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    Abstract – Edge computing (EC) with artificial intelligence (AI) 
/machine learning (ML) is a promising paradigm in current 5G-
Advanced and future 6G wireless technologies. Energy 
optimization is a primary issue in most EC/ML systems. In this 
paper, a refined model is developed to seek optimal energy 
allocation. The present work introduces several features which 
were often omitted in existing studies, including fine-grained 
discrete optimization, non-singular CPU cycle allocation, long-
tailed data traffic, and non-singular pathloss terms. The energy 
optimization model is solved by the ML methodology and 
compared with a conventional solver. Simulations showed that 
the efficiency may be improved more than 90%. 
    Index Terms – Edge intelligence, machine learning, mobile edge 
learning, offloading. 

I. INTRODUCTION 

    Multi-access edge computing (a.k.a. mobile edge 
computing) (MEC) has gained much attention as the 4G 
technology evolved to 5G [1-2]. An MEC system usually 
includes multiple edge devices (EDs). Commonly, these EDs 
are limited by scarce computational and storage capacities. In 
order to meet the primary QoS criteria (e.g., latency upper 
bound), an ED often needs to offload some computing-
intensive jobs to edge servers (ES). For a given configuration, 
it is always important to seek some optimal offloading 
schemes. Due to the real-time and mobile features of most 
MEC paradigms, it is also highly desirable to find some 
lightweight optimization schemes. Therefore, two aspects, 
effective optimization models and efficient solving strategies, 
should be concurrently investigated. 
    Edge intelligence (EI) represents one of most promising 
initiatives in the beyond-fifth-generation (B5G) wireless 
communication technologies [3-4]. In nature, EI is an 
interdisciplinary initiative that integrates the state-of-the-art of 
artificial intelligence (AI) into MEC. Currently, there are 
several important areas in EI worth further explorations, e.g., 
resource optimization with machine learning (ROML). 
    In a mathematical viewpoint, ROML can be regarded as an 
evolved version of the wait-and-see (WS) model in stochastic 
programming [5]. In WS, some parameters are the samples of 
realized random variables. For each scenario, there is a 
corresponding optimal solution in terms of decision variables 
such as offloading portion, CPU cycles, and transmission 
power. The optimization solving process in WS can be 
computational expensive due heterogeneity of the sample 

space. With a proper architecture, ROML can significantly 
improve the computational efficiency by emulating the 
optimization procedure, while retaining a satisfactory 
accuracy. 
    In the recent literature, a great deal of attention has been 
paid to the formulating MEC and developing heuristic 
optimization procedures. However, some important issues 
were not well addressed in most existing works. The purpose 
of the present study is twofold: developing an optimization 
model to include some often-omitted issues and seeking 
possibly lightweight solving schemes. One of the main issues 
in modeling is to consider the partial offloading (PO) mode 
with fine-grained weights. However, as a practical scheme, 
these weights should be characterized by discrete variables. 
Besides, the long-tailed feature of data traffic should not be 
neglected. These issues will be well included into this study. 
    The rest of this paper is organized as follows. The system 
model is introduced in Section II, along with a notation list. 
Then, in Section III, some relevant works are reviewed and the 
main features of the present study are summarized. Next, the 
computation modes in MEC are described in Section IV. Then, 
an optimization model is formulated in Section V, with several 
remarks for its deeper analytical attributes. Sections VI and 
VII are devoted for machine learning, where several standard 
plots are provided and the computational performance is 
compared. Finally, the paper is concluded in Section VIII. 

II. SYSTEM MODEL 

    In the present study, we consider a small cell in which there 
are N edge devices (EDs) and one processing hub (Fig. 1). 

 

     

         

    

 
 

Figure 1.  Generic view of MEC system. 



 

    Here the processing hub is an abstraction of a variety of 
communication nodes, e.g., macro base station, micro base 
station, remote radio head (RRH), roadside unit (RSU), etc. 
However, we assume that such a processing hub is equipped 
with or connected through a high-bandwidth physical link to a 
dedicated edge server (ES).  

TABLE I.  LIST OF MAIN NOTATIONS 

i jb  Level of partial offloading 

0d  Reference distance of id  

id  Distance between ED and ES (m) 
l

if  ED resource for job i (CPU cycles per second) 

ih  Channel gain of small scale fading 

im  Nakagami-m factor 

ix  Discrete offloading weight  

  Path loss exponent 

iC  Total number of CPU cycles of job i  

iD  Data size of job i  (bits) 

iF  ES resource for job i (CPU cycles per second) 

iM  Offloading cardinality of job i  

0N  Power spectral density (Watt/Hz) 

iP  Transmission power of ED i  (Watt) 
w

iP  Idle power of ED i (Watt) 

cR  Cell radius (m) 

iR  Transmission rate (bits/second) 

cW  Bandwidth in the cell (Hz) 

iW  Bandwidth per channel (Hz) 

 
    In this system, the index of EDs is denoted as 

{1, 2,..., }.i N   For the ED ,i  the associated 

computational job is characterized by a triplet 
.

,{ , , },
def

i i i i ubT D C  where iD  is the data size (bits), iC  is the 

total number of required CPU cycles, and  ,i u b  is the upper 

bound of latency. Note that this triplet or equivalent patterns 
represent the metrics commonly adopted in the literature of 
MEC (ref.).  It is an easy notion that iD  is a random variable 

(RV). On the other side, the CPU cycles per instruction depend 
on the type of instructions, while a computational procedure 
consists of various types of instructions. Accordingly, it is also 
reasonable to consider iC  as an RV. The upper bound of 

latency ,i u b  could be an RV or a fixed threshold depending 

on the concerned application. Note that the ratio /i iC D  

characterizes the computation intensity (CPU cycles per bit). 
    In the MEC problems involving offloading, one of the 
primary decision variables is the offloading weight. For the 
system consisting of N EDs, the offloading weight is a vector 
of N components. In principle, the simplest scheme is binary 
offloading (BO). In BO, a job is either completely done in an 

ED or completely done in an ES. A generalization of BO is 
referred to as partial offloading (PO). If PO is fine-grained, 
then the job i  can be offloaded with one of different 
thresholds, denoted as ( 1,2,..., ).ij ib j M  These thresholds 

could be estimated by checking the internal segments of the 
concerned software task, e.g., code or data. Note that these 
thresholds comprises a discrete list, but the item ijb  may take 

a real value in [0,1),  e.g., 1 2 3( , , ) (0.12, 0.57, 0.95).i i ib b b   

This is the scheme on which the present study is based. 
Accordingly, the offloading weight is defined as a vector and 
denoted as 1 2( , , ..., ),Nx x x x  whose components 

1 2{ , ,..., }.
ii i i iMx b b b  

III. RELATED WORKS 

    A great deal of studies on MEC offloading has been reported 
in the literature. A comprehensive review can be found in [6]. 
In a high level, the offloading applications may be practiced in 
either downlink or uplink. One of the well-known problems in 
downlink offloading is the cache replacement paradigm (see 
[7] and the references therein). On the other hand, as described 
in the preceding section, the paradigm investigated in this 
paper is one of the uplink offloading problems. In particular, 
the present study focuses on the issue of energy optimization 
subject to some latency thresholds. Several relevant works 
were recently reported. In [8], the energy consumption 
problem was formulated as a mixed integer nonlinear 
programming (MINLP) problem, where three sets of decision 
variables were considered: offloading weights, ES resources, 
and wireless channels. Specifically, their offloading weights 
were binary {0,1}.  In [9], a simplified formulation was 

described, where the channel allocation was fixed and the 
offloading weights were continuous in [0, 1). However, the 
machine learning feature was included in [9] while not in [8]. 
More studies in this area can be found in the reference lists of 
[8] and [9]. In general, however, it seems that several 
important issues have not been sufficiently investigated. Some 
concerns are itemized as follows: 
 The random samples of primary parameters, e.g., the data 

size, were generated from over-simplified distributions, 
such as the uniform distribution or Gaussian distribution. 

 The offloading weights were coarse-grained: either binary 
or continuous over the unit interval. 

 The singularity pitfall of CPU cycle allocation was not 
explicitly avoided in the base models. 

 The statistics of small-scale and large-scale channel 
fading were not well addressed. 

 Only a small portion of studies involved machine 
learning. 

    The present work tries to pay more attentions to 
aforementioned issues. 
 The random samples of the data size were generated from 

long-tailed distributions popularly found in Internet ([7], 
[10-12]). 



 

 The offloading weights were fine-grained, as described in 
the preceding section. 

 The singularity issue of CPU cycle allocation was clearly 
avoided in the base model. 

 For the small-scale fading, instead of the basic Rayleigh 
model (i.e., the fading power following exponential 
distribution), the more general Nakagami-m model is 
adopted. Moreover, for the path-loss fading, the 
singularity is avoided and the path loss exponent can be 
arbitrary, rather than restricted to integers. 

 Finally, a machine learning approach is developed. 

IV. COMPUTATIONAL MODES 

    In the following, we discusses two typical modes in MEC. 
Both energy consumption and processing latency are relevant. 
A. Local Processing 
Let l

if  be the CPU cycles per second in the ED .i   A 

commonly adopted formula for evaluate l
if is based on the 

dynamic voltage scaling (DVS) approach [13]: 

,max
,

(1 )
min , , (1)l i i

i i
i ub

x C
f f



    
  

 

where ,maxif is the maximum CPU frequency of ED .i  The 

energy consumed by CPU is directly proportional to the 
squared-voltage for the chip, 2,V  while V  is linearly 

associated with .l
if  Accordingly, The energy per CPU cycle 

can be expressed as 2( ) ,l
if  where  is the chip-dependent 

parameter (e.g., effective switched capacitance). A typical 
value is 2610 .   Therefore, the total energy consumed by 

iC  cycles with the effect of ix  is: 
2( ) (1 ) . (2)l l

i i i iE f x C   

On the other hand, the incurred latency is: 
(1 ) / . (3)l l

i i i it x C f   

B. Remote Processing 
Remote processing is carried out in edge servers. One of the 
components of latency is due to uplink transmissions. The 
transmission rate takes the following form: 

2
0 0

log 1 . (4)
( )

i i
i i

i i

h P
R W

N W d d 

 
    

 

Accordingly, the transmission time is: 
/ . (5)tr

i i i it x D R  

On the other hand, the CPU processing time is: 
/ . (6)s

i i i it x C F  

The consumed energy of RF for transmission is 
/ . (7)tr tr

i i i i i i iE Pt x D P R   

Moreover, the energy of ED while waiting for ES is: 

/ . (8)w w s w
i i i i i i iE P t x C P F   

V. PROBLEM FORMULATION 

    In this paper, our interest is to minimize the energy 
consumption with multiple constraints. The optimization 
problem is formulated as follows. 
(OFLD_OPTM1) 

1
,

minimize ( ); (9)
N l tr w

i i ii
x F

z E E E    

,

,

min

max max

1 max

1 2

. .

(1 ) / ; (10)

; (11)

0 1; (12)

1; (13)

{ , ,..., }. ( 1,2,..., ) (14)
i

l l
i i i i i ub

tr s i i i i
i i i ub

i i

i

N
i

i

i i i iM

s t

t x C f

x D x C
t t

R F

FF

F F

F

F

x b b b i N







  

   

  



 



 

Several remarks are instructive to gain deeper insights. 
Remark 1: The decision variables of NEC_OPT1 are 
continuous iF  and discrete  ix  ( 1,2,..., ).i N   

Remark 2: OFLD_OPTM1 is a nonlinear, non-convex, and 
hybrid optimization problem. 
Remark 3: The discrete constraint (14) can be dealt with the 
conventional combinatorial strategies, usually provided in a 
standard integer nonlinear programming solver. However, if 
such a standard solver is not available or not scalable, it is 
desirable to use the common nonlinear programming solvers 
provided in most engineering software products, such as 
Matlab. In this situation, a method proposed in [14] or [15] can 
be customized.  
Remark 4: Due to its positive limit on the left-hand side, 
constraint (12) is not redundant for (13). 
Remark 5: The lower bound of constraint (12) avoids the 
unbounded pitfall of (6), (8), and (11).  
Remark 6: OFLD_OPTM1 is a quasi-separable programming 
problem. In the context of nonlinear optimization, the 
definition of the separable programming problem also includes 
the constraints and convexity [16, Ch. 13]. In OFLD_OPTM1, 
due to eqs. (2), (7), and (8), the objective function is separable. 
Note that, it is possible 1 0,ib  since some software tasks may 

include a non-offloadable portion.  For example, a task for face 
recognition may include K Java classes, of which K-1 are 
offloadable. 
    It is noted that Remarks 3 through 6 have not well been 
addressed in the open literature.  

VI. SIMULATION SETUP 

A. Distribution of Edge Devices 

    As shown in Fig. 1, we consider a network with N  EDs and 
one processing hub. The edge sever is associated with this hub. 
These N  EDs are independently uniformly distributed in the 
disc with radius .cR Accordingly, the probability density 

function (PDF) is )./(1 2
cR  In the polar coordinate system, the 

cumulative distribution function (CDF) is: 
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2 2
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It is worth noting that the above model is equivalent to the 
homogeneous Poisson point process (PPP) conditioned that 
there are N  points within a finite disc [17, Theorem 2.9]. 

B.    Distribution of Small-Scale Fading 

 For the small-scale fading, we assume that its channel gains 
follow the squared Nagagami-m distribution with unit mean. 
The random data are generated from the inverse incomplete 
gamma function.   

C. Distribution of Data Size 

The data size iD  is assumed to follow the Pareto distribution 

([7], [10]). The CDF of Pareto distribution is as follows: 

 ( ) 1 / . ( 0; 0) (16)pc

D p p pF s h s s h c      
As indicated in [10], various data communication entities can 
be well described by (16) with 1 2.pc   Note that (16) is 

one of the refinements against most existing works. 

VII. NEURAL NETWORK CONFIGURATION 

    One of the most popular realizations for the ANN notion is 
the feed-forward neural network (FNN) [19, Ch. 6]. In the 
present work, we implement an FNN for the MEC problem. 
One of the axioms of FNN is to start trying small architectures 
whenever possible. We have investigated several small 
architectures. In this study, the FNN consist of three hidden 
layers with 32, 16, and 16 neurons, respectively. The total 
number of input vectors is chosen to be larger than total 
weights of this FNN. The rationale is well described in [19]. 
The datasets are generated by a standard nonlinear 
optimization solver in Matlab.  In particular, the target dataset 
is composed of those converged solutions of OFLD_OPTM1. 

A. Parameters of Edge Computing 

    The main parameters are listed in Tables II, where the 
index  1, 2, ..., ,i N and ( , )U a b stands for the uniform 

distribution in [ , ].a b  

TABLE II.  MAIN PARAMETERS IN TESTBED  

Parameter Value 

1 2 3 4{ , , , }i i i ib b b b  {0,0.35,0.70,0.95}  

pc  1.67 

ph  52 10  (bits) 

m ax
lf  2 GHz 

;im   1.2; 3.5 

maxF  30 GHz 

iC  (900,1100)U (Mega cycles) 

;iM N  4; 8 

0N  -143.97 (dBm/Hz) 

; w
i iP P  480 (mW); 100 (mW) 

cR  100 (m) 

cW  20 (MHz) 

    In the configuration of FNN, 80%, 15%, and 5% of samples 
are used as the datasets for training, validation, and internal 
testing, respectively. In the training stage, the Levenberg-
Marquardt (LM) algorithm was adopted as the training 
method. In the context of FNN, the LM algorithm is usually the 
first choice [18, 19]. For the hidden layers, two of the most 
popular activation functions are used: the log-sigmoid function 
and the rectified linear unit (ReLU) function. For the output 
layer, the pure linear function is used. 

A. Training 
    The profiles of training are illustrated in Fig. 2 through Fig. 
4. Several interesting yet important insights can be gained 
from above results. The performance of mean square error 
(MSE) of training, validation, and internal testing are illustrated 
in Fig. 2. Next, the corresponding error profile is presented in 
Fig. 3, where the ordinate represents the number of errors that 
falls within each interval on the abscissa. It is observed that 
most instances fall in two very narrow error intervals. As a 
result, this NN has done a successful training. 
 

 
Figure 2.  MSE performance. 

 
Figure 3.  Histogram of errors. 



 

B. External Testing 
    In total, 1530 samples are used for FNN (32, 16, 16). The 
CDF profile of optimal solutions produced by the trained FNN 
are illustrated in Fig. 4, where the top plot is the CDF of the 
mean of optimal ,ix while the bottom plot is the CDF of the 

mean of optimal max/ .iF F As a comparison, the 

corresponding CDF profiles generated by a standard nonlinear 
programming (NLP) solver are illustrated in Fig. 5. This NLP 
solver has been upgraded to deal with both discrete and 
continuous constraints, as shown in eqs. (10) through (14). 
Note that the trained FNN is well validated by the range-match 
between Figs. 4 and 5 (except the illustrations of curve shapes 
are affected by the different horizontal scales/spans). 

 
Figure 4.  CDF of optimal solutions from trained FNN. 

 
Figure 5.  CDF of optimal solutions from NLP solver. 

C. Computational Efficiency 
    In this study, extensive numerical experiments have 
been carried out by the trained neural network. All training and 
testing procedures were conducted in a computer equipped 
with the 3.50 GHz quad-core CPU and 16 GB RAM. Three 
sets of representative results are presented In Table III. The 
individual datum is the average over is the entire 1530 
samples. It is observed that the computational time of FNN has 
reduced to 7% or 8%. 

TABLE III.  AVERAGE COMPUTATIONAL TIME 

NLP sol. (ms) 88.5521 81.8689 83.1001 

FNN test (ms) 7.1221 5.9344 5.8141 
Ratio (%) 8.0428 7.2487 6.9965 

VIII. CONCLUSION 

    It is imperative to refine the resource optimization schemes 
for MEC offloading paradigms. The purpose of this paper is 
twofold: developing an optimization model to include some 
often-omitted issues and seeking some lightweight solving 
schemes. There has been an interest in investigating the 
effectiveness of a small-scale FNN for the second purpose. 
The present study shows that a small FNN is functional quite 
well. In the ongoing project, the main attention will be paid to 
training FNN to solve large-scale MEC problems. 
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