for three pods without chain attachment was

2.73 seconds. We also tested the time required to deploy six

pods. The average pod initialization time for six pods without

chain attachment was 4.36 seconds, as illustrated in Figure

5. There is an increase of over 60% in the pod initialization

latency when the number of pods doubles.

196

Fig. 8: Pod start latency for video streaming SFC with six

pods

Fig. 9: NSM control plane components CPU unit usage during

SFC deployment

The second test measures the pod start latency and focuses

on adding these pods to a chain. We deployed our video

streaming chain, which included three pods. Figure 6 illus-

trates the results. The minimum amount of time required to

deploy a pod and be in a ready status is one second, and the

maximum is five seconds. The average pod initialization time

for three pods with NSM interface attached to pods was three

seconds.

In the third test, we increased the chain length from three

pods to six pods. We added three passthrough pods as il-

lustrated in Figure 7. We wanted to investigate if the pod

startup latency will increase if the chain length increases. As

illustrated in Figure 8, we observed a significant increase in

pod startup time. The pod initialization varied from one second

to 25 seconds. Mainly, the Vid-broadcast pod took the longest

time to be ready. The average pod initialization time for six

pods with NSM interface attached to pods was 6.93 seconds.

The average pod initialization increased more than double

compared to three pods SFC. This is still a better result than

11.48 seconds to bootup VMs [19].

B. NSM Control Plane Resource Usage Performance

In this test, we analyzed the NSM control plane compo-

nents: the NSM register, NSM manager, NSM forwarder and

NSM admission webhook. Since we have one master node and

two working nodes, each working node will have its own NSM

manager and NSM forwarder. We deployed the 3-pods video

streaming chain and monitored the CPU and memory usage

during the SFC creation period. Specifically, we deployed the

Fig. 10: NSM control plane components memory size usage

during SFC deployment

Fig. 11: The iperf3 bandwidth test result using WeaveNet

interfaces visualized in Prometheus

chain and waited for 10 minutes before deleting the chain and

redeploying the chain again. We repeated this test five times.

In Kubernetes, 1 CPU unit is equivalent to 1 physical CPU

core or one virtual core, depending on whether the node is a

physical host or a virtual machine.

Figure 9 and Figure 10 illustrate the results we found

of CPU and memory usage, respectively, vs. time that was

collected and plotted as a time series graph in real-time

using Prometheus web UI. To clarify, we deployed the video

streaming chain five times, strictly at 13:30, 13:50, 14:10,

14:30, and 14:50. Furthermore, during the deployment at 14:10

and 14:30, traffic flow was traversing between the pods in the

chain. From Figure 9, we can observe a steady increase in CPU

usage when the chain is deployed. However, even during the

traffic flow period in the chain, we don’t see a drastic change

in CPU usage. We observe similar results for the memory

utilization for the NSM control plane components, as depicted

in Figure 10. A steady increase in memory usage when the

chain is deployed and a steady decrease when the chain is

removed.

C. Bandwidth Utilization

We used the iperf3 container image, a wildly used software

tool, to measure network performance. We wanted to study

the bandwidth performance of the SFC data plane supported

by the NSM traffic forwarder. In this experiment, the iperf3

sender generated TCP sessions and sent them to the receiver

at the other end of the chain. The TCP maximum segment size

is 1460 bytes, and the TCP buffer size is 128 KB.

197

Fig. 12: Networking architecture of the bandwidth test deploy-

ment for NSM interfaces

Fig. 13: The iperf3 bandwidth test result using WeaveNet

interfaces visualized in Prometheus

Our first experiment measures the network bandwidth be-

tween two default Linux Kernel interfaces provided by Weav-

eNet. This test only involved an iperf3 server (receiver) and

an iperf3 client (sender). Hence it is the reference repre-

senting the bandwidth of Kubernetes’ non-SFC data plane

when comparing the bandwidth performance supported by the

NSM interfaces (SFC data plane). We used the Prometheus

monitoring system to collect real-time network bandwidth,

where the average throughput is calculated relying on the

PromQL built-in functions. As depicted in Figure 11, the

average bandwidth of the default CNIs was 110 MBps, and

the maximum bandwidth reached was 140 MBps during the

test period. The x-axis is the system time, while the y-axis is

the bandwidth of the iperf3 transmit interface. The unit of the

y-axis is Megabytes/second (MBps).

The second experiment test only involved an iperf3 server,

an iperf3 client, and the NSM traffic forwarder in measuring

the maximum bandwidth provided by NSM interfaces. The

pods that ran iperf3 containers established network connec-

tions using an NSM traffic forwarder to measure the maximum

bandwidth between the two NSM interfaces as demonstrated

in Figure 12. The iper3 bandwidth test results are depicted

in Figure 13. It shows that the maximum bandwidth reached

by the NSM data plane was 59.7 MBps which is less by two

times than the network bandwidth supported by the WeaveNet

Linux Kernel interface.

D. Latency Between Network Services

High latency becomes a problem as networks get bigger

since more connections mean more points of failure, where

issues and delays can happen. These risks increase as end

users connect to remote cloud servers and numerous network

Fig. 14: The RTT test results from different container deploy-

ment cases

Fig. 15: SFC recovery time for four fault scenarios.

services across various domains. For the network operator to

properly plan the network application, assessing the network

latency between network services is crucial. The time it takes

for data or a request to go from the source to the destination

is known as network latency, measured in milliseconds. The

Round-Trip Time (RTT) was obtained from the ICMP ping

test, including echo and echo reply messages. The packet size

for each echo request was set to 1500 bytes instead of the

default 56 bytes to increase the traffic load.

Similar to the bandwidth experiment, we have three different

tests. The first test will be for a chain that only includes two

pods. The second test will be for a chain with three pods,

our video streaming chain. At the same time, the last test will

include our six pods chain. We designed three experiments

based on the ICMP ping test to compare the network latency

for three use cases. In each experiment, we sent one hundred

ICMP packets between endpoints. Figure 14 illustrates the

results we collected. The y-axis is the RTT in milliseconds,

and the x-axis is the trace of one hundred packets.

2-Pods SFC: we created a two-pod chain, one client pod

as a sender and one destination pod as the receiver, while

traffic traverses through the NSM traffic forwarder. This test

is considered the baseline latency between two pods which

adopt the NSM CNIs. The test results are illustrated by the

blue line in Figure 14 with an average RTT time of 0.529 ms.

3-Pods SFC: we deployed our video streaming chain that

includes three pods. The test results are illustrated by the

orange line in Figure 14 with an average RTT time of 4.872

ms.

6-Pods SFC: we increased the chain length by adding three

passthrough pods as illustrated in Figure 7. The test results are

198

illustrated by the orange line in Figure 14 with an average RTT

time of 8.402 ms.

E. NSM Reliability

Fault detection for SFC is managed as the health monitor-

ing for pods and virtual links between pods. The recovery

includes two parts: pod recovery and SFC re-configuration.

The healthiness and liveness probes used by the Kubernetes

cluster detect the pod’s failure and schedule a new pod to

replace the faulty container-based NSE while the NSM control

plane re-configures the SFC connections.

The fault in this test was simulated by manually deleting

one or more components consumed by an SFC. The ICMP

ping test was used to check the connectivity of the SFC path.

Specifically, we chose the video reduction pod, which we will

call for now ping pod, to ping the video broadcast pod and

deploy the fault scenario. The faulty components included

NSE (e.g., firewall and video compression pod), NSMgr, NSM

Registry, VPP forwarder, or any combination. We selected four

fault scenarios to test the SFC framework’s reliability. The four

scenarios involve:

1) Deleting the NSM forwarder from the same ping pod

node;

2) Deleting the NSM forwarder, not on the same ping pod

node;

3) Delete NSM forwarder from both nodes; and

4) Delete NSM forwarder, NSMgr and Register

For each fault scenario, ten tests were conducted to collect

and calculate the average SFC path recovery time. Figure 15

shows the SFC path recovery time for all four fault scenarios.

The y-axis is the fault recovery time in seconds, and the x-axis

is the trace of ten tests.

Table I illustrates the recovery time against different fault

scenarios. As shown in Table I, the most prolonged service

downtime occurred when deleting the forwarder that was

not on the same node as the ping pod. When deleting this

forwarder, in some cases, as indicated in the table with red

font, the other forwarder on the other node is forced to be

re-deployed. Furthermore, the traffic forwarder took most of

the time reconnecting the data plane elements during the SFC

path recovery process. The average recovery time was 25.7

seconds for traffic forwarder restart. Meanwhile, the average

recovery time for deleting NSM forwarder, the NSMgr and

NSM Registry recovery took 18.4 seconds.

F. Analysis

The length of the SFC does not significantly affect the

initialization latency of the SFC, according to the results in

Table II, as long as the container runtime caches all the

container images used by the network services. We observed

increased pod start-up time for the Vid-broadcast pod in the

6-pods SFC. The Vid-broadcast pod acts as the client pod

under the NSM architecture. Deploying the client pod was

the most time-consuming part of deploying an SFC because

the client pod must wait until the rest of the network service

endpoints are registered with the NSMgr and deployed in

the cluster, then the chaining process starts by deploying the

client pod. The bandwidth experiment test was to see if there

is any network overhead when adding the NSM interface to

containers when creating an SFC. Depending on our results

in IV-C, we observed a drop of more than half in average

bandwidth when adding the NSM interfaces. We can identify

that NSM interfaces injected into containers creates network

overhead.

The latency results in Table III provide the minimum,

maximum and average time for all three use cases test. There

is an increase of eight folds between the 2-pods and 3-pods

average test. We should observe an increase in the RTT

between the 2-pods and 3-pods, as traffic will have to go

through a firewall before reaching the destination. However, a

considerable overhead is added to the network when increasing

the chain from two to three pods. Furthermore, we also

observed an increase in the RTT between the 3-pods and 6-

pods tests by almost two folds. Again, the increase in RTT

is inevitable as we added three more passthrough pods to the

chain. These test results demonstrate that the network latency

incrementation is close to a linear relationship with the number

of elements in the SFC path.

Another point to mention is the variation of the RTT in

each test. For the 2-pods scenario, the minimum RTT time was

0.166 ms, and the maximum RTT was 7.143 ms, as illustrated

in Table III. For the 3-pods scenario, the minimum RTT time

was 0.931 ms, and the maximum RTT was 48.843 ms. Finally,

in the 6-pods scenario, the minimum RTT time was 2.066 ms,

and the maximum RTT was 95.606 ms. These test results also

show that the RTT becomes unstable when the length of the

SFC path increases.

V. RELATED WORK

Many previous works study both OpenStack and Kubernetes

when deploying SFC. However, we couldn’t find any work

that compares OpenStack with Kubernetes specifically for SFC

implementation capabilities in both platforms. Below are some

works that compare containers versus VMs.

Chae et al. [30] made a performance comparison between

Linux containers and KVM virtual machines by running

between one and four different instances with a focus on

CPU, memory and disk I/O. They both had about the same

CPU usage in idle mode, with the VMs having slightly less

average CPU idle but with more deviation. The result from the

memory comparison showed that the virtual machines used

up between 3.6 and 4.6 times more memory than the Linux

containers. The authors in [31] found that containers provide

an overall better performance than virtual machines regarding

CPU and memory in a big data environment by using Spark

jobs. They also found that containers perform better from a

scalable perspective, where they compared the performance

of between 2 and up to 512 different containers and virtual

machines. Kyoung-Tack et al. [19] build their own clouds

and perform a comparison experiment between their container

cloud (Docker) and their virtual machines cloud (OpenStack).

The test results showed the average bootup time for the

199

TABLE I: The recovery time against different fault scenarios

SFC Recover time
Test Type Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Avg

Delete forwarder from same NSE node 10 15 15 10 12 12 14 17 15 15 13.5
Delete forwarder from different NSE node 13 28 44 19 12 15 11 25 37 53 25.7
Delete forwarder from both nodes 20 12 14 15 19 18 16 20 16 13 16.3
Delete forwarder, NSMgr, and Register 29 20 13 13 21 20 20 20 14 14 18.4

TABLE II: Pod start latency min, max and average results in

seconds against different scenarios

Use-case Minimum Maximum Average
3-Pods 1 4 2.73
6-Pods 1 6 4.36

3-Pods SFC 1 5 3
6-Pods SFC 1 25 6.93

TABLE III: The RTT minimum, maximum and average results

in milliseconds against different scenarios

Use-case Minimum Maximum Average
2-Pods SFC 0.166 7.143 0.529
3-Pods SFC 0.931 48.843 4.872
6-Pods SFC 2.066 95.606 8.402

containers was around 1.53 seconds, and the average time

for the VMs was 11.48 seconds. In another work, Vestman

[32] runs an experiment and compares the performance of

virtual machines deployed through OpenStack and containers

deployed through Docker regarding CPU operations, primary

memory usage, disk read/write, and file transfer speed between

host and application. The authors concluded that the VM

handled requests faster, while the containers performed better

in file transfer and resource usage. All the papers mentioned

above compare the chain performance in the network either in

OpenStack or Docker cloud, which is different than our work.

We compare OpenStack and Kubernetes under the scoop of

platform SFC capabilities.

VI. CONCLUSION

We implemented SFC using VNFs in OpenStack and CNFs

in Kubernetes. We further provide performance results for

CNFs deployment while creating chains. We observed an

increase in pod start latency as we increased the pods in

the chain. The average time to bootup VMs is 11.48 sec-

onds, while a six-pod chain average time was around seven

seconds. There was a steady increase in CPU and memory

usage when the chain was deployed using NSM. Furthermore,

when adding the NSM interface, the bandwidth of the chain

between containers decreased by two times that of the network

bandwidth without the SFC interfaces. Although pods are

lighter and VMs, NSM adds its own overhead. This overhead

is due to the connection added between the pods and the

NSM forwarder-VPP. Additionally, the NSM injects Kernel

interfaces to the edge pods and memif interfaces in the middle

pods. Limiting a specific interface to be injected in a pod

has its ramifications. Developers will be limited to developing

containers compatible with adding a memif interface alongside

the container function.

REFERENCES

[1] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and
Guangyu Shi. Design and implementation of a consolidated middlebox
architecture. In 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 323–336, 2012.

[2] M Stiemerling D Lopez W Haeffner, J Napper and J Uttaro. Service
functionchaining use cases in mobile networks. draft-ietf-sfc-use-case-
mobility-09. IETF, 2019.

[3] Surendra Kumar, Mudassir Tufail, Sumandra Majee, Claudiu Captari,
and Shunsuke Homma. Service function chaining use cases in data
centers. IETF SFC WG, 10, 2015.

[4] Anat Bremler-Barr, Yotam Harchol, and David Hay. Openbox: a
software-defined framework for developing, deploying, and managing
network functions. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 511–524, 2016.

[5] Hajar Hantouti, Nabil Benamar, and Tarik Taleb. Service function
chaining in 5g beyond networks: Challenges and open research issues.
IEEE Network, 34(4):320–327, 2020.

[6] Yicen Liu, Yu Lu, Xi Li, Zhigang Yao, and Donghao Zhao. On dynamic
service function chain reconfiguration in iot networks. IEEE Internet of
Things Journal, 7(11):10969–10984, 2020.

[7] Abderrahime Filali, Amine Abouaomar, Soumaya Cherkaoui, Abdellatif
Kobbane, and Mohsen Guizani. Multi-access edge computing: A survey.
IEEE Access, 8:197017–197046, 2020.

[8] Openstack. Build the future of open infrastructure.
https://www.openstack.org/. [Online; accessed 10-April-2023].

[9] Jane Shen and Jeff Brower. Access and edge network architecture and
management. Future Networks, Services and Management: Underlay
and Overlay, Edge, Applications, Slicing, Cloud, Space, AI/ML, and
Quantum Computing, pages 157–183, 2021.

[10] Kubernetes. Production-grade container orchestration.
https://kubernetes.io/. [Online; accessed 10-April-2023].

[11] Gianluca Davoli, Walter Cerroni, Chiara Contoli, Francesco Foresta, and
Franco Callegati. Implementation of service function chaining control
plane through openflow. In 2017 IEEE conference on network function
virtualization and software defined networks (NFV-SDN), pages 1–4.
IEEE, 2017.

[12] OPNFV. Opnfv/ovn4nfv-k8s-plugin. https://github.com/opnfv/ovn4nfv-
k8s-plugin. [Online; accessed 10-April-2023].

[13] CNI. Cni - the container network interface. https://www.cni.dev/.
[Online; accessed 10-April-2023].

[14] ContiVPP. Contivpp.io. https://contivpp.io/. [Online; accessed 10-April-
2023].

[15] Network Service Mesh. The hybrid/multi-cloud ip service mesh.
https://networkservicemesh.io/. [Online; accessed 10-April-2023].

[16] Abdullah Bittar, Ziqiang Wang, Amir Aghasharif, Changcheng Huang,
Gauravdeep Shami, Marc Lyonnais, and Rodney Wilson. Service
function chaining design & implementation using network service mesh
in kubernetes. In Asian Conference on Supercomputing Frontiers, pages
121–140. Springer, Cham, 2022.

[17] Dirk Merkel et al. Docker: lightweight linux containers for consistent
development and deployment. Linux journal, 2014(239):2, 2014.

[18] David Bernstein. Containers and cloud: From lxc to docker to kuber-
netes. IEEE Cloud Computing, 1(3):81–84, 2014.

200

[19] Kyoung-Taek Seo, Hyun-Seo Hwang, Il-Young Moon, Oh-Young Kwon,
and Byeong-Jun Kim. Performance comparison analysis of linux
container and virtual machine for building cloud. Advanced Science
and Technology Letters, 66(105-111):2, 2014.

[20] Blesson Varghese, Lawan Thamsuhang Subba, Long Thai, and Adam
Barker. Container-based cloud virtual machine benchmarking. In 2016
IEEE International Conference on Cloud Engineering (IC2E), pages
192–201. IEEE, 2016.

[21] Qi Zhang, Ling Liu, Calton Pu, Qiwei Dou, Liren Wu, and Wei Zhou.
A comparative study of containers and virtual machines in big data
environment. In 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pages 178–185. IEEE, 2018.

[22] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Net-
work function virtualization: Challenges and opportunities for innova-
tions. IEEE Communications Magazine, 53(2):90–97, 2015.

[23] Richard Cziva and Dimitrios P Pezaros. Container network functions:
Bringing nfv to the network edge. IEEE Communications Magazine,
55(6):24–31, 2017.

[24] Cloud-Native Network Functions. Cloud-native network functions.
https://cdnf.io/. [Online; accessed 10-April-2023].

[25] Yong-Xuan Huang and Jerry Chou. Evaluations of network performance
enhancement on cloud-native network function. In Proceedings of the
2021 on Systems and Network Telemetry and Analytics, SNTA ’21, pages
3–8, New York, NY, USA, 2020. Association for Computing Machinery.

[26] OpenDev. Openstack/networking-sfc.
https://opendev.org/openstack/networking-sfc. [Online; accessed
10-April-2023].

[27] Weave Works. Integrating kubernetes via the addon, 06 2022.
[28] Ziqiang Wang, Abdullah Bittar, Changcheng Huang, Chung-Hong Lung,

and Gauravdeep Shami. A web-based orchestrator for dynamic service
function chaining development with kubernetes. In 2022 IEEE 8th
International Conference on Network Softwarization (NetSoft), pages
234–236. IEEE, 2022.

[29] Prometheus. From metrics to insight. https://www.prometheus.io.
[Online; accessed 10-April-2023].

[30] MinSu Chae, HwaMin Lee, and Kiyeol Lee. A performance comparison
of linux containers and virtual machines using docker and kvm. Cluster
Computing, 22(Suppl 1):1765–1775, 2019.

[31] Sogand Shirinbab, Lars Lundberg, and Emiliano Casalicchio. Perfor-
mance evaluation of container and virtual machine running cassandra
workload. In 2017 3rd International Conference of Cloud Computing
Technologies and Applications (CloudTech), pages 1–8. IEEE, 2017.

[32] Simon Vestman. Cloud application platform-virtualization vs con-
tainerization: A comparison between application containers and virtual
machines, 2017.

201

