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Abstract— With the rapid modernization progress over the 
past decades, waste classification has become increasingly 
important as cities worldwide seek to implement more sustainable 
waste management practices. Traditional manual sorting methods 
are labor-intensive, prone to inaccuracies, and hard to scale, 
driving the need for automated, efficient solutions. Although deep 
learning techniques, recognized for their ability to process 
complex hierarchical data, have emerged as potential aids, their 
successful implementation is often hampered by the challenging 
task of gathering diverse, large-scale, high-quality waste image 
datasets, leading to possible overfitting and model bias. This study 
proposes an innovative, two-stage waste detection framework that 
first identifies the bounding box of waste items, then classifies 
them into one of six primary categories, effectively addressing the 
inherent issues with previous methodologies by optimally utilizing 
available data and reducing overfitting and bias. Trained and 
evaluated on the comprehensive TACO and WaRP waste datasets, 
our model has demonstrated superior performance relative to 
existing methods, underscoring its promise as a scalable, accurate, 
and efficient solution for waste classification, thus offering exciting 
prospects for further research and practical applications in 
sustainable waste management. 

Keywords—Deep learning, garbage classification, waste 
management 

I. INTRODUCTION  

In the past decade, garbage classification, which involves 
sorting waste into categories based on properties such as 
biodegradability, recyclability, and toxicity, has become a 
pivotal aspect of sustainable development and environmental 
protection. As global population growth and consumerism 
contribute to increased waste production, garbage classification 
helps recover valuable resources, reduces landfill waste, and 
minimizes environmental impact. The integration of artificial 
intelligence (AI) and machine learning (ML) in garbage 
classification, leveraging cameras and sensors to detect and 
classify waste based on characteristics like shape, colour, and 
texture, has shown potential in enhancing sorting accuracy and 
efficiency, reducing human error, and improving recyclable 
material quality.  

However, several challenges persist, including the need for 
a standardized waste classification and detection dataset format, 
the arduous task of compiling large, diverse, high-quality waste 
image or video datasets, and the complexities associated with 
unique dataset characteristics and waste item variability. 
Furthermore, object detection and classification, two separate 

deep learning tasks requiring different annotations and data 
structures, are often tackled in isolation, providing incomplete 
information and limiting real-world applicability. To address 
these challenges, we propose a unified framework that 
concurrently integrates waste detection and classification tasks, 
aiming to provide a more comprehensive and efficient real-
world applicable waste classification solution. 

II. RELATED WORK 

     The waste classification and detection problems are a subset 

of object classification/detection tasks in computer vision 

society. Garbage classification aims to accurately identify and 

categorize different types of waste materials, such as plastic, 

glass, metal, and paper, to facilitate proper disposal and 

recycling. The major challenge in garbage classification is the 

high variability and complexity of the waste materials 

themselves. Garbage items can have different shapes, colours, 

textures, and sizes. In addition, they can be contaminated or 

mixed with other materials, making it difficult for traditional 

rule-based or heuristic approaches to classify them accurately. 

As mentioned earlier, the lack of training data is one of the 

limitations of deep learning-based waste classification and 

detection, as annotating garbage images with accurate class 

labels and object bounding boxes can be a time-consuming and 

expensive and can also introduce bias and errors in the dataset. 

However, many scholars have continuously developed more 

accurate, efficient, and scalable systems and pipelines for waste 

detection and classification.  

A. Benchmark Datasets 
     As garbage-based classification and detection gains more 

and more attention in the computer vision society, the scientific 

community has created and published numbers of dataset 

benchmarks. Datasets play a crucial role in the development of 

deep learning models. The dataset's quality and quantity can 

significantly impact a deep-learning model's accuracy and 

robustness. Several challenges and limitations are associated 

with the current datasets for garbage classification. Many 

existing datasets [1][4][8] only focus on a narrow range of 

materials, such as plastic, paper, metal, and glass, while 

neglecting other types of waste, such as e-waste, organic waste, 

and hazardous waste. 

     Moreover, many of the existing garbage classification 

datasets are relatively small, which may need to be more for 

training deep learning models with high accuracy when testing 
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in real-life scenarios. Standardization is also a significant issue 

for garbage-based classification benchmarks. Currently, no 

standard format or protocol for garbage classification datasets 

makes comparing results across different studies or applications 

difficult. Additionally, some datasets [2][10] may use different 

labelling schemes or definitions of classes, which can introduce 

inconsistencies and confusion. 

     TrashNet [1] includes six classes of garbage: waste, glass, 

paper, cardboard, plastic and metal. Each category contains 

approximately 400 images. The images were captured using a 

mobile phone camera in a controlled environment, with 

consistent lighting and background. The authors of [1] used the 

TrashNet dataset to train and evaluate several deep-learning 

models for garbage classification, including AlexNet, 

GoogleNet, and VGG16. They reported that the VGG16 model 

achieved the highest accuracy on the TrashNet dataset, with an 

overall accuracy of 87.2%. 

     TACO (Trash Annotations in Context Object Detection 

Dataset) [2] dataset contains more than 150,000 annotated 

object instances in over 6,000 images, covering 60 object 

classes, including various types of trash and recycling materials. 

It differs from other benchmarks with its annotations for both 

object detection and instance segmentation. In addition, TACO 

contains a wide range of litter types and a sizable diversity of 

backgrounds, from tropical beaches to London streets. The 

diversity of the data improves the robustness of the deep 

learning model in a real-life scenario. For example, the authors 

in [3] developed a trash detection system based on U-Net and 

trained and evaluated the model using the TACO dataset. They 

reported that their system achieved an accuracy of 94.67% on 

the TACO dataset, demonstrating its potential for real-world 

waste sorting applications. 

      

     Trash-ICRA19 [4] was signed for trash-based object 

detection tasks underwater. The data was collected using 

autonomous underwater vehicles (AUVs) in open-water 

locations. The dataset contains 7668 images with seven classes 

and corresponding labels and annotations. The author evaluated 

the performance of various deep learning object detection 

models such as YOLOv2, Tiny-YOLO, Faster RCNN and SSD. 

Faster RCNN outperforms other models with an mAP of 81%.  

     MJU-Waste [5] was created for object segmentation task, 

and it is the largest public benchmark available for waste object 

segmentation, with 1485 images for training, 248 for validation 

and 742 for testing. The data was collected via camera with 

university campus waste items held by a human in a lab 

environment. The authors experimented with VGG16, ResNet-

50 and ResNet-101 backbones in well-known frameworks such 

as FCN, PSPNet, CCNet, and DeepLabv3. The result shows 

that the Mean pixel precision on MJU-Waste is 97.14% on the 

ResNet-101 backbone. 

     UAVVaste [6] contains 722 images collected by UAV with 

3761 hand-labelled annotations of rubbish in urban and natural 

environments such as streets, parks, and lawns. In its paper, the 

authors proposed that the YOLOv4 model has the best 

performance in terms of accuracy and speed, with an M1 score 

of 78.5%.  

     GINI [7] dataset was collected using Bing search API. It 

contains 2561 images with 1496 annotations. The author 

proposed a new smartphone app integrated with the deep 

convolutional network to detect images' garbage. It achieved 

87.9% mean accuracy while maintaining efficient memory 

usage and prediction speed.  

     Waste Classification Data [8] from Kaggle is one of the 

most popular benchmarks for the waste classification task. It 

contains 22,500 with two classes: organic and recyclable. 

Unfortunately, the data was scrapped from Google search.     

      WaRP (Waste recycling plants) [9] dataset consists 28 

recyclable waste categories, which are divided into 17 

categories of plastic bottles, three categories of glass bottles, 

two categories of cardboard, and four categories of detergents 

and cans. The dataset is captured from the waste processing belt 

and can be used to train detection, classification, and 

segmentation models. 

B. Two-step Waste Detction using Deel Learning 
     Waste detection tasks focus on the localization and the 

classification of the detected wasted object in images and video 

frames. Differing to waste classification, waste detection can be 

applied to a wider range of applications in various scenarios, 

such as underwater conditions. One of the major challenges in 

waste detection is data collection. Image annotation is a time-

consuming and labour-expensive task, making it difficult to 

build a comprehensive benchmark for all scenarios.  

     In 2017, the authors of [10] proposed a robotic grasping 

system for automatically sorting garbage using Fast R-CNN 

with Regional Proposal Generation (RPN) for object detection 

and the VGG-16 for object reignition and post-estimation. The 

detection of the self-made dataset results in a 3% missing rate 

and a 9% false rate.   

     Thung et.al. [11] proposed a two-step approach to the waste 

detection problem. The authors use Faster R-CNN for object 

detection with separate CNNs for object classification. The 

model is trained and evaluated using the Labeled Waste in the 

Wild dataset of 1002 images of used food trays. It investigates 

different architectures, including flat, material, and shaped-

based methods. The flat method refers to using a single CNN 

for all types of waste. Material-based and shape-based methods 

use different CNNs for waste in different materials and shapes. 

The result shows that Faster R-CNN with flat CNN achieved 

the best (mAP 74.1%) among the methods.   

     A novel two-stage waste detector for e-waste is proposed in 

[12]. The authors proposed to use Faster R-CNN as the object 

detector and a deep CNN as the classifier. The model is trained 

and tested on the image of electrical applications such as 

refrigerators and washing machines. It yields recognition and 

classification accuracy of the selected e-waste categories 

ranging from 90% to 97%.  

     In [13], the authors proposed a two-stage deep-sea debris 

detection method using YOLOv3 and ResNet50. Compared 

with other deep-sea debris detection methods, the proposed 

method uses a 3-D dataset containing seven types of deep-sea 

debris with depth information. The ResNet50-YOLOv3 

achieves the best comprehensive detection capabilities 

(mAP@.5 83.4%) for deep-sea debris while maintaining a low 
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level of confusion compared with the other two-stage 

architectures. 

     The author in [14] investigates waste detection on 

narrowband Internet of Things (IoT) devices. The proposed 

method replaced the backbone of the YOLOv2 model from 

VGG16 to MobileNet to perform lightweight predictions. The 

improved YOLOv2 model obtained the same level of detection 

precision with Fast R-CNN (89.1% vs 89.7%) with a much 

faster inference speed (5 f/s vs 42 f/s). 

     [15] proposed a two-step waste detector in natural and urban 

environments. The model uses EfficientDet-D2 to localize litter 

and EfficientNet-B2 to classify the waste into seven categories. 

The classifier is trained in a semi-supervised fashion using 

unlabeled data. The proposed model starts with the region 

proposal by the object detector. Then the cropped region is 

passed to the classifier. The output contains the possibility of 

seven litter categories and additional background classes. The 

EfficientDet-D2 obtained mAP50 above 90% for the TrashCan 

dataset and mAP50 of 16.2% for the TACO dataset. The 

EfficientNet-B2 obtained the best precision of 97% on the 

background class.  

C. Summary 
     Waste sorting problems can be divided into two aspects: 

waste classification and waste detection. The training data is 

labelled according to distinct categories in waste classification, 

predominantly emphasizing the waste object. On the other hand, 

waste detection involves annotating the input data with class 

labels and the coordinates of one or several waste objects. 

Moreover, recent studies show that two-step waste detection is 

more robust to shape, form, and background varieties. However, 

using a single traditional two-stage detector model such as Fast 

R-CNN suffers in slower inference speed, more complex 

training pipeline, and low detection rate for small objects. 

Numerous research efforts have integrated one-stage detectors, 

such as YOLO and EfficientDet, with an independent CNN-

architecture classifier to address this issue. This approach 

enhances both the classification accuracy and the model's 

robustness, fulfilling the prerequisites for deployment in real-

world applications. 

III. PROPOSED DETECTION FRAMEWORK  

     The suggested framework is composed of two modules, as 

illustrated in Fig. 1. The initial component employs a one-stage 

detector based on the YOLOv5 architecture. The model's input 

can consist of individual images, patches of images, or video 

streams. Subsequently, the input undergoes the CSPDarkNet 

backbone network for feature extraction. The neck layer utilizes 

spatial pyramid pooling and a Path Aggregation Network. 

Following this, the head layers of the model are tasked with 

region proposals. The proposed region is then cropped and fed 

into a separate classifier employing a pre-trained InceptionV3 

model. The output of the model contains the bounding box of 

the detected litter and the possibility score that indicates the 

litters’ categories (cardboard, paper, plastic, metal, glass, and 

trash).  

A.  Object Detection Module 
     The object detection module of the proposed framework 

consists of three layers: Backbone, Neck, and Head.  

     The Backbone uses the CSPDarkNet53 as the base network 

for object detection. It is a modified version of the DarkNet53 

architecture that integrates Cross Stage Hierarchical (CSH) 

features to enhance efficiency and performance. The network 

can be divided into the convolutional build block and five 

CSPBlock modules. The convolutional building block with a 

kernel size of three and a stride of one and concatenated with 

the Mish layer. Mish is an activation function that can be 

mathematically defined as  

 
 (1) 

 

where x is the input and softplus(x) is a smooth approximation 

of the ReLu function. The Mish layer helps prevent the 

vanishing gradient problem by maintaining a smooth and 

continuous gradient even for large input values. The 

CSPBlocks divide feature maps into two parts and then merge 

Figure 1 The proposed framework 
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them through a cross-phase hierarchy. This way, the gradient 

flow can propagate through different network paths after being 

separated [16]. The cross-phase hierarchy module enables 

better gradient flow and reduces redundancy in feature maps, 

leading to more efficient training and faster inference times. 

     The Neck layer is used to extract the feature pyramid from 

the Backbone. Firstly, a variant of Spatial Pyramid pooling has 

been used to handle input images of varying sizes and generate 

fix-size feature representation. It divides the input feature map 

into non-overlapping regions at multiple scales or levels, 

forming a spatial pyramid. By capturing spatial information at 

different scales and levels, the performance and generalization 

capabilities of CNNs is improved. Then, a Path Aggregation 

Network is used as a bottom-up path augmentation. It adds 

connections from lower-level feature maps to higher-level 

feature maps in the bottom-up pathway. 

     The Head consists of three convolution layers that predict 

the location of the bounding boxes in the form of (x, y, height, 
width), where (x, y) are the normalized center coordinates. The 

bounding box calculation is shown in Fig. 2, where Cx and Cy 

are the top left coordinates; tx and ty are the output from the 

layer; pw and ph is the size of the proposed anchor box; e 

represents the spatial transformation of the dimension. 

 
 

Figure 2 Boudning box prediction in YOLO [46] 

The leaky ReLU and Sigmoid functions are used as the 

activation functions in the YOLOv5 architecture. The Leaky 

ReLU function is defined as: 

 

     (2) 

 

where where x is the input to the activation function, and α is a 

small positive constant, typically in the range of 0.01 to 0.3. The 

Leaky ReLU function aims to address the "dying ReLU" 

problem associated with the standard ReLU function. The 

dying ReLU problem occurs when a neuron gets stuck in the 

negative part of the ReLU function, causing it to output zero 

and stop learning due to the lack of gradient during 

backpropagation. [17]. 

     For the Loss function, the model uses BCE (Binary Cross 

Entropy) to compute the class loss and the object score and 

CIoU (Complete Intersection over Union) loss to compute the 

localization loss. The BCE loss function quantifies the 

dissimilarity between the predicted probability distribution 

and the true probability distribution of the target class. It can 

be calculated as follows: 

 
 (3) 

 

Where y represents the true labels, and p represents the 

predicted probabilities. The summation is performed over all 

samples in the dataset.  

     As an advanced version of the traditional IoT metric, the 

CIoU loss combines IoU with the center distance term and 

aspect ratio term, making it more sensitive to the quality of 

bounding box predictions. It can be defined as the following: 

 
 (4) 

Where IoU stands for Intersection over Union, which is the 

ratio of the intersection area of the predicted and ground truth 

bounding boxes to their union area; ρ is the Euclidean distance 

between the center points of the predicted and ground truth 

bounding boxes; c is the diagonal length of the smallest 

enclosing bounding box containing both the predicted and 

ground truth bounding boxes; α is a trade-off parameter that 

balances the aspect ratio term (v); v is the aspect ratio term, 

which measures the difference in aspect ratios between the 

predicted and ground truth bounding boxes. By minimizing the 

CIoU loss, the model is encouraged to generate bounding boxes 

that have a high IoU and better align with the ground truth 

boxes in terms of their center positions and aspect ratios. 

B. Object Classifiction Module 
     After the region proposal in the object detection module, the 

region is then cropped and fed into the object classification 

module for further classification. Due to the poor prediction 

accuracy of the one-stage detector on un-seen objects, a second-

stage classifier (a modified InceptionV3 model) is proposed.  

     Inceptionv3 [19] is a convolutional neural network 

architecture from the Inception family with several 

improvements. First, inception-v3 refines the use of auxiliary 

classifiers, which are additional classifiers connected to 

intermediate layers of the network. These classifiers help 

improve the gradient flow and alleviate the vanishing gradient 

problem, making it easier to train deeper networks. Moreover, 

to prevent the model from becoming overconfident in its 

predictions, Inception-v3 uses label smoothing, which assigns 

a small portion of the probability mass to incorrect labels during 

training. This technique regularizes the model and prevents 

overfitting.   

     Transfer learning is applied to train the fully connected layer 

at the top. The original Inceptionv3 outputs the shape of [None, 

2048], and the modified model outputs the shape of [None, 6] 

to match the six categories of waste (cardboard, paper, plastic, 

metal, glass, and trash) by adding a dense layer with average 

pooling. 

C.  Data Augmentation and Preprocessing 
     To increase the robustness and generalization capabilities of 

our proposed framework, we will apply data augmentation 

techniques such as random rotations, color space adjustments, 
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Mosaic augmentation, and scaling to the training dataset. The 

main idea behind mosaic augmentation is to combine four 

different images into a single composite image as shown in Fig.  

3. It preserves the annotations and labels of the original images 

and exposes the model to multiple objects and scenes in a single 

image, encouraging the model to learn how to handle complex 

scenes and object interactions. Moreover, image preprocessing 

techniques, such as normalization and resizing, will be used to 

ensure consistent input for the deep learning models. 

 

 
Figure 3 The Mosaic augmentation  

IV. EXPRIEMENT AND RESULTS  

A. Model Evaluation and Performance Metrics 
     The standard metrics Precision, Recall, mAP@.5 and 

mAP@.5:.95 are used to evaluate the object detection module 

and accuracy to evaluate the object classification module.  

Precision measures the model's ability to correctly identify 

positive instances among all the instances it has predicted as 

positive. In other words, precision tells us how accurate the 

model is in its positive predictions. It can be defined as using 

following equation: 

 

                             (5) 

 

Where True Positives (TP) refers to the number of instances 

where the model correctly predicts the positive class. False 

Positives (FP) means the number of instances where the model 

incorrectly predicts the positive class when the actual class is 

negative. 

     Recall measures the model's ability to correctly identify all 

the dataset's positive instances (i.e., instances belonging to the 

target class). It can be defined as the following: 
 
                                                             (6) 

 

Where False Negatives (FN) is the number of instances where 

the model incorrectly predicts the negative class when the 

actual class is positive. 

     mAP@.5 (Mean Average Precision at a 0.5 Intersection 

over Union) is the mean average precision of IoU with a 

threshold of 0.5. In the context of object detection, the 

Intersection over Union (IoU) is a metric that measures the 

overlap between two bounding boxes: 

 

                                             (7) 

 

mAP@.5 requires an IoU threshold of 0.5, which means that a 

predicted bounding box is considered a true positive if its IoU 

with the ground truth bounding box is greater than or equal to 

0.5 (i.e., at least 50% overlap). The average precision is 

calculated using the area under the Precision-Recall curve for 

each object using the following equation: 

 

                                                             (8) 

 

Where p(r) is the Precision-Recall curve by plotting the 

calculated precision values against the corresponding recall 

values, finally, Mean Average Precision (mAP) can be 

calculated by averaging the AP values across all object classes. 

     mAP@.5:.95 calculates the Mean Average Precision (mAP) 

at different IoU thresholds, starting from 0.5 (50% overlap) to 

0.95 (95% overlap), with an interval of 0.05. Compared with 

mAP@.5, mAP@.5:.95 provides a more balanced and 

comprehensive evaluation of the model's performance. 

     For the classification task, accuracy measures how well the 

model correctly predicts the class labels for a given dataset. 

Accuracy is defined as the ratio of the total number of correct 

predictions to the total number of instances in the dataset: 

 

                                          (9) 

    

Where False Positives (FP) is the number of instances where 

the model incorrectly predicts the positive class when the actual 

class is negative, and False Negatives (FN) is the number of 

instances where the model incorrectly predicts the negative 

class when the actual class is positive. 

B. Dataset Preparation 
     The datasets used for training and evaluating of the proposed 

model are the Waste Classification dataset [25], the TACO 

dataset [19], and the WaRP[26] dataset. Inceptionv3 is trained 

in the Waste Classification dataset, which contains six 

categories of waste. The YOLOv5 is trained in selected 

categories on the TACO dataset. 22 categories that belong to 

six super categories are selected from the original TACO 

dataset. The selected categories can be found in Table 1.   Both 

models use the pre-trained weight as the starting point, where 

the initial Inceptionv3 weight was trained on the ImageNet 

dataset, and the initial YOLOv5 weight was trained on the 

COCO dataset. Afterwards, the WaRP dataset is used to 

evaluate the performance of the integrated model in a real-life 

scenario.  

C. Model Implementation and Training 
     Object Detector YOLOv5 is implemented using Pytorch 

framework and trained with one NVIDIA A100-SXM4-40GB 

GPU from Google Colab. The model contains 468 layers with 

46,251,379 parameters. It took 1.7 hours to train 100 epochs 

with a batch size of 16 and image size of 416*416.  
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     Object Classifier Inceptionv3 is implemented using the 

TensorFlow framework in Python and trained on the Waste 

Classification dataset with an input size of 224 x 224, batch size 

 
Table 1 Selected Categories from TACO dataset. 

Super-category  ID Category # of instance 

plastic  4 Other plastic bottle 50 
5 Clear plastic bottle 285 

29  Other plastic 273 

36 Plastic film 451 

39 Other plastic wrapper 260 

glass 6 Glass bottle 104  
23 Glass cup 6  
26 Glass jar 6 

metal 12 Drink can 229  
52 Scrap metal 20  
8 Metal bottle cap 80  

28 Metal lid 10 
carboard 14 Other carton 93  

16 Drink carton 45  
17 Corrugated carton 64  
18 Meal carton 30 

paper 31 Tissues 42  
32 Wrapping paper 12  
33 Normal paper 82  
34 Paper bag 27 

Trash  25 Food waste 8  
1 Battery 2 

 

 

 
 

Figure 4 Examples from selected datasets 

of 64 and epochs of 100. The dataset is split for training and 

validation in a 0.8, 0.2 ratio. 

D. Quantitative Results 
     Table 2 provides a comparison of various deep learning 

architectures for object detection using the Waste Classification 

dataset. The InceptionV3 module with transfer learning 

achieved superior validation accuracy, balancing a medium 

level of model complexity. Different YOLOv5 architecture 

variants, specifically YOLOv5s (small) and YOLOv5l (large), 

with varying sizes and computational complexities, were 

evaluated for the object detection module. Despite similar 

design, these variants differ in layer quantity and feature 

extractor complexity. YOLOv5s, with fewer layers and a 

simpler architecture, is lightweight, making it optimal for use 

on devices with limited computational resources, like 

smartphones or edge devices. Conversely, YOLOv5l, with a 

more intricate, deeper architecture and more layers, offers 

increased model capacity and superior feature extraction 

capabilities. 

 
Table 2 Comparison of classifier 

Base Model Train 

Accuracy 

Validation 

Accuracy 

Total Params 

EfficientNet B0 95.81% 86.69% 4,057,250 

Resnet50 99.85% 95.70% 23,600,006 

VGG16 99.10% 84.45% 14,980,422 

InceptionV3 99.80 97.07% 21,815,078 

 

     In terms of performance, YOLOv5l generally achieves 

higher accuracy and better object detection results than 

YOLOv5s due to its increased model capacity and more 

complex feature extraction capabilities. However, YOLOv5s 

provides faster inference speed and is more suitable for real-

time applications where computational resources and latency 

are essential considerations.  

     The performances of the above models on the TACO dataset 

are listed in Table 3. Compared to YOLOv5s, YOLOv5l 

achieved better precision and lower recall. It means that the 

model is good at correctly predicting positive instances when it 

makes a positive prediction. However, it may fail to identify 

many of the actual positive instances in the dataset. In other 

words, the model tends to be conservative in making positive 

predictions, resulting in fewer false positives and more false 

negatives. In the content of waste detection, it is important to 

have higher precision rather than higher recall. Minimizing 

false positive is crucial because misclassification of waste type 

can result in increased workload in further processing, affecting 

the recycling rate. Poor performance in mAP@.5 and 

mAP@.5:.95 is mainly because of the imbalanced class 

distribution and insufficient training data. It can be solved by 

adding more training data into classes with fewer instances, 

such as Glass Cup and Glass Jar. 

     Table 4 shows the performance of the YOLOv5l on the 

WaRP dataset. The validation loss is shown in Fig, 4. The 

model achieved 63.6% precision and 48.6% recall. This means 

the model is reasonably accurate in distinguishing waste types 

when making a positive prediction. However, there is still room 

for improvement, as 37% of the time, the model needs to be 

more accurate to classify a waste object, potentially leading to 

incorrect waste sorting or processing. Higher precision might 

be more desirable to ensure that waste is sorted accurately and 

sent to the correct processing facilities. 

 
Table 3 Comparison of YOLOv5s, YOLO5l  

Base Model P R mAP@.5  mAP@.5:.95 

YOLOv5s 0.253 0.208 0.205 0.148 

YOLOv5l 0.484      0.163 0.162 0.125 
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Table 4 Performance of YOLOv5l on WaRP dataset  

Base Model P R mAP@.5  mAP@.5:.95 

YOLOv5l 0.636 0.486 0.523 0.402 

 

 
Figure 4 YOLOv5l Validation Loss on WaRP dataset 

E. Qualitative Results 
     We selected three scenarios to evaluate the integrated 

model’s performance. The simple scenario only includes one 

clear waste object with a clear background. The intermediate 

scenario includes smaller waste objects with a more complex 

background. Finally, the complex scenario includes multiple 

waste objects with the most complex background. 

     Fig 5 presents examples of simple case results where the 

integrated model successfully detected objects but struggled 

with accurate initial classification, primarily due to limited 

training instances for the object detection model. However, the 

second-stage classifier enhanced classification accuracy by 

reassessing the proposed region, as exemplified by a Fanta glass 

bottle initially misclassified as a "clear plastic bottle" but 

correctly identified as "glass" in the second stage. 

     As shown in Fig. 6, the intermediate scenario contains small 

waste objects in a more complex background. The performance 

of both the detection and classification modules is affected by 

the size of the input image and the resolution of the proposed 

region. Especially for the object classification module, the 

cropped object box is extremely small and not recognizable 

even with human eyes. In this case, the second stage classifier 

will have lower accuracy due to the high false positive rate. This 

issue can be addressed by adding more training images with 

various sizes to the classification dataset and using higher-

resolution test images. 

 

 
Figure 5 Simple case results 

 

 
Figure 6 Intermediate scenario results 

 Figure 7 Complex case results 
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     In the most complex scenario where numbers of waste 

objects with different shapes are stacked, as shown in Fig.7, the 

model performs better when the waste object is distinct from its 

background. For example, paper bags and plastic film are the 

most detected categories because the color and the light 

reflection made them distinct from the background. To address 

this, including more training images with different light 

conditions and shapes could be a good approach.  

V. CONCLUSION AND FUTURE WORK 

     Automated waste detection and classification are vital in 

achieving sustainable recycling practices. Utilizing deep 

learning methodologies for waste detection and classification 

allows waste management systems to enhance efficiency, 

precision, and adaptability across various scenarios and 

requirements. The study introduces a two-step waste detection 

system crucial for successful recycling practices. Using deep 

learning techniques, the proposed system improves the 

efficiency and adaptability of waste management across 

varying conditions. Our unique approach uses two separate 

models for detecting and classifying waste, making it stronger 

for real-life use. The system utilizes the YOLOv5 design for 

waste detection and applies transfer learning to the Inceptionv3 

model for classification which further improves the 

classification accuracy of detected waste. As a result, the 

system performs well on the WaRP dataset (63.6% precision 

and 52.3% mAP@.5), even with a small training dataset of 819 

images. Moreover, our framework can adjust to changes in 

waste categories, local regulations, or specific industry needs 

by retraining the model with new data or fine-tuning the 

architecture. The combination of YOLOv5 and Inceptionv3 

supports scalability in terms of the number of waste categories 

that can be detected and classified. As more data becomes 

available, the models can be easily updated to perform better 

and manage a wider range of waste materials. 

     Several improvements can still be made to the performance 

of the proposed framework. Acquiring more labelled training 

data, particularly for imbalanced waste categories or 

challenging cases, is essential for deep learning models. A 

larger, more diverse training dataset can aid the model in 

learning a more extensive range of features, thus improving 

overall performance. Experimentation with alternative model 

architectures or adopting more recent state-of-the-art models 

may also yield better results. 
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