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Abstract—A large number of virtual network embedding
(VNE) algorithms have been proposed in the literature. Their
performances have always been evaluated through simulations
due to the formidable difficulty of developing analytical models
for the performance of VNE algorithms. In this paper, we propose
a novel loss network model with Dynamic Routing And Random
Topology (DRART) that allows us to estimate the blocking
probability of mapping a virtual link (VL). Furthermore, by
integrating our new model with other existing models, we
can estimate the blocking probability of VNE algorithms quite
accurately. Our analytical model can be used as a benchmark for
comparing different VNE algorithms as well as a tool to evaluate
an operating virtual network service where substrate nodes and
links can fail or be put into maintenance randomly.

Index Terms—Loss network model, Virtual network embed-
ding, Performance analysis, Random topology, Dynamic routing

I. INTRODUCTION

Network virtualization plays an important role in software-
defined networks (SDN) as well as network function virtual-
ization (NFV). While the research on virtual network embed-
ding(VNE) algorithms is extremely rich [1]–[5], performance
estimation of these algorithms based on analytical models
almost does not exist to our best knowledge. These algorithms
have been evaluated based on simulation results, which are
typically limited to simulation setups and specific network
topology scenarios. The challenge of performance modeling
lies in the complexity of VNE. For example, a blocking event
can happen at a substrate link/node, a virtual link/node, or a
virtual network level. We need models for all three levels to
capture the performance of a VNE algorithm. Furthermore, a
model developed under a specific substrate topology cannot
be used to evaluate the performances of various embedding
algorithms due to the lack of generality. By assuming a random
substrate network (SN) topology, the difficulty of calculating
blocking probability increases dramatically. A VL can have
multiple candidate paths in an SN. This kind of dynamic
routing and random topology requirements have not been
studied so far to our best knowledge. Comprehensive coverage
of various loss models can be found in [6]. The closest one
is the so-called loss network with fixed routing, which is still
quite far from our case here.

In this paper, we propose a systematic approach to evaluate
the performance of embedding algorithms, which includes the
following major components:

• We adopt the existing generalized Erlang loss model [7]
for estimating substrate link (SL) blocking probability;

• We create a novel loss network model with Dynamic
Routing And Random Topology (DRART) for estimating
blocking probability at the VL level;

• We incorporate concepts from Jackson networks [8] for
evaluating the performance of embedding at the virtual
network(VN) level;

• We create a new recursive integration approach that forms
a synergy among the three different levels.

The rest of the paper is organized as follows: Section II
describes our approach in detail; Section III presents numerical
results; Section IV concludes the paper.

II. SYSTEM MODELS

In this section, we will start with the system environments
and basic assumptions. Then, we will present our analytical
results on the blocking probabilities of an SL, a VL, and a
VN step-by-step with detailed proofs being omitted due to
page limit. Interested readers can check [9] for more details.

A. System Environment and Basic Assumptions

To make our models general enough, we assume a generic
environment used in previous VNE baseline solutions [2], [10].

An SN is represented as a random weighted undirected
graph and denoted as GS(NS , ES), where NS is a set of
substrate nodes and ñs = |NS | follows a probability distri-
bution PNS

with a maximum value MS,N . n̄s = E(ñs) is the
average number of substrate nodes. ES is a set of SLs and
each pair of nodes have the probability PS,L to form a link
es ∈ ES . ẽs = |ES | is the number of SLs. ēs = E(ẽs) is
the average number of SLs. Each substrate node ns ∈ NS

is associated with a CPU capacity value cns
that follows

a random distribution Pcns
with a maximum CPU capacity

Cns
and a location (xns

, yns
) following some distribution

PLns
(x, y) in a fixed area W . In this paper, we assume CPU

capacity as the resource requirement for a node. We assume
that each SL es between two substrate nodes has a random



bandwidth capacity bes following the distribution Pbes
with a

maximum bandwidth capacity Bes .
Similarly, a virtual network request (VNR) is

represented as a random weighted graph, denoted by
GV (NV , EV , ta, td, D). NV is a set of virtual nodes.
ñv = |NV | follows a probability distribution PNV

with a
maximum value MV,N . n̄v = E(ñv) is the average number of
virtual nodes. EV is a set of VLs and each pair of nodes has
the probability PV,L to form a VL ev ∈ EV . ẽv = |EV | is the
number of VLs in the VN. n̄v = E(ẽv) is the average number
of VLs. ta is the arrival time of a VNR, which follows a
Poisson process with an arrival rate λV . td is the duration
of the VNR, which follows an exponential distribution with
a mean holding time τV . Each virtual node nv ∈ NV is
associated with a CPU capacity requirement cnv

that follows
a random distribution Pcnv

with a maximum CPU capacity
requirement Cnv and a location (xnv , ynv ) following some
distribution PLnv

(x, y) in the same fixed area W . A substrate
node is called a candidate node for the virtual node if the
substrate node is located within the distance D to the virtual
node. We assume ev between two virtual nodes has a random
bandwidth requirement bev following the distribution Pbev
with a maximum bandwidth requirement Bev .

B. Substrate Node/Link Blocking Probability

In this subsection, we focus on SL blocking probability.
Substrate node blocking probability can be calculated exactly
in the same way by replacing bandwidth with CPU capacity.

We first assume VNRs arrive at an SL following Poisson
distribution with a mean rate λS,L. Each VNR at an SL is
associated with a VL of a VNR. The holding time of a request
received at an SL follows the same exponential distribution
with the same mean holding time τV as the VN holding time.
The bandwidth requirement bes ∈ R also follows the same
distribution Pbev

as the VL.
There is no existing way to calculate the blocking prob-

ability when bev is a random real number. The generalized
Erlang loss model [7] is the closest one that can be used to
approximate this blocking probability. However, the Erlang
model requires the requested bandwidth and link capacity to
be discrete. In order to use Erlang model, we have to quantize
bandwidth requests into a fixed number of intervals denoted as
R. We approximate each interval r: (bev,r, bev,r+1], 1 ≤ r ≤ R

with one bandwidth request br =
∫ bev,r+1

bev,r
bevdPbev

, which is
the average bandwidth of the interval. The probability that a
request has bandwidth br will be Pr =

∫ bev,r+1

bev,r
dPbev

. The
arrival rate within each interval is λS,L,r = λS,LPr. The
load of each interval is ρS,L,r = λS,L,rτV . We also quantize
the bandwidth capacity of SL bes into U intervals with each
interval u : (bes,u, bes,u+1], 1 ≤ u ≤ U . We approximate each
interval with one bandwidth capacity bu =

∫ bes,u+1

bes,u
besdPbes

.
The probability that an SL has the capacity bu is Pu =∫ bes,u+1

bes,u
dPbes

.
Assume at a specific time the link is hosting hr requests

with bandwidth br for each interval r. Let h⃗ = (h1, · · ·hR),

then the set of all feasible combinations that can be carried
by a specific SL is shown in (1).

F (bu) =
{
h⃗ ≥ 0 :

∑
r∈R brhr ≤ bu

}
(1)

Following the generalized Erlang loss model [7], the average
blocking probability of the SL is:

P
(B)
S,L =

∑
u∈U Pu

∑
r∈R (1− G(bu−br)

G(bu)
)Pr, (2)

where
G (bu) =

∑
h⃗∈F(bu)

∏
r∈R

ρhr
S,L,r

hr!
. (3)

Similarly, we can find the substrate node blocking proba-
bility P

(B)
S,N by replacing bandwidth with CPU capacity.

C. The DRART Model for VL Blocking Probability

Each VL can be mapped to a substrate path that has enough
residual bandwidth capacity in each SL the path traverses to
support the VL bandwidth requirement. We first want to know
the maximum number of potential paths there may be for a
source-destination pair in an SN.

There are many paths that may exist between a source-
destination pair, shorter paths are more favored for VNE due
to the fact that the shorter paths use fewer link resources. How-
ever, shorter paths between a source-destination tend to have
many joint links. Without taking any extra measures, if one
short path is blocked, other short paths will likely be blocked
too. This will make blocking probability higher as justified
with simulation results in Section III. In addition, paths with
joint links make the calculation of blocking probability more
complex due to the complex correlation structure. we consider
selecting candidate paths from link-disjoint paths only.

We first need to know how many link-disjoint paths exist
for a given source-destination pair. This is quite challenging
due to the random topology assumption.

Theorem 2.1. For any source-destination pair in any SN with
ñs nodes, the maximum number of potential link-disjoint paths
that have e links is KI,e = ñs − 2, where 2 ≤ e < ñs

2 + 1.

We now try to estimate the probability of the existence of
certain number of link-disjoint paths with various path lengths.

Theorem 2.2. For any source-destination pair in any SN with
ñs nodes, the probability that there exist at least ke link-
disjoint paths with length e can be approximately calculated
by (4).

PI (k ≥ ke| KI,e) ≈ P̃I (ke|KI,e)
2
P̌I (ke| KI,e) , (4)

where

P̃I (ke| KI,e) =
∑KI,e

i=ke
C

KI,e

i PS,L
i (1− PS,L)

KI,e−i
,

and

P̌I (ke| KI,e) =
L(ñs−2)∑
i=ke(e−2)

C
L(ñs−2)
i PS,L

i (1− PS,L)
L(ñs−2)−i

.

By using subtraction operations shown in Corollary 2.1, we
can obtain the probability of the existence of certain number
of link-disjoint paths with a fixed path length e.



Corollary 2.1. For any source-destination pair in any SN
with ñs nodes, the probability that there exist exactly ke link-
disjoint paths with length e can be estimated as (5).

PI(ke|KI,e) = PI (k ≥ ke| KI,e)− PI (k ≥ ke + 1| KI,e) (5)

Now we move on to look at the probability that there exist
multiple link-disjoint paths with different path lengths.

Corollary 2.2. For any source-destination pair in any SN with
ñs nodes, the joint probability of k⃗ = {ke, e = 1, · · · , Em}
link-disjoint paths are estimated as:

PI

(
k⃗|KI,e

)
= PI (k1, · · · , ke|ñs) ≈ PI(k1)

e∏
j=2

PI (kj | kI,j), (6)

where
PI(k1) =

{
PS,L, if k1 = 1

1− PS,L, if k1 = 0
,

and
kI, j = KI,j − k1 − k2 − · · · − kj−1.

Using the chain rule [11], we know the distribution of
available paths. We assume the blocking events at each SL are
independent. Given a path with e−1 ordered substrate nodes (
n⃗s,e−1 = {ns,1, · · · , ns,e−1}) the blocking probability of the
path P

(B)
p, n⃗s,e−1

can be calculated by (7).

P
(B)
p, n⃗s,e−1

= 1−
(
1− P

(B)
S,L

)e

(7)

The blocking probability for a VL depends on the embed-
ding algorithms used. We consider a typical embedding algo-
rithm that selects a path as short as possible from maximum
K existing link-disjoint shortest paths with a maximum path
length Em. Our approach can be extended to other embedding
algorithms if the algorithms are known.

Lemma 2.1. For any source-destination pair in any SN with
ñs nodes, under K shortest paths algorithm with maximum
path length Em, the paths can be identified as:

k̃e =


ke, if ke ≤ K −

∑
i<e ki

K −
∑

i<e ki, if ke > K −
∑

i<e ki > 0

0, if K −
∑

i<e ki ≤ 0

, (8)

where e ≤ Em.

Combining the conditions of embedding algorithms (e.g.,
Em, K), we can obtain the VL blocking probability by (9).

Theorem 2.3. For any source-destination pair, under the K
shortest paths algorithm with maximum path length Em, the
average blocking probability of a VL can be calculated by:

P
(B)
V,L (Em,K) =

MS,N∑
ñs=2

∑
k⃗[

Em∏
e=1

(P
(B)
p, n⃗s,e−1

)
k̃e

]PI

(
k⃗|KI,e

)
PNS

(ñs). (9)

We have already obtained the VL blocking probability.
There are some statistics that are worth discussing further.

Corollary 2.3. For any source-destination pair, under the K
shortest paths algorithm with maximum path length Em, the
acceptance probability of a VL at a given path length e, when

all paths with shorter lengths than e are blocked, can be
calculated by (10).

P
(A)
V,L (e, K) = P

(B)
V,L (e− 1,K)− P

(B)
V,L (e,K) (10)

The average accepted path length of a VL mapping is
another statistic that we are keen to know. This can be
estimated by P

(A)
V,L (e, K).

Corollary 2.4. For any source-destination pair, under the K
shortest paths algorithm with maximum path length Em, the
average path length for accepted VL requests can be obtained
from (11).

l̄V,L (K,Em) =
∑Em

e=1 eP
(A)
V,L (e, K) (11)

D. Virtual Node Blocking Probability
In this subsection, we start to find the acceptance probability

of a virtual node.

Lemma 2.2. The acceptance probability for a virtual node
mapping can be calculated as:

P
(A)
V,N =

MS,N∑
ñs=2

ñc,s∑
ñc,s=2

(
1− (P

(B)
S,N )ñc,s

)
P (ñc,s|ñs)PNS

(ñs),

(12)
where P (ñc,s|ñs) is the conditional probability that there are
ñc,s candidate nodes for a virtual node given that there are ñs

substrate nodes in the SN. P (B)
S,N is the blocking probability of

a substrate node as defined earlier.

E. Blocking Probability for VNs
We now try to calculate the blocking probability for a

specific VN. When we deal with a VN with multiple VLs,
these VLs may be mapped onto substrate paths that are par-
tially overlapped. To make our analysis tractable, we assume
blocking events across all virtual nodes and link mappings are
independent. This assumption allows us to have a product-form
solution like Jackson networks.

Theorem 2.4. Assume a VN with ñv = |NV | nodes and
ẽv = |EV | VLs. Assume all virtual nodes and VLs are inde-
pendent. Then the acceptance probability of the VN can be
calculated as (13).

P
(A)
N (ñv, ẽv) =

(
1− P

(B)
V,L

)ẽv
(P

(A)
V,N )ñv (13)

Equation (13) assumes a fixed number of virtual nodes and
a fixed number of virtual links in a VNR. Now, we consider
the conditional probability of the number of virtual nodes
and the conditional probability of the number of virtual links.
Let L (ñv) =

ñv(ñv−1)
2 denote the maximum number of VLs

that may exist given ñv virtual nodes. The average blocking
probability can be calculated.

Corollary 2.5. The average acceptance probability for an
arbitrary VN can be calculated as (14):

P
(A)
N =

∑MV,N

ñv=2

∑L(ñv)
ẽv=1 P

(A)
N (ñv, ẽv)P (ẽv|ñv)PNV

(ñv),
(14)

where P (ẽv|ñv) is the conditional probability that there exist
ẽvVLs given ñv virtual nodes in a VNR; and L (ñv) is the
maximum number of different links.



F. Estimating the Offered Load λS,L for An SL

At the beginning of Section II-B, we mentioned that λS,L,
the offered load for an SL, is not the same as λV , the VNR
rate. This is also true for the offered load of a substrate node
λS,N . We now discuss how to estimate λS,L, λS,N .

The offered loads λS,L, λS,N should include two parts,
the part that is blocked by the substrate node or link and
the part that is accepted. We call the part that is accepted
and carried by an SL as effective loads denoted as λE,L,
λE,N respectively. A VNR is blocked if any VL or node is
blocked. It is important to note that the offered loads λS,L,
λS,N should not include the loads blocked by other links or
nodes. Because even a substrate node/link accepts this load,
it still does not carry it. It does not constitute the effective
load of the substrate node/link. Therefore, we assume only
the VNs that have been accepted become the offered loads for
the SL/node. It should be noted that not all offered loads are
effective loads for a specific node/link due to the fact it may
be rejected by this node/link while being accepted by other
links/nodes. Following the above discussion, we have:
λS,L ≈ λV P

(A)
N (λS,L, λS,N ) l̄V,L (Em,K, λS,L ) ēv/ēs, (15)

and λS,N ≈ λV P
(A)
N (λS,L, λS,N ) n̄v/n̄s, (16)

where we emphasized the network acceptance probability and
average path length for accepted VLs depending on the offered
loads. This is a fixed-point problem. It is not difficult to
see that P

(A)
N (λS,L, λS,N ) and ēv (Em,K, λS,L ) go down

monotonically with increasing offered loads. Therefore, (15)
and (16) will converge through a recursive process.

III. NUMERICAL RESULTS

In this section, we will compare the results of our analytical
model with the simulation results obtained with some repre-
sentative VNE algorithms. The purposes of these comparisons
are twofolds: 1) We made some assumptions about the inde-
pendence of certain random variables and some approximation
in deriving (5) during our modeling process. 2) We want to
show the performance gaps between our analytical model and
existing VNE algorithms.

A. Environment Setups

Our proposed performance analytical model aims to esti-
mate the performance of a VNE algorithm under very general
environments. To get numerical results, We use the same setup
as the previous baseline solution in [2].

The random VNRs are generated by a Poisson process
with λV ranging from 4 to 8 requests per 100 time units.
Each request required a holding time, which was exponentially
distributed with an average of τV = 1000 time units. The
distribution of the number of virtual nodes in a VNR PNV

followed a piece-wise uniform distribution the same as [2].
We compare the final VN acceptance probabilities. Fig. 1

is our analytical results in comparison with simulation results.
We first compare the simulation results for non link-disjoint
paths (GAOne [1] non link-disjoint) and link-disjoint paths
(GAOne link-disjoint). The results for link-disjoint paths are

4 5 6 7 8
Arrival Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Ac
ce

pt
an

ce
 R

at
io

Analytical model
GAOne non link-disjoint
SBGA
PBGA
G-SP
D-ViNE
R-ViNE
GAOne link-disjoint

Fig. 1: VN acceptance ratio over arrival rates.

consistently better than the non link-disjoint paths. This jus-
tifies finding link-disjoint paths are reasonable and acceptable
as discussed in Section II-C. We observe that our analyti-
cal results are very close to the GAOne simulation results
with link-disjoint paths. This confirms that the independence
assumptions we made in Section II-C are fair and rational.
We also compare our analytical results with other algorithms.
SBGA and PBGA are two-stage genetic algorithms to solve
VNE [1]. D-ViNE and R-ViNE [2] are considered as baseline
solutions for VNE two-stage mapping. SP [10] is a greedy
two-stage mapping solution with small computing complexity,
which is widely used for online scenarios to provide fast
solutions. As we discussed above, the two-stage approaches
may be trapped into the local optimum easily. The results
justify that our analytical model can provide a guideline for
general VNE approaches to predict near-optimal solutions.

Finally, in Fig. 2, we show the results of the analytical model
getting converged after several iterations. Specifically, We
observe that when the arrival rates get higher, more iterations
are required before the system gets steady. Fig. 2 verifies the
correctness of our recursive procedure discussed in II-F.
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Fig. 2: The VN acceptance ratio converging process.

IV. CONCLUSION AND FUTURE WORK

There are very few analytical results on estimating the
performance of VNE algorithms. In this paper, we proposed
an integrated and systematic approach for estimating the
performance of VNE algorithms. Our numerical results have
justified that the models we created are accurate and can
serve as a benchmark for the performance prediction of VNE
algorithms.
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