

A Refined Energy Optimization Model for Edge
Computing with Machine Learning

Xian Liu

Department of Systems Engineering
University of Arkansas at Little Rock, USA

Changcheng Huang
Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada

Wilsun Xu
Department of Electrical and Computer Engineering

University of Alberta, Edmonton, Canada

 Abstract – Edge computing (EC) with artificial intelligence (AI)
/machine learning (ML) is a promising paradigm in current 5G-
Advanced and future 6G wireless technologies. Energy
optimization is a primary issue in most EC/ML systems. In this
paper, a refined model is developed to seek optimal energy
allocation. The present work introduces several features which
were often omitted in existing studies, including fine-grained
discrete optimization, non-singular CPU cycle allocation, long-
tailed data traffic, and non-singular pathloss terms. The energy
optimization model is solved by the ML methodology and
compared with a conventional solver. Simulations showed that
the efficiency may be improved more than 90%.
 Index Terms – Edge intelligence, machine learning, mobile edge
learning, offloading.

I. INTRODUCTION

 Multi-access edge computing (a.k.a. mobile edge
computing) (MEC) has gained much attention as the 4G
technology evolved to 5G [1-2]. An MEC system usually
includes multiple edge devices (EDs). Commonly, these EDs
are limited by scarce computational and storage capacities. In
order to meet the primary QoS criteria (e.g., latency upper
bound), an ED often needs to offload some computing-
intensive jobs to edge servers (ES). For a given configuration,
it is always important to seek some optimal offloading
schemes. Due to the real-time and mobile features of most
MEC paradigms, it is also highly desirable to find some
lightweight optimization schemes. Therefore, two aspects,
effective optimization models and efficient solving strategies,
should be concurrently investigated.
 Edge intelligence (EI) represents one of most promising
initiatives in the beyond-fifth-generation (B5G) wireless
communication technologies [3-4]. In nature, EI is an
interdisciplinary initiative that integrates the state-of-the-art of
artificial intelligence (AI) into MEC. Currently, there are
several important areas in EI worth further explorations, e.g.,
resource optimization with machine learning (ROML).
 In a mathematical viewpoint, ROML can be regarded as an
evolved version of the wait-and-see (WS) model in stochastic
programming [5]. In WS, some parameters are the samples of
realized random variables. For each scenario, there is a
corresponding optimal solution in terms of decision variables
such as offloading portion, CPU cycles, and transmission
power. The optimization solving process in WS can be
computational expensive due heterogeneity of the sample

space. With a proper architecture, ROML can significantly
improve the computational efficiency by emulating the
optimization procedure, while retaining a satisfactory
accuracy.
 In the recent literature, a great deal of attention has been
paid to the formulating MEC and developing heuristic
optimization procedures. However, some important issues
were not well addressed in most existing works. The purpose
of the present study is twofold: developing an optimization
model to include some often-omitted issues and seeking
possibly lightweight solving schemes. One of the main issues
in modeling is to consider the partial offloading (PO) mode
with fine-grained weights. However, as a practical scheme,
these weights should be characterized by discrete variables.
Besides, the long-tailed feature of data traffic should not be
neglected. These issues will be well included into this study.
 The rest of this paper is organized as follows. The system
model is introduced in Section II, along with a notation list.
Then, in Section III, some relevant works are reviewed and the
main features of the present study are summarized. Next, the
computation modes in MEC are described in Section IV. Then,
an optimization model is formulated in Section V, with several
remarks for its deeper analytical attributes. Sections VI and
VII are devoted for machine learning, where several standard
plots are provided and the computational performance is
compared. Finally, the paper is concluded in Section VIII.

II. SYSTEM MODEL

 In the present study, we consider a small cell in which there
are N edge devices (EDs) and one processing hub (Fig. 1).

Figure 1. Generic view of MEC system.

 Here the processing hub is an abstraction of a variety of
communication nodes, e.g., macro base station, micro base
station, remote radio head (RRH), roadside unit (RSU), etc.
However, we assume that such a processing hub is equipped
with or connected through a high-bandwidth physical link to a
dedicated edge server (ES).

TABLE I. LIST OF MAIN NOTATIONS

i jb Level of partial offloading

0d Reference distance of id

id Distance between ED and ES (m)
l

if ED resource for job i (CPU cycles per second)

ih Channel gain of small scale fading

im Nakagami-m factor

ix Discrete offloading weight

 Path loss exponent

iC Total number of CPU cycles of job i

iD Data size of job i (bits)

iF ES resource for job i (CPU cycles per second)

iM Offloading cardinality of job i

0N Power spectral density (Watt/Hz)

iP Transmission power of ED i (Watt)
w

iP Idle power of ED i (Watt)

cR Cell radius (m)

iR Transmission rate (bits/second)

cW Bandwidth in the cell (Hz)

iW Bandwidth per channel (Hz)

 In this system, the index of EDs is denoted as

{1, 2,..., }.i N For the ED ,i the associated

computational job is characterized by a triplet
.

,{ , , },
def

i i i i ubT D C where iD is the data size (bits), iC is the

total number of required CPU cycles, and ,i u b is the upper

bound of latency. Note that this triplet or equivalent patterns
represent the metrics commonly adopted in the literature of
MEC (ref.). It is an easy notion that iD is a random variable

(RV). On the other side, the CPU cycles per instruction depend
on the type of instructions, while a computational procedure
consists of various types of instructions. Accordingly, it is also
reasonable to consider iC as an RV. The upper bound of

latency ,i u b could be an RV or a fixed threshold depending

on the concerned application. Note that the ratio /i iC D

characterizes the computation intensity (CPU cycles per bit).
 In the MEC problems involving offloading, one of the
primary decision variables is the offloading weight. For the
system consisting of N EDs, the offloading weight is a vector
of N components. In principle, the simplest scheme is binary
offloading (BO). In BO, a job is either completely done in an

ED or completely done in an ES. A generalization of BO is
referred to as partial offloading (PO). If PO is fine-grained,
then the job i can be offloaded with one of different
thresholds, denoted as (1,2,...,).ij ib j M These thresholds

could be estimated by checking the internal segments of the
concerned software task, e.g., code or data. Note that these
thresholds comprises a discrete list, but the item ijb may take

a real value in [0,1), e.g., 1 2 3(, ,) (0.12, 0.57, 0.95).i i ib b b

This is the scheme on which the present study is based.
Accordingly, the offloading weight is defined as a vector and
denoted as 1 2(, , ...,),Nx x x x whose components

1 2{ , ,..., }.
ii i i iMx b b b

III. RELATED WORKS

 A great deal of studies on MEC offloading has been reported
in the literature. A comprehensive review can be found in [6].
In a high level, the offloading applications may be practiced in
either downlink or uplink. One of the well-known problems in
downlink offloading is the cache replacement paradigm (see
[7] and the references therein). On the other hand, as described
in the preceding section, the paradigm investigated in this
paper is one of the uplink offloading problems. In particular,
the present study focuses on the issue of energy optimization
subject to some latency thresholds. Several relevant works
were recently reported. In [8], the energy consumption
problem was formulated as a mixed integer nonlinear
programming (MINLP) problem, where three sets of decision
variables were considered: offloading weights, ES resources,
and wireless channels. Specifically, their offloading weights
were binary {0,1}. In [9], a simplified formulation was

described, where the channel allocation was fixed and the
offloading weights were continuous in [0, 1). However, the
machine learning feature was included in [9] while not in [8].
More studies in this area can be found in the reference lists of
[8] and [9]. In general, however, it seems that several
important issues have not been sufficiently investigated. Some
concerns are itemized as follows:
 The random samples of primary parameters, e.g., the data

size, were generated from over-simplified distributions,
such as the uniform distribution or Gaussian distribution.

 The offloading weights were coarse-grained: either binary
or continuous over the unit interval.

 The singularity pitfall of CPU cycle allocation was not
explicitly avoided in the base models.

 The statistics of small-scale and large-scale channel
fading were not well addressed.

 Only a small portion of studies involved machine
learning.

 The present work tries to pay more attentions to
aforementioned issues.
 The random samples of the data size were generated from

long-tailed distributions popularly found in Internet ([7],
[10-12]).

 The offloading weights were fine-grained, as described in
the preceding section.

 The singularity issue of CPU cycle allocation was clearly
avoided in the base model.

 For the small-scale fading, instead of the basic Rayleigh
model (i.e., the fading power following exponential
distribution), the more general Nakagami-m model is
adopted. Moreover, for the path-loss fading, the
singularity is avoided and the path loss exponent can be
arbitrary, rather than restricted to integers.

 Finally, a machine learning approach is developed.

IV. COMPUTATIONAL MODES

 In the following, we discusses two typical modes in MEC.
Both energy consumption and processing latency are relevant.
A. Local Processing
Let l

if be the CPU cycles per second in the ED .i A

commonly adopted formula for evaluate l
if is based on the

dynamic voltage scaling (DVS) approach [13]:

,max
,

(1)
min , , (1)l i i

i i
i ub

x C
f f

where ,maxif is the maximum CPU frequency of ED .i The

energy consumed by CPU is directly proportional to the
squared-voltage for the chip, 2,V while V is linearly

associated with .l
if Accordingly, The energy per CPU cycle

can be expressed as 2() ,l
if where is the chip-dependent

parameter (e.g., effective switched capacitance). A typical
value is 2610 . Therefore, the total energy consumed by

iC cycles with the effect of ix is:
2() (1) . (2)l l

i i i iE f x C

On the other hand, the incurred latency is:
(1) / . (3)l l

i i i it x C f

B. Remote Processing
Remote processing is carried out in edge servers. One of the
components of latency is due to uplink transmissions. The
transmission rate takes the following form:

2
0 0

log 1 . (4)
()

i i
i i

i i

h P
R W

N W d d

Accordingly, the transmission time is:
/ . (5)tr

i i i it x D R

On the other hand, the CPU processing time is:
/ . (6)s

i i i it x C F

The consumed energy of RF for transmission is
/ . (7)tr tr

i i i i i i iE Pt x D P R

Moreover, the energy of ED while waiting for ES is:

/ . (8)w w s w
i i i i i i iE P t x C P F

V. PROBLEM FORMULATION

 In this paper, our interest is to minimize the energy
consumption with multiple constraints. The optimization
problem is formulated as follows.
(OFLD_OPTM1)

1
,

minimize (); (9)
N l tr w

i i ii
x F

z E E E

,

,

min

max max

1 max

1 2

. .

(1) / ; (10)

; (11)

0 1; (12)

1; (13)

{ , ,..., }. (1,2,...,) (14)
i

l l
i i i i i ub

tr s i i i i
i i i ub

i i

i

N
i

i

i i i iM

s t

t x C f

x D x C
t t

R F

FF

F F

F

F

x b b b i N

Several remarks are instructive to gain deeper insights.
Remark 1: The decision variables of NEC_OPT1 are
continuous iF and discrete ix (1,2,...,).i N

Remark 2: OFLD_OPTM1 is a nonlinear, non-convex, and
hybrid optimization problem.
Remark 3: The discrete constraint (14) can be dealt with the
conventional combinatorial strategies, usually provided in a
standard integer nonlinear programming solver. However, if
such a standard solver is not available or not scalable, it is
desirable to use the common nonlinear programming solvers
provided in most engineering software products, such as
Matlab. In this situation, a method proposed in [14] or [15] can
be customized.
Remark 4: Due to its positive limit on the left-hand side,
constraint (12) is not redundant for (13).
Remark 5: The lower bound of constraint (12) avoids the
unbounded pitfall of (6), (8), and (11).
Remark 6: OFLD_OPTM1 is a quasi-separable programming
problem. In the context of nonlinear optimization, the
definition of the separable programming problem also includes
the constraints and convexity [16, Ch. 13]. In OFLD_OPTM1,
due to eqs. (2), (7), and (8), the objective function is separable.
Note that, it is possible 1 0,ib since some software tasks may

include a non-offloadable portion. For example, a task for face
recognition may include K Java classes, of which K-1 are
offloadable.
 It is noted that Remarks 3 through 6 have not well been
addressed in the open literature.

VI. SIMULATION SETUP

A. Distribution of Edge Devices

 As shown in Fig. 1, we consider a network with N EDs and
one processing hub. The edge sever is associated with this hub.
These N EDs are independently uniformly distributed in the
disc with radius .cR Accordingly, the probability density

function (PDF) is)./(1 2
cR In the polar coordinate system, the

cumulative distribution function (CDF) is:

2

2 2
0 0

1
(,) . (15)

2

r

R
c c

r
P R r d d

R R

It is worth noting that the above model is equivalent to the
homogeneous Poisson point process (PPP) conditioned that
there are N points within a finite disc [17, Theorem 2.9].

B. Distribution of Small-Scale Fading

 For the small-scale fading, we assume that its channel gains
follow the squared Nagagami-m distribution with unit mean.
The random data are generated from the inverse incomplete
gamma function.

C. Distribution of Data Size

The data size iD is assumed to follow the Pareto distribution

([7], [10]). The CDF of Pareto distribution is as follows:

 () 1 / . (0; 0) (16)pc

D p p pF s h s s h c
As indicated in [10], various data communication entities can
be well described by (16) with 1 2.pc Note that (16) is

one of the refinements against most existing works.

VII. NEURAL NETWORK CONFIGURATION

 One of the most popular realizations for the ANN notion is
the feed-forward neural network (FNN) [19, Ch. 6]. In the
present work, we implement an FNN for the MEC problem.
One of the axioms of FNN is to start trying small architectures
whenever possible. We have investigated several small
architectures. In this study, the FNN consist of three hidden
layers with 32, 16, and 16 neurons, respectively. The total
number of input vectors is chosen to be larger than total
weights of this FNN. The rationale is well described in [19].
The datasets are generated by a standard nonlinear
optimization solver in Matlab. In particular, the target dataset
is composed of those converged solutions of OFLD_OPTM1.

A. Parameters of Edge Computing

 The main parameters are listed in Tables II, where the
index 1, 2, ..., ,i N and (,)U a b stands for the uniform

distribution in [,].a b

TABLE II. MAIN PARAMETERS IN TESTBED

Parameter Value

1 2 3 4{ , , , }i i i ib b b b {0,0.35,0.70,0.95}

pc 1.67

ph 52 10 (bits)

m ax
lf 2 GHz

;im 1.2; 3.5

maxF 30 GHz

iC (900,1100)U (Mega cycles)

;iM N 4; 8

0N -143.97 (dBm/Hz)

; w
i iP P 480 (mW); 100 (mW)

cR 100 (m)

cW 20 (MHz)

 In the configuration of FNN, 80%, 15%, and 5% of samples
are used as the datasets for training, validation, and internal
testing, respectively. In the training stage, the Levenberg-
Marquardt (LM) algorithm was adopted as the training
method. In the context of FNN, the LM algorithm is usually the
first choice [18, 19]. For the hidden layers, two of the most
popular activation functions are used: the log-sigmoid function
and the rectified linear unit (ReLU) function. For the output
layer, the pure linear function is used.

A. Training
 The profiles of training are illustrated in Fig. 2 through Fig.
4. Several interesting yet important insights can be gained
from above results. The performance of mean square error
(MSE) of training, validation, and internal testing are illustrated
in Fig. 2. Next, the corresponding error profile is presented in
Fig. 3, where the ordinate represents the number of errors that
falls within each interval on the abscissa. It is observed that
most instances fall in two very narrow error intervals. As a
result, this NN has done a successful training.

Figure 2. MSE performance.

Figure 3. Histogram of errors.

B. External Testing
 In total, 1530 samples are used for FNN (32, 16, 16). The
CDF profile of optimal solutions produced by the trained FNN
are illustrated in Fig. 4, where the top plot is the CDF of the
mean of optimal ,ix while the bottom plot is the CDF of the

mean of optimal max/ .iF F As a comparison, the

corresponding CDF profiles generated by a standard nonlinear
programming (NLP) solver are illustrated in Fig. 5. This NLP
solver has been upgraded to deal with both discrete and
continuous constraints, as shown in eqs. (10) through (14).
Note that the trained FNN is well validated by the range-match
between Figs. 4 and 5 (except the illustrations of curve shapes
are affected by the different horizontal scales/spans).

Figure 4. CDF of optimal solutions from trained FNN.

Figure 5. CDF of optimal solutions from NLP solver.

C. Computational Efficiency
 In this study, extensive numerical experiments have
been carried out by the trained neural network. All training and
testing procedures were conducted in a computer equipped
with the 3.50 GHz quad-core CPU and 16 GB RAM. Three
sets of representative results are presented In Table III. The
individual datum is the average over is the entire 1530
samples. It is observed that the computational time of FNN has
reduced to 7% or 8%.

TABLE III. AVERAGE COMPUTATIONAL TIME

NLP sol. (ms) 88.5521 81.8689 83.1001

FNN test (ms) 7.1221 5.9344 5.8141
Ratio (%) 8.0428 7.2487 6.9965

VIII. CONCLUSION

 It is imperative to refine the resource optimization schemes
for MEC offloading paradigms. The purpose of this paper is
twofold: developing an optimization model to include some
often-omitted issues and seeking some lightweight solving
schemes. There has been an interest in investigating the
effectiveness of a small-scale FNN for the second purpose.
The present study shows that a small FNN is functional quite
well. In the ongoing project, the main attention will be paid to
training FNN to solve large-scale MEC problems.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: the communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 4th
Quarter 2017.

[2] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE Access, vol. 6,

pp. 6900-6919, November 2017.

[3] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an
intelligent edge: wireless communication meets machine learning,” IEEE
Communications Magazine, vol. 58, no. 1, pp. 19-25, January 2020.

[4] Y. Xiao, G. Shi, Y. Li, W. Saad, and H. V. Poor, “Toward self-learning
edge intelligence in 6G,” IEEE Communications Magazine, vol. 58, no. 12,
pp. 34-40, December 2020.

[5] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming (2nd
ed). New York: Springer, 2011.

[6] B. Wang, C. Wang, W. Huang, Y. Song, and X. Qin, “A survey and
taxonomy on task offloading for edge-cloud computing,” IEEE Access, vol. 8,
pp. 186080-186101, October 2020.

[7] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep multi-agent
reinforcement learning based cooperative edge caching in wireless networks,”
in Proc. of IEEE International Conference on Communications (ICC), 2019.

[8] P. Zhao, H. Tian, C. Qin, and G. Nie, “Energy-saving offloading by jointly
allocating radio and computational resources for mobile edge computing,”
IEEE Access, vol. 5, pp. 11255-11268, June 2017.

[9] J. Li and T. Lv, “Deep neural network based computational resource
allocation for mobile edge computing,” in Proc. of IEEE Globecom
Workshops, 2018.

[10] K. Park and W. Willinger (eds.), Self-Similar Network Traffic and

Performance Evaluation, Wiley, NY, 2000.

[11] Y. Geng, W. Hu, Y. Yang, W. Gao, and G. Cao, “Energy-efficient
computation offloading in cellular networks,” in Proc. of IEEE 23rd
International Conference on Network Protocols (ICNP), 2015.

[12] H. Volos, T. Bando, and K. Konishi, “Latency modeling for mobile edge
computing using LTE measurements,” in Proc. of IEEE 88th Vehicular
Technology Conference (VTC-Fall), 2018.

[13] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge
computing: partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 42684282, Oct. 2016.

[14] X. Liu, “On compact formulation of constraints induced by disjoint
prohibited-zones”, IEEE Transactions on Power Systems, vol. 25, no. 4, pp.
2004-2005, 2010.

[15] X. Liu, “A new approach for economic dispatch with disjoint feasible
zones: model and solution”, in Proc. of IEEE Power and Energy Society
General Meeting (PESGM), 2016.

[16] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research
(10th ed.), McGraw-Hill Higher Education, 2014.

[17] M. Haenggi, Stochastic Geometry for Wireless Networks, Cambridge
University Press, 2012

[18] Matlab, Neural Network Toolbox, R2019a.

[19] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016.

